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Abstract. We examine the long-run behavior of multiagent online learning in games that
evolve over time. Specifically, we focus on a wide class of policies based on mirror descent,
and we show that the induced sequence of play (a) converges to a Nash equilibrium in
time-varying games that stabilize in the long run to a strictly monotone limit, and (b) it
stays asymptotically close to the evolving equilibrium of the sequence of stage games
(assuming they are strongly monotone). Our results apply to both gradient- and payoff-
based feedback—that is, when players only get to observe the payoffs of their chosen
actions.
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1. Introduction
Consider a repeated multiagent decision process that unfolds as follows:

1. At each stage t � 1, 2, : : : , every agent selects an action from some continuous set.
2. Each agent receives a reward based on the chosen action and the actions of all other players. These rewards are

determined by a normal form game Gt that evolves over time and is a priori unknown to the players.
3. Based on the reward received (and/or any other payoff-relevant information), the players update their actions

and the process repeats.
The main questions that we seek to address in this paper are the following: First, are there online learning poli-

cies that allow players to track a Nash equilibrium (NE) over time (or to converge to one if the stage games stabi-
lize)? And, if so, what is the impact of the information available to the players and the variability of the sequence
of stage games?

1.1. Background
One of the most widely used policies for learning in games is the mirror descent (MD) class of algorithms and its
variants (cf. Bubeck and Cesa-Bianchi [14], Shalev-Shwartz [57], and references therein). This family of first order
methods dates back to Nemirovski and Yudin [45], and contains as special cases standard (sub)gradient descent
methods; entropic gradient descent (Beck and Teboulle [4]); the “hedge” (or exponential/multiplicative weights)
algorithm in finite games (Auer et al. [3], Littlestone and Warmuth [38], Vovk [67]); and in games with a linear
payoff structure, the follow-the-regularized-leader (FTRL) class of policies (Shalev-Shwartz [57], Shalev-Shwartz
and Singer [58]). These methods are applied to a wide range of games—from min-max to potential games—lead-
ing to a vast literature that is impossible to survey here; for an appetizer, see Juditsky et al. [32], Nemirovski et al.
[46], Nesterov [47], and references therein.

In the single-player case, the standard figure of merit is the minimization of the learner’s regret, that is, the
cumulative payoff difference between the player’s chosen policy and the best policy in hindsight (static or
dynamic, depending on the precise notion of regret under consideration). In this context, when the payoff func-
tions encountered by the learner are concave, MD methods guarantee an O( ��

T
√ ) static regret bound that is
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well-known to be order-optimal (Abernethy et al. [1]); moreover, if the problem has a favorable geometry (e.g.,
when the learner’s action set is a simplex or a spectrahedron), these bounds are “almost” dimension-free, a fact
that is of crucial importance in practical applications.

In view of these appealing guarantees, one might expect this picture to carry over effortlessly to multiagent
decision problems as well. However, game-theoretic learning can be considerably more involved because, in
addition to the exogenous variability of the stage game Gt as a function of t, the players’ individual reward func-
tions also vary endogenously as a function of the actions chosen by the other players at any given time t. More-
over, the standard solution concept in game theory is that of a Nash equilibrium—not the players’ regret (external,
internal, or dynamic). As a result, even though the algorithms under study are essentially the same in both single
agent and multiagent environments, the analysis and the results obtained in these two settings are often mark-
edly different.

Our paper focuses on multiagent problems and aims to analyze the equilibrium tracking and convergence
properties of MD-based policies in time-varying games. In so doing, we seek to partially fill a gap in the existing
literature on game-theoretic learning, which focuse almost exclusively on the case in which there are no exoge-
nous variations in the players’ payoff functions—that is, when the stage game Gt remains fixed for all t. To pro-
vide the necessary context, we begin by discussing some relevant works, and we outline our main contributions
right after.

1.2. Related Work
The well-known impossibility result of Hart and Mas-Colell [28] shows that there are no uncoupled dynamics
leading to a Nash equilibrium in all games. Thus, given that no-regret dynamics are unilateral by construction—
and, hence, uncoupled a fortiori—it is not possible to establish a blanket causal link between no-regret play and
convergence to a Nash equilibrium; in fact, even in the relatively simple context of bilinear zero-sum games,
no-regret learning may cycle indefinitely without converging, always remaining a uniform distance away from
the game’s Nash equilibria (Mertikopoulos et al. [41, 43]).

For this reason, deriving the equilibrium convergence properties of multiagent learning processes requires a
more specialized look, typically zooming in on specific classes of games. In the case of mixed extensions of finite
games, Cominetti et al. [17], Coucheney et al. [18], Cohen et al. [16], and Leslie and Collins [37] show that certain
variants of the exponential weights algorithm converge to perturbed Nash equilibria with probability one in
potential and 2 × 2 ×⋯× 2 games. More recently, in the case of continuous potential games, Perkins et al. [50]
show that a lifted variant of MD-based methods converges weakly to an ε-neighborhood of the game’s set of
Nash equilibria. Importantly, in all these works, convergence is established by first showing that a naturally asso-
ciated continuous-time dynamical system converges and then using the so-called ordinary differential equation
(ODE) method of stochastic approximation (Benaïm [6], Benaïm et al. [7]) to translate this result to discrete time.

More relevant for our purposes is the recent work of Mertikopoulos and Zhou [40], who focus on the class of
monotone games, that is, continuous games that satisfy the so-called diagonal strict concavity (DSC) condition of
Rosen [53]. Specifically, using the same ODE stochastic approximation tools discussed, Mertikopoulos and Zhou
[40] show that the sequence of play generated by a specific version of the dual averaging algorithm of Nesterov
[47] converges to a Nash equilibrium with probability one (w.p.1) even in the presence of noise and uncertainty.
The analysis of Mertikopoulos and Zhou [40] is subsequently extended by Bravo et al. [13] to learning with
payoff-based, “bandit feedback”—that is, when players observe only the payoff of the action that they played.
At around the same time, Tatarenko and Kamgarpour [63, 64] use a Tikhonov regularization approach to obtain
a series of comparable results for “merely monotone” games (i.e., monotone games that are not necessarily
strictly monotone), whereas more recently, Drusvyatskiy and Ratliff [21] improve the rate of convergence in
strongly monotone games to O(1=T1=2). Finally, in a very recent paper, Bervoets et al. [9] use stochastic approxi-
mation methodologies to prove the convergence of a payoff-based, dampened gradient approximation scheme in
two other classes of one-dimensional concave games: games with strategic complements and ordinal potential
games with isolated equilibria.

1.3. Our Contributions
In all the works described, the game faced by the players remains fixed throughout the learning process, and the
variation in the players’ individual payoff functions is strictly endogenous—that is, it is only a result of the other
players’ evolving action choice. By contrast, our paper seeks to tackle problems in which the sequence of games
encountered by the players also evolves exogenously—that is, players encounter a time-varying game.

In this general context, we examine the equilibrium tracking and convergence properties of a wide class of
MD-based policies—encoded as Algorithm 1 in Section 3—in two distinct regimes:
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a. When the sequence of stage games converges to some well-defined limit (in our case, a strictly monotone
game).

b. When Gt evolves over time without converging.
In terms of feedback, we consider a flexible stochastic first order oracle (SFO) model that provides noisy payoff

gradient estimates to the players based on the actions they choose at each stage of the process, and we establish
the following results (stated in an informal, simplified version).

Theorem 1 (Informal Version). Suppose that Gt converges to a strictly monotone game G. If each player runs Algorithm 1
with a suitable step size, the, with probability one, the sequence of realized actions Xt converges to the (unique) Nash equili-
brium x∗ of G.

Theorem 2 (Informal Version). Suppose that Gt is strongly monotone and varies smoothly over time, that is,
∑T

t�1 ||x∗t+1 −
x∗t || �O(Tr) for some r < 1 (where x∗t is the Nash equilibrium of Gt). If each player runs Algorithm 1 with a suitable step
size, the sequence of realized actions Xt enjoys the equilibrium tracking error E[1T

∑T
t�1 ||Xt − x∗t ||2] �O(T−1−r

3 ).
In words, Theorem 1 shows that, if the sequence of stage games Gt stabilizes to some well-defined limit G, the

induced sequence of play converges to a Nash equilibrium of G with probability one. On the other hand, if Gt
does not stabilize, there is no equilibrium state to which to converge (either static or in the mean); in this case,
Theorem 2 shows that the average distance from equilibrium vanishes over time, and it provides an explicit esti-
mate of the resulting “equilibrium tracking error” in terms of the equilibrium variation of the sequence of stage
games encountered by the players.

Finally, to account for environments in which gradient information is not available, we also consider the case
of learning with payoff-based feedback. By considering a one-shot gradient estimation process based on single-
point stochastic approximation techniques (Bravo et al. [13], Flaxman et al. [26], Héliou et al. [29], Spall [61]), we
map the problem of payoff-based learning to our generic oracle model, and we show that our convergence and
equilibrium tracking results still apply in this case (though the corresponding rates are worsened because of the
players’ having less information at their disposal).

In terms of proof techniques, the exogenous dependence of Gt on t means that the continuous-time limit of the
players’ learning process is likewise nonautonomous (i.e., it also depends on t). As a result, there is no longer a
well-defined “mean field equation” to approximate, so it is not possible to employ the ODE method of Benaïm
[6] that underlies the series of papers discussed earlier. Instead, to establish convergence to an equilibrium in the
“stable limit” regime, we work directly in discrete time, and we employ a mix of submartingale limit theory and
quasi-Fejér arguments. Finally, our equilibrium tracking result relies on decomposing the horizon of play into
batches of appropriately chosen lengths and, subsequently, utilizes a batch comparison technique that is intro-
duced by Besbes et al. [10] to analyze the dynamic regret of single-agent online learning algorithms.

2. Preliminaries
2.1. Notation
Let X be a d-dimensional real space with norm || · ||, and let C be a compact convex subset of X . In what follows,
we write Y :� X ∗ for the dual of X , 〈y,x〉 for the duality pairing between y ∈ Y and x ∈ X , and ||y||∗ � sup{〈y,x〉 :
||x|| ≤ 1} for the dual norm of y ∈ Y. We also write ri(C) for the relative interior of C, bd(C) for its boundary, and
diam(C) � sup{||x′ − x|| : x,x′ ∈ C} for its diameter. Finally, for concision, we write [a : :b] � {a, a+ 1, : : : ,b} for the
set of positive integers spanned by a,b ∈N.

2.2. Continuous Games
Throughout our paper, we focus on games with a finite number of players and continuous action sets. Specifi-
cally, every player i ∈N � {1, : : : ,N} is assumed to select an action xi from a compact convex subset Ki of a finite-
dimensional normed space X i; subsequently, every player receives a reward based on each player’s individual
objective and the action profile x � (xi;x−i) ≡ (x1, : : : ,xi, : : : ,xN) of all players’ actions. In more detail, writing K :�∏

i∈N Ki for the game’s action space, we assume that each player’s reward is determined by an associated payoff
(or utility) function ui :K→R. The tuple G ≡ G(N ,K,u) is then referred to as a continuous game.

In terms of regularity, we assume throughout that the players’ payoff functions are continuously differentia-
ble, and we write vi(x) for the individual payoff gradient of the ith player, that is,

vi(x) � ∇xiui(xi;x−i) (2.1)

Duvocelle et al.: Learning in Time-Varying Games
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or, putting all players together,

v(x) � (v1(x), : : : ,vN(x)): (2.2)

In this, we are tacitly assuming that ui is defined on an open neighborhood of K in the ambient space X :�∏
i∈N X i of the game; none of our results depend on this device, so we do not make this assumption explicit.

Wealso adopt the established convention of treating vi(x) as an element of the dual space Yi :� X ∗
i of X i. Finally,

we assume that X is endowed with the norm ||x||2 � ∑
i||xi||2, where, for ease of notation, we write || · || for the

norm of each factor space X i and rely on the context to resolve any ambiguities.

2.3. Nash Equilibria and Monotonicity
The most prevalent solution concept in game theory is that of an NE. This is an action profile x∗ ∈ K that is resil-
ient to unilateral deviations, that is,

ui(x∗i ;x∗−i) ≥ ui(xi;x∗−i) for all xi ∈ Ki and all i ∈N : (NE)

The set of Nash equilibria of G is denoted in the sequel as x∗ :�NE(G).
By virtue of this definition, it is straightforward to check that Nash equilibria satisfy the Stampacchia varia-

tional inequality

〈v(x∗), x − x∗〉 ≤ 0 for all x ∈ K: (SVI)

As a result, finding a Nash equilibrium of a continuous game typically involves solving the Stampacchia problem
(SVI). This observation forms the basis of an important link between game theory and optimization (cf. Facchinei
and Pang [24], Laraki et al. [36], and references therein).

Now, starting with the seminal work of Rosen [53], much of the literature focuses on games that satisfy the
diagonal concavity (DC) condition

〈v(x′) − v(x), x′ − x〉 ≤ 0 for all x, x′ ∈ K: (DC)

Owing to the link between (DC) and the theory of monotone operators in optimization, games that satisfy (DC)
are commonly referred to as monotone games.1 In particular, mirroring the corresponding terminology from
convex analysis, we say that G is

1. Strictly monotone if (DC) holds as a strict inequality when x′ ≠ x.
2. Strongly monotone if there exists a positive constant μ > 0 such that

〈v(x′) − v(x),x′ − x〉 ≤ −μ||x′ − x||2 for all x,x′ ∈K: (2.3)

Obviously, we have the inclusions “stronglymonotone”(“strictlymonotone”( “monotone”, mirroring the
corresponding chain of inclusions “stronglyconcave”( “strictlyconcave”(“concave” for concave functions.

Examples of monotone games include Kelly auctions and Tullock markets (Kelly et al. [34], Tullock [66]), sig-
nal covariance and power control problems in signal processing (D’Oro et al. [20], Mertikopoulos and Moustakas
[39]), Cournot oligopolies (Monderer and Shapley [44]), and many other problems in which online decision mak-
ing is the norm. For a diverse list of applications in different contexts, see Facchinei and Kanzow [23] and Scutari
et al. [55].

3. The Learning Model
To account for the possibility of exogenous variations in the game-theoretic setup of the previous section, we
assume that the players face a different stage game Gt at each decision opportunity. More explicitly, the envi-
sioned sequence of play unfolds as follows:

1. At each stage t � 1, 2, : : : , every agent i ∈N selects an actionXi,t ∈Ki.
2. Each player receives the associated reward based on Gt and observes—or otherwise constructs—an estimate

v̂i,t ∈ Yi of the individual payoff gradients.
3. Subsequently, players update their actions and the process repeats.
The core ingredients of this framework are
a. The sequence of stage games Gt encountered by the players.
b. The sequence of gradient signals v̂i,t ∈ Yi observed (or inferred) at each stage.
c. The way that players update their actions as a function of the observed information.
We discuss each of these elements in detail.
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3.1. The Stage Game Sequence
The only blanket assumption that we make for the sequence of stage games Gt is that the players’ payoff func-
tions are Lipschitz continuous and smooth. More precisely, we posit the following requirement for the players’
tth stage payoff field vt(x) � (vi,t(x))i∈N .

Assumption 1. The game’s payoff functions are C2-smooth; in particular, there exist constants Gi,Li > 0 such that

||vi,t(x)||∗ ≤ Gi (3.1a)
||vi,t(x′) − vi,t(x)||∗ ≤ Li||x′ − x|| (3.1b)

for all t � 1, 2, : : : , and all i ∈N , x,x′ ∈K.

For posterity, we also write G :�maxiGi and Li :�maxiLi. Beyond this mild regularity assumption, the
sequence of stage games is assumed arbitrary. For instance, the evolution of Gt could be random (i.e., Gt could be
determined by some randomly drawn parameter θt at each stage), it could be governed by an underlying (hid-
den) Markov chain model, etc. In particular, we do not assume that the stage game Gt is revealed to the players
before choosing an action: from their individual viewpoint, the players are involved in a repeated decision proc-
ess in which the choice of an action returns a reward, but they have no knowledge of the game generating this
reward. This “agnostic” approach is motivated by the fact that the standard rationality postulates of game theory
(full rationality, common knowledge of rationality, etc.) are not satisfied in many cases of practical interest. We
briefly discuss two concrete examples of this framework.

Example 1 (Repeated Kelly Auctions). Consider a Kelly auction in which a splittable resource (advertising time on
a website, a catch of fish in a fish market, etc.) is auctioned off, day after day, to a set of N buyers (Kelly et al.
[34], Tullock [66]). In more detail, each player can place a monetary bid xi ∈ [0,bi] to acquire a unit of said
resource, up to the player’s total budget bi. Then, once all bids are in, the resource is allocated proportionally to
each player’s bid; that is, the ith player gets a fraction ρi � xi=[c+∑

j∈N xj] of the auctioned resource (with c > 0
denoting an “entry barrier” for participating in the auction). Thus, if gi,t denotes the marginal gain that the ith
player acquires per resource unit, the player’s prorated utility at the tth epoch is

ui,t(xi;x−i) � gi,txi
c+∑

j∈N xj
− xi: (3.2)

Clearly, the players’ utility functions evolve as a function of the intrinsic value gi,t associated to a unit of the auc-
tioned resource. Because this value may be subject to arbitrary exogenous fluctuations (for instance, depending
on the traffic coming to the website at any given time in the advertising example), we obtain a time-varying
game as before.

Example 2 (Power Control). As another example, consider N wireless users transmitting a stream of packets to a
common receiver over a shared wireless channel (Mertikopoulos et al. [42], Scutari et al. [55], Tse and Viswanath
[65]). If the channel gain for the ith user at the tth frame is gi,t and the user transmits with power pi ∈ [0,Pmax], the
user’s information transmission rate is given by the celebrated Shannon formula

Ri,t(pi;p−i) � log 1+ gi,tpi
σ+∑

j≠i gj,tpj

( )
, (3.3)

where σ > 0 denotes the ambient noise in the channel (Tse and Viswanath [65]). Because the users’ channel gains
evolve over time (e.g., because of fading, user mobility, or other fluctuations in the wireless medium), we obtain
a time-varying game in which each user seeks to maximize the individual communication rate.

3.2. The Feedback Signal
The second basic ingredient of our model is the feedback available to the players after choosing an action. In tune
with the limited information setting outlined earlier, we only posit that, at each stage t � 1, 2, : : : , every player i ∈N
receives—or otherwise constructs—a “gradient signal” v̂i,t ∈ Yi. Analytically, this signal is treated as if generated
from an SFO, that is, an abstract mechanism that provides an estimate of each player’s individual payoff gradient at
the chosen action profile. Specifically, if called at Xt � (X1,t, : : : ,XN,t) ∈ K, we assume that v̂i,t is of the form

v̂i,t � vi,t(Xt) +Zi,t, (SFO)

where the “observational error” Zi,t captures all sources of uncertainty in the received input.
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To differentiate further between “random” (zero-mean) and “systematic” (nonzero-mean) errors in v̂i,t, it is
convenient to decompose the error process Zi,t as

Zi,t �Ui,t + bi,t, (3.4)

where Ui,t is zero-mean and bi,t denotes the mean of Zi,t. Formally, writing F t � σ(X1, : : : ,Xt) for the natural filtra-
tion of Xt, we set

bi,t �E[Zi,t | F t] and Ui,t � Zi,t − bi,t, (3.5)

so by definition, E[Ui,t | F t] � 0. In this way, the oracle feedback received by each player i ∈N can be classified
according to the following statistics:

1. Bias:

||bi,t||∗ ≤ Bi,t: (3.6a)

2. Variance:

E[||Ui,t||2∗ | F t] ≤ σ2i,t: (3.6b)

3. Second moment:

E[||v̂i,t||2∗ | F t] ≤ M2
i,t: (3.6c)

Finally, to simplify notation later, we also consider the “signal plus noise” error bound

S2i,t � M2
i,t + σ2i,t: (3.6d)

In this, Bi,t, σi,t, and Mi,t are to be construed as deterministic upper bounds on the bias, variance, and magnitude
of the oracle signal v̂i,t that player i ∈N receives at time t. We also assume throughout that Bi,t is nonincreasing,
whereas σi,t andMi,t are nondecreasing. Finally, in obvious notation, we write v̂t, bt, Ut, and so forth for the corre-
sponding profiles v̂t � (v̂i,t)i∈N and the like.

Remark 1. To streamline our presentation, we first present our results in a model-agnostic manner, that is, with-
out specifying the origins of the oracle model (SFO); subsequently, in Section 5, we provide an explicit construc-
tion of such an oracle from payoff-based observations, and we discuss in detail what this entails for our analysis
and results.

3.3. Learning via Mirror Descent
The last element of the players’ learning process concerns the way that players update their actions based on the
received feedback. For concreteness, we focus throughout on the widely used family of algorithms known as
MD, which posits that players update their actions by taking a “proximal” gradient step from their current
action.2 Formally, this can be modeled via the basic recursion

Xi,t+1 � Pi(Xi,t;γi,tv̂i,t), (MD)

where
1. t � 1, 2, : : : denotes the stage of the process.
2.Xi,t denotes the action chosen by player i at stage t.
3. v̂i,t is the oracle signal of player i at stage t.
4. γi,t > 0 is a player-specific step-size sequence (assumed nonincreasing).
5.Pi denotes the “prox-mapping” of player i ∈N (see a detailed definition as follows).
For a pseudocode implementation from the viewpoint of a generic player, see Algorithm 1.

Algorithm 1 (Learning via Mirror Descent (Player Indices Suppressed))
Require: prox-mapping P, step-size γt > 0
1: initialize X1 ← argminh # initialization
2: for t � 1, 2, : : : do
3: play Xt ∈K # play action
4: get gradient signal v̂t # get feedback
5: setXt+1 ← P(Xt;γtv̂t) # update action
6: end for

Duvocelle et al.: Learning in Time-Varying Games
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Methods based on mirror descent have received intense scrutiny ever since the pioneering work of Nemirovski
and Yudin [45]; for an appetizer, see Beck and Teboulle [4], Bravo and Mertikopoulos [12], Nemirovski et al. [46],
Nesterov [47], Shalev-Shwartz [57], and references therein. For intuition, the archetypal example of the method is
based on the Euclidean prox-mapping

P(x; y) � ΠC(x + y) � argmin
x′∈C

||x + y − x′||22
{ }

� argmin
x′∈C

〈y, x − x′〉 + 1
2
||x′ − x||22

{ }
, (3.7)

where ΠC denotes the closest point projection onto a given convex set C. Going beyond this familiar example, the
key novelty of mirror descent is to replace the quadratic term in (3.7) by the so-called Bregman divergence

D(x′,x) � h(x′) − h(x) − 〈∇h(x),x′ − x〉, (3.8)

induced by a distance-generating function (DGF) h on C. This function plays the role of the squared Euclidean
norm in (3.11), and following Juditsky et al. [32], we define it as follows.

Definition 1. Let C be a compact convex subset of X �Rd. A convex function h : X →R
⋃ {∞} is said to be a DGF

on C if
1. h is continuous and supported on C, that is, domh :� {x ∈ X : h(x) <∞} � C.
2. h is K-strongly convex relative to || · || on C, that is,

h(λx+ (1−λ)x′) ≤ λh(x) + (1−λ)h(x′) − 1
2
Kλ(1−λ)||x′ − x||2 (3.9)

for all x,x′ ∈ C and all λ ∈ [0, 1].
3. The subdifferential ∂h of h admits a continuous selection, that is, there exists a continuous mapping ∇h :

dom ∂h→ Y such that ∇h(x) ∈ ∂h(x) for all x ∈ dom ∂h.3

For concision, given a DGF h on C, we refer to Ch :� dom ∂h as the prox-domain of h. The Bregman divergence
D : Ch × C→R induced by h is then given by (3.8), and the associated prox-mapping P : Ch × Y → C is defined as

P(x;y) � argmin
x′∈C

{〈y,x− x′〉 +D(x′,x)} for all x ∈ Ch,y ∈ Y: (3.10)

Finally, we say that h is Lipschitz if supx∈Ch ||∇h(x)||∗ <∞.

Throughout the sequel, we assume that each player i ∈N is endowed with an individual distance-generating
function hi :Ki →R. In obvious notation, we also write Ki for the strong convexity modulus of hi, Khi for its prox-
domain, Di :Ki ×Khi →R for the associated Bregman divergence, and Pi :Khi × Yi →Ki for the induced prox-
mapping. For concreteness, we provide two standard examples.

Example 3 (Euclidean Projections). We begin by revisiting Euclidean projections on a compact convex subset C of
Rd. The corresponding DGF is h(x) � 1

2 ||x||2 for x ∈ X , so Ch � C and ∇h(x) � x for all x ∈ C. Hence, the associated
Bregman divergence is

D(x′,x) � 1
2
||x′||22 −

1
2
||x||22 − 〈x,x′ − x〉 � 1

2
||x′ − x||22, (3.11)

and the resulting recursion x+ �Π(x+ γv) is just a standard projected forward step.

Example 4 (Entropic Regularization). Let C � Δd :� {x ∈Rd
+ :

∑d
j�1 xj � 1} denote the unit simplex of X �Rd. A very

widely used distance-generating function for this geometry is the (negative) Gibbs-Shannon entropy h(x) �∑d
j�1 xj logxj (with the standard notational convention 0 · log0 � 0). By inspection, the prox-domain of h is

Ch :� riC, and the resulting Bregman divergence is just the Kullback–Leibler (KL) divergence

D(x′,x) �DKL(x′,x) :�
∑d
j�1

x′j log
x′j
xj

( )
for all x ∈ Ch,x′ ∈ C: (3.12)

In turn, a standard calculation leads to the prox-mapping

P(x; y) � (x1ey1 , : : : , xneyn)
x1ey1+⋯+xneyn (3.13)

for all x ∈ Ch, y ∈ Y. The corresponding update rule x+ � P(x;γv) is widely known in optimization as entropic gra-
dient descent (Beck and Teboulle [4], Kivinen and Warmuth [35]), and as hedge (or exponential/multiplicative
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weights update) in game theory and online learning (Arora et al. [2], Auer et al. [3], Littlestone and Warmuth
[38], Vovk [67]).

4. Equilibrium Tracking and Convergence Analysis
We are now in a position to state our main results for the equilibrium tracking and convergence properties of
(MD) in time-varying games. For concreteness, we focus on two distinct—and, to a large extent, complemen-
tary—regimes:

a. When the sequence of stage games Gt converges to some limit game G ≡ G∞.
b. When Gt evolves over time without converging.
In both cases, we treat the process defining the time-varying game as a “black box,” and we do not scrutinize

its origins in detail; we do so in order to focus on the interplay between the variability of the sequence Gt and the
induced sequence of play.

4.1. Stabilization and Convergence to Equilibrium
We begin with the case in which the sequence of stage games stabilizes to some monotone limit game
G ≡ G(N ,K,u). Formally, it is convenient to characterize this stabilization in terms of the quantity

Ri,t �max
x∈K

||vi,t(x) − vi(x)||∗, (4.1)

and we say that the sequence of games Gt, t � 1, 2, : : : converges to G if

lim
t→∞Ri,t � 0 for all i ∈N : (4.2)

To state our equilibrium convergence result, we require two further assumptions. The first is a technical
“reciprocity condition” for the players’ DGF, namely,

D(p, xt) → 0 whenever xt → p (RC)

for every sequence of actions xt ∈Kh. This requirement is fairly standard in the trajectory analysis of mirror
descent algorithms (Beck and Teboulle [4], Chen and Teboulle [15]) and, taken together with the strong convexity
of h, it implies that xt → p if and only if D(p,xt) → 0 (hence, the name).4 In particular, if h is Lipschitz, we have

D(p,xt) ≤ h(p) − h(xt) + ||∇h(xt)||∗||xt − p|| �O(||xt − p||), (4.3)

so (RC) always holds in that case. A further easy check shows that Example 4 also satisfies this condition, so (RC)
is not restrictive in this regard.

The second set of conditions concerns the players’ step-size sequence. First, we assume throughout that∑∞
t�1

γi,t � ∞ for all i ∈ N , (S1)

that is, each player’s learning process cannot stop prematurely. Second, we assume that the step-size policies of
any two players i, j ∈N are mutually compatible in the sense that∑∞

t�1
|γi,t−λijγj,t| <∞ for some λij > 0: (S2)

Informally, the compatibility assumption (S2) means that the players’ step-size policies exhibit a comparable
asymptotic behavior as t→∞, that is, γi,t=γj,t �Θ(1) for all i, j ∈N . The rationale for this is fairly straightforward:
if a player employs a step-size policy that vanishes much faster than that of all other players, this player effec-
tively becomes a “constant externality” in the timescale of the other players. On that account, it makes more
sense to consider convergence in a “reduced” game in which this player is effectively removed from the game—
and so on, until only the “slower” timescale players remain. Assumption (S2) rules out such cases and ensures
that all players remain active throughout the horizon of play.

With all this in hand, we have the following equilibrium convergence result.

Theorem 1. Let Gt be a time-varying game converging to a strictly monotone game G. Suppose further that each player i ∈N
runs Algorithm 1 with a DGF satisfying (RC) and a step-size policy satisfying (S1), (S2), and

∑∞
t�1

γi,t(Ri,t +Bi,t) <∞ and
∑∞
t�1

γ2
i,tS

2
i,t <∞: (S3)
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Then, with probability one, the sequence of realized actions Xt converges to the (necessarily unique) Nash equilibrium x∗ of
G.

In particular, if the feedback and stabilization metrics Bi,t, Si,t, and Ri,t behave asymptotically as Bi,t �
O(1=tbi), Si,t �O(tsi) and Ri,t �O(1=tri) for some bi, si, ri ≥ 0, we have the following immediate corollaries.

Corollary 1. With assumptions as before, if each player follows Algorithm 1 with γi,t∝1=tp for some p >max{1− ri,
1− bi, 1=2+ si}, p ≤ 1, the induced sequence of play Xt converges to a Nash equilibrium with probability one.

Corollary 2. If Algorithm 1 is run with perfect oracle feedback and assumptions as before, taking p >maxi(1− ri) guaran-
tees that Xt converges to a Nash equilibrium with probability one.

To streamline our discussion, we postpone the proof of Theorem 1 until later in this section, and we proceed
with some remarks.

4.1.1. Learning in Static Games and Stochastic Approximation. The special case Gt ≡ G for all t � 1, 2, : : : can be
seen as learning in a repeated, static game. As we discuss in the introduction, this case is extensively studied in
the literature, usually via the so-called ODE method of stochastic approximation (Benaïm [6], Benaïm et al. [7],
Benveniste et al. [8]). In this literature, convergence of a learning process is typically established by showing that
an underlying mean field dynamical system converges and then using a series of asymptotic pseudotrajectory
approximation results to infer that the same applies to the discrete-time algorithm under study as well.

In this direction, the closest result to our own is the recent paper of Mertikopoulos and Zhou [40] in which the
authors show that a specific, multiagent version of Nesterov’s [47] dual averaging algorithm converges to a Nash
equilibrium in static, strictly monotone games. However, there are several key obstacles that arise when trying to
adapt the proof techniques of Mertikopoulos and Zhou [40] to our setting. First and foremost, the prox-
mappings Pi are, in general, discontinuous across different faces of Ki, so (MD) cannot be seen as the discretiza-
tion of an ODE (consider, for example, the Euclidean case in which Pi is the closest point projection to Ki). An
approach based on the theory of differential inclusions (DIs) (Benaïm et al. [7]) could help overcome this obstacle,
but even then, the exogenous dependence of Gt on t means that the DI approximation of the players’ learning
process is likewise nonautonomous. Thus, given that there is no longer a well-defined continuous-time system to
approximate, it is not possible to employ a dynamical systems approach as in Mertikopoulos and Zhou [40].

Finally, we also note that the use of player-specific step-size sequences complicates the discretization land-
scape even further. In the stochastic approximation literature, player-specific step sizes are usually treated within
a multiple-timescale framework, for example, as in Borkar [11], Leslie and Collins [37], and Perkins and Leslie
[49]. However, in this case, the underlying ODE must also separate the faster from the slower timescales, which
means that the players with the smaller step sizes end up being effectively removed from the game. This is an
important part of the reason that the literature on learning in static games traditionally focuses on learning algo-
rithms with the same step size across players and also an important reason that the stochastic approximation
approach of Mertikopoulos and Zhou [40] does not apply in our setting.

4.1.2. Step-Size Requirements and Tuning. In the literature on learning in games, a common choice for the step
size of iterative methods is the policy γi,t∝1=t (cf. Beggs [5], Bervoets et al. [9], Cominetti et al. [17], Coucheney
et al. [18], Erev and Roth [22], Hofbauer and Sandholm [30], and references therein). In view of Corollary 1, if the
players’ oracle feedback is unbiased and bounded in mean square (i.e., bi �∞, si � 0 for all i ∈N ), this step-size
policy guarantees convergence to a Nash equilibrium as long as the game stabilizes at a power law rate—that is,
provided that Rt :�maxiRi,t �O(1=tr) for some r > 0.5 In fact, if (MD) is run with γi,t∝1=(t log t), convergence is
guaranteed even if the game stabilizes at a slower, sublogarithmic rate Rt �O(1=(log t)ε) for some ε > 0.

The policies γi,t∝1=t and γi,t∝1=(t log t) should be seen as conservative “fail-safes”: it stands to reason that, if
more information about the asymptotic behavior of Ri,t is available, a more aggressive step-size policy (as per
Corollary 1) might be more efficient. Specifically, if we focus as before on the case in which the players’ oracle
feedback is unbiased and bounded in mean square (b �∞, s � 0), the second moment term

∑
tγ

2
i,tS

2
i,t is subleading

in (S3) relative to the stabilization error term
∑

tγi,tRi,t whenever p ≥ ri for some i ∈N . Because the summability
condition (S3) further requires p > 1− ri for all i ∈N , this would suggest taking p �miniri if miniri > 1=2 and p
larger than 1/2 by an arbitrarily small amount otherwise.

By contrast, if no prior information on Ri,t is available, it is not clear how to choose the exponent p in an opti-
mal manner relative to the variability of Gt. In particular, because ri depends on the entire (infinite) tail of Ri,t,
adaptive policies that rely on the (finite) history of play up to time t—for example, in the spirit of Rakhlin and

Duvocelle et al.: Learning in Time-Varying Games
Mathematics of Operations Research, Articles in Advance, pp. 1–28, © 2022 INFORMS 9

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

14
8.

15
3]

 o
n 

09
 S

ep
te

m
be

r 
20

22
, a

t 0
1:

56
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Sridharan [51] and Syrgkanis et al. [62]—do not seem well-suited for this purpose. We are not aware of any way
to circumvent this difficulty in terms of almost sure convergence of the sequence of play.

4.2. Tracking Nash Equilibria
We now turn to the study of time-varying games that evolve without converging. In this case, any notion of con-
vergence for Xt is meaningless because there is no equilibrium state to which to converge, either static or in the
mean. As a result, we focus instead on whether Xt is capable of “tracking” the game’s set of Nash equilibria over
a given horizon of play.

To that end, let Gt be a sequence of strongly monotone games, and consider the equilibrium tracking error

err(T) :� ∑T
t�1

||Xt − x∗t ||2 �
∑T
t�1

∑
i∈N

||Xi,t − x∗i,t||2, (4.4)

where x∗t is the (unique) Nash equilibrium of Gt.6 By construction, if err(T) is small relative to T, the sequence of
chosen actions Xt is close to equilibrium for most of the window of interest. However, if the variability of Gt is
too high, it is not reasonable to expect a tracking error that grows sublinearly in T, even in the single-player
case.7 To quantify this, we define the game’s equilibrium variation as

V(T) :� ∑T
t�1

||x∗t+1 − x∗t ||, (4.5)

and we say that Gt varies smoothly if

V(T) � o(T) as T→∞: (4.6)

In what follows, we seek to establish conditions under which Algorithm 1 guarantees err(T) � o(T) when (4.6)
holds. Our main result in this direction is as follows.

Theorem 2. Let Gt be a sequence of strongly monotone games satisfying Assumption 1. Suppose further that each player
i ∈N runs Algorithm 1 with step size γi,t∝ t−pi , pi ∈ (0, 1), a Lipschitz distance-generating function, and feedback of the
form (SFO) with Bi,t �O(1=tbi) and S2i,t �O(t2si) for some bi, si ≥ 0, i ∈N . Then, the players’ tracking error is bounded as

E[err(T)] �O(T1−mini(pi−2si) +T1−minibi +Tmaxipi+mini(pi−2si)V(T)): (4.7)

Corollary 3. Suppose that the players’ oracle feedback is unbiased and bounded in mean square (bi �∞, si � 0 for all
i ∈N ). If the equilibrium variation of the game is V(T) �O(Tr) for some r > 0, Algorithm 1 enjoys the bound

E[err(T)] �O(T1−pmin +T2pmax+r): (4.8)

Here, pmin �minipi and pmax �maxipi. In particular, if each player runs Algorithm 1 with γi,t∝1=t(1−r)=3, then

E[err(T)] �O(T2+r
3 ): (4.9)

Theorem 2 is our basic equilibrium tracking result, so we proceed with some remarks.

4.2.1. Step-Size Requirements and Tuning. If the players’ gradient oracle is unbiased and bounded in mean
square (bi �∞ and si � 0 for all i ∈N ), Corollary 3 shows that equilibrium tracking is possible as long as

pi <
1− r
2

for all i ∈N : (4.10)

Comparing this condition with the step-size requirements for equilibrium convergence (cf. Theorem 1 and Corol-
lary 1), we may infer that equilibrium tracking is more lightweight in terms of prerequisites: specifically, because
Theorem 2 does not require the step-size compatibility condition (S2), each player can pick pi independently of one
another. The reason for this difference has to do with the fact that equilibrium tracking focuses on the players’ aver-
age behavior over the horizon of play; by contrast, the convergence of the sequence of play depends on the entire
tail of γi,t, so the asymptotic behavior of the players’ step-size policies cannot be too different.

4.2.2. Equilibrium Tracking and Dynamic Regret Minimization: Similarities. In our setup, the dynamic regret
incurred by the ith player up to time T under the sequence of play Xt ∈K, t � 1, 2, : : : can be defined as

DynRegi(T) �
∑T
t�1

[ui,t(x̂i,t;X−i,t) − ui,t(Xt)] �
∑T
t�1

[ũi,t(x̂i,t) − ũi,t(Xi,t)], (4.11)
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where ũi,t :� ui(·;X−i,t) denotes the effective payoff function encountered by player i ∈N at stage t given the
chosen action profile X−i,t of all other players, and

x̂i,t ∈ argmax
xi∈Ki

ui,t(xi;X−i,t) � argmax
xi∈Ki

ũi,t(xi) (4.12)

denotes the ith player’s “counterfactual” best response to X−i,t in the game Gt (with Gt, t � 1, 2, : : : , assumed fixed
as a sequence but otherwise arbitrary and unknown to the players). Obviously, if there are no other players in
the game, x̂t coincides with the Nash equilibrium of the tth stage game against nature, so a natural question that
arises is whether the equilibrium tracking guarantees of Theorem 2 can be related to a dynamic regret bound.

In this regard, a slight modification of the proof of Theorem 2 yields the following: if an agent with a convex
compact action set K runs Algorithm 1 with step size γt∝1=tp against a stream of concave—though not necessa-
rily strongly concave—payoff functions ut :K→R with drift V(T), then

E[DynReg(T)] �O(T1+2s−p +T1−b +T2p−2sV(T)): (4.13)

In particular, if V(T) �O(Tr) and the player’s oracle feedback is unbiased and bounded in mean square (b �∞,
s � 0), the choice p � (1− r)=3 guarantees

E[DynReg(T)] �O(T2+r
3 ): (4.14)

For a precise statement and proof, we refer the reader to Section 6.2.8

4.2.3. Equilibrium Tracking and Dynamic Regret Minimization: Differences. Going back to the multiagent case,
the sequence x̂t � (x̂i,t)i∈N with x̂i,t given by (4.12) may be very different from the Nash equilibrium sequence x∗t :
the former best responds to the actual sequence of play Xt, whereas the latter best responds to itself (so it
depends only on Gt and is otherwise independent of Xt). As we saw earlier, this distinction is redundant in the
single-player case, but it is crucial in the multiagent one: the sequence x̂t may vary rapidly even if x∗t is constant.
For example, even if the sequence of base payoff functions ui,t does not depend on t exogenously (i.e., ui,t ≡ ui for
all t), the effective payoff functions ũi,t :� ui(·;X−i,t) encountered individually by each agent still depend on t
endogenously via X−i,t. As a result, the single-agent bound (4.13) does not a priori apply: because
||X−i,t+1 −X−i,t|| �O(γt) �O(t−p), the variation of ũi,t over a window of length T under Algorithm 1 could be as
high as Θ(T1−p) even though the underlying game is constant (so the equilibrium variation of the game is zero).
This shows that, unless the play of other agents perfectly follows their individual component of a Nash equili-
brium, there may be a significant conceptual gap between the single- and multiagent settings.

This subtlety is also reflected on the strong monotonicity assumption in Theorem 2, which invites the question
whether the bound (4.7) is tight. To wit, when faced with a sequence of strongly concave payoff functions, Besbes
et al. [10] show that an adversary can always impose DynReg(T) �Ω(V(T)1=2T1=2). This bound is strictly better
than theO(T1−p +V(T)T2p) guarantee of Corollary 3, suggesting that there may be room for improvement. Never-
theless, there are two important roadblocks to achieve this:

1. First, in the single-agent case, the key to attaining faster regret minimization is the basic inequality

ut(x∗t) − ut(x) ≤ 〈vt(x), x∗t − x〉 − μ

2
||x − x∗t ||2, (4.15)

where x∗t denotes the (necessarily unique) maximizer of ut. As a result, the growth of Gap(T)—which is driven by
gradient terms of the form 〈vt(Xt),x∗t −Xt〉—is mitigated by the quadratic correction terms: by balancing these
two terms, it is possible to obtain sharper bounds for DynReg(T) when each ut is strongly concave.

On the other hand, in a multiagent, game-theoretic setting, (4.15) becomes

ui,t(x∗i,t;x−i) − ui,t(x) ≤ 〈vi,t(x),x∗i,t − xi〉 −μ

2
||xi − x∗i,t||2, (4.16)

where x∗t now denotes the (necessarily unique) Nash equilibrium of the strongly monotone stage game
Gt ≡ Gt(N ,K,ut). Arguing as in the single-agent setting indeed yields a sharper bound on the quantity

∑T
t�1

∑
i∈N

[ui,t(x∗i,t;X−i,t) − ui,t(Xt)], (4.17)

but in general, the minimization of this quantity does not provide a certificate that Xt is in any way close to equi-
librium. In particular, in contrast to the single-agent case, (4.16) could be either positive or negative, so it cannot
act as a merit function for tracking an evolving equilibrium.
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2. Second, the optimal static regret minimization rate in strongly convex problems is attained when γt∝1=t.
However, Besbes et al. [10] provide a counterexample in which this step-size policy produces linear dynamic regret.
In view of this, achieving an O(V(T)1=2T1=2) dynamic regret minimization rate seems to require a different
approach and/or assumptions—for example, an adaptive policy in the spirit of Jadbabaie et al. [31] in the case of
perfect gradient feedback.

We mention these to emphasize that bounding the equilibrium tracking error err(T) is significantly different
than bounding the dynamic regret of an individual agent in the unilateral setting (even though the obtained
guarantees look similar). It is an open question whether it is possible to close the gap between the O(T2+r

3 ) equili-
brium tracking error of Theorem 2 for multiagent online learning in strongly monotone games and the corre-
sponding O(T1+r

2 ) dynamic regret bound of Besbes et al. [10] for single-agent online strongly convex problems.
This gap suggests that the lower bound for equilibrium tracking in general games may require a distinction to be
made between games that admit a potential function (which is always the case in the single-agent setting) and
those that do not. In particular, it is reasonable to conjecture that the bound (4.7) may be improved in strongly
concave potential games (perhaps through the use of a finely tuned restart mechanism); however, the general
case seems considerably more difficult, so we defer it to future work.

4.2.4. Legendre DGFs. We should also note that the reciprocity condition (RC) is replaced in the statement of
Theorem 2 by the stronger requirement supxi ||∇hi(xi)||∗ <∞, which rules out Legendre-like DGFs (such as the
entropic setup of Example 4). This condition is needed in Proposition 3, which requires a finite Bregman diame-
ter Di :� supxi,x′i Di(xi,x′i ) to bound the “regret-like” quantity

∑T
t�1 〈vi,t(Xt),xi −Xi,t〉. Orabona and Pál [48] recently

show that (MD) may incur linear regret when run with a variable step size in problems with infinite Bregman
diameter, so this requirement is not an artifact of the analysis.

That being said, there are several ways to overcome this hurdle: First, the players could run (MD) with a con-
stant step size over windows of a specified length and use a restart mechanism to achieve a sublinear equilibrium
tracking error; this approach is proposed by Besbes et al. [10] for the minimization of dynamic regret, and we dis-
cuss it in more detail in Section 6.2. Another way is to add an “anchoring term” in the definition of the prox-
mapping Pi and play the so-called dual-stabilizedmirror descent policy

Xi,t+1 � argmin
xi∈Ki

{γi,t〈v̂i,t,Xi,t − xi〉 +Di(xi,Xi,t) + (γ−1
i,t+1 − γ−1

i,t )Di(xi,Xi,1)}: (DS-MD)

This policy is introduced by Fang et al. [25], who show that (DS-MD) achieves sublinear regret even in domains
with an infinite Bregman diameter. Finally, another—and arguably simpler—approach is to switch to the dual
averaging policy of Nesterov [47], which instead prescribes

Xi,t+1 � argmax
xi∈Ki

{∑t

s�1
〈v̂i,s, xi〉 − γi,thi(xi)

}
: (DA)

This algorithm has the advantage of attaining order-optimal regret guarantees with the Bregman diameter Di
replaced by the range Ri :�maxhi −minhi of hi (which is always finite because Ki is compact and the domain of
hi contains Ki). Either of these algorithmic tweaks ultimately yields a sublinear tracking error in domains with an
infinite Bregman diameter, but the details lie beyond the scope of our work, so we do not discuss them here.

4.3. Proof of Theorem 1
The rest of this section is devoted to proving the results stated earlier, starting with the proof of Theorem 1. The
first key step in this direction is the definition of a suitable “energy-like” function that is—on average and up to
small, second order errors—decreasing along the trajectory of play Xt. In the analysis of mirror descent algo-
rithms, this role is usually played by the Bregman divergence relative to the target point under study (in our
case, the Nash equilibrium of G). However, because each player i ∈N now learns at a different pace (as deter-
mined by their individual step-size policy γi,t), the definition of a suitable energy function for Algorithm 1 is not
as straightforward.

To that end (and with a fair amount of hindsight), we begin by introducing the player-specific weights

λi �
∏
j∈N

λij

( )1=N
for all i ∈ N , (4.18)

with λij > 0, i, j ∈N given by the mutual compatibility condition (S2). As we show, these weights enjoy a decom-
position property that is key for the sequel.
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Lemma 1. Suppose that γi,t satisfies (S1) and (S2). Then, λij � λi=λj for all i, j ∈N .

Proof. Our proof relies on the following two intermediate claims.

Claim 1. The weights λij are uniquely defined. Indeed, suppose that (S2) holds also with λ′
ij ≠ λij for some i, j ∈N . Then, for

all t � 1, we have

|λij −λ′
ij|γj,t � |λijγj,t −λ′

ijγj,t| ≤ |γi,t −λijγj,t| + |γi,t −λ′
ijγj,t|, (4.19)

so |λij −λ′
ij|γj,t is summable given that both |γi,t −λijγj,t| and |γi,t −λ′

ijγj,t| are summable (by assumption). This contradicts
(4.4), so our claim follows.

Claim 2. The weights λij satisfy the chain rule λik � λijλjk for all i, j, k ∈N . Indeed,∑∞
t�1

|γi,t −λijλjkγk,t| �
∑∞
t�1

|γi,t −λijγj,t +λijγj,t −λijλjkγk,t|

≤ ∑∞
t�1

|γi,t −λijγj,t| +λij
∑∞
t�1

|γj,t −λjkγk,t|

<∞ (4.20)

with the last inequality following from (S2). Our claim then follows from the definition of λik and our preceding uniqueness
claim.

Thus, with these two claims in hand, we readily obtain

λi

λj
�

∏
k∈Nλik( )1=N

(∏k∈Nλjk)1=N
� ∏

k∈N
(λik=λjk)1=N � ∏

k∈N
λ
1=N
ij � λij, (4.21)

where, in the third step, we use the preceding chain rule to write λij � λik=λjk. This establishes our assertion and
completes our proof.

This lemma shows that (S2) can be rewritten as
∑∞

t�1 |γi,t=λi − γj,t=λj| <∞, which, in turn, implies that λi can be
interpreted as the relative “learning speed” of player i ∈N . In view of this, we consider the effective step size

γt �
1
N

∑
i∈N

γi,t

λi
(4.22)

and the energy function

E(x) � ∑
i∈N

Di(x∗i ,xi)
λi

, (4.23)

where x∗i ∈ Ki denotes the ith component of the Nash equilibrium x∗ of G. We then have the following quasi-
descent inequality for E under (MD).

Lemma 2. Suppose that each player i ∈N runs Algorithm 1 with a step-size policy γi,t satisfying (S1) and (S2). Then, the
iterates Et :� E(Xt) of E under Xt enjoy the bound

Et+1 ≤ Et + γt〈v(Xt),Xt − x∗〉 +∑
i∈N

γi,t

λi
〈ri,t +Zi,t,Xi,t − x∗i 〉 +

∑
i∈N

γ2
i,t

2λiKi
||v̂i,t||2∗

+maxi Gidiam(Ki)
N

∑
i, j∈N

|γi,t

λi
− γj,t

λj
| (4.24)

with ri,t � vi,t(Xt) − vi(Xt).
Proof. By Lemma A.4 in Appendix A, the Bregman divergence Di,t :�Di(x∗i ,Xi,t) satisfies the inequality

Di,t+1 ≤Di,t + γi,t〈v̂i,t,Xi,t − x∗i 〉 +
γ2
i,t

2Ki
||v̂i,t||2∗ : (4.25)
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Therefore, with v̂i,t � vi,t(Xt) +Zi,t � vi(Xt) + ri,t +Zi,t and Et � ∑
i∈Nλ−1

i Di,t, we get

Et+1 ≤ Et +
∑
i∈N

γi,t

λi
〈Zi,t + ri,t,Xi,t − x∗i 〉 +

∑
i∈N

γ2
i,t

2λiKi
||v̂i,t||2∗ : (4.26a)

+∑
i∈N

γi,t

λi
〈vi(Xt),Xi,t − x∗i 〉, (4.26b)

so it suffices to upper bound the term (4.26b) of the preceding inequality. To that end, we have

(4:26b) � γt〈v(Xt),Xt − x∗〉 +∑
i∈N

γi,t

λi
− γt

( )
〈vi(Xt),Xi,t − x∗i 〉

≤ γt〈v(Xt),Xt − x∗〉 +∑
i∈N

|γi,t

λi
| − γt ·Gi diam(Ki)

� γt〈v(Xt),Xt − x∗〉 +∑
i∈N

Gidiam(Ki)
N |∑

j∈N

γi,t

λi
− γj,t

λj

( )|
≤ γt〈v(Xt),Xt − x∗〉 +maxi Gi diam(Ki)

N

∑
i, j∈N

|γi,t

λi
− γj,t

λj
|: (4.27)

Our claim then follows by substituting this bound back in (4.26).

The importance of the energy-like bound (4.24) lies in that the “drift term” γt〈v(Xt),Xt − x∗〉 provides a leading neg-
ative contribution to Et (because x∗ is a Nash equilibrium of G), whereas all other terms become vanishingly small
over time. The next proposition formalizes this idea and shows that Et converges to some (random) finite value.

Proposition 1. Suppose that each player i ∈N runs Algorithm 1 with a step-size γi,t satisfying (S1)–(S3). Then, Et con-
verges (almost surely (a.s.)) to a random variable E∞ with E[E∞] <∞.

Proof. We begin by decomposing each player’s oracle signal as

v̂i,t � vi,t(Xt) + bi,t +Ui,t � vi(Xt) + ri,t + bi,t +Ui,t, (4.28)

and we set, respectively,
ρi,t � 〈ri,t,Xi,t − x∗i 〉 ρt �

∑
i∈N

γi,t

λiγt
ρi,t, (4.29a)

βi,t � 〈bi,t,Xi,t − x∗i 〉 βt �
∑
i∈N

γi,t

λiγt
βi,t, (4.29b)

and

ψi,t � 〈Ui,t,Xi,t − x∗i 〉 ψt �
∑
i∈N

γi,t

λiγt
ψi,t (4.29c)

with γt given by (4.22) and ri,t � vi,t(Xi,t) − vi(Xt) defined as in Lemma 2. The energy inequality (4.24) then gives

Et+1 ≤ Et + γt〈v(Xt),Xt − x∗〉 + γt(ρt + βt +ψt) +χt +
∑
i∈N

γ2
i,t

2λiKi
||v̂i,t||2∗ , (4.30)

where we set

χt �maxi Gidiam(Ki)
N

∑
i, j∈N

|γi,t

λi
− γj,t

λj
|: (4.31)

Therefore, conditioning on the history F t of Xt up to stage t (inclusive) and taking expectations, we get

E[Et+1|F t] ≤E Et + γt〈v(Xt),Xt − x∗〉 + γt(ρt + βt +ψt) +χt +
∑
i∈N

γ2
i,t||v̂i,t||2∗
2λiKi |F t

[ ]

≤ Et + γt(ρt + βt) +χt +
∑
i∈N

γ2
i,t

2λiKi
M2

i,t, (4.32)

where we use the definition (3.6c) ofMi,t and the facts that
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a. x∗ is a Nash equilibrium of G (so 〈v(Xt),Xt − x∗〉 ≤ 0).
b. ρt and βt are bothF t-measurable (by definition).
c.E[ψt|F t] � 〈E[Ut|F t],Xt − x∗〉 � 0.
To proceed, note that

ρi,t � 〈ri,t,Xi,t − x∗i 〉 ≤ ||ri,t||∗||Xi,t − x∗i || ≤ diam(Ki)Ri,t, (4.33)

and similarly, βi,t ≤ diam(Ki)Bi,t. The bound (4.32) may then be written as E[Et+1|F t] ≤ Et + εt, where

εt �
∑
i∈N

γi,t

λi
diam(Ki) · (Ri,t +Bi,t) +

γ2
i,t

2λiKi
M2

i,t

[ ]
: (4.34)

Consider now the auxiliary process ζt � Et+1 +∑∞
s�t+1 εs. Taking expectations yields

E[ζt|F t] ≤ Et + εt +
∑∞
s�t+1

εs � Et +
∑∞
s�t

εs � ζt−1, (4.35)

that is, ζt is a supermartingale relative to F t. Moreover, because
∑∞

t�1 εt <∞ by (S3) and Lemma 1, we also get
E[ζt] ≤E[ζ1] <∞, that is, ζt is bounded in L1. Therefore, by Doob’s (sub)martingale convergence theorem (Hall
and Heyde [27, theorem 2.5]), it follows that ζt converges almost surely to some random variable ζ that is itself
finite (almost surely and in L1). Because Et � ζt−1 −∑∞

s�t εs and limt→∞
∑∞

s�t εs � 0, we conclude that Et converges
(a.s.) to ζ, and our proof is complete.

Moving forward, our next result shows that we can extract a subsequence of Xt that converges to a Nash equi-
librium of the limit game G.

Proposition 2. With assumptions as in Proposition 1, we have liminft||Xt − x∗|| � 0 (a.s.).

Proof. We begin by showing that, for all ε > 0, the hitting time

τε � inf {t ∈N : ||Xt − x∗|| ≤ ε} (4.36)

is finite with probability one; formally, we show that the eventN ε � {τε �∞} has P(N ε) � 0 for all ε > 0.
To do so, fix some ε > 0 and let cε � −inf {〈v(x),x− x∗〉 : ||x− x∗|| ≥ ε}, so cε > 0 by the strict monotonicity of G

and the fact that v is continuous and K is compact. Then, with notation as in the proof of Proposition 1, telescop-
ing the bound (4.30) yields

Et+1 ≤ E1 − cε
∑t

s�1
γs +

∑t

s�1
γs(ρs + βs) +

∑t

s�1
χs︸�����������︷︷�����������︸

It

+∑t

s�1
γsψs︸��︷︷��︸
IIt

+∑t

s�1

∑
i∈N

γ2
i,s

2λiKi
||v̂i,s||2∗︸��������︷︷��������︸

IIIt

(4.37)

for all t ≤ τε. We now proceed to bound each of the underscored terms:
1. First, for the term It, we show in the proof of Proposition 1 that

γt(ρt + βt) ≤
∑
i∈N

γi,t

λi
diam(Ki) · (Ri,t +Bi,t), (4.38)

so
∑∞

t�1 γt(ρt + βt) <∞ by (S3). Condition (S2) further gives
∑∞

t�1 χt <∞, so It is uniformly bounded from above by
(Tex translation failed).

2. For the noise term IIt � ∑t
s�1 γsψs, we have E[ψt|F t] � 0, so IIt is a martingale. Furthermore, by (3.6b) and the

step-size assumption (S3) of Theorem 1, we have∑∞
t�1

γ2
i,tE[ψ2

i,t|F t] ≤
∑∞
t�1

γ2
i,t||Xi,t − x∗i ||2E[||Ui,t||2∗ |F t]

≤ diam(Ki)2
∑∞
t�1

γ2
i,tσ

2
i,t <∞: (4.39)

In turn, this implies that
∑∞

t�1 γ2
tE[ψ2

t |F t] <∞, so by the law of large numbers for martingale difference sequen-
ces (Hall and Heyde [27, theorem 2.18]), we conclude that

∑t
s�1 γsψs=

∑t
s�1 γs → 0 (a.s.).
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3. Finally, for the last term, letΨi,t � ∑t
s�1 γ2

i,s||v̂i,s||2∗ , so IIIt � ∑
i∈N (2λiKi)−1Ψi,t. We then have

E[Ψi,t|F t] �E
∑t−1
s�1

γ2
i,s||v̂i,s||2∗ + γ2

i,t||v̂i,t||2∗ |F t

[ ]

�Ψi,t−1 + γ2
i,tE[||v̂i,t||2∗ |F t] ≥Ψi,t−1,

(4.40)

that is, Ψi,t is a submartingale relative to F t (recall that v̂t is generated after Xt, so it is not F t-measurable). Fur-
thermore, by the law of total expectation, we also have

E[Ψi,t] �E[E[Ψi,t|F t]] ≤
∑∞
t�1

γ2
i,tM

2
i,t <∞: (4.41)

This shows that Ψi,t is uniformly bounded in L1 so, by Doob’s (sub)martingale convergence theorem (Hall and
Heyde [27, theorem 2.5]), it follows that Ψi,t converges to some (almost surely finite) random variable Ψi,∞ with
E[Ψi,∞] <∞. We, thus, conclude that IIIt is likewise bounded from above by III∞ � ∑

i∈N (2λiKi)−1Ψi,∞ <∞ (a.s.).
Suppose now that P(N ε) � P(τε �∞) > 0. Then, there exists a realization of Xt such that

Et+1 ≤ E1 − cε − It + IIt + IIIt∑t
s�1γs

[ ]
·∑t

s�1
γs for all t � 1, 2, : : : , (4.42)

and in addition, (It + IIt + IIIt)=∑t
s�1 γs → 0 (because we show that this last event occurs w.p.1). However, by (S1),

this gives limt→∞Et � −∞, a contradiction that shows τε <∞ w.p.1 for all ε > 0. Hence, given that each N 1=k is a
zero-probability event and there is a countable number thereof, we conclude that

P(liminft||Xt − x∗|| � 0) � P(τ1=k <∞ forall k � 1, : : : ,∞)
� P

⋂
k�1

∞{τ1=k <∞}
( )

� 1−P
⋃∞

k�1N 1=k

( )
� 1,

(4.43)

and our proof is complete.

With these two intermediate results at hand, we are finally in a position to prove Theorem 1.

Proof of Theorem 1. By Proposition 2, Xt admits a (possibly random) subsequence Xtk such that Xtk → x∗ (a.s.).
By the reciprocity condition (RC), this further implies that liminf t→∞Et � 0 (a.s.). However, because lim t→∞Et
exists (by Proposition 1), we conclude that

P lim
t→∞Xt � x∗

( )
� P lim

t→∞Et � 0
( )

� P lim inf
t→∞ Et � 0

( )
� 1, (4.44)

and our proof is complete.

4.4. Proof of Theorem 2
We now proceed to prove the equilibrium tracking guarantees of Algorithm 1. To that end, given a sequence of
action profiles Xt ∈K, t � 1, 2, : : : and a window of interest T � [τstart : :τend] with 1 ≤ τstart ≤ τend ≤ T, it is useful
to consider the gap functions

Gapxi(T ) � ∑
t∈T

〈vi,t(Xt),xi −Xi,t〉 Gapx(T ) � ∑
i∈N

Gapxi(T ), (4.45a)

and
Gapi(T ) � max

xi∈Ki

Gapxi(T ) Gap(T ) � ∑
i∈N

Gapi(T ): (4.45b)

By convention, we also write Gapxi(T), Gapx(T), etc., when the window of interest is of the form T � [1 : :T].
Now, by the strong monotonicity of Gt, we have μ||Xt − x∗t ||2 ≤ 〈vt(Xt),x∗t −Xt〉, so Gap(T) may act as a surrogate

for bounding the equilibrium tracking error err(T) of Algorithm 1. In view of this, we begin with a technical
bound for the gap under (MD).

Proposition 3. Suppose that player i ∈N runs Algorithm 1 with step size γi,t and oracle feedback of the form (SFO). Then,
for any window of the form T � [τstart : :τend], we have

Gapxi(T ) ≤ ∑
t∈T

1
γi,t

− 1
γi,t−1

( )
Di(xi,Xi,t) +

∑
t∈T

〈Zi,t,Xi,t − xi〉 + 1
2Ki

∑
t∈T

γi,t||v̂i,t||2∗ (4.46)
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with the convention γi,τstart−1 �∞ in the sum. In addition, if γi,t is nonincreasing, then

E[Gapi(T )] ≤ 2Hi(xi)
γi,τend

+ 2diam(Ki)
∑
t∈T

Bi,t + 1
2Ki

∑
t∈T

γi,tS
2
i,t, (4.47)

where Hi(xi) � sup x′i∈Khi
D(xi,x′i ).

Proof. We first focus on the pointwise bound (4.46). To that end, because Xi,t+1 � P(Xi,t;γi,tv̂i,t) for all t � 1, 2, : : : ,
invoking Lemma A.4 with Yt ← γi,tv̂i,t and αt ← 1=γi,t yields∑

t∈T
〈v̂i,t,xi −Xi,t〉 ≤

∑
t∈T

1
γi,t

− 1
γi,t−1

( )
Di(xi,Xi,t) + 1

2Ki

∑
t∈T

γi,t||v̂i,t||2∗ : (4.48)

By the feedback model (SFO), we have v̂i,t � vi,t(Xt) +Zi,t, so

Gapxi(T ) � ∑
t∈T

〈vi,t(Xt),xi −Xi,t〉 �
∑
t∈T

〈v̂i,t,xi −Xi,t〉 +
∑
t∈T

〈Zi,t,Xi,t − xi〉: (4.49)

Our claim then follows by adding (4.48) and (4.49).
For the bound (4.47), maximizing over xi ∈Ki in (4.46) and taking expectations, we get

E[Gapi(T )] �E max
xi∈Ki

Gapxi(T )
[ ]

≤E
∑
t∈T

1
γi,t

− 1
γi,t−1

( )
Di(xi,Xi,t)

[ ]
(4.50a)

+ 1
2Ki

∑
t∈T

γi,tE[||v̂i,t||2∗ ] (4.50b)

+E max
xi∈Ki

∑
t∈T

〈Zi,t,Xi,t − xi〉
[ ]

: (4.50c)

With γi,t nonincreasing, the first two terms are readily bounded as

(4:50a) ≤ ∑
t∈T

1
γi,t

− 1
γi,t−1

( )
Hi(xi) ≤Hi(xi)

γi,τend

, (4.51a)

(4:50b) ≤ Ki

2

∑
t∈T

γi,tM
2
i,t, (4.51b)

so we are left to bound (4.50c). To that end, introduce the auxiliary process

X̃i,t+1 � P(X̃i,t;−γi,tUi,t) (4.52)

with X̃1 � X1. We then have∑
t∈T

〈Zi,t,Xi,t − xi〉 � ∑
t∈T

〈Zi,t, (Xi,t − X̃i,t) + (X̃i,t − xi)〉
� ∑

t∈T
〈Zi,t,Xi,t − X̃i,t〉 +

∑
t∈T

〈bi,t, X̃i,t − xi〉 +
∑
t∈T

〈Ui,t, X̃i,t − xi〉, (4.53)

so it suffices to derive a bound for each of these terms. This can be done as follows:
1. The first term of (4.53) does not depend on xi, so we have

E max
xi∈Ki

∑
t∈T

〈Zi,t,Xi,t − X̃i,t〉
[ ]

� ∑
t∈T

E[E[〈Zi,t,Xi,t − X̃i,t〉|F t]]

� ∑
t∈T

E[〈bi,t,Xi,t − X̃i,t〉] ≤ diam(Ki)Bi,t,
(4.54)

where, in the last step, we use the definition (3.6a) of Bi,t and the bound

〈bi,t,Xi,t − X̃i,t〉 ≤ ||Xi,t − X̃i,t||||bi,t||∗ ≤ diam(Ki)||bi,t||∗: (4.55)

2. The second term of (4.53) can be bounded in a similar way as

E max
xi∈Ki

∑
t∈T

〈bi,t, X̃i,t − xi〉
[ ]

≤ E[diam(Ki)||bi,t||∗] ≤ diam(Ki)Bi,t: (4.56)
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3. Finally, for the last term, LemmaA.4 with Yt ←−γi,tUi,t and αt � 1=γi,t gives∑
t∈T

〈Ui,t, X̃i,t − xi〉 �
∑
t∈T

αi,t〈 − γi,tUi,t,xi − X̃i,t〉

≤ ∑
t∈T

1
γi,t

− 1
γi,t−1

( )
D(xi, X̃i,t) + 1

2Ki

∑
t∈T

γi,t||Ui,t||2∗ : (4.57)

Thus, after taking expectations and telescoping, we obtain

E max
xi∈Ki

〈Ui,t, X̃i,t − xi〉
[ ]

≤ Hi(xi)
γi,τend

+ 1
2Ki

∑
t∈T

γi,tσ
2
i,t: (4.58)

The bound (4.47) then follows by plugging back all of the above in (4.50c).

We are now in a position to prove our equilibrium tracking result. Our proof strategy is to leverage the gap
minimization guarantees of Algorithm 1 (as encoded in Proposition 3) together with a batch comparison idea
from Besbes et al. [10].

Proof of Theorem 2. For the sake of the analysis (and only the analysis), partition the horizon of play T � [1 : :T]
in m contiguous batches T k, k � 1, : : : ,m, each of length Δ (except possibly the mth one, which might be smaller).
We prove the error bound (4.7) by linking err(T k) to Gap(T k) � ∑

i∈N Gapi(T k) for all k � 1, : : : ,m � �T=Δ�.
More explicitly, take the batch length to be of the form Δ � �Tq� for some constant q ∈ [0, 1] to be determined

later. In this way, the number of batches is m � �T=Δ� �Θ(T1−q), and the kth batch is of the form T k � [(k− 1)Δ+
1 : : kΔ] for all k � 1, : : : ,m− 1 (the value k � m is excluded as the mth batch might be smaller). Then, to bound the
players’ equilibrium tracking error within T k, the strong monotonicity property (2.2) for Gt gives

μ||Xt − x∗t ||2 ≤ 〈vt(Xt),x∗t −Xt〉 � 〈vt(Xt), x̂ −Xt〉 + 〈vt(Xt),x∗t − x̂〉 (4.59)

for every reference action profile x̂ ∈K and all t ∈ T . Thus, letting err(T k) � ∑
t∈T k ||Xt − x∗t ||2, we obtain the batch

bound
μ err(T k) � μ

∑
t∈T k

||Xt − x∗t ||2 ≤
∑
t∈T k

〈vt(Xt),x∗t −Xt〉

� ∑
t∈T k

〈vt(Xt), x̂ −Xt〉 +
∑
t∈T k

〈vt(Xt),x∗t − x̂〉

≤ Gap(T k) +
∑
t∈T k

〈vt(Xt),x∗t − x̂〉: (4.60)

To proceed, pick a batch-specific reference action x̂k ∈K for each k � 1, : : : ,m, and write

Ck �
∑
t∈T k

〈vt(Xt),x∗t − x̂k〉, (4.61)

for the last term of (4.60). A meaningful bound for Ck can then be obtained by taking x̂k to be the (unique) Nash
equilibrium of the first game encountered in the batch Tk, that is, setting x̂k � x∗minT k

. Doing this, we obtain the
series of estimates

Ck ≤
∑
t∈T k

||vt(Xt)||∗ · ||x∗t − x̂k|| (by Cauchy–Schwarz)

≤ ∑
t∈T k

G||x∗t − x̂k|| (by Assumption 1)

≤ GΔmax
t∈T k

||x∗t − x̂k|| (term-by-term bound)

≤ GΔ
∑
t∈T k

||x∗t+1 − x∗t || {by definition of x̂k}

� GΔV(T k), (4.62)

where, in obvious notation, we set V(T k) � ∑
t∈T k ||x∗t+1 − x∗t ||. Then, plugging everything back in (4.60) and sum-

ming over all batches k � 1, : : : ,m, we get the total bound

E[err(T)] ≤ 1
μ
E[Gap(T)] +GΔ

μ
V(T): (4.63)
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With this estimate in hand, let Di :� supxi,x′i Di(xi,x′i ) �maxxi∈KiHi(xi), so Di <∞ by Lemma A.5. Then, with γi,t
decreasing, summing the second part of Proposition 3 over all i ∈N yields

∑m
k�1

E[Gap(T k)] ≤
∑
i∈N

∑m
k�1

2Di

γi,kΔ
+ 2 diam(Ki)

∑T
t�1

Bi,t + 1
2Ki

∑T
t�1

γi,tS
2
i,t

[ ]

�O Δmaxi pi
∑m
k�1

kmaxi pi +∑T
t�1

t−minibi +∑T
t�1

t−mini(pi−2si)
( )

�O Δmaxi pim1+maxi pi +T1−mini bi +T1−mini (pi−2si)( )
, (4.64)

where, in the second line, we use the fact that γi,t �Θ(1=tpi). Because Δ �O(Tq) and m �O(T=Δ) �O(T1−q), we
get

Δmaxi pim1+maxi pi �O(Tqmaxi piT(1−q)(1+maxi pi) �O(T1+maxi pi−q): (4.65)

In turn, this yields the error bound

E[err(T)] � O(T1+maxi pi−q + T1−mini bi + T1−mini (pi−2si) + TqV(T)), (4.66)

so the guarantee (4.7) follows by setting q �maxi pi +mini(pi − 2si).

5. Learning with Payoff-Based Information
In this section, we proceed to examine a payoff-based learning scheme, that is, a method that relies only on obser-
vations of the players’ realized, in-game payoffs (the so-called “bandit setting”). The first step is to introduce a
payoff-based stochastic first order oracle in the spirit of Spall [60, 61]; subsequently, by mapping this oracle to
the general feedback model of Section 3, we leverage the analysis of Section 4 to derive the algorithm’s properties
in time-varying games.

5.1. Payoff-Based Feedback and Estimation of Payoff Gradients
Heuristically, the main idea of the player’s gradient estimation process is easiest to describe in one-dimensional
environments. In particular, suppose that an agent wishes to estimate the derivative of an unknown function f :
R→R at some point x ∈R. Then, by definition, given an accuracy target δ, the derivative of f at x can be
approximated by two queries of f as

f ′(x) ≈ f (x+ δ) − f (x− δ)
2δ

: (5.1)

Building on this idea, f ′(x) can be estimated from a single function evaluation as follows: let w be a random varia-
ble taking the value +1 or –1 with probability 1/2, and consider the estimator

v̂ � f (x+ δw)
δ

w: (5.2)

In expectation, this gives

E[v̂] � 1
2δ

f (x + δ) − 1
2δ

f (x − δ): (5.3)

Thus, if f ′ is Lipschitz continuous, we readily get E[v̂ − f ′(x)] �O(δ), that is, the estimator (5.2) is accurate up to
O(δ).

This idea is the starting point of the so-called single-point stochastic approximation (SPSA) method that was
pioneered by Spall [60, 61]. Its extension to a multidimensional setting is straightforward: if an agent seeks to
estimate the gradient of a function f :Rd →R, it suffices to sample a perturbation direction w uniformly at ran-
dom from E ≡ {6e1, : : : ,6ed} and consider the estimator

v̂ � d
δ
f (x+ δw)w: (5.4)

The only difference between (5.2) and (5.4) is the dimensional scaling factor d, which compensates for the fact
that each principal direction of Rd is sampled with probability 1=d. Then, the same reasoning as earlier shows
that E[||v̂ −∇f (x)||] �O(δ).

In the presence of constraints, a caveat that arises is that the query point x̂ � x+ δw must remain feasible. To
guarantee this, let C be a convex body in Rd, and let f : C→R be a function whose gradient we want to estimate
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at some point x ∈ C. To avoid the occurrence x+ δw ∉ C, we first transfer x toward the interior of C by a homo-
thetic transformation of the form

x �→ xδ ≡ x− δ

r
(x− p), (5.5)

where p ∈ int(C) is an interior point of C and r > 0 is such that
a. The ball Br(p) is entirely contained in C.
b. δ=r < 1.
Taken together, these conditions ensure that the query point

x̂ � xδ + δw � (1 − δ=r)x + (δ=r)(p + r w) (5.6)

belongs itself to C (simply note that p+ rw ∈ Br(p) ⊆ C).
With all this in mind, we obtain the following process for estimating individual payoff gradients in the context

of a continuous game G ≡ G(N ,K,u):
1. Every player i ∈N selects a pivot point xi ∈Ki and draws a perturbation vector wi uniformly at random from

Ei :� {6e1, : : : ,6edi}. Subsequently, each player plays

x̂i � xi + δiwi + (δi=ri)(pi − xi) (5.7)

and receives the associated payoffs ûi :� ui(x̂1, : : : , x̂N), i ∈N .
2. Each player constructs the single-point stochastic approximation estimate

v̂i � di
δi
ûi · wi, (5.8)

and the process repeats.
In this, the sampling radius δi and the homothety parameters pi ∈Ki, ri > 0, are chosen arbitrarily by each

player i ∈N , only subject to the requirements Bri(pi) ⊆Ki and δi=ri < 1 (to guarantee that x̂i is a feasible action).
Also, when unfolding over the course of a learning process, we assume that players employ a variable sampling
radius δi,t (similar to the players’ individual step-size policy γi,t). In this way, the estimator (5.8) can be seen as a
payoff-based oracle that can be coupled with Algorithm 1 to generate a new candidate action and continue play-
ing. For a pseudocode implementation of the resulting policy, see Algorithm 2.

Remark 2. Throughout this section, we tacitly assume that the players’ action spaces are convex bodies, that is,
they have nonempty topological interior. This assumption is only made for convenience: if this is not the case, it
suffices to replace the basis vectors {6ek} with a basis of the affine hull of each player’s action space and proceed
in the same way.

Algorithm 2 (Payoff-Based Learning via Mirror Descent)
Require: step-size γi,t > 0; sampling radius δi,t > 0; homothety parameters pi ∈Ki, ri > 0
1: initialize Xi,1 ∈Khi # initialize pivot
2: for t � 1, 2, : : : do simultaneously for all i � 1, : : : ,N
3: drawWi,t uniformly from {6e1, : : : ,6edi} # random perturbation
4: play X̂i,t � Xi,t + δi,tWi,t + (δi,t=ri,t)(pi −Xi,t) # select action
5: receive ûi,t ≡ ui,t(X̂i,t; X̂−i,t) # get payoff
6: set v̂i,t � (di=δi,t) ûi,tWi,t # estimate gradient
7: setXi,t+1 ← Pi(Xi,t;γi,tv̂i,t) # update pivot
8: end for

5.2. Analysis and Results
The first step in the analysis of Algorithm 2 consists of quantifying the statistics of the players’ gradient estima-
tion process.

Lemma 3. The SPSA estimator (5.8) satisfies

||E[v̂i − vi(x)]||∗ � O(δ2max=δi) and E[||v̂i||2∗ ] � O(1=δ2i ): (5.9)

Here, δmax �maxiδi.
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Proof. The second moment bound E[||v̂i||2∗ ] �O(1=δ2i ) follows trivially from the definition (5.8) of v̂ and the
boundedness of ui. As for our first claim, let

ξi � x̂i − xi � δiwi + (δi=ri)(pi − xi): (5.10)

Set ξ � (ξi)i∈N . Then, by the smoothness of ui, a first order Taylor expansion with integral remainder gives

v̂i � di
δi
ui(x̂) ·wi � di

δi
ui(x) ·wi + di

δi

∑
j∈N

〈∇xjui(x),ξj〉wi (5.11a)

+ ∑
j,k∈N

∫ 1

0
(1− t)ξ�j ∇2

xjxkui(x+ tξ)ξkdt ·wi: (5.11b)

Hence, taking expectations, the first term becomes

E[(5:11a)] � di
δi
E[〈vi(x), ξi〉wi] + di

δi

∑
j≠i

〈∇xjui(x),E[ξj]〉E[wi]

� diE[〈vi(x),wi〉wi] � di · 1
2di

∑di
ℓ�1

[viℓ(x)eiℓ − viℓ(x)(−eiℓ)]

� vi(x), (5.12)

where we use the fact that E[wi] � 0 for all i ∈N and wi and wj are independent for all i, j ∈N , i≠ j. As for the
second term, we have

E[(5:11b)] � di
δi

∑
j,k∈N

δjδkE
∫ 1

0
(1− t)ξ�j ∇2

xjxkui(x+ tξ)ξkdt ·wi

[ ]
�O(δ2max=δi), (5.13)

where we use the fact that K is compact and ui is C
2-smooth over K. Our claim then follows by combining the

bounds (5.12) and (5.13).

We are now in a position to state and prove our main result for the payoff-based learning policy outlined in
Algorithm 2.

Theorem 3. Let Gt be a time-varying game satisfying Assumption 1. Suppose further that each player i ∈N runs Algo-
rithm 1 with step size γi,t∝ t−pi and sampling radius δi,t∝ t−qi for some pi,qi ∈ (0, 1]. Then,

1. If Gt stabilizes to a strictly monotone game G at a rate Ri,t �O(1=tri), ri > 0, and pi � p >max{1− ri, 1+ qi −
2qmin, 1=2+ qi} for all i ∈N , the sequence of chosen actions X̂t, t � 1, 2, : : : , converges to the Nash equilibrium of G with prob-
ability one. In particular, convergence to a Nash equilibrium is guaranteed under the choice pi � 1, qi � 1=3.

2. If Gt is strongly monotone and its drift is bounded as V(T) �O(Tr) for some r < 1, the sequence of chosen actions X̂t, t �
1, 2, : : : enjoys the equilibrium tracking guarantee:

E
∑T
t�1

||X̂t − x∗t ||2
[ ]

�O
(
T1−mini(pi−2qi) +T1+qmax−2qmin +Tr+pmax+mini(pi−2qi)

)
, (5.14)

where x∗t denotes the (necessarily unique) Nash equilibrium of Gt, and we set pmin=max �min=maxi pi and
qmin=max �min=maxi qi. In particular, for pi � 3(1− r)=5 and qi � (1− r)=5, we get the optimized tracking guarantee:

E
∑T
t�1

||X̂t − x∗t ||2
[ ]

�O(T4+r
5 ): (5.15)

Theorem 3 combines two regimes: part 1 treats time-varying games that stabilize to a well-defined limit, whereas
part 2 concerns the case in which the game evolves without converging. This is in direct analogy to Theorems 1
and 2 for the case of generic stochastic first order oracle (SFO) feedback and, indeed, Theorem 3 draws heavily
on these results. However, there is now a discrepancy between the actions X̂t chosen by the players and the can-
didate actions Xt on which the SPSA estimator (5.8) returns feedback. We explain this difference in the proof of
Theorem 3.

Proof of Theorem 3. Let Xt, t � 1, 2, : : : , be the sequence of pivot points generated by Algorithm 2: specifically, Xt

is given by (MD), but the players’ realized action profile X̂t is given by (5.6). Then, by Lemma 3, it follows that
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the SPSA estimator v̂t of (5.8) returns feedback of the form (SFO) on Xt with bias and variance bounded as Bt �
O(δi,t) �O(1=tqi) and M2

t �O(1=δ2i,t) �O(t2qi), respectively. Because the sequence Xt is generated via the prox-rule
Xt+1 � P(Xt;γtv̂t) of Algorithm 1, we have

1. If Gt stabilizes to a strictly monotone game G, invoking Corollary 1 with bi � si � qi shows that the sequence of
pivot points Xt converges (a.s.) to the (necessarily unique) equilibrium of G as long as pi � p >max{1− ri, 1−
qi, 1=2+ qi} for all i ∈N . Because ||X̂t −Xt|| �O(δi,t) and δi,t → 0, our claim follows.

2. If Gt is strongly monotone with drift V(T) �O(Tr), Theorem 2 gives

E[err(T)] �O(T1−mini(pi−2qi) +T1+qmax−2qmin +Tpmax+mini(pi−2qi)V(T)), (5.16)

where, by virtue of Lemma 3, we set si � qi and bi � 2qmin − qi in (4.8). However, by (5.6) and the compactness of
K, we also have ||X̂t −Xt|| �O(δi,t) �O(1=tqmin), implying, in turn, that

1
2

∑T
t�1

||X̂t − x∗t ||2 ≤
∑T
t�1

||X̂t −Xt||2 +
∑T
t�1

||Xt − x∗t ||2

�O(T1−2qmin) +∑T
t�1

||Xt − x∗t ||2: (5.17)

Putting all this together, we conclude that E[∑T
t�1 ||X̂t − x∗t ||2] is bounded as per (5.14), and our proof is complete.

As a special case, part 1 of Theorem 3 implies that the sequence of play induced by Algorithm 2 in a fixed
strictly monotone game Gt ≡ G converges to a Nash equilibrium with probability one as long as
p >max{1− q, 1=2+ q}. In this way, we recover a recent result by Bravo et al. [13], who use a different form of the
SPSA estimator (5.8) to establish the convergence of payoff-based no-regret learning in constant, monotone
games. It is also possible to undertake a finer analysis for the method’s rate of convergence in the case in which
the limit game G is strongly monotone, but this lies beyond the scope of this work.

6. Further Results and Discussion
In this section, we proceed to discuss some extensions and applications of our results that otherwise disrupt the
flow of our paper.

6.1. Games with Randomly Evolving Payoffs
We begin by discussing some applications of our results to games that evolve randomly over time—that is, when
Gt is determined by some randomly drawn parameter ωt describing the “state of the world.” Randomly evolving
games of this type are commonly referred to as stochastic Nash games in the mathematical optimization, control,
and engineering literatures (Cui et al. [19], Ravat and Shanbhag [52]), where they are sometimes analyzed within
a more general framework featuring joint coupling constraints. For example, in the wireless communications
problem we describe earlier (Example 2), this corresponds to the case in which the users’ channel gains gi,t fluctu-
ate randomly between transmission frames—the so-called fast-fading channel model (Mertikopoulos et al. [42],
Tse and Viswanath [65]).

To define this game-theoretic setting in detail, suppose that the players’ utilities are determined by an ensem-
ble of random functions of the form ũi :K ×Ω→R, where Ω has the structure of a complete probability space
and each ũi(x;ω) is assumed to be

a. Measurable in ω.
b C2-smooth in xwith uniformly bounded derivatives.
c. Individually concave in the ith component of x.
Then, at each stage t � 1, 2, : : : , an independent and identically distributed state variable ωt is drawn from Ω

according to P, and the players face the game Gt with payoff functions

ui,t(x) � ũi(x;ωt) for all i ∈N : (6.1)

Given the randomness involved, it is meaningful to consider the associated mean game G ≡ G(N ,K,u) with pay-
off functions

ui(x) �E[ũi(x;ω)] for all i ∈N , (6.2)

where the expectation E[·] is taken relative to the (common) law of the state variables ωt. It is then natural to ask
whether the players’ behavior under Algorithm 1 approaches a Nash equilibrium of the mean G as the game
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unfolds. Our next result provides a positive result in this direction under the assumption that the players’ indi-
vidual payoff gradients have finite variance, that is,

E[||∇xi ũi(x;ω) −∇xiui(x)||2∗ ] ≤ Σ2 for all x ∈K: (6.3)

Under this assumption, we have the following equilibrium convergence guarantee.

Theorem 4. Let Gt, t � 1, 2, : : : be a sequence of random games as before, and assume that the mean game G is strictly mon-
otone. Suppose further that each player i ∈N runs Algorithm 1 with a DGF satisfying (RC) and a step-size policy satisfying
(S1), (S2), and ∑∞

t�1
γi,tBi,t <∞ and

∑∞
t�1

γ2
i,tS

2
i,t <∞: (S3′)

Then, with probability one, the sequence of realized actions Xt converges to the (necessarily unique) Nash equilibrium x∗ of G.

Remark 3. There are two distinct and conditionally independent sources of stochasticity in Theorem 4:
1. The randomness coming fromωt (which determines the tth stage game Gt).
2. The randomness in the players’ oracle feedback.
In particular, we tacitly assume here that the filtration F t underlying the definition (3.6) of the players’ feed-

back process refers to the joint history of Xt and ωt, and the statement “with probability one” likewise refers to
both sources of randomness taken together.

Proof. Let ṽi(x;ω) � ∇xi ũi(x;ω) and vi(x) � ∇xiui(x). Then, by differentiating under the integral sign, we have
E[ṽi(x;ω)] �E[∇xi ũi(x;ω)] � ∇xiE[ṽi(x;ω)] � vi(x), so the players’ oracle signal may be decomposed as

v̂i,t � vi(Xt;ωt) +Ui,t + bi,t � vi(Xt) + Ūi,t + bi,t, (6.4)

where Ūi,t �Ui,t + vi(Xt;ωt) − vi(Xt). Then, in a slight abuse of notation, we obtain

E[Ūi,t | Xt, : : : ,X1] �E[E[Ūi,t | F t]] � 0+E[vi(Xt;ωt) − vi(Xt)] � 0, (6.5)

and furthermore,

E[||Ūi,t||2∗ | Xt, : : : ,X1] ≤ 2E[||Ui,t||2∗ + ||vi(Xt;ωt) − vi(Xt)||2∗ | Xt, : : : ,X1]
≤ 2σ2i,t + 2Σ2 � O(S2i,t): (16)

Finally, letting b̄i,t �E[bi,t], we also get ||b̄i,t||∗ ≤ Bi,t by definition. Accordingly, given that E[v̂i,t|Xt, : : : ,X1]
� vi(Xt) + b̄i,t, our claim follows by applying Theorem 1 to the sequence of (strictly monotone) games Ḡt ≡ G for
all t ≥ 1.

Even though Theorem 1 plays a major role in the proof of Theorem 4, the latter is conceptually distinct from
the former because it provides an equilibrium convergence result in a setting in which the sequence of stage
games does not stabilize over time. Analogous results for equilibrium tracking or payoff-based learning (in the
direction of Theorem 2 or 3, respectively) can also be derived, but this takes us too far afield, so we do not carry
out the detailed analysis here.

6.2. Regret Bounds
We close this section with a precise statement and derivation of the dynamic regret bound (4.13) that is alluded
to in Section 4.4.

Proposition 4. Suppose that a single player runs Algorithm 1 against a sequence of concave payoff functions ut :K→R
with a Lipschitz DGF and step-size and oracle feedback parameters as in Theorem 2. Then, the player’s dynamic regret is
bounded as

E[DynReg(T)] �O(T1+2s−p +T1−b +T2p−2sV(T)): (4.13, redux)

In particular, if V(T) �O(Tr) and the algorithm’s feedback is unbiased and bounded in mean square (b �∞, s � 0), the
player enjoys the bound E[DynReg(T)] �O(T1−p +T2p+r): Hence, for p � (1− r)=3, the player achieves

E[DynReg(T)] �O(T2+r
3 ): (4.14, redux)
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Proof of Proposition 4. As in the proof of Theorem 2, partition the horizon of play T � [1 : :T] in m contiguous
batches T k, k � 1, : : : ,m, each of length Δ (except possibly the mth one, which might be smaller). Then, letting
DynReg(T k) � ∑

t∈T k[ui,t(x̂i,t;X−i,t) − ui,t(Xt)], we have

DynReg(T k) �
∑
t∈T k

[ut(x∗t) − ut(Xt)] ≤
∑
t∈T k

〈vt(Xt),x∗t −Xt〉

� ∑
t∈T k

〈vt(Xt), x̂k −Xt〉 +
∑
t∈T k

〈vt(Xt),x∗t − x̂k〉

≤ Gap(T k) +
∑
t∈T k

〈vt(Xt),x∗t − x̂k〉,

where x̂k ∈K is a test action specific to each batch k � 1, : : : ,m. Hence, repeating the series of arguments leading
up to (4.65), we get the dynamic regret bound

E[DynReg(T)] ≤E[Gap(T)] +GΔV(T) (6.8)

and our claim by invoking the bounds (4.66) and (4.67).

Dynamic regret guarantees of the form (4.15) already exist in the literature. Specifically, Besbes et al. [10] obtain
a similar bound by exploiting the following meta-principle:

i. First, break the horizon of play into batches of size Δ.
ii. Over each batch, run an algorithm that guarantees low static regret relative to Δ.
iii. Then, fine-tune these steps in terms of the horizon T and the variation V(T) of the agent’s payoff functions in

order to get low dynamic regret.
In our setting, if Algorithm 1 is rebooted every Δ ~ [T=V(T)]2=3 iterations and is run with constant step size γ ~

1=
���
Δ

√
between reboots, the meta-principle of Besbes et al. [10] guarantees the dynamic regret bound

E[DynReg(T)] �O(T2=3V(T)1=3): (6.9)

Besbes et al. [10] further show that this bound is unimprovable under the blanket feedback model (SFO), so
(4.15) is tight in this regard.9

A disadvantage of this restart approach is that
i. The batch length Δ must be chosen carefully relative to the total variation of the sequence of payoff functions

encountered.
ii. At every reboot, the algorithm begins tabula rasa, essentially forgetting all knowledge it had accumulated up

to the point in question.
Besbes et al. [10] already discuss some possible ways to avoid restarts, and we are aware of at least two related

approaches in the literature: Jun et al. [33] propose a meta-aggregator based on coin betting, whereas Jadbabaie
et al. [31] and Shahrampour and Jadbabaie [56] take an approach based on optimistic mirror descent. Impor-
tantly, both policies achieve DynReg(T) �O(V(T)1=2T1=2) without prior knowledge of V(T): because V(T)1=2T1=2 �
V(T)1=3V(T)1=6T1=2 � o(V(T)1=3T2=3) whenever V(T) � o(T), these guarantees seem to contradict the optimality of
the bound O(T2=3V(T)1=3).10 The resolution of this apparent incongruity is that Jun et al. [33] and Jadbabaie et al.
[31] assume access to a perfect gradient oracle, whereas the discussion herein only assumes access to a stochastic
one.

To the best of our knowledge, the perfect oracle requirement cannot be relaxed: if the players’ gradient feed-
back is noisy, successive oracle calls cannot provide reliable information about the variation of the agent’s payoff
functions from one stage to the next, so the learning process cannot adapt to V(T). Designing a policy that prov-
ably interpolates between the stochastic and deterministic regimes is a very fruitful question for further research,
but one that lies beyond the scope of this paper.

7. Concluding Remarks
There are many interesting points for future research. A particularly promising one is to bridge the gap between
the step-size policies that guarantee an optimal equilibrium tracking error and the policies that guarantee conver-
gence to a Nash equilibrium in the case in which Gt stabilizes to a well-defined limit. As we see, these considera-
tions are not always in tune: when the rules of the game fluctuate constantly, players can use very different step
sizes and still track the game’s equilibrium on average; by contrast, when the game stabilizes, convergence to a
Nash equilibrium requires a certain compatibility between the players’ step-size policies (and requires finer
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tuning). Balancing these two objectives in an adaptive, context-agnostic manner is a rich and promising direction
for future research.

When on the topic of adaptivity, it should be recalled that players with access to perfect gradient information
can achieve better rates of dynamic regret minimization without any prior knowledge of the game’s drift over
time (Jadbabaie et al. [31], Shahrampour and Jadbabaie [56]). Whether this is still possible in the stochastic (or,
worse, bandit) case is another fruitful open question for further research.
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Appendix A. Basic Properties of Bregman Proximal Mappings
In this appendix, we collect some basic technical facts on distance-generating functions and prox-mappings. These results
are not new, but given the range of conventions and definitions in the literature, we find it useful to provide here precise
statements and proofs. For a detailed discussion, we refer the reader to Nemirovski et al. [46], Juditsky et al. [32], and
references therein.

In what follows, h denotes a distance-generating function on a compact convex subset C of an d-dimensional normed
space X �Rd with dual Y � X ∗ as per Definition 1. We begin with a basic subgradient comparison lemma:

Lemma A.1. For all p ∈ C and all y ∈ ∂h(x), x ∈ Ch, we have

〈∇h(x),x− p〉 ≤ 〈y,x− p〉: (A.1)

Proof. By continuity, it suffices to show that (A.1) holds for all p ∈ ri C. To show this, fix p ∈ ri C, and let

φ(t) � h(x+ t(p− x)) − [h(x) + 〈y,x+ t(p− x)〉] for all t ∈ [0, 1]: (A.2)

Given that h is strongly convex and y ∈ ∂h(x), it follows that φ(t) ≥ 0 with equality if and only if t � 0. Because ψ(t) �
〈∇h(x+ t(p− x)) − y,p− x〉 is a continuous selection of subgradients of φ and both φ and ψ are continuous over [0, 1], it
follows that φ is continuously differentiable with φ′ � ψ on [0, 1]. Hence, with φ convex and φ(t) ≥ 0 � φ(0) for all
t ∈ [0, 1], we conclude that φ′(0) � 〈∇h(x) − y,p− x〉 ≥ 0, and our proof is complete.

We continue with a basic property of Bregman divergences known as the “three-point identity” (Chen and Teboulle [15]):

Lemma A.2 (Three-Point Identity). For all p ∈ C and all x,x′ ∈ Ch, we have

D(p,x) �D(p,x′) +D(x′,x) + 〈∇h(x) − ∇h(x′),x′ − p〉: (A.3)

The proof of this lemma is a straightforward expansion, so we omit it. We employ this identity to estimate the Bregman
divergence relative to a base point p ∈ C before and after a prox-step.

Lemma A.3. Fix some p ∈ C and consider the recursive update rule

x+ � P(x;y) (A.4)

for x ∈ Ch, y ∈ Y. Then,

D(p,x+) ≤D(p,x) −D(x+,x) + 〈y,x+ − p〉 (A.5a)

≤D(p,x) + 〈y,x− p〉 + 1
2K

||y||2∗ : (A.5b)

Proof. By the definition (3.10) of P, we have y+∇h(x) ∈ ∂h(x+). This means that x+ ∈ dom ∂h ≡ Ch, so the three-point iden-
tity (Lemma A.2) applies. We, thus, get

D(p,x) �D(p,x+) +D(x+,x) + 〈∇h(x) −∇h(x+),x+ − p〉 (A.6)

or, after rearranging,

D(p, x+) � D(p, x) −D(x+, x) + 〈∇h(x+) − ∇h(x), x+ − p〉: (A.7)

Because ∇h(x) + y ∈ ∂h(x+), Lemma A.1 yields 〈∇h(x+),x+ − p〉 ≤ 〈y+∇h(x),x+ − p〉, so (A.5a) follows by plugging this
bound back to (A.7).

For the second part of the lemma, first rewrite (A.5a) as

D(p, x+) ≤ D(p, x) + 〈y, x − p〉 + 〈y, x+ − x〉 −D(x+, x): (A.8)

By Young’s inequality, we also have

〈y, x+ − x〉 ≤ 1
2K

||y||2∗ +
K
2
||x+ − x||2, (A.9)
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so (A.8) becomes

D(p, x+) ≤ D(p, x) + 〈y, x − p〉 + 1
2K

||y||2∗ +
K
2
||x+ − x||2 −D(x+, x): (A.10)

Then, by the strong convexity of h, we obtain D(x+,x) � h(x+) − h(x) − 〈∇h(x),x+ − x〉 ≥ (K=2)||x+ − x||2, and our claim
follows.

This basic lemma allows us to derive the following “template inequality” for processes of the general form (A.4).

Lemma A.4. Consider a sequence of dual vectors Yt ∈ Y, t � 1, 2, : : : , and let

Xt+1 � P(Xt;Yt) (A.11)

with X1 ∈ Ch initialized arbitrarily. Then, for all x ∈ C and every nonnegative sequence αt ≥ 0 defined over the window
T � [τstart : :τend], we have ∑

t∈T
αt〈Yt,x−Xt〉 ≤

∑
t∈T

(αt − αt−1)D(x,Xt) + 1
2K

∑
t∈T

αt||Yt||2∗ , (A.12)

with the convention that ατstart−1 � 0 in the preceding sum.

Proof. Let Dt �D(x,Xt). Then, (A.5b) readily yields

Dt+1 ≤Dt + 〈Yt,Xt − x〉 + 1
2K

||Yt||2∗ , (A.13)

so after multiplying by αt ≥ 0 and rearranging, we get

αt〈Yt,x−Xt〉 ≤ αt(Dt −Dt+1) + αt

2K
||Y||2∗ : (A.14)

Therefore, by bringing 〈Yt,Xt − x〉 to the left-hand side and summing over t ∈ T , we get∑
t∈T

αt〈Yt,x−Xt〉 ≤
∑
t∈T

αt(Dt −Dt+1) + 1
2K

∑
t∈T

αt||Y||2∗

� ∑
t∈T

(αt − αt−1)Dt −ατendDτend+1 +
1
2K

∑
t∈T

αt||Y||2∗ : (A.15)

Because Dτend+1 ≥ 0, our claim follows.

Finally, we make frequent use of the following straightforward result.

Lemma A.5. Suppose that h is Lipschitz. Then, sup x∈C,x′∈ChD(x,x′) <∞.

Proof. For all x ∈ C and all x′ ∈ Ch, we have

D(x,x′) � h(x) − h(x′) − 〈∇h(x′),x− x′〉 ≤ h(x) − h(x′) + ||∇h(x′)||∗||x− x′||: (A.16)

By assumption, L ≡ sup x′ ||∇h(x′)||∗ <∞. Hence, with C compact, we readily get

D(x,x′) ≤ h(x) − h(x′) + Ldiam(C): (A.17)

Because h(x) − h(x′) ≤max h−min h <∞, our assertion follows.

Endnotes
1 More precisely, Rosen [53] uses the name DSC for a weighted variant of (DC) that holds as a strict inequality when x′ ≠ x. Hofbauer and
Sandholm [30] use the term “stable” to refer to a class of population games that satisfy a condition similar to (DC), whereas Sandholm [54]
and Sorin and Wan [59], respectively, call such games “contractive” and “dissipative.” We use the term “monotone” throughout to underline
the connection of (DC) with operator theory and variational inequalities.
2 The terminology “descent” alludes to the fact that (MD) is originally studied in the context of convex minimization (as opposed to reward
maximization). We should also mention here that “mirror descent” is sometimes used synonymously with the popular FTRL protocol of
Shalev-Shwartz and Singer [58]. The two methods coincide in linear problems but not otherwise; in general, FTRL requires access to a best
response oracle, so it is beyond the scope of this paper.
3 We recall here that the subdifferential ∂h of h at x is defined as ∂h(x) � {y ∈ Y : h(x′) ≥ h(x) + 〈y,x′ − x〉 for all x′ ∈ X}. The notation dom ∂h :�
{x ∈ dom h : ∂h(x)≠Ø} stands for the domain of subdifferentiability of h, and by standard results in convex analysis, we have
ri dom h ⊆ dom ∂h ⊆ dom h.
4 Indeed, D(p,xt) � h(p) − h(xt) − 〈∇h(xt),p− xt〉 ≥ (K=2)||xt − p||2, so xt → p whenever D(p,xt) → 0.
5 More generally, the policy γi,t∝1=t guarantees convergence as long as the bias decays as Bi,t �O(1=tbi ) for some bi > 0 and the variance
grows at most sublinearly (σ2i,t �O(t2si ) for some si < 1=2).
6 In games with multiple equilibria, the norm should be replaced by the Hausdorff distance of the corresponding equilibrium sets; we focus
on strongly monotone games to avoid such complications.
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7 For a concrete statement along these lines, see Besbes et al. [10, theorem 2].
8 The guarantee (4.14) is not a consequence of Theorem 2 because it concerns function values and it makes no strong concavity assumptions
for the payoff functions faced by the agent; the proof, however, is similar.
9 Strictly speaking, Besbes et al. [10] define V(T) as V(T) � ∑T

t�1 ||ut+1 − ut||∞, but this distinction is not important for our purposes.
10 We thank one of the anonymous reviewers for bringing this point to our attention.
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