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OPTIMALITY OF INDEPENDENTLY RANDOMIZED SYMMETRIC POLICIES
FOR EXCHANGEABLE STOCHASTIC TEAMS WITH INFINITELY MANY
DECISION MAKERS *

SINA SANJARI, NACI SALDI AND SERDAR YUKSEL

Abstract. We study stochastic team (known also as decentralized stochastic control or identical interest stochas-
tic dynamic game) problems with large or countably infinite number of decision makers, and characterize existence
and structural properties for (globally) optimal policies. We consider both static and dynamic non-convex team prob-
lems where the cost function and dynamics satisfy an exchangeability condition. To arrive at existence and structural
results on optimal policies, we first introduce a topology on control policies, which involves various relaxations given
the decentralized information structure. This is then utilized to arrive at a de Finetti type representation theorem for
exchangeable policies. This leads to a representation theorem for policies which admit an infinite exchangeability
condition. For a general setup of stochastic team problems with /N decision makers, under exchangeability of ob-
servations of decision makers and the cost function, we show that without loss of global optimality, the search for
optimal policies can be restricted to those that are /N-exchangeable. Then, by extending N-exchangeable policies
to infinitely-exchangeable ones, establishing a convergence argument for the induced costs, and using the presented
de Finetti type theorem, we establish the existence of an optimal decentralized policy for static and dynamic teams
with countably infinite number of decision makers, which turns out to be symmetric (i.e., identical) and randomized.
In particular, unlike prior work, convexity of the cost in policies is not assumed. Finally, we show near optimal-
ity of symmetric independently randomized policies for finite /N-decision maker team problems and thus establish
approximation results for NV-decision maker weakly coupled stochastic teams.

Key words. Stochastic teams, mean-field theory, decentralized stochastic control, exchangeable processes.

1. Introduction. Stochastic team problems consist of a collection of decision makers
or agents acting together to optimize a common cost function, but not necessarily sharing all
the available information. At each time stage, each decision maker only has partial access to
the global information which is defined by the information structure (IS) of the problem [72].
When there is a pre-defined order according to which the decision makers act then the team is
called a sequential team. For sequential teams, if each agent’s information depends only on
primitive random variables, the team is szatic. If at least one agent’s information is affected
by an action of another agent, the team is said to be dynamic.

In this paper, we study stochastic team problems with a large but finite, and countably
infinite number of decision makers. We characterize existence and structural properties of
(globally) optimal policies in such problems. While teams can be at first sight viewed as
a narrow class of (identical interest) stochastic dynamic games, when viewed as a gener-
alization of classical single decision maker (DM) stochastic control, they are quite general
with increasingly common applications involving many areas of applied mathematics such as
decentralized stochastic control [65, 41, 58, 5], networked control [41, 39], communication
networks [39], cooperative systems [59, 62, 60, 10], large sensor networks [70], and energy,
or more generally, smart grid design [65, 30].

Connections to convex stochastic teams. For teams with finitely many decision mak-
ers, Marschak [59] studied static teams and Radner [62] established connections between
person-by-person optimality, stationarity, and team-optimality. Radner’s results were gen-
eralized in [50] by relaxing optimality conditions. A summary of these results is that in the
context of static team problems, the convexity of the cost function, subject to minor regularity
conditions, suffices for the global optimality of person-by-person-optimal solutions. In the
particular case for LQG (Linear Quadratic Gaussian) static teams, this result leads to the op-
timality of linear policies [62], which also applies to dynamic LQG problems under partially
nested information structures [42]. These results are applicable to static teams with finitely
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many decision makers.

In our paper, the main focus is on teams with infinitely many decision makers. In this
direction, we note that in our prior works [67, 66], we studied static and dynamic teams
where under convexity and symmetry conditions, global optimality of the limit points of the
sequence of N decision maker optimal policies was established. These works also provided
existence and structural results for convex static and dynamic teams with infinitely many
decision makers. We also note [57] where LQG static teams with countably infinite number
of decision makers have been studied and sufficient conditions for global optimality have
been established. In our paper here, convexity is not imposed.

Connections with the literature on mean-field games/teams. Team problems can
be considered as games with identical interests. For the case with infinitely many deci-
sion makers, a related set of results involves mean-field games: mean-field games (see e.g.,
[44, 43, 55]) can be viewed as limit models of symmetric non-zero-sum non-cooperative
finite player games with a mean-field interaction. We note that in team problems, person-
by-person optimality (Nash equilibrium when viewed as games) does not in general imply
global optimality both for N-decision maker teams and teams with countably infinite number
of DMs. As we have mentioned, for static teams, a sufficient condition is the convexity of
the cost function, subject to minor regularity conditions [50]. However, mean-field teams
under decentralized information structures generally correspond to dynamic team problems
with non-classical information structures (an observation of a decision maker ¢ is affected by
the action of a decision maker j where decision maker ¢ does not have access to the observa-
tion of decision maker 7), hence, mean-field team problems may be non-convex even under
the convexity of the cost function due to non-classical information structures (see [80, Sec-
tion 3.3] and the celebrated counterexample of Witsenhausen [73]). Hence, person-by-person
optimality is generally inconclusive for global optimality.

The existence of equilibria has been established for mean-field games in [55, 7, 25, 56,
51]. Furthermore, person-by-person optimal solutions may perform arbitrarily poorly. There
have also been several studies for mean-field games where the limits of sequences of Nash
equilibria have been investigated as the number of decision makers tends to infinity (see e.g.,
[34, 54, 8, 55, 4]).

Social optima for mean-field linear quadratic Gaussian control problems under both
centralized and restricted decentralized information structure have been considered in
[45, 46, 71, 3]. We also note a result in [76] where two large teams compete in a mean-
field competition game. We refer readers to [24, 19] for a literature review and a detailed
summary of some recent results on mean-field games and social optima problem:s.

Some relevant studies on the existence and convergence of equilibria from the mean-field
games literature are the following: In [21], for one-shot mean-field games, under regularity
assumptions on the cost function, it has been shown that mixed Nash strategies of N-player
symmetric games converge through a subsequence to a limit (which is a weak-solution of the
mean-field limit). In [34], through a concentration of measures argument, it has been shown
that a subsequence of symmetric local approximate Nash equilibria for [V player games con-
verges to a solution for the mean-field game under the assumption that the normalized occu-
pational measures converges weakly to a deterministic measure. Furthermore, using a similar
method in [52], assumptions on equilibrium policies of large population mean-field symmet-
ric stochastic differential games have been presented to allow for convergence of asymmetric
approximate Nash equilibria to a weak solution of the mean-field game [52, Theorem 2.6] in
the presence of common randomness. Using martingale methods and relaxed controls (see
also [34, 52, 51, 25]), an existence result and a limit theory have been established for con-
trolled McKean-Vlasov dynamics [53]. We note that in [52, 53, 51, 25], it has been assumed
that each player has full access to the information available to all players, i.e., the controls are
functions of all initial states, Wiener processes of all players, and common randomness.

We further note that the existence results for equilibria have been established in
[52, 25, 24, 34] where strategies of each player are assumed to be progressively measurable

2



to the filtration generated by initial states and Wiener processes (also called open-loop con-
trollers in the mean-field games’ literature [52, 25, 24, 34]). We note that in our setup under
these strategies, the information structure corresponds to static information structure. The
equilibria with respect to closed-loop (in the team problem setup, with respect to dynamic
information structure) is completely different since the deviating player can still influence
the information of other players and hence it can influence the average of states or actions
substantially.

In [54], under a convexity condition (which has been introduced in [33] and also consid-
ered in [53, 51]), and under the classical information structure (or full information, i.e., what
would be a centralized problem in the team theoretic setup), convergence of Nash equilib-
ria induced by (path-dependent and feedback Markovian) closed-loop controllers to a weak
(semi-Markov) mean-field equilibrium has been established. We also note a result in [22]
for the convergence of Markov feedback equilibria, where an infinite-dimensional partial
differential equations referred to as master equation (obtained as a limit of Hamilton-Jacobi-
Bellman systems) has been considered and its unique smooth solution has been used to show
the convergence of empirical measures to the unique mean-field game equilibrium. We note
that, the approach in [22] requires uniqueness of the mean-field equilibrium but the one in
[54] applies even if mean-field equilibria are non-unique. In addition, the notion of a weak
(semi-Markov) solution considered in [54] allows for an additional randomization in stochas-
tic flows of measures, but under uniqueness, the limit solution becomes the unique (weak)
mean-field equilibrium, and hence recovers the related convergence results in [22]. We also
note that the convergence problem of Markov feedback equilibria for a finite state model
with multiple mean-field equilibria has been studied in [37, 9, 27]. Recently, in [20], both a
convergence result for all correlated equilibrium solutions of discrete finite state mean-field
games as limits of exchangeable correlated equilibria restricted to Markov open-loop strate-
gies and an approximation result for N-player correlated equilibria have been established.
For infinite horizon problems, in [23], an example of ergodic differential games with mean-
field coupling has been constructed such that limits of sequences of expected costs induced by
symmetric Nash-equilibria of N-player games capture expected costs induced by many more
Nash-equilibria policies including a mean-field equilibrium and social optimum. In [54], the
classical information structure (a centralized problem) has been considered, where in [23] it
has been assumed that players have access to all the history of states of all players but not con-
trols (we note that in the team problem setup with the classical information structure through
using a classical result of Blackwell [13] in the case where each decision maker knows all
the history of states of all decision makers, optimal policies can be realized as one in the
centralized problem where just the global state is a sufficient statistic for optimality). As we
see, information structure aspects lead to subtle differences in analysis and conclusions.

Furthermore, in the context of stochastic teams with countably infinite number of deci-
sion makers, the gap between person by person optimality (Nash equilibrium in the game-
theoretic context) and global team optimality is significant since a perturbation of finitely
many policies fails to deviate the value of the expected cost, thus person by person opti-
mality is a weak condition for such a setup. Hence, without establishing the uniqueness of
the mean-field solution (which may hold under strong monotonicity assumptions [55]), the
results presented in the aforementioned papers may be inconclusive regarding global optimal-
ity of the limit equilibrium. For example, we refer the reader to [7, 31, 23] for non-uniqueness
results and to [37, 9, 27, 54] for connections between limit theories and non-uniqueness of
mean-field equilibria. For teams and social optima control problems, the analysis has pri-
marily focused on the LQG model where the centralized performance has been shown to be
achieved asymptotically by decentralized controllers (see e.g., [45, 3]).

In this paper, we will adopt a different and novel approach. First, under symmetry of
information structures and cost functions, we show that optimal policies are of an exchange-
able type for both teams with finite and countably infinite number of decision makers. Then,
in view of our topology on policies, we develop a de Finetti type representation theorem that
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characterizes the set of optimal policies as the extreme points of a convex set.

Connections with existence results on decentralized stochastic control. We also note
that compared to the results on the existence of a globally optimal policy in team problems
where (finite) N-decision maker team problems has been considered [78, 36, 80, 64], we
study stochastic team problems with countably infinite number of decision makers.

In our approach, we use randomized policies for our analysis and we define a topology
on control policies for decentralized stochastic control. A consequence of our analysis is
that, in the limit of countably infinitely many decision makers, one can characterize the set
of optimal policies as the extreme points of a convex set of policies, which is, in turn, a
subset of decentralized, independently randomized and identical policies. Such a result is
not applicable to teams with finitely many decision makers. This geometric representation
of the set of policies is related to the celebrated de Finetti’s theorem. De Finetti’s theorem
implies that infinitely-exchangeable joint probability measures can be represented as mixtures
(convex combination) of identical and independent probability measures [1, 40, 49].

There has been related work in the quantum information/mechanics literature. Let us
first note, however, that in [32], it has been shown that finite number of exchangeable prob-
ability measures can be approximated by a mixture of identical and independent probability
measures, and this approximation asymptotically becomes more accurate when the number
of exchangeable random variables increases. The de Finetti representation type results have
been extended for quantum systems where conditional probability measures have been con-
sidered [17, 63, 29, 6, 26]. In fact, for permutation-symmetric conditional probability mea-
sures, approximation results have been obtained, provided that the non-signaling property
holds (a conditional independence property between local actions and other measurements
given local measurement) [17, 63, 29, 6, 26]. We refer readers to [18, 61], for a review on the
connection between the non-signaling conditional probability measures and the conditional
probability measures with private and common randomness.

We note that de Finetti type results developed for conditional probability measures in
quantum information literature give us a geometric interpretation we require for strategic
measures (a geometric connection between non-signaling infinitely-exchangeable conditional
probability measures and conditional probability measures induced by common and private
randomness). However, in the team problem setup, in addition to show this geometric connec-
tion, one is required to show that the common randomness is independent of the observations.
We address this issue by introducing an appropriate topology on policies and establishing a
de Finetti type representation theorem on space of policies, properly defined and metrized.

Contributions. In view of the above, this paper makes the following contributions.

(i) Under symmetry of information structures and exchangeability of the cost function,
we first consider teams with N DMs (/N-DM teams) and establish the optimality of N-
exchangeable randomized policies.

(i) We introduce a suitable topology on control policies which facilitates our analysis
using a de Finetti type representation theorem for decentralized relaxed policies, that is, for
the probability measures induced on actions and measurements under decentralized infor-
mation structures. This leads to a representation theorem for decentralized relaxed policies
which admit an infinite exchangeability condition.

(iii) By extending N-exchangeable policies to infinitely-exchangeable ones, establish-
ing a convergence argument for the induced costs, and using the presented de Finetti theorem
for decentralized relaxed policies, we establish the structure, and also the existence of op-
timal decentralized policies for static and dynamic teams with countably infinite number of
decision makers, which turns out to be symmetric (i.e., identical) and randomized. Compared
to our previous results for static and dynamic mean-field teams in [67, Theorem 12 or Propo-
sition 1] and [66, Theorem 3.4]: i) the cost function is not necessarily convex in actions, ii)
action spaces are not necessarily convex, and iii) the mean-field coupling is considered in
dynamics, which leads to a non-classical information structure (a consequence being that the
problem is in general non-convex in policies).
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(iv) For N-decision maker symmetric teams with a symmetric information structure, we
show that symmetric (identical) randomized policies of mean-field teams are nearly optimal.

2. Preliminaries and Statement of Main Results. We begin by Witsenhausen’s intrin-
sic model for team problems, and then, we provide a description for main problems studied
in this paper.

2.1. Preliminaries. In this section, we introduce Witsenhausen’s Intrinsic Model for
sequential teams [72].

e There exists a collection of measurable spaces {(Q, F), (U, U"), (Y, V9),i € N1,
specifying the system’s distinguishable events, and control and measurement spaces. The set
N denotes the collection of decision makers. The set A/ can be a finite set {1,2,..., N} ora
countable set N. The pair (€2, F) is a measurable space (on which an underlying probability
may be defined). The pair (U?,2/*) denotes the standard Borel space from which the action
u® of DM’ is selected. The pair (Y?, J*) denotes the standard Borel observation/measurement
space for each decision maker i (DM?).

o There is a measurement constraint to establish the connection between the observation
variables and the system’s distinguishable events. The Y¢-valued observation variables are
given by y* = h'(w,u™ 1), where ul*=1 := (u',...,4*"') and h’s are measurable
functions.

e The set of admissible control laws v := (7")ienr» also called designs or policies, are

measurable control functions, so that u? = ~%(y®). Let I'* denote the set of all admissible
policies for DM’ and let I' = [Lcn I'*. These policies will later be allowed to be random-
ized and accordingly the image will be P(U?), where P(-) denotes the space of probability
measures.
e There is a probability measure P on (Q, F) describing the probability space on
which the system is defined.

Under this intrinsic model, a sequential team problem is dynamic if the information avail-
able to at least one DM is affected by the action of at least one other DM. A team problem is
static, if for every DM the information available is only affected by exogenous disturbances;
that is no other DM can affect the information at any given DM. Information structures can
also be categorized as classical, quasi-classical or non-classical. An Information Structure
(IS) {y%,i € N'}is classical if y* contains all of the information available to DM for k < i.
An IS is quasi-classical or partially nested, if whenever u*, for some k < i, affects y’
through the measurement function h?, ' contains y* (that is o(y*) C o(y*)). AnIS which is
not partially nested is non-classical.

In the paper, we will also allow for randomized policies, where in addition to yi, each
decision maker DM’ has access to common and private randomization. This will be made
precise later in Section 3.1.

2.2. Problem statement. We consider stochastic team problems with finite but large
as well as team problems with countably infinite number of DMs. We address three main
problems: (i) existence and structural results for static teams with countably infinite number
of DMs (Section 4) (ii) existence and structural results for dynamic teams with countably
infinite number of DMs (Section 5) (iii) approximation results for N-DM static and dynamic
teams (Section 6).

2.2.1. Static Teams. As we consider exchangeable team problems, we let action and
observation spaces be identical through DMs U = U C R" and Y* = Y C R™ forall 7 € N,
where n and m are positive integers.

Problem (Py): Let V' = {1,...,N}. Lety, := (y},-+ ,yV) and Ty := [];", T'".
Let an expected cost function of y N be given as

@.1) In () = B [e(wo, uy)] = Ele(wo, 7' (y"), -+, vV (¥™))],
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for some Borel measurable cost function ¢ : €y x Hfgvzl U — Ry. We define wyg as the

p-valued, cost function relevant, exogenous random variable as wyg : (Q, F,P) — (Qq, Fo),

where )y is a Borel space with its Borel o-field Fy. Here, we have the notation uy =
1 N

(u'y...,u™).

DEFINITION 2.1. For a given stochastic team problem (‘Px) with a given information
structure, a policy (strategy) v = (YY", ..., 4N") € Iy is (globally) optimal for (Py ) if

IN(ry) = yNiréer IN(vy)

Our focus in this paper is on a class of exchangeable team problems satisfying an ex-
changeability assumption on the cost function.

ASSUMPTION 2.1. The cost function is exchangeable with respect to actions for all wy,
i.e., for any permutation o of {1,..., N}, c(wo,u!, ..., uN) = c(wo,u®DV), ... u™) for
all wy.

In particular, for our main results, we focus on team problems with the following ex-
pected cost function instead of (2.1):

1Y 1 Y
(2.2) X~ {N Z c(wo, ul, ¥ Z up>] .
i=1 p=1
N

Clearly, & SN | ¢(wo, u?, & SN | uP) satisfies Assumption 2.1. Now, we introduce a
stochastic team problem with countagly infinite number of decision makers.

Problem (P..): Consider a stochastic team with countably infinite number of decision
makers, that is, N" = N. Let I" := [, ., I and 7 := (y',~?,...). Let an expected cost of
be given as

1 & 1 &
(2.3) J () = limsup [EV{N Zc(wo,ui, N ZM)}7

N=oo i=1 p=1

for some Borel measurable cost function ¢ : ¢ x U x U — Ry.

DEFINITION 2.2. For a given stochastic team problem (P.,) with a given information
structure, a policy v* = (y**,+?*,...) € I is optimal for (Pss) if

J(y") = VirelfFJ(z)-

Later on, we allow DMs to apply randomized policies and provide a description of the
problems within randomized policies; see (4.3) and (4.4). Our first goal here is to establish
the existence of a symmetric (identical) randomized globally optimal policy for static mean-
field team problems (P ). To this end, we first establish N-exchangeability of randomized
optimal policies for (Px) and symmetry for optimal randomized policies of (P,). Then in
our Theorem 4.3, using symmetry, we establish an existence result for (P, ). Our theorems
require the following absolute continuity condition under which we can equivalently view the
observations of each DM as independent and also independent of wq via change of measure
argument (due to Witsenhausen [74]).

ASSUMPTION 2.2. Assume that for every N € N U {oc}, there exists a probability
measure Q" on Y and a function f* for all i € N such that for all Borel set B* in Y (with
B:=B'x..-xBV)

N
(24) /]N(B‘wo) = H /B fi(yiaw(h yla BRI 7yi_l)Qi(dyi)7
i=17B* 6



where iV is the conditional distribution of observations (y*, ... ,y™) given wy.

REMARK 1. In particular, if y* takes values from a countable set, Assumption 2.2 always
holds e.g., with the reference measure taken as Q*(r) = Zp>1 27P1yp—pm,y where Y =

{myp | p € N} (see [74]).

The above allows us to introduce a suitable topology under which the space of random-
ized policies is Borel (see Section 3.1). In addition, our main Theorem 4.3 imposes the
following assumptions on the observations and action space.

ASSUMPTION 2.3.
(i) Observations (y")icn are i.i.d. conditioned on wo;
(ii) U is compact.

We note that under Assumption 2.2 and Assumption 2.3(i), there exists an identical ref-
erence probability measure ) and function f such that the absolute continuity condition (2.4)
holds; that is, for any Borel set B? in Y (with B := B! x --- x BM)

i (Blwo) = [ | 4(B|wo)

P

.

Il
-

/ F & w0)Qdy?),
B

i
K2

where /i is the conditional distribution of each observation y® given wg. We note that the
function f and the measure () are identical through DMs since observations are identically
distributed conditioned on wy. Furthermore, our main Theorem 4.3 imposes the following
continuity assumption on the cost function.

ASSUMPTION 2.4. The cost function in (2.2), ¢ : Qg x U x U — R4, is continuous in
its second and third arguments for all wy.

For our results in Section 4, we impose Assumption 2.1 and Assumption 2.2, but we only
impose Assumption 2.3 and Assumption 2.4 when they are needed.

2.2.2. Dynamic Teams. Our second goal here is to establish the existence of a sym-
metric (identical) randomized globally optimal policy for mean-field dynamic team problems
where DMs are weakly coupled through the average of states and actions in dynamics and/or
the cost function. Again, we consider exchangeable teams, and hence, we let action, observa-
tion, and state spaces, respectively, be identical through DMs ¢ € N, and for simplicity, also
through time t = 0,...,7 —1,Ui = U C R", Yi =Y C R", Xi = X C R foralli € N/

andt = 0,...,T — 1, where n, n’ and n” are positive integers. Define state dynamics and
observation dynamics of DMs as follows:

e , 1
2.5) . —ft<xz,u1,NZx€,NZui’,wz),

p=1 p=1

(2.6) yz =M (x%):ta u%):tflv ’U(Z):t) )
where functions f; and h; are measurable functions and v} and w! are random vectors rep-
resenting uncertainties in state dynamics and observations. We denote z; := (g, ..., Z}),
Uy = (U, -, _u%fl), and vg,, = (g, - - ,v7). Let the admissible policies (7(1);7?71)1’6./\/
(with vy == (7, - .., ¥_)) be measurable control functions so that u} = ~;(y;) for all

t1€Nandt=0,...,T —1.



Problem (PX): Consider N-DM mean-field dynamic teams with the expected cost
function of 4

T-1 N
. 1I:N 1
(27) J’}v(le) =1 |:N Zc(w()’ It? U“ Zutv N Z >:| )
t=0 i=1 p=1
where V"N = (yip_q,- 0 dro1) and Yy = (W, v_q)-  Again, wo

(Q,F,P) — (Qo,Fo) is a cost-related random variable, where €y is a Borel space with
its Borel o-field Fg.
Problem (P2°): Consider mean-field dynamic teams with the expected cost function of

7 as
(2.8) J7(y) = lim sup JZJY (’yl:N),

- N—oo -
where —(%T 1770T IERRE )andVI (VOT 1=~~770T 1)

Analogous to Definition 2.1 and Deﬁn1t10n 2.2, we can define globally optimal policies
for (PT) and (P$°). Again, we allow DMs to apply randomized policies and provide a
description of the problems within randomized policies; see (5.3) and (5.4). In Section 5, we
establish the existence of a symmetric (identical through DMs) randomized globally optimal
policy for (P$°). Similar to the static case, we first establish N-exchangeablity of randomized
optimal policies for (PY) and symmetry for optimal randomized policies of (P$°). Then
using symmetry, we establish an existence result for (P3°).

Our solution technique for dynamic problems is similar to the static one, which requires
more technical arguments and additional assumptions. Our theorems for dynamic case im-
pose an absolute continuity condition (see Assumption 5.1) to allow us to introduce a suitable
topology on control policies and to facilitate our analysis (our main Theorem 5.4 requires
an additional technical Assumption 5.4). Furthermore, our main Theorem 5.4 imposes the
following:

ASSUMPTION 2.5.

(i) Fort = 0,...,T — 1, functions f; and hy in (2.5) and (2.6) are continuous in the
states and actions and fis are bounded;

(ii) The cost function in (2.7), ¢ : Qg x X x U x U x X — Ry, is continuous in the
second, third, fourth, and fifth arguments.

ASSUMPTION 2.6.

(i) (xé)ie/\/ are i.i.d. random vectors conditioned on wq;

(ii) Fort =0,...,T—1, (w)icn arei.id. randomvectors, andfori € N, (wi)I ' are
mutually independent and independent of wo and (z})ien. Fort =0,...,T — 1,
(v))ien are i.i.d. random vectors, and fori € N, (v,f)tT;Ol are mntually indepen-
dent, and independent of wo, (z})icn, and wis fori € N andt =0,...,T — 1.

(iii) U is compact.

In view of Assumption 2.6(i), we note that wg also introduces a correlation between initial
states. For our results in Section 5, we impose Assumption 5.1, but we impose Assumption
5.4, Assumption 2.5, and Assumption 2.6 only when they are needed.

2.2.3. Approximations. Finally, we address the following problem in Section 6. If P}
is a (randomized) symmetric optimal policy for (P) ((P7°)) then there exist ey > 0, with
en — 0as N — oo, such that P*|y is ey-optimal for (Py) (PY)) where P |y is the
restriction of P to the first NV decision makers. We use our symmetry results and analysis
for (Po) ((P77)).



2.3. Discussion of main results. In mean-field team problems, one may be interested
in the existence and structure of globally optimal policies. In particular, one can ask if there
is a globally optimal policy and whether this optimal policy is symmetric for these type of
problems (by a symmetric policy we mean that a policy is identical through DMs). One may
be also interested in the connection between optimal policies for mean-field teams and ap-
proximation of optimal policies for the pre-limit N-DM teams when N is large. The purpose
of this paper is to address these questions for mean-field team problems where the problem
can be non-convex. The non-convexity of the problem can arise as a result of non-convexity
of the action space and/or non-convexity of the cost function in actions. Also, even if the
action space is convex and the cost function is convex in actions, the information structure
of the problem may lead to non-convexity of the problem in policies (see for example [80,
Section 3.3]). A celebrated example is the counterexample of Witsenhausen [73].

One of the main difficulties in studying non-convex mean-field team problems is to show
that globally optimal policies for mean-field team problems are symmetric (identical for each
DM). This difficulty stems from the observation that, in general, globally optimal policies are
not symmetric for non-convex pre-limit N-DM team problems (which can be seen in Example
1). This is in contrast to the convex mean-field teams where symmetry can be established for
both pre-limit N-DM and mean-field team problems [67, 66]. In our approach:

(i) We introduce a topology on control polices which is used to establish a de Finetti
representation result for probability measures on policies identified as randomized policies.
In Theorem 3.2, we show that any infinitely-exchangeable randomized policies can be repre-
sented by elements of the set of randomized policies with common and private independent
randomness where conditioned on common randomness, randomization of the policies are
independent and identical through DMs.

(i) In Section 4 for static and Section 5 for dynamic N-DM stochastic teams (see
Lemma 4.1 and Lemma 5.2), we show that by exchangeability of the cost function and con-
sidering symmetric information structures (under a causality condition for the dynamic case),
one can establish N-exchangeability of randomized optimal policies.

(iii) In Section 4 for static and Section 5 for dynamic mean-field teams (see Lemma 4.2
and Lemma 5.3) under regularity conditions on the cost function and dynamics, by construct-
ing infinitely-exchangeable randomized policies by relabeling N-exchangeable randomized
optimal policies, as N goes to infinity, we show the asymptotic optimality of infinitely-
exchangeable randomized optimal policies. Hence, this, following from our de Finetti type
theorem (see Theorem 3.2), establishes asymptotic global optimality of symmetric and con-
ditionally independent policies.

(iv) Using extreme point and lower semi-continuity arguments, we establish the exis-
tence of a symmetric optimal policy (which is privately randomized) for static and dynamic
mean-field teams (see Theorem 4.3 and Theorem 5.4).

(v) In Section 6, using our analysis for mean-field problems, as /N goes to infinity, we
show that symmetric optimal policies of mean-field teams are asymptotically optimal for
N-DM weakly coupled teams, hence, it establishes approximation results for this class of
problems.

In the following, we first study static teams, then we study dynamic teams where the
analysis is similar to the static case but is somewhat more technical.

3. Topology on Control Policies and a de Finetti Representation Result.

3.1. Topology on control policies.. In this section, we introduce a topology using
which, we can introduce Borel probability measures on policies. We first consider N-DM
static team problems. Following from [78, 74], Assumption 2.2 allows us to reduce the prob-
lem as a static team problem where now the observation of each DM is independent of ob-
servations of other DMs and also independent of wy (since under the measure transformation
(2.4), a probability measure on the observation of each DM is ()%, which is independent of
observations of other DMs and wg). Hence, under Assumption 2.2, we can focus on each
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DM’ separately. Let us define
(3.1

0! .= {P S P(UJ X Y)}P(B) :/ 1{91(y1)€du1}QZ(dyZ)7 g:Y—=U, Be B([U X Y)},
B

where P(-) denotes the space of probability measures, and 1y. ¢ 4} denotes the indicator
function of the set A. The above set is the set of extreme points of the set of probability
measures on (U x Y) with fixed marginals Q* on Y, that is,

(3.2) R = {P € P(U x Y)‘P(B) = /Bni(duﬂyi)cgi(dyi), B € B(U x v)},

where TI* is a stochastic kernel from Y to U. Hence, it inherits Borel measurability and
topological properties of that Borel measurable set [14]. We note that this set corresponds to
Young measures [75] and this representation result is due to Borkar [14]. Now, we identify
the set of relaxed policies I'* by R’ and we define convergence on policies as v, — 7 if
and only if v (du®|y") Q' (dy') — v (dut|y*)Q!(dy") (in the weak convergence topology) as
n — 00.

In view of the above standard Borel space formulation for T for each i € N, we can
define the set of Borel probability measures on admissible policies I' ;v (which is referred to
as a set of randomized policies) as LY := P(T'y), where Borel o-field B(I') is induced by
the topology defined above. Define the set of randomized policies induced by a common and
individual randomness as:

LY, = {PF € LN |forall A; € B(T") :

N . .
P.(y' € Ay,... 4N € Ay) = / HP;(WZ € A;|z)n(dz), n € P([0, 1])},

2€[0,1] ;4

where 7 is the distribution of common, but independent (from intrinsic exogenous system
variables), randomness, and for every fixed z, Pf; IS ’P(l"i) indicates an identical independent
randomized policy of each DM’ (i = 1,..., N). Note that conditioned on a [0, 1]-valued ran-
dom variable Z, policies are independent. It can be shown that LJCVO and LV are identical (see
Theorem A.1 in the Appendix), and hence, the set of randomized policies LV corresponds to
randomized policies induced by an individual and a common randomness. Since individual
and a common randomness do not improve the optimal expected cost, the relaxation of the
problem to sets of randomized policies L is a legitimate relaxation for the team problems
with N-DMs.

Before, we introduce the set of exchangeable randomized policies, we recall the defini-
tion of exchangeability for random variables.

DEFINITION 3.1. Random vectors x',22,...,xN defined on a common probability
space are N-exchangeable if for any permutation o of the set {1,..., N},
L(x”(l),:ca@), e ,IU(N)> = £<xl,:c2, e ,J:N>,
where L denotes the joint distribution of random vectors. Random vectors (x',z2,...) is

infinitely-exchangeable if finite distributions of (x',22,...) and (x”(l) L S ) are iden-
tical for any finite permutation (affecting only finitely many elements) of \.

Now, we define the set of exchangeable randomized policies as:

forall A; € B(T") and forall o € Sy :

LY = {P,T eV
10




(33) Pﬂ—(’yl S Al,...,’}/N (S AN) = Pﬂ—(’}/g(l) (S Al,...,’yU(N) (S AN)},

where Sy is the set of permutations of {1,..., N}. We note that LY is a convex subset of
LY. We also define the set L, gy as the set of identical randomized policies induced by a
common and individual randomness:

LICVO’SYM = {Pﬂ— S LN for all Al € B(Fl) :

N
Pr(v' € Ar,... 7N € An) = / [ 2" € Ailz)n(dz), n € P(o, 1])},
z€[0,1]

i=1
where for all 7 € N , and fixed z, I:’T, S P(I‘i) indicates an identical independent randomized
policy of each DM* (+ = 1,..., N). Also, define the set of randomized policies with only
private independent randomness as:

Lk = {PF € L¥|forall A; € B(T) :

N
Pr(y' € Ay, AN € Ay) =[] Pi(y' € A), for Pl € P(Pi)}.
i=1

Finally, define the set of randomized policies with identical and independent randomness:

Lirsym = {Pw € LN |forall 4; € B(I") :

N
Pﬂ—(’}/l S Al, R ,")/N S AN) = HPW(")/l S Az)7 for Pﬂ- S P(FZ)}

For a team with a countably infinite number of decision makers, we define sets of ran-
domized policies L, Lgx, Lco, Lco.sym; Lpr, Lpr sym similarly using Ionescu Tulcea exten-
sion theorem through the sequential formulation reviewed in Section 2.1, by iteratively adding
new coordinates for our probability measure (see e.g., [2, 38]). We define the set of random-
ized policies L on the infinite product Borel spaces I' = [], ., I as L := P(T). Now, we
define the set of infinitely-exchangeable randomized policies as:

Lpx := {PTr € Liforall A; € B(T'") and forall N € N, and forall ¢ € Sy:

Pﬂ—(’yl S Al,...,’}/N S AN) = Pﬂ—(’}/d(l) S Al,...,’yg(N) S AN)},
and we define

Lco = {P,, € Liforall A; € B(I'") :

Pﬂ'(’yl € A17’72 € A27 . ) = / 0.1] HPTT'(’Yl € Az|z)77(d2)a ne ,P([Ov 1])}
z€[0,1

i€EN

Note that Lo is a convex subset of L and its extreme points are in the set of randomized
policies with private independent randomness:

forall A; € B(T") :

Lpg := {Pﬂ— e L
11




Pr(y' € Ay,y? € Ay, ..) = HP;W € A;), for P! € P(Pi)}.
1EN

Also, we define

Lcosym = {Pﬂ € Liforall 4; € B(T') :

Pyt € AP e da) = [ TI20" € Adoptaz), neP(o 1])},
0,1] jen

and

Lpg sym = {PF € Liforall 4; € B(I'") :

Pr(yt € Ay, 7% € Ay, .. L) :H (v € Ay), forP,reP(Fi)}.
€N

3.2. A de Finetti theorem for admissible team policies. In view of the introduced
topology and sets of Borel probability measures on policies (sets of randomized polices), we
now establish a connection between Lgx and Lco sym using the classical de Finetti’s theo-
rem; that is, infinitely-exchangeable randomized policies are a mixture of i.i.d. randomized
policies.

THEOREM 3.2. Any infinitely-exchangeable randomized policy P, € Lgx is in the set of
randomized policies Lcosyu (Pr € Lcosyn), i.e., for any Pr € Lgy, there exists a [0, 1]-
valued random variable Z such that for any A; € B(I")

(34) P(v'e A yreA,,. ) :/ ]HP,T(#' € A;|2)n(dz), n € P([0,1]),
0,1

ieN
where for every fixed z, P, € P(T').

Proof. In view of the introduced weak convergence topology on I'? (using Borel mea-
surable sets (3.2) and (3.1)), we have I'? is a closed subset of the Borel space P(U xY), and
hence, I'? is Borel for i € N. The proof follows from [48, Theorem 1.1] since I' = H;’il I
is Borel. We note that the de Finetti representation in [48, Theorem 1.1] is of the form
Pr(yh € Aiy? € Asy) = o II2 m(AY)i(dm) for i) € P(P(IY)) which can
be written as in (3.4). That is because, P(I‘i) is an (uncountable) Borel space [12, Corollary
7.25.1], and hence, by Borel-isomorphism Theorem (see for example, [12, Proposition 7.16]),
it is Borel isomorphic to [0, 1]. O

4. Existence and Structure of Optimal Policies for Symmetric Static Team Prob-
lems with Infinitely Many Decision Makers. In this section, we consider static stochastic
team problems where we impose Assumption 2.1 and Assumption 2.2. We note that all the
proofs regarding this section are presented in Appendix B. We again note that for our results
in this section, we impose Assumption 2.1 and Assumption 2.2. Based on the definitions of
randomized policies, we redefine the expected cost in (Py) of a randomized policy P, € LY
as:

Ti(ay) = [ Pald)n® dan, dy)e® (1. o)

4.1)
([

::]z

o (du ) (™ ) (do dy - dy™),



where ¢V (v, y,wo) := [ c(wo,ul, ..., ul) ngl +*(du®|y*), and 17 is the joint probabil-
ity measure on measurements (y',...,%") and wy. In the following, we characterize team
problems in which the search for a randomized optimal policy can be restricted to policies in
LY, without losing global optimality.

ASSUMPTION 4.1. Let observations of DMs, (y*,--- ,y"), be exchangeable condi-
tioned on wy.

Note that Assumption 4.1 is weaker than Assumption 2.3(i).

LEMMA 4.1. For a fixed N, consider an N-DM static team. Assume L” is an arbitrary
convex subset of LN . If Assumption 4.1 holds, then

4.2)
inf /Pﬂ(dl)uN(dwo, dg)cN (7, y,wo) = inf /P,T(dl)uN(dwo, dg)cN (7, y,wo)-
PreLN PreLNNLY,

In the following, we present an existence result on globally optimal policies for static
mean-field teams with infinitely many decision makers. First, we re-state the infinite decision
maker mean-field team problem and its pre-limit.

Problem (Pp): Consider an N-DM static team with the expected cost of a randomized
policy PN € LY as:

/Piv(dz)uN(dwo,dg)cN(zg /(/N c(wo, u %iup ﬂ (du®[y"*) )

p=
4.3) ><P7£V(d'y yenn ),uN(dwo,dy ,...,dyN).

The above problem is considered as a pre-limit problem for our infinite-decision maker
team problem. This problem is a special case of (Py) defined in the previous section since
we have a special structure for the cost function ¢ which satisfies Assumption 2.1.

Problem (P..): Consider infinite-DM static team with the following expected cost of a
randomized policy P € L as

(4.4) lim sup / P,T,N(dl),uN(dwo, dg)cN (7, ¥, wo),

N—o00

where Py y is the marginal of the P, € L to the first N components and ¥ is the marginal
of the fixed probability measure on (wo, y*, %2, . ..) to the first N + 1 components.

In the following, we present a key result required for our main theorem. Under mild con-
ditions, we show that the optimal expected cost function induced by L and Lgx are equal
as N goes to infinity. Hence, by Lemma 4.1, under symmetry, this allows us to show that
without loss of global optimality, optimal policies of static mean-field teams with countably
infinite number of DMs can be considered to be an infinitely-exchangeable type.

LEMMA 4.2. Suppose that Assumption 2.3 and Assumption 2.4 hold. Assume further
that the cost function is bounded. Then

limsup inf /Pg(dl)uN(dwo,dg)cN(l,g, wo)

N—oo PNeLX,

4.5) = limsup inf Pr n (dy) ™ (dwo, dy)e™ (v, y, wo),

N—ooo Pr€Lex

where Py n is the marginal of the P, € Lgx to the first N components.
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In the following, we establish an existence of a randomized optimal policy for (P).

THEOREM 4.3. Consider a static team problem (Po,) where Assumption 2.3 and As-
sumption 2.4 hold. Then, there exists a randomized optimal policy P} for (Po) which is in

Lpg sym:

inf limsup/PmN(dl)uN(dwo,dg)cN(l, Y, wo)

Pr€Lprsym N—00

= limsup/P;T‘J\,(dl)u]\](clo.zo7 dg)cN('y, Y, wo)

N—o0 -

= inf limSUP/PmN(dV)MN(dwO,dy)CN(%y,wo)-
Pr€Lr N_oo ’ - - - =

Here, we present an example where Theorem 4.3 can be applied but the existence re-
sult of [67, Theorem 12] cannot be applied because the assumption that U is convex in [67,
Theorem 12] is violated.

EXAMPLE 1. Consider a team problem with the following expected cost function

J(3) = limsup EV[((% ) - %)]

N — o0 i—1

where o-field o(y') = {0,Q} (this corresponds to a team setup where DMs have no mea-
surement, hence measurable functions (policies) are constant functions), and we consider
u' € {0,1} for each DM. Clearly, an optimal policy that achieves zero is the one where a
matching partition (such as even numbers vs. odd numbers) among DMs picking u* = 0 and
u® = 1, that is because the cost function is non-negative. One can see that there is an op-
timal policy in Lpg syy since each DM can choose independently an action zero or one with
probability half and this achieves the expected cost of zero; however, there is no identically
deterministic policy that achieves zero expected cost. We note also that the problem is not a
convex problem, therefore the results in [67, Theorem 12 or Proposition 1] are not applicable
to show the existence of a symmetric randomized optimal policy, in particular, the action sets
are not convex.

5. Finite Horizon Dynamic Team Problems with a Symmetric Information Struc-
ture. In this section, we study dynamic stochastic team problems. All the proofs regarding
this section are presented in Appendix C. Similar to the static case, we first introduce the
intrinsic model for general dynamic team problems, and then, we introduce a topology on
control policies, and finally we establish our main results for dynamic problems.

5.1. A Revised intrinsic model for dynamic team problems. Under the intrinsic
model (see Section 2.1), every DM acts separately. However, depending on the informa-
tion structure, it may be convenient to consider a collection of DMs as a single DM acting
at different time instances. In fact, in the classical stochastic control, this is the standard ap-
proach. In this subsection, we introduce the general (multi-stage) dynamic problems using the
intrinsic model under deterministic policies. In the next subsections, we allow randomization
equipped with a suitable topology.

According to the discussion above, by considering a collection of DMs as a single DM

(i =1,...,N) acting at different time instances (¢ = 0,...,7 — 1), we revise the intrinsic
mode for (multi-stage) dynamic team problems with (NT')-DMs as a team with N-DMs (for
N e NU{o0}):

(i) Let the observation and action spaces be standard Borel spaces and be identical for
, . T—1 T—1 .
each DM (¢ = 1, .',N) with Y; = Y = tho' Y U; :=U = Ht_:o ut, respectlv'ely
(later on, for simplicity of our notation and analysis, we assume that action and observation
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spaces are also identical through time). For each DM, the set of all admissible policies are
denoted by I'; := HtTBl I't. Later on, these policies will be allowed to be randomized and
accordingly the image will be P(U).

(i) Fori=1,...,N,y! = hi(x}N, (&N, upl ) represents the observation of DM?
at time t (his are Borel measurable functions). Let v{¥ be a stochastic kernel characterizing
the joint distribution of observations y/*" := (y/,...,y;") at time ¢ induced by hjs given
the available information, and let (¢"*V) := (¢*,...,¢") where ¢' := (z}, ¢4.p_;) denotes
all the uncertainty associated with DM including his/her initial states. We assume that (< B!
takes values in {2¢ (where at each time instances ¢, it takes value in ¢, ). Let ,uN denote the
law of Q L:N " To be consistent with our notations in our analysis of the static case, we used
the same notation ;v as the fixed probability measures on observations and wy for the static
case; however, we note that in the dynamic case, the probability measures on uncertainties
(¢ 1Ny is fixed and not probability measures on observations.

5.2. Topology on dynamic control policies. Similar to Section 3.1, here, we allow
randomization in policies, but first we introduce two reduction COHdlthl’lS (1ndependent and
nested reduction) that enable us to define sets of Borel probability measures on randomized
policies for dynamic teams with different information structures by considering a policy of a
single DM (¢ = 1, ..., N) acting at different time instances (¢t =0,...,7 — 1).

ASSUMPTION 5.1. One of the following conditions holds:
(i) (Independent reduction): for every N € N U {oc} and fori =1,...,N andt =
0,...,T — 1 there exists a probability measure 7; on Y' and a function wt Yt x Qp x

Hfovzl( =0 Qck X H};:{)(Uk x Y*)) — Ry such that for all Borel sets A* on Y (with

A=Al x ... x AN)

N 1:N ~1:N 1:N 1:N
vy (Alwo, zg ><0:t717y0t 15 Uit—1) / d’t ytawoaxo ) S0t — 17310t 17U0t I)Tt(dyt)

(ii) (Nested reduction): for every N € N U {oo} and fori = 1,...,N and t =
0,...,T — 1, there exists a probablllty measure n; on Y' and a functlon (bt such that for
all Borel sets A* on Yt (with A = A* x --- x AN)

N I:N +1:N  1:N 1:N
vp (Alwos 2o, Coit15 Yoit—1, Upit—1)

=11 /A B wo, o s Gt 1y Yont -1 Uow— )T (A, Gy Y15 U 1)s
i—1 %

and for each DM' through time (t = 0,...,T — 1), there exists a static reduction with the
classical information structure (i.e., under the reduction, the information structure of each
DM through time is expanding such that o (y;) C o(y;,1) fort =0,...,T —1).

We note that Assumption 5.1(i) allows us to obtain an independent measurements reduc-
tion both through DMs and through time, ¢ = 0,...,T — 1 (see Appendix C.1). Assumption
5.1(ii) holds if an independent static reduction exists through DMs and there exists a nested
static reduction for each DM through time, i.e., under the reduction, the information is ex-
panding for each DM through time (see Appendix C.1). In view of the above reduction
conditions, we introduce a suitable topology for randomized policies. Similar to Section 3.1,
under Assumption 5.1(i), we define convergence on policies as:

ljl MEN 1 if and only if ~; ' (duilyd) T (dyl) Z:—m> Vi(dully) i (dy) YVt =0,...,T — 1.

Under Assumption 5.1(ii), we define convergence on policies as:

i mM—00 n—00

n 1 if and only if -, n(dut|y0 t)77t (dyo t) r’ 'Yt(dut|y0 t)m(dyo ) Vt=0,.
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Hence, under Assumption 5.1, we define all _the sets of randomized policies defined in Section
3.1 for the dynamic teams by considering 7"

REMARK 2. We note that our first reduction condition, independent reduction, is essen-
tially a version of Girsanov’s transformation [35, 11] which has been considered first in [74,
Eqn(4.2)], and later utilized in [79, p. 114] and [78, Section 2.2] (for discrete-time partially
observed stochastic control, similar arguments had been presented, e.g. by Borkar in [15],
[16]). We refer the reader to [28] for relations with the classical continuous-time stochas-
tic control, where the relation with Girsanov’s classical measure transformation [35, 11] is
recognized. Our second reduction condition, nested reduction, holds when there exists a re-
duction for DMs through time under which each DM has a perfect recall of private history of
information.

Now, we provide examples under which either one of the conditions in Assumption 5.1
holds.

EXAMPLE 2. For each 1 = N and t = 0,....T — 1, let z},, =
ft(xm Jugiy , wp) and yj = hZ(WOaxm 7<0t 1 UG 1) + v where ¢ = (wi,v}), and
v¢ admits zero-mean Gaussian density function 0% with positive-definite covariance.

(i) If the information structure for each DM at time t is described as I} := {y:} for all
i=1,...,Nandt =0,...,T — 1, then Assumption 5.1(i) holds.

(ii) If I} = {yOt,UOt 1tforalli=1,...,Nandt =0,...,T — 1 (or equivalently,

I = {gi} with §; = hi(wo, 257, G 17u(1Jt 15 V) for someﬁmctlon hi and o(;) C
(yt_H) and o (ul) C o(§i, ) for some function hy), then Assumption 5.1(ii) holds.
Part(i) is true since forallt =0,..., T —1landi=1,..., N, we have

i LN i g LN ~1:N  1:N
Yt = hi(wo, 2t i1, ubin 1) + vp = wi(wo, 2™, G0N 1 ugi 1) + vf,

for some functions r, and hence, we can define

w . 01yt — wi(wo, 2™, i 1, ubiti 1))
wzlf(ysz(va%).Nv 61&1\,173/(1)1{\[17“(1)1{\[1). : : ,9?(y7)0t e ’
t\Jt

7 (dy;) = 0, (y;)dy;.
Part(ii) can be shown similarly by first applying the independent reduction as above, and
then, considering the nested information structure through time for each DM.

EXAMPLE 3. Consider the following two information structures:

(i) (Open-loop information structure): For eachi =1,...,Nandt =10,...,T —1,
let w1 = fi(atiy ,ugiy , wi) and y; = hi(Chy—1,v}) such that o(yi) C o(yis1), where
(CH)y = (wi, v}), denotes the disturbances of DM* (which is independent of disturbances of
other DMs and independent of wg). If I} := {yi} foralli=1,...,Nandt=0,...,T — 1,
then Assumption 5.1(ii) holds.

(ii) Foreachi=1,...,Nandt=0,...,T — 1, let o}, = f{(wo, x5, ubd) + wi,
where w! admits zero-mean Gaussian density function 0% with positive-definite covariance,
and let y; = hi(z}.,, yb.,_1,v4.,) such that o(y;) C o(yi, ), where (v}), are independent of
disturbances of other DMs and independent of wq. If I} = {yi} foralli = 1,...,N and
t=0,...,T — 1, then Assumption 5.1(ii) holds.

Part(i) follows from the fact that the information structure is open-loop and nested for each
DM, and hence, under this information structure the problem is static with the classical in-
formation structure through time for each DM. Part(ii) is true since forallt =0,...,T —1
andi=1,...,N,
¢t(ItaW0a :17(1) iv N u(l) iv )= 03 (z} — ftl(w(;a Ié;é\il,uégﬁl)),
16 0% ()




iy (drt) = 0; (x})da,
and since the information structure is nested through time for each DM.

5.3. Existence and structure of optimal policies for symmetric dynamic team prob-
lems with infinitely many decision makers. In the following, we study the existence and
structure of globally optimal policies for dynamic team problems with a symmetric informa-
tion structure (that are not necessarily partially nested) and with a finite but large and also
infinitely many decision makers. We note that a related result is given in [66] where convex
mean-field team problems have been considered under the assumption that the action space
is convex for each DM and the cost function is convex in policies. We note that even if the
cost function is convex in actions when there is a mean-field coupling in dynamics, convexity
rarely holds since the information structure under decentralized setup is non-classical, and
that may lead to the non-convexity of the team problem in policies (see for example [80, Sec-
tion 3.3]). In the following, convexity is not imposed. Again, for our results in this subsection,
we impose Assumption 5.1.

5.3.1. Exchangeability of optimal policies for symmetric dynamic team problems
with a finite but large number of decision makers. In this subsection, we focus on sym-
metric dynamic team problems with N-DMs, and we establish a structural result for optimal
policies of this class of problems (which is more general than the pre-limit mean-field model
(PX)). In the next subsection, we use this result to establish existence and structural proper-
ties of globally randomized optimal policies for mean-field dynamic team problems.

Now, we recall the definition of the symmetric information structure from [66] (note
that symmetric information structures can be classical, partially nested, or non-classical).
Several examples as well as a graph interpretation of dynamic teams with symmetric infor-
mation structures have been presented in [66, Section 4]. In particular, pre-limit mean-field
and mean-field dynamic team problems (P%V ) and (P7°) introduced in Section 2.2 have a
symmetric information structure.

~ DEFINITION 5.1. [66] Let the information of DM' acting at time t be described as I} =
{y!}. The information structure of a sequential N-DM team problem is symmetric if
(i) yi = he(xd, 2" Copy Cots Ubip—1, U1 ), Where hy is identical for all i =
L,..., N (note that the arguments of the function depend on i) and b~' =
(b17 tet b1717 bz+1’ s ,bN)fOI"b = Zo, CO:t7u0:t71~

We note that the above definition can be generalized to be applicable for teams with
countably infinite number of DMs. Before, we present the result for dynamic mean-field
teams, we characterize team problems with symmetric information structures in which the
search for an optimal policy can be restricted to policies in L&} without losing global opti-
mality. To this end, we focus on a more general setup of team problems within randomized
policies P, € LY as

TE ()= / Py (dy)a™ (duo, )N (G 7, o)™ (dy|C, 7, wo)

N
6.0 = [ ([ eln g™t ) [l ) ety i, ag™)

i=1
T-1
N 1:N 1:N ,1:N 1:N 1:N
XHVt (dyt |W07$0 7CO:t—17y0:t—17u0:t71)7
t=0

where ¢ (¢,7,y,w0) = [ e(wo, ¢V ut, .. uN) TIL, 7% (du’ly?) and the following as-
sumptions hold.
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ASSUMPTION 5.2. For any permutation o of the set {1,..., N}, we have for all wy,
(52) C((UO, (ga)l:N7 (20')1:]\[) — C(wo,gl:N,glcN)7

where (ga’)l:N = (ga(l)7 o 7£O’(N)) and (go)lzN = (ga'(l)7 L 7QU(N)).

ASSUMPTION 5.3.
(a) (gl, . ,QN) are exchangeable conditioned on wy;

(b) Forallt =0,...,T — 1, and all Borel sets A* on Yt (with A = A* x --- x AN)

N
N 1:N ,1:N ) i i 1:N 1:N
v, (A|w0,:c0 s Corm 1,y0t 1,u0t 1 HV A }WOaIOaCO:t—lvyO:t—lv’U’Ot 1)
i=1

where v} is a stochastic kernel of the observation DM' at time t, y., induced by hy (which is
identical for each DM).

We note that dynamic mean-field team problems introduced in Section 2.2.2 with the
cost function (2.7), dynamic (2.5), and observations (2.6), under Assumption 2.6 satisfy As-
sumption 5.2 and Assumption 5.3.

LEMMA 5.2. Consider a dynamic team problem with a symmetric information structure.
Let Assumption 5.2 and Assumption 5.3 hold. Assume LY is an arbitrary convex subset of
LN. Then

in£ /Pﬂ(dZ):u’N(dwO’dg)cN(gv %Y, wO)VN(d |£7 e wO)
PreLN

inf /P (dy)u dwo,d{) (g,l,g,wo)l/N(dgg,l,wo).

P,reLNng;(

5.3.2. Existence and structure of optimal policies for mean-field dynamic team
problems. In the following, we establish the existence of a globally randomized optimal
policy for dynamic mean-field teams with infinitely many decision makers. Define state dy-
namics and observations as (2.5) and (2.6). The information structure of DM* at time ¢ is
I} = {yi}, and ¢} = (wi,v}) (with & := (x}), wd,v})) denotes the uncertainty correspond-
ing to dynamics and observations at time ¢ for DM? which are exogenous random vectors in
standard Borel spaces. First, we re-state the infinite decision maker mean-field team problem
and its pre-limit within randomized policies.

Problem (PX): Consider an N-DM dynamic team with the expected cost of a random-
ized policy PN € LY as

[P @ (o, 4N (€. o) (gl 2,0)

1 T—-1 N . 1 N 1 N N
(5.3) ::/(/N . c(wo,x;,u;NZuf(yf),Nin’> Hlk(dgk@k))
t=0 =1 p=1 p=1 k=1
T-1
ng(dllv"'7d1N),u‘N(dw07d£1:N) (dytN’wov‘T(lJNv (}gvlvy(l)tlvlvu(l)ivl)
t=0
where
1 T—-1 N 1 N 1 N N
CN(£71,£7Q}0) :/N ZC(WQ,ZCt,Ut,NZU?(y?),Nin)) sz(duk|yk)
t=0 i=1 p=1 p=1 k=1



The above problem is considered as a pre-limit problem for our infinite-decision maker
team problem. We note that N-DM teams of (Prfpv ) is a special case of (5.1) since we have a
special structure for the cost function ¢’V and observations which satisfy Assumption 5.2 and
Definition 5.1, respectively.

REMARK 3. Our analysis below also allows a more general observations for each DM
where the observations of each DM at time t can be explicitly functions of average of previous
states and actions as

N N
i— (2 i 1 p 1 p i
Ye = Nt xO:tﬂ”O:t—lﬂN xO:t—l?N Up:t—15 Vot |-
p=1 p=1

However, to simplify the presentations of theorems and proofs and emphasize in the decen-
tralization of optimal policy, for the rest of the paper, we consider (2.6).

Problem (P7°): Consider infinite-DM static team with the following expected cost of a
randomized policy P, € L as:

5.4) li]rvn sup/Pﬁ,N(dz),uN(dwo, dg)cN(g, % Ys wo)VN(dMQ, 7 wo),
—00

where Py is the restriction of P € L to its first N components and u™ is the marginal of

the fixed probability measure on (wo, ¢ ' ¢ 2. ) to the first N + 1 components.

ASSUMPTION 5.4. Assume Assumption 5.1 holds with functions 1} and ¢! are of the
following forms for everyi € N andt =0,...,T — 1:

N N
if i i i i 1 P 1 P
by yt>w0ax0ﬂCO:t—lvyO:t—huO:t—l?N uO:t—l?N Lot |»
p=1 p=1

1 & 1 &
o (vhon g e b,
p=1 p=1

where 1)} is continuous in the last three arguments (actions and the empirical mean of actions
and states) and ¢; is continuous in the last two arguments (the empirical mean of actions and
states).

Before presenting our main result for dynamic mean-field teams, we present sufficient
conditions under which the expected cost function induced by randomized optimal policies
in LéVX and Lgx are equal as IV goes to infinity, and hence, following from Lemma 5.2, under
symmetry, this shows that without loss of global optimality, optimal policies of dynamic
mean-field teams can be considered to be an infinitely-exchangeable type.

LEMMA 5.3. Consider the team problem (PY ) where Assumption 5.4, Assumption 2.5,
and Assumption 2.6 hold. Assume further that the cost function bounded, then

limsup inf P,]rv(dl),uN(dwo, dg)cN (SRR wo ) (d €, v, wo)

N—oo PNeL} -

65 =twsup it [ Poldy)u® (den, dO)c (G .ol (dyld, 7. 0),
N —o00 P‘rrGLEX - - - - = - =
where Py n is the restriction of Px € Lgx to its first N components and p is the marginal
of the fixed probability measure on (wy, gl , £2, ...) to the first N + 1 components.
In the following, we establish an existence and structural result for a randomized optimal
policy of (P7°).
19



THEOREM 5.4. Consider a mean-field team problem (P$°) with (PY ) having a symmet-
ric information structure for every N. Let Assumption 5.4, Assumption 2.5, and Assumption
2.6 hold. Then, there exists a randomized optimal policy P} for (Pz°) which is in Lpg sym,

inf limsup/PmN(dl)uN(dwg, dg)cN(g, %Y wo)uN(dyK7 7> wo)

Pr€LprsyM N—00 -

= lim sup/P;N(dl),uN(dwo, dg)cN(g, 7 ,wo)l/N(dy|£, % wo)

N—oo

= inf limsup/PmN(dl),uN(dwmdg)cN(Q,l,g,w())yN(d €, 7, wo).

Prel N

6. Approximations of Optimal Policies for Symmetric N-DM Stochastic Team
Problems. In this section, we present approximation results of optimal policies for N-DM
team problems. We show that for large N, symmetric policies are nearly optimal and the
restriction of the optimal infinite solution to the finite team problem is nearly optimal for
large N. All the proofs regarding this section are presented in Appendix D. We first con-
sider the static case. To present ideas more effectively, we first introduce the following set of
probability measures on policies as:

N
forall A; € B(I'Y) : Pr(v' € Ay,....4N € Ay) = H 1{5iea,y, fory' € r}

i=1

LY = {P,T eV

where the above set corresponds to Dirac-delta measures in LY.

THEOREM 6.1. Consider a static team problem (P ) (see (4.3)) where Assumption 2.4
and Assumption 2.3 hold. Assume further the cost function is bounded. Then,

(i)

(6.1)
ngz%mm / PN (dy) ™ (dwo, dy)c™ (v, y, wo) < oty / PN (dy) ™ (dwo, dy)c™ (v, y, wo) + €n,
and
6.2)
it /Piv(dz)uN(dWmdg)cN(mgwo) < P}gréfLN/Pf(dz)uN(dwo,dg)cN(zaywo) +en,

where ey — 0 as N goes to infinity.
(ii) If P; € Lpgrsym is a randomized optimal policy of (Poo), then there exist ey > 0
where ey — 0 as N goes to infinity and

(6.3)

/P;:)N(dl),uN(dwo, dg)cN(l, y,wo) < PliréfLN Piv(dl)uN(dwo, dg)cN(l, Y,wo) + €N + €N,
ks D

where P \ is the restriction of P} to the first N components.

The main idea for establishing Part(i) is to use Lemma 4.1 and Lemma 4.2 to provide an
approximation of optimal expected cost by restricting the search for randomized policies to
those that are restrictions of randomized policies in Lgx to the IV first components. We note
that since the set of policies LY is not a convex subset of the set of randomized policies L*,
(6.1) does not immediately imply (6.2) using Lemma 4.1 but the result can be established
using an extreme point argument and since policies in LY are optimal among all randomized
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policies Ll],}’{ for N-DM teams thanks to Blackwell’s irrelevant information theorem [13].
Part(ii) follows from Part(i) and Theorem 4.3, using the fact that a randomized optimal policy
P € Lprsym of (Px) provides an approximation for the optimal expected cost when the
search for randomized optimal policy for N-DM teams is restricted to those in L, gyy-

Similarly, we present approximation results of optimal policies for symmetric dynamic
N-DM team problems.

THEOREM 6.2. Consider a dynamic team problem (P%V) (see (2.7)). Let Assumption
5.4, Assumption 2.5, and Assumption 2.6 hold. If the cost function is bounded, then

(i)

inf /P#V(dl)uN(dwo, dg)cN(g, % Ys wo)uN(d_|£, 7> wo)
PNELN o
(64 < nt [ P (don, Q)N (G . o) (dylg 3. + e
kL co

and

inf /P#V(dl)uN(dwo, dg)cN(g, % Ys wo)uN(d 1€, 7, wo)

N
PYELR, syu

©3) < int [ P (@i (oo, 40 (¢, 3 v (Al 3,0) +
™ D
where ey — 0 as N goes to infinity.
(ii) If P} € Lpgsym is a randomized optimal policy of (P3°), then there exist ey > 0
where ey — 0 as N goes to infinity and

[ P2 (e 4 (€ 3o gl )

< pl\ifIéEN / PT{'V (dl):uN (dw07 dg)CN (gv 15 Ea wO)VN (dg|£5 17 wO) +en+ ng
™ D

where P} ; is the restriction of P} to the first N components.

Proof. Proof follows from a similar steps as the proof of Theorem 6.1 using the results
of Lemma 5.3 and Theorem 5.4. O

Appendix A. Connection between LY, and L" in Section 3.1. In following theorem,
we show that sets of randomized policies LY, and L are identical.

THEOREM A.1. The set of randomized policies LY is identical to the set of randomized
policies LY,

Proof. Clearly, we have LY, C L¥. In the following, we show LY C L. Following
from [14], foreach ¢ = 1,..., N, the set of marginals of randomized policies in LY to each
coordinate I'? is a convex combination of its extreme points which is in the set of Delta-
dirac measures of elements in I'*. Hence, for the set of extreme points of the convex set LY
(denoted by Extreme(L™)), we have

Extreme(L")
. N . .
forall A; € B(T') : Pr(y' € Ay,..., ¥ € Ay) = H Lizica,y, fory’ € I‘Z}

=1

C {P,,eLN

Hence, Extreme(L") C L& and since both sets LY and LY, are convex, we have LY C
L&, and this completes the proof. 0

Appendix B. Proofs from Section 4.
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B.1. Proof of Lemma 4.1. For any permutation o € Sy, we define a randomized policy
PT‘F’ S LJY as a permutation, o, of arguments of a randomized policy P, € LV, ie., for
At e B(I')

PI(v e AL, P e AN) = Pr(y" W e AL, 47 N) € AN,

We have
[ Pty (o, dp)e® (3, o)
N
— / (wOa ) 7uN) H ’Yk (duk|yk)
k=1
(dy', ..., dy"|wo) Py (dv', ..., dy™)Po(dwo)
N
(B.1) = /c(wo,ul,...,uND 1T+ (du¥1y*)
k=1
Ndy', ... dyN|wo)Pr(dy D, ... dy" N))Po(dwy)
N
(B.2) = /c(wo, w® e N)Y) H A7) (7R |y (k)
k=1
Ny ®, ... dy”™Nlwo) Pr(dy', . .., dy™N)Po(duo)
N
(B.3) = / clwo, ut, ..., u™) [T 7" (dubly*)
k=1
N(dy',.... dy"|wo) Pr(dy', ..., dy™)Po(dwo)
= /Pﬁ(dl),uN(dwo,dg)cN(l, Y, Wo),
where iV is the joint conditional distribution of observations (y!,...,3") given wp, and

(B.1) follows from the definition of P7 and (B.2) follows from relabeling u?® , y"(i) with
u’,y* foralli =1,..., N. Equality (B.3) follows from Assumption 2.1 and Assumption 4.1.
Let € > 0, and consider a randomized policy P;)E € LV such that

/P:yé(dl)uN(dwo, dg)cN(l, y,wo) < inf Pr(dy)p N (dwy, dg)cN(l, Y,wo) + €.

P.eLN

Consider 157,7E as a convex combination of all possible permutations of P} _ by averaging

them. Since LY is convex, we have P, . € L. Also, we have P, . € L, and for any
permutation o € Sy, we have

Pﬂ',e(d'}/l,.--, Z P*ad”yl,...,d’yN)

UESN

= ngé(dwl,...,va),

where |Sy| denotes the cardinality of the set Sy, and the second equality follows from the
fact that the sum is over all permutation o by taking average of them. Therefore, a randomized
policy Py . isin LY N LY. We have,

[ Prctayn® e, dg)e® (o n) = [( 3 aaPr @) (dn. dy)e™ (1, wo)

29€5N



— Z ag/P;f(dl),uN(dwo,dg)cN(l,E,wo)

oESN

— Z ag/P;)E(dl),uN(dwo,dg)cN(Z,g,wo)

oESN

< inf [ Prdy)® (oo, dy)e¥ (o) +
PreLN - ==

where the second equality is true since the map P — [ Pr(dy)u® (dwo, dy)c™ (v, y,wo) is

linear and the third equality follows from (B.3). Since PN,E € LN N LY., we have

/Pw,e(dl)uN(dwo, dg)cN(l, Y,wo) > inf /Pw(dl)uN(dwo, dg)cN(l, Y, wo)-

PreLNNLY,

Hence, for any € > 0, we have

inf / Pr(dy) N (dwo, dy)e™ (v, y,wo) < inf / Pr(dy)p™ (dwo, dy)e™ (v, y, wo) + €.
P.eLNNLY, - = = PreLN - = 2=

Since ¢ is arbitrary, this completes the proof.

B.2. Proof of Lemma 4.2. To prove Lemma 4.2, we use two following results by Di-
aconis and Friedman [32, Theorem 13] and Aldous [1, Proposition 7.20] (see also [47] for
more general results) which we recall for reader’s convenience:

THEOREM B.1. [32, Theorem 13] Let Y = (Y1,...,Y,,) be an n-exchangeable and
Z = (Z1,Za,...) be an infinitely-exchangeable sequence of random variables with
L(Z1,...,Zx) = L(Y1,,..., Y1) forall k > 1 where the indices (I, I, . . .) are i.i.d. ran-
dom variables with the uniform distribution on the set {1, ... ,n}. Then, forallm =1,...,n,

m(m —1)

TV 2n

where L(-) denotes the law of random variables and || - ||y is the total variation norm.

THEOREM B.2. [I, Proposition 7.20] Let X := (X1,Xs,...) be an infinitely-
exchangeable sequence of random variables taking values in a Polish space X and directed
by a random measure o (i.e., o is a P(X)-valued random variable and Pr(X € A) =
fP(x) [152, E(AY)Pr(a € d€) where A" € B(X) and (A = A' x A% x ...), see [, Defini-
tion 2.6]). Suppose that either for each n

(1) X = (Xl(n), XQ(n)7 ...) is infinitely-exchangeable directed by o, or

(2) XM = (Xl(n), . ,X,(Ln)) is n-exchangeable with empirical measure cu,.

Then, X ™) converges in distribution to X (X(") -2, X) if and only if o, —
n—00 n—00

We note that by convergence in distribution to an infinite exchangeable sequence, we mean
the following: X —%— X if and only if (X\™,..., X)) —— (Xy,..., X,) for
n—oo

n— oo

eachm > 1[1, page 55].

Using the above theorems, we now complete the Proof of Lemma 4.2. Since the action
space U is compact and observations are i.i.d. with a fixed marginal (under Assumption 2.2,
via a change of measure argument observations can be viewed to be independent of wy), the
set of probability measures LY is tight. Furthermore, by [78, Theorem 5.1], LV is closed
under the topology of weak convergence and hence LV is compact. Using the argument in
[78, Theorem 5.1] under Assumption 2.4, the expected cost function is lower semicontinuous
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in policies Py € LY. Hence, there exists an optimal policy for (Py), and by Lemma 4.1,
this optimal policy can be assumed to be in LY. Consider a sequence of N-exchangeable
randomized policies { PV } x, where for every N > 1, P € LY and

(B.5) / P (dy)p™ (duwo, dy)e™ (3, g wo) = inf / P (dy)p™ (dewo, dy)e™ (v, y, wo)-
™ EX

In the following, we show (4.5) in two steps. In the first step, for every N, we use the construc-
tion in Theorem B.1 to construct an infinitely-exchangeable randomized policy P:]O\f € Lgx
using the N-exchangeable randomized policy P € L& by considering the indices as a
sequence of i.i.d. random variables with uniform distribution on the set {1, ..., N}, and then,
we show that there exists a weakly convergent subsequence of joint measures on the first coor-
dinate, observations, and the average of induced actions of randomized policies P:: Jf,o € Lgx.
Then, we show that the expected cost function induced by the N-exchangeable randomized
policy P*N € LI converges through a subsequence to a limit induced by an infinitely-
exchangeable randomized policy P."Y .

(Step 1): Let (I, I3, ... ) beii.d. random variables with uniform distribution on the set
{1,...,N}. Forafixed N and for any N-exchangeable randomized policy PV € L, we
construct an infinitely-exchangeable randomized policy P"% € Lgx as follows: for every N
and m and for all A® € B(I')

Pry(y e Al M e AT i=PpN (v e AL 4T € A™).

where P’ is the restriction of P77 € Lgx to the first N components. We note that

P::;,O € Lgx because we use i.i.d. sequence (I1, Io, ... ) for indexing probability measures
on the space of policies, hence, for every fixed /N and N-exchangeable randomized policy
PN arandomized policy P:]O\f is i.i.d through DMs and hence it is infinitely-exchangeable.

Let u}y’ be the control action induced by 7% where random variables (v}, ..., vy ) are
determined by N-exchangeable randomized policy PV € L. Let u;z n be the con-
trol action induced by 7}'\,_’00 where random variables (y}vm, . ,’yﬁyoo) are determined by

infinitely-exchangeable randomized policy P::;,O € Lgx. Since under the reduction (As-
sumption 2.2), observations are i.i.d. and also independent of wy, following from Theorem
B.1, we have for every m > 1

H‘C(ijl\h"'vfylr\’/}»yl:"'7ym)_‘C(fy]l\hoov'"77]”(71_’007y17"'7ym)H

m m

®6 = ||k R [0~ Lobr R [T20)| o0
i=1 i=1 Vv o
where (B.6) follows from the fact that (yy;, ..., ) and (Vg o0, - - -, VN .o0) are random vari-

ables with joint probability measures PV € LY and P::;,O € Lgx| ,» respectively.

Since U is compact, the marginal of probability measures on U is tight. Since the prob-
ability measure on Y is fixed, the marginal on Y is also tight. Since marginals are tight,
then the collection of all measures on (U x Y) with these tight marginals is also tight (see
e.g., [77, Proof of Theorem 2.4]), and hence, the set I’ is tight for each ¢ € N. Hence,
{L(~vi, n)}n is tight for each DM and by exchangeablity £(v%, y) = L£(7, y). Hence, we

can find a subsequence such that £(v’_ ;) - L(~i,) for all i € N. Since marginals of
’ —00

{‘E(’Yéo,D -y )} are tight, for each m > 1, there exists a further subsequence
‘C(’Yio,nv s 77&,71) m) ‘C(FY;O’ s 7’7&)5
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where (y1,,72%,...) is infinitely-exchangeable and induced by an infinitely-exchangeable
randomized policy P}'*° € Lgx since the set of infinitely-exchangeable randomized policies
is closed under the weak-convergence topology, where by weak convergence for an infinite
sequence, we mean weak convergence of finite restrictions. That is because, if PZ"*:* is the
limit in the weak convergence topology of the sequence randomized policies { P7 >}, as

n — oo, where for A* € B(I'") and for all N € N and all finite permutations o € Sy
PIre(yt e AL A2 e A% ) = Pre (W e AL 7@ e 47, ).

Then, following from exchangeability, since sequences { P;’;°},, and { Py}, are identi-

cal, the limit in the weak convergence topology of both randomized policies P}*° and PZ"*>°

are also identical, and hence, the limit P} > is infinitely-exchangeable, P> € Lgx. Hence,
following from (B.6), for each m > 1

L) =2 LOoor -, 75%):

By construction of random variables u* and u*;* and since random variables ' s are inde-
pendent of y's, we have for each m > 1

d
(u:{la s au:{m) m (u<1>oa B 7u$)a

where (ul,,u?,...) is induced by an infinitely-exchangeable policy P> € Lgx. Follow-

ing from Theorem B.2, we have for all A € I/ and P-almost surely

(B.7) Fo(A) = Z 0oy (A) —— a®'(4),
where w denotes the sample path dependency and « is the directing measure of an infinitely-
exchangeable random variables (ul ,u?,...) (thatis a(w, A) = Pr(uf’ € A|H) almost

surely for all A € U where H is the o-field generated by P(U)-valued random variable «
[1]). Following from (B.7), since the action space U is compact, we have P-almost surely

_ _ 1 & . _
(B.8) F,:=F?:=— Zufll(w) = / uF, (du) 4 P = ua® (du).
[t v

n—oo U

Define P*" as the joint probability measure of (u®!, F,, y) where marginals on
y = (y'y%...) are fixed to be [[;~; Q(dy"). Since marginals on (u};!, F},) are tight

n

and marginals on y are fixed, {P*"}n is tight. Hence, there exists a subsubsequence
{P*F}, converges weakly to P* as k goes to infinity. This implies that marginals { P*¥};,
on (up', Fy) converges to the marginals of P* on (u*!, F), hence, P* is induced by
(ul,,u?,,...) which is infinitely-exchangeable and is induced by an infinitely-exchangeable
randomized policy in Lgx.

(Step 2): We have

lim sup / PN (dy) ™ (dwo, dy)e™ (v, y, wo)

N —o0
N N
T 1 k * N N
_h}vn_f‘fopNZ/ c(wo, u NZ ) [T ¥ (@) PeN(dy?, ... dy™)
p=1 k=1
N

x [ [ (dy’ |lwo)Po(dwo)
=1 25



N N
k N N
(B.9) —hmsup—Z/ c(wo, u NZ:: H (du®|y* PN (dy?t, ... dy™Y)

N—o0 =1

X Hf wo,y")Q(dy")Po(dwo)

(B.10) :limsup// c(wo,ut, Fn)P*N (du®, dFN,dy Hf wo,y")Po(dwo)
N—o0 f°N+1 i=1

(B.11) > lim // c(wo, ut, Fiy) P** (du', dFy,, dy) wao, P (dwp)
k—oo 1 k+1 i

®.12) = [ clwn.us F)P*(du'dF, . dy) ] fn, ') Poldn)

i=1

(B.13) > limsup _inf /PW,N(dz),uN(dwo,dg)cN(l,g, wo).

N—oo Pr€Lex,

where /i is the conditional distribution of each observation y® given wy, and (B.9) follows
from Assumption 2.3(i), hence, under Assumption 2.2, in the new (equivalent) expected cost
function, observations are i.i.d. and independent of wy. (B.10) follows from integrating
over the set J[7° ., Y and since (u}y',...,u}y") is N-exchangeable. Inequality (B.11)
follows from the assumption that the cost function is bounded and limsup is the greatest
subsequence limit of a bounded sequence where £ is the index of the subsequence considered
in (Step 1). Equality (B.12) follows from the dominated convergence theorem and following
from Assumption 2.4 and since by (Step 1) {P*”“}k converges weakly to P* as k goes to
infinity. Inequality (B.13) follows from the fact that P* is the joint measure with the first
coordinate (ul_,u? ,...) which is infinitely-exchangeable and it is induced by an infinitely-
exchangeable randomized policy in Lgx. The above inequalities become equalities since the
opposite direction is true as well (that is because Lgx ‘ N C LE,) and this completes the proof.

B.3. Proof of Theorem 4.3. We complete the proof in four steps.

(Step 1): Similar to the proof of Lemma 4.2, using [78, Theorem 5.1], we can show
that there exists a randomized optimal policy for (Py) which belongs to the set LY, and
by Lemma 4.1, this randomized optimal policy can be assumed to be in the set of N-
exchangeable randomized policies LY. Consider a sequence of N-exchangeable randomized
policies { P**N} v, where forevery N > 1, P*Y € L and

/P:’N(dl)uN(dwo, dg)cN(l, Y, wo) = PA}IGIEN PN(dv) (dwo, dg)cN(l, Y, wo)-

(Step 2): In this step, we show that to establish an existence result, it is sufficient to show
the convergence of the expected cost induced by a randomized optimal policy in L%,SYM of
N-DM teams to the expected cost induced by a randomized policy Lpgr sym of mean-field
teams through a subsequence as IV goes to infinity. We first lift the space of randomized ad-
missible policies, and we represent any admissible randomized policy as a probability mea-
sure in L (which is convex) and Lgx C L. We have

inf limsup / Py (dy)ie (do, dy)e™ (7, 9, wo)
PrEL N_yoo - ==

(B.14) > limsup inf N/Pév(dl),uN(dwo, dg)cN(l, Y, wo)

N —o00 PNEL

(B.15)  =limsup inf / PN (dy)p™ (dwo, dy)c™ (v, y, wo)
N—oo PNeL[ - iy - - =



(B.16) > lim limsup inf /P dwo,dy)mln{Mc (v, y,wo) }
M—00 N—oo PNeEL

B.17) = lim_ hjrvn_f;lop pinf / v (dy) Y (dewo, dy) min {M, ¥ (v, y,wo) }
(B.18) = lim limsup inf /P dwo,dy) min {M, N (v, y,wo)}
M—=00 Nooo PNEL{ vy - =

(B.19) = lim limsup inf /PN dy)p dwo,dy) min {M, ¢ ('y,y,wo)}

M=o N—oo PNELjgyy

®20) > inf sy [Py (den,dye® (3,0
Pr€LprsYM N—y00 - -

(B.21) > inf lim sup/PW,N(dw),uN(dwo,dy)cN(%y,wo)
Pr€LcosyMm N—soo - - - =

(B.22) > inf limsup/PW,N(dw),uN(dwo,dy)cN(%y,wo),
PrEL N-soo - T

where (B.14) follows from exchanging limsup with inf and the fact that the restriction to
N-first coordinate P, y € L™ for any randomized policy P, € L, and (B.15) follows from
Lemma 4.1. Inequality (B.16) follows from min { M, ¢V (y, y,wo)} < eV (7, y, wo). Equality
(B.17) follows from Lemma 4.2 and (B.18) follows from Theorem 3.2. The set of extreme
points of the convex set LéVO,SYM is in Lf)}’{,SYM (that is because, LéVO,SYM corresponds to the
randomized policies with common and individual independent randomness where each DM
choose an identical randomized policy) hence, (B.19) is true since L, gyy is convex, and

the map [ P2 (dvy)p (dwo,dy)c™ (v,y,wo) + Ly gym — R is linear. Inequalities (B.21)
and (B.22) follow from the fact that LPR sym C Lcosym C L. Hence, by (B.22), this chain
of inequalities must be chain of equalities.

In the next two steps, we justify (B.20) through showing that there exists a subsequence
of policies induced by symmetric/identical private randomization whose weak-limit achieves
(B.20). First, we establish compactness of the set of randomized policies LPR sym> and then,
we show a lower semicontinuity of the induced expected cost function justifying (B.20).

(Step 3): Consider the set of randomized policies L{)\IZ{,SYM. For each DM, we can
equivalently represent any randomized policy as a probability measure on (U x Y), where
the marginal on observations is fixed. Since the team is static, this decouples the policy
spaces from the policies of the previous decision makers. Following from symmetry, we
can represent each DM’s privately randomized policy space as {P € P(U x Y)|P(B) =
Jp T(du'y")Q(dy")} where B € B(U x Y) and II is an identical randomized policy from
the set of stochastic kernels from space of observations to space of actions for each DM. Since
U is compact, the marginals on U are relatively compact. Since the marginals are relatively
compact, the collection of all measures with these relatively compact marginals are also rela-
tively compact (see e.g., [77, Proof of Theorem 2.4]), and hence, the randomized policy space
is relatively compact. Following from symmetry, the set of individual randomized policies
for each DM is closed under product topology where each coordinate converges in the weak
convergence topology. Hence, (Step 3) implies that there exists a subsequence of (symmet-
ric) individually randomized policies for each DM that converges weakly to the limit which
is identical for each DM. In (Step 4), we show that the limit randomized policy is optimal by
showing a lower semicontinuity of the induced expected cost function.

(Step 4): Define the empirical measure on actions and observations as follows:

1 N
)= 20 (B)
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where for each N, 8% = (u%’,y"), B € Z := (U x Y), u%’ is the action induced by the
randomized policy I}, in (Step 3)
Now, we have

lim limsup  inf /P,i\r(dl)u]\’(do.)o7 dy) min {M, cN(l, Y,wo) }

M—=00 N—oo PNELfRsyy

(B.23) = hmooh]{]n:ip/ (/min {M,c(wo,u,/luuAN(dux Y))}AN(du,dy)>

X H P (du?, dy*)Po (dwo)
=1

(B.24) > lim lim </min{M,c<wo,u,/ uly, (du x Y))}An(du,dy))
M — 00 n—o0 U

< ] P (du, dy")Po(duwo)

=1

(B.25) :thm lim /</m1n{ <w0,u,/ ul\y (du x Y))}An(du,dy)>
— 00 n—o0 U

X HP* <0 (du’, dy")Po(dwo)

(B.26) > A}gnw// (/min{]b[,c <w0,u,/luuA(du X Y)) }A(du,dy))

X HP* <0 (dut, dy)Po (dwo)
i=1

(B27) = / ( / ¢ <w0,u, /U uA(du x v)) A(du,dy)) [P (du, dy*)Po(dwo)

i=1

N
(B.28) = lim sup/ Z (wo, N Z ) Hp* 0 (dut, dy")Po(dwo)

N— o0

B29) > nf limsup / Py (dy)™ (duo, dy)c™ (1, g, o)
PreLprsyMm NN - - -
where Py“° (du’, dy") := Iy (du'|dy") i(dy*|wo) = Iy (du'ly®) f(wo,y")Q(dy"). Equal-
ity (B.23) follows from the definition of the empirical measure, and Assumption 2.3(i), and
follows from symmetry of optimal policies since every DM apply an identical policy, the set
of policies can be extended to infinite product space and then we can consider the expected
cost by integrating over [~ »/(U x Y). Inequality (B.24) follows from the fact that limsup
is the greatest convergent subsequence limit for a bounded sequence, where we denoted the
convergent subsequence of coordinates of policies in (Step 3) with n € [ C N. Equality
(B.25) follows from the law of total expectation, and the dominated convergence theorem.
Fix the convergent subsequence n, following from symmetry and Assumption 2.2 and
Assumption 2.3(i), we have 3¢ = (u’ ') are i.i.d. Now, using a similar argument as the
proof of [67, Theorem 8], through choosing a suitable subsubsequence and using the strong
law of large numbers, we can show that for a continuous bounded function g € C,(Z)

%ég(ﬁfz) - [E(g(ﬁéo))' = 0}) —1.

By considering a countable family of measure determining functions 7~ C Cy(Z), (B.30)
implies that the empirical measures {A,, },, converges weakly to A = £(/5%,) P-almost surely,
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n—oo




and A is induced by the limit randomized policy P*“°. We define the w-s topology on the
above set of probability measures on (¢ x U x Y). That is, the coarsest topology on P (€2 X

U xY) under which [ f(wo, w, y)k(dwo, du, dy) : P(QoxUxY) — Ris continuous for every

measurable and bounded f which is continuous in » but need not to be continuous in y and
wp (see e.g., [68] and [78, Theorem 5.6]). Following from Assumption 2.5 and Assumption
2.3(ii), and since actions induced by identical policies are i.i.d. (thanks to symmetry), we
have P-almost surely

fn = min {MW (wm '7/ ulp (du x Y)) } O f = mln{M,c <w0,~,/ ul(du x Y)) }a
U U

where we recall that the sequence f,, converges continuously to f (f, S £)if and only if
fn(an) — f(a) whenever a,, — a as n — oo. Now, (B.26) follows from the generalized
dominated convergence theorem for varying measures in [69, Theorem 3.5]. Equality (B.27)
follows from the monotone convergence theorem, and (B.28) follows from the fact that the
limit randomized policy, P**°, does not depend on /N and symmetry, hence, (B.28) is true
using a similar analysis as (B. 26) Inequality (B.29) follows from the fact that the limit policy,
P (dut, dyt) = TI* (du'|y?) f (wo, ¥*)Q(dy?), achieving (B.28) belongs to Lpr sym. That
is because, following from (Step 3), for each DM, the set of randomized policies is closed
under the product topology where each coordinate converges weakly, and hence, the limit
policy is also a randomized policy induced by a subsequence of N-DM optimal policies
(which are symmetric through DMs). This implies (B.29) and completes the proof.

Appendix C. Proofs from Section 5.

C.1. Independent measurement reduction under Assumption 5.1. Under Assump-
tion 5.1(i), we can represent the expected cost as

In(y V)= / e(worubp v udlp ) (duo, AN

N T—-1
; ; : N N N
XH H 1{fy§(y§)edu§}7/i (dwaOaI(l) ) (it 17yét 17“(1)1& 1)
i=1 ¢t=0
(C.1 = /c(wo7 u(l]:T_l, o ,ué\fT_l),uN(dwo, dgl:N)

N T-1
] i L:N ~1:N 1:N 1:N i i
X H H 1{v2(yﬁ)€du§}wi (yivw()vxo 1 60:t—15 Yoit—15 Uoit— 1)Tt2(dyi)
i=1 t=0
N T-1
I:N | 1:N 1N 1:N i i
= /Cs(WOvQ U 15 Yorr— )i (dwo, d¢ H H 1{7§(yi)€dui}TZ(dyZ)v
i=1 t=0

where the new (equivalent) cost function is defined as

N —
1:N | 1:N 1:N 1:N 1:N
cs(wo, ¢, Ugir—15 Yoir—1) —CWOvUOT 1) HH (ythOvl"o » 60:t— 1»y0t 1> Yoig— 1>

and (C.1) follows from Assumption 5.1(i). Similar derivation holds when randomized policies
are considered. Similarly, we can define the new (equivalent) cost function under Assumption
5.1(i1). We note that in the above, we considered control actions induced by deterministic
policies; however the above analysis canbe extended to randomized policies by just replacing

N
Hi:l Ht 1{yt(yt)edu1} with Hl 1 Ht 0 'Yt(dut|yt)
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C.2. Proof of Lemma 5.2. We follow the steps of the proof of Lemma 4.1. For any per-
mutation o € Sy, we define a randomized policy P7 € LY as a permutation o of arguments
of a randomized policy P, € LN, je., for A* € B(T?)

PI(yt € AL 2 € AN) = Pr(y7W € AL, 47V € AN,

We have
[ P2 (e 4 (G 3. oo™ (gl 30
(C.2)
N
= /C(wo,gl,..-,yN) 1 2 (dubly) Pr(dy®), .. dy” ™)
k=1
T—1 N ) ) ) )
x N (d¢H N |wo)Po(dwo) [T TT ¥ (dwilwo 26, Gouo—rs it 1, ut ™)
t=0 i=1
(C.3)
N
_ / (w0, w7 @ .. w7 ™) T] 77 (du® g7 ®) Pr (.., dy™)
k=1
T—1 N ) ]
X (d(C7) ™ o) Po(dewo) TT TT ot (a7 wio, 0§, G821 ()™, (o))
t=0 =1
(C.4)
N
:/c(wo,gl,...,gN) lk(dgk@k)Pﬂ(dll,...,dzN)
k=1
X/]N(dgl:NWO)[PO (dwO) H VZ (dyi iw07 :Eé, Cé:tflﬂ yétj\ih u(l)iv—l)
t=0 i=1

= /P,r(dl),uN(dwg, dg)cN(g, % Ys wO)VN(dMQ, 7> wo)
where 1YV is the conditional distribution of uncertainties ¢ LN given wyp, and (C.2) fol-
lows from Assumption 5.3(b) and the definition of randomized policy P? and (C.3) fol-
lows from relabeling u”®, 3@, QU(Z) with u’,y", (" forall i = 1,..., N and the fact that
yi = he(xd, w5 ", Chps ot Uhs— 1, ugi_1 ). Equality (C.4) follows from Assumption 5.3(a),
Assumption 5.2 and the hypothesis that the information structure is symmetric. The rest of
the proof follows from similar steps in that of Lemma 4.1.

C.3. Proof of Lemma 5.3. We follow steps of the proof of Lemma 4.2. Under As-
sumption 5.4 and Assumption 2.5, for every finite N, there exists an optimal policy in L{.
Consider a sequence { P*V} n, where forevery N > 1, P*N € LY and

/ P (dy) ™ (dwo, dQ)e™ (¢, 7, wo)v™ (dy|¢, 7, wo)
(C.5) = inf / P (dy)™ (dwo, d6)e™ (. 7, g, wo)v™ (dylG, 7. o).
P?i'VGLEX

(Step 1): Let (I, I5,...) be i.i.d. random variables with the uniform distribution on
the set {1,..., N}. For a fixed N and for any P N ¢ LEX, we construct P N € Lgx as

follows: for every fixed N and for all A® € B(T)
Pry(yt e Al e ANy =PrN(yl e AL, 4TV € AY),
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where P N 18 the restriction of P ~ € Lgx to the first N components.

Let ut) v be the control action 1nduced by 74 ~.¢ Where random varlables (7]1\, b 7% /)
forall + = 0,...,7 — 1 are determined by P € Lg. Let u;’, y be the con-
trol action induced by 7};0 , where random variables (th,oo, Noo-- ,wt_’oo_’ N) are determined
by Py € Lex- Let vy = (Wvor s W) Yoo = (oo - 100.v):
uly = (Ul g Uy py) and uly o = (uh o N+ Wy o ) fOr each DM. Since un-

der the reductlon (Assumption 5.1), observations are i.i. d through DMs and also independent
of wy, following from Theorem B.1, we have for every m > 1

Hﬁ(liﬂ...,lﬁ,gl,...,ym)—£(1}V’Oo,...,17]3’00,g1,...,gm)H

(C.6) = H.C(l}v,...,ﬁ)ﬂc@) —z:(i}vﬁoo,...,f]gm)nz:(g ——0.
i=1 i=1 v o
where (B.6) follows from the fact that (v, .. ., 7%) and (w}v e 7% ) are random vari-

ables with joint probability measures PV € L and P> N € LEX‘ - respectively. Since U
is compact, and under the reduction the probablhty measure on observation is fixed, any joint
probability measures on acttions and observations is tight, hence, {E(lf)o N)} N 1s tight for

each DM and by exchangeablity ﬁ(*yi N) = ﬁ(fyl N) Hence, we can find a subsequence

such that E(l ) = L(7! ) foralli € N. Since marginals of {£(~! so? 1 o )} are
tight, for each m 2 1 there exists a further subsequence

L ™ ) —— L0,
where ( ,7 .) is infinitely-exchangeable and induced by P}*>° € Lgx since the set

of 1nﬁn1tely exchangeable random variables is closed under the Weak convergence topology.
Hence, following from (B.6), for each m > 1

L) —— L0 70)-

—n

By construction u;;* and 1%’ and since random variables 7 s are independent of y's, we have
foreachm > 1

d
(un)lu s 7@271”) — (ﬂ})ou s 7@2}))7
n— 00

where (ul ,u2 ,...) is induced by an infinitely-exchangeable policies P***° € Lgx. Fol-

lowing from Theorem B.2, P-almost surely

1
(C.7) Fyi(A) = Fyiy(4) =~ > 8, ) (A) —4 A (A),

4 n—oo
i=1

where A € U and w denotes the sample path dependence and «} is the directing random
measure of an infinitely-exchangeable random variables (u éo £ go 4---). By (C.7), since
the action space is compact, forallt = 0,...,7 — 1, we have P-almost surely

n

u u,w 1 d u u,w
(C.8) Ht = fint 2= _Zun:t = / uly, i (du) P / uay™ (du).
U n—eo U
3

n

1



(Step 2): Let z;, be the state of DM at time ¢ under ugy_y ,, := (ug,- .., ;"' ,,):

n
; ; ;1
*,7 *,7 *,7
(C.9) fft,n—ft—l(xt—l,na“n,t—pﬁ ! 1n7 E U 1 W

p=1
Lett = 1. We have

(C.10) x;,;—f0<1767 nO’ Z Tos Zuno’ )

Since initial states are iid conditioned on wy, by continuity of the function fj in actions

and states, we have 27, —> x}'t, forall DMs. Hence, {£(z},,, ..., 2}") }n is tight, and
d

hence, for each m > 1, there exists a subsubsequence & such that (z}",..., 277" -

’ ’ —00

(xikio, ...,x77). Following from Theorem B.2, since fy is bounded, we have P-almost

surely

C.11 T . 1 - w0 Tw 5 d d T ._ T,w d

(C11)  pgq '_EZka_IUJkJ_ Z m;; x) o = anl (dx),

i=1

where of is the directing measure for (17;5117 x;’fl, ...). Similarly, we can show that for

t=2,

1) = ATl i i ot )

,’L

By continuity of the function f; and the analysis for ¢ = 1, we have z,’; —> x2 oo for

all DMs. Hence, {ﬁ(zQ’k, e ,IQ’k)}l is tight and for each m > 1, there ex1sts a further
subsubsequence k; such that (37 , ..., @y ) % (2350 - - 25'0) . Following from
: o ;

Theorem B.2, since f; is bounded, , we have P-almost surely

(C.13) M2 7= Hpy = /x—Z(S i (dx) —>,u :/xag"w(dx),
x

T2k,

*,1 *,2

where o is the directing measure for (z; ~.2Tob 95 - - - )- By induction, for each m > 1, there

exists a further subsubsequence n (which we indicate by n to omit further sub-subscript) such
d d
that (z;!, ... zp™) —— (a!, ..., 25™) and pf, , —— pf forallt =0,...,7 — 1.
Y n—oo

ny—oo
Now, we follow the steps of Lemma 4.2, however, in addition to actions and observa-
tions, we consider states and disturbances in our analysis and we use the result of (Step 2).
Define P*™ as the joint probability measures of (wy, ", 2!, il o.0_1, i 0.7—1, Y, ). Since

*,1 %, 1

marginals on (w,", 2", fyr 0.7 15 K5y o.7—1) @re tight and under the reduction marginals on
(y,¢) are fixed, {P*"},, is tight. Hence, there exists a further subsubsequence { P*"},,,
converges weakly to P* as ny, goes to infinity. This implies that marginals {P*"k }n,, cON-
verge to the marginals of P*, hence, P* is induced by (ul,,u%,...) which is infinitely-
exchangeable and is induced by a policy in Lgx.

(Step 3): Since the cost function is continuous in states and actions, under the reduction
(Assumption 5.4), we have P-almost surely



T-1 N N
oi (4 i ci i i 1 P 1 P
t | Yt W05 L5 Go:t—15 Y0:t—15 Yo:t—15 N Uo:t—1> N Lo:t

t p=1 p=1

=0

N
<]1

=1

1 & Ih 1
(C.14) -+ le(wogzg Lyl Zi”)

N N

N
e 1 1
H?Z(g’ywo,g,u’yﬁ QP7N E lp)a
i=1

where (C.14) is true following from (2.5) and Assumption 2.5 for some function é : {29 X S x
X x U x U x X — Ry which is continuous in states and actions and

¢(y wor zup—z )

pl
T-1

= H¢t(ytawoal()v€()t 1 Yost—15 Uit— I’NE (T LN E x()t)

We have,
limsup inf /Pév(dl),uN(dwo,dﬁ)cN(g,l,%w w( g|£ lva)
N—oo PNeLl
(C.15) = limsup// E(w07§i7§iaﬂi7u7fv,0:T—17U?\/,O:T—l)
N—oo Y xS

I3 ny+1

x PN (du*?, dz*, dp 07— 1, AN 0715 Y5 O)

0o
X H ?Z (317 wo, gl, ﬂ*’l7 ILLK/,O:T—D H%,O:T—l) [Po(dwO)

(C.16) > lim // 5<W07£17£17Hlvﬂzk,O:T—lvﬂﬁk,O:T—l)
n]\,A)OO YXS

1n+1

XP*‘"k(dU*’Lvdx d.unk 0:7T— 17d:u‘n;\,0T 17 g)

i A AN 0) T
(Q ,wo,g U hunk,O:T—l’:unk,O:T—1>[P0(dw0)

H,'Z]

C17 =

—

c wnglvglvulv/Lg:T—lvﬂg:T—l)P*(dg*ﬁiv dﬁ*J?dug:T—l’ dﬂg:T—l»E’ 9
e .

X H ¢’ (327 WOVQZ’ ™, pr—1s ru’(a)?:Tfl) Po(dwo)
i=1

(C.18) > limsup inf /PW,N(dl) (dwo,dg') (( 75y, wo)v(dy|¢, v, wo)-

N—ooo Pr€Lex

where (C.15) follows from integrating over the set (][, Y % S) and the fact that under

1=n;+1
the reduction, observations and disturbances, initial states are i.i.d. and (u}' N u}‘VN)

is N-exchangeable. Inequality (C.16) follows from the assumption that the cost func-

tion is bounded and limsup is the greatest subsequence limit of a bounded sequence.

Equality (C.17) follows from the dominated convergence theorem and following from

Assumption 2.5 and Assumption 5.4 and since probability measures on observations

disturbances are fixed and since by (Step 2) {P*”’C}nk converges weakly to P* and

12, ¢ (v wo, ¢ u*, [ 015 M o:p—1) converges weakly to the limit in the product
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topology as ny goes to infinity. Inequality (C.18) follows from the fact that P* is the joint

measure with the first coordinate (ul_,u2,...) which is infinitely-exchangeable and is in-

duced by a policy in Lgx. The above inequalities are equalities since the opposite direction is
true (that is because LEX‘ N C LéVX) and this completes the proof.

C4. Proof of Theorem 5.4. We complete the proof in five steps where the steps are
similar to the proof of Theorem 4.3.

(Step 1): Under Assumption 2.5 and Assumption 5.4, by Lemma 5.2, for every finite N,
there exists a randomized optimal policy in L{. Consider a sequence { P**"V} v, where for
every N > 1, P»N € LY and

(C.19) /P;’N(dl)uN(dwo, dg)cN(g, %Y wo)uN(d €, v, wo)

~ i / P (@)™ (deo, dC)e™ (G, 3, s o)™ (dylC, 7, o).

PNeL[l

(Step 2): Similar to (Step 2) of the proof of Theorem 4.3 using Lemma 5.3 and Theorem
3.2, we can show that to complete the proof, it is sufficient to show

lim limsup inf /Pg(dl)uN(dwo, dg) min { M, cN(g, Y5 wo)}VN(dgK, Vs wo)

M—=0co N—ooo PNELJgyu

(C.20)
>  inf 1imsup/PW,N(dZ),uN(dwO,dg)cN(g,l,g,wo)l/N(d €, v, wo).

Pr€LprsyM N—00 -

In the next two steps, we justify (C.20) through showing that there exists a subsequence
of randomized policies induced by symmetric/identical private randomization whose weak
subsequent limit achieves the right hand side of (C.20).

(Step 3): Consider the set of randomized policies Ly, gyy. We note that under a sym-
metric information structure and since each DM applies an identical policy, under Assumption
5.1, y* are i.i.d. through DMs and also independent of wy. Hence, following from the infor-
mation structure, the randomized policy spaces of each DM is separated from the policies
of the other decision makers. Hence, we can equivalently represent any privately random-
ized policy for each DM acting through time separately as a probability measures induced by
symmetric (identical randomized policies), i.e., probability measures ¢ on (U x Y') where
randomized policies of each DM for everyt = 0,...,T — 1 satisfy

/ 0690, 25, Ghr 1 s ) (i oo, 7, Gl )

t
= /9(w07I67<8:t—17y8:t7u6:t)H HkN(duﬂy;c)nk(dylzc'wvaév<8:k—17y6:k—17u6:k—1)7
k=0

for all bounded functions g which is continuous in actions and observations and measurable
in other arguments and for some stochastic kernel TIY representing a randomized policy of
DMs at time & (which is identical through DMs).

Since U is compact, the marginals on U is relatively compact under the weak conver-
gence topology. Hence, the collection of all probability measures with these relatively com-
pact marginals are also relatively compact (see e.g., [77, Proof of Theorem 2.4]). Since every
DM applies an identical policy and since observations are i.i.d., the randomized policy space
is relatively compact (where each coordinate is relatively compact in the weak convergence
topology), and hence, there exists a subsequence of randomized policies ¢, € P(][,(Y xU))
converges weakly (each coordinate converges weakly) to a limit g (as an infinite product of
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policies of DMs), where n is the index of the subsequence and n goes to infinity. Now,
we show that randomized policy space is closed under the weak convergence topology. As-
sume ¢, € P(Y x U) (induced by identical randomized policies II} for each DM at time
t=0,...,T — 1) converges weakly to ¢. If Assumption 5.1(i) (under the structure Assump-
tion 5.4) holds, then there exists an independent static reduction for each DM through time,
and hence, following from the discussion in the proof of [78, Theorem 5.2], each coordi-
nate of policy spaces corresponds to DM' at time ¢ is closed under the weak convergence
topology. Also, if Assumption 5.1(ii) (under the structure 5. 4) holds, then [78, Theorem 5.6]
leads to the same conclusion. Hence, this implies that for ¢, € P(H 1(Y x U)) induced

by optimal randomized policies IT; N for each DM at t1me t, there exists a subsequence
@; € P(IT;=,(Y x U)) (as an infinite product of policies of DMs II;"") converges weakly
(each coordinate converges weakly) to a limit g* which is in Lpg sym and it is induced by a
randomized policy IT;"> for each DM at time t.

(Step 4): Let {Gx }~ be a policy for each DM induced by optimal randomized poli-

cies I} for N-DM team problems, and let w5 := (u%’,, ..., u% "y ;) be the action of

DM’ through time induced by II} N Following from (Step 3), there exists a weak sub-
sequential limit ¢* of {g;}, as n — oo for each DM, which is induced by II;"*°. Let

7%

ulr = (U g, ug p_y) be the action of DM’ induced by the identically randomized
policy IT;"*°. Define

N
(C.21) : Z ot it (B

where & = (u¥’, 9%, ("), B € XxZ2:=XxUxY xS, U:= ([ U),Y =
T-1 T-1 T-1 T-1 i i i

(. 0 Y), S = ( i—0 9) = X x ( =0 W >< V), X = ([T,2 X)’E = (Yo Yr_q)s

¢ = (-5 Cpq)s and zfy = (2, - - 71'%“71) with states are driven by a sequence of

N-DM randomized optimal policies of IT; N In the following, we show that, conditioned on

wo, the subsequence of empirical measures {T }n converges to Y = L((xl ,al )|wo) in

w-s topology, where &', = (u%’ Y ,g ) and 2’ denotes that states of DM’ driven by u?

(we note that the convergence is weakly, but since ¢ 's are exogenous random variables with
a fixed marginal, the convergence is also in the w-s topology). Define

N
(C.22) : Z ai, (B
where B € Z. Under the reduction in Assumption 5.1, observations of each DM are inde-
pendent of actions and observations of other DMs through time, ¢ = 0, ...,7 — 1, and hence,

a similar argument, which is used to show (B.30), implies that the subsequence of empirical
measures {Q., }ne1 converges P-almost surely to Q@ = L(&’ |wp) in w-s topology. Define

(€23) =%Z vt (A),

where &7 , == (uy’,, yi,(}), A € X x U x Y x S. Since conditioned on wo, initial states are
i.i.d, the empirical measure of initial states converges weakly to L(x}|wo) P-almost surely.
Since {Qn}n converges P-almost surely to @ in w-s topology, we can conclude that T
converges T := L((zf, & .. )|wo) in w-s topology P-almost surely. Following from (2. 5)
for t = 0, we have for evefy continuous and bounded function g € Cy(X), conditioned on
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wo, P-almost surely

oI~
nh_{]‘goﬁ;g(l“ll,n _nhm 72 (fo(%: nO7 Z%v Zun 07/w0)>

i=1

(C.24) = lim | g{ fo (x,u,/;prg(dx x U x Y x 8),/urg(x x du x Y x S),g))

n—o0

x Y0 (dz, du, dy, d¢)

(C.25) = /g(fo(x,u,/x'ro(dx x U x Y x S),/uYO(X X du x Y X S),<)>
x YO (dx, du, dy, d¢)

where (C.24) follows from (C.23), and (C.25) follows from the generalized dominated con-
vergence theorem for varying measures. That is because, function g is continuous and
bounded, fy is a bounded function which is continuous in actions and observations and
measurable in uncertainties, and the fact that under the reduction, conditioned on wy, T?v
converges Y0 := L((z}, &) o, )lwo) in w-s topology P-almost surely. Hence, since {Qy }r
converges P-almost surely to () in w-s topology conditioned on wp, T4 converges Y1 :=
L((27 005 @1 o0 )|wo) in w-s topology P-almost surely. By induction, one can show that condi-
tioned on wo, Y converges T* := L((x} ., &} .. )|wo) in w-s topology P-almost surely for
t=0,...,T — 1. Hence, conditioned on wy, { Y, } ne converges to Y := L((z_,a%, )|wo)
in w-s topology.

(Step 5): By Assumption 2.5, similar to the proof of Theorem 5.3, we have (C.14). Un-
der the reduction, we can consider policy spaces for each DM individually. Let for every
t=20,...,7 —1, P*° be a probability measure on actions, observations and uncertainties
induced by optimal randomized policies for each DM (which is identical because of symme-
try) for N-DM teams conditioned on wy, i.e., a probability measure that satisfies

/g(wovxgaQé:t—lay()t» nOt)P* wo(d%ad%t 17dy0t7dun0t|w0)

(C.26) = /Q(WO:167Cé:tﬂﬂé:t:u:{,*o:t)ﬂi(dmf)vdC(i):tleO)
t , )
X H I " (dw, |y )i (dy g |wo, 20, Coie—1s Youk—15 Uy 0:k—1)
k=0

for all bounded functions g which is continuous in actions and observations and measurable
in other arguments. Similarly, we denote P**“° as a probability measure induced by the limit
policy, i.e., a probability measure satisfying (C.26) induced by IT,’*. Hence, following from
a similar argument as in the (Step 4) of the proof of Theorem 5.4, we have

lim limsup  inf /PN dy) N (dwo, dC)v(dy| ¢, 7, wo) min {M, ¢V (¢, v, y,wo)}

M—=00 Nooo PNELfysym -

(C.27)
> Mym lim //mm {M(, (wo ¢z, u /uTn(X x du xY x S),/ng(dg x UxY x S)) }
—00 N—00
x Y p(dz, du, dy, d¢) HP* o (dul*, dy', dg H L(E wo, ¢'y u, Z*" , Zgﬁ) Po(dwo)
i=1

i=1 p:l

(C.28)
= lim / lim /min {M,E (wo,c,g,y,/ng(X x du xY x S),/ng(dg x UxY x S)) }
M—o0 n—o00 =
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XY (dz, du, dy, d§) [ | Preo(dul”, dy',d¢') [ ¢ (g wo, ¢, ub ) DA
=1 P

i=1

- )oien

=1 p=1

3=

(C.29)

:N}im //min{]\/f,é (wmQL%/gT(XngXY X S),/QT(C@XUXYX S)) }
— 00 -

¢>Z‘(g‘,wo,< i Bl o], Bz \wo]>ﬂ>o(dwo)

::18

Y (dz, du, dy, d¢) [ [ P+ (dul?, dy, d¢’ )

i=1

<.
Il
-

(C.30)
= //E(wo,g,g,g,/gT(X x du xY x S),/gT(dgx UxY x S))
x Y (dz, du, dy, dC) Hp*,wo v dy’, d( H Z( wo, ¢, ul, Eluly|wol, E[azoo\wo]) Po(dwo)

i=1 =1

<.

>  inf hmeup/PW,N(dz),uN(dwo,dg)cN(g, 7Y, wo)v(dyl¢, v, wo),
Pre€LprsyYM N—N

where (C.27) follows from (C.21), (C.14), and since limsup is the greatest convergent sub-
sequence limit for a bounded sequence, and (C.28) follows from the dominated convergence
theorem. Following from a similar argument as the analysis in (Step 4) of the proof of The-
orem 4.3, since {Y, },e) converges weakly to T P-almost surely, an argument based on the
generalized dominated convergence theorem for varying measures in [69, Theorem 3.5] im-
plies (C.29), and (C.30) follows from the monotone convergence theorem. Hence, (C.20)
holds and this completes the proof.

Appendix D. Proofs from Section 6.

D.1. Proof of Theorem 6.1.
(1) We first show (6.1). We have

inf /Piv(d’y)uN(dwo, dy)e™ (v, y,wo)
PNeLX, - - -

D.1) > i / P (dy)e (deoo, dy)e™ (3, g, wo) — ex

PN e L& NLex N

(D.2) = inf /P,ﬁv(d’y)uN(dwo, cly)cN(’y7 Y,Wo) — €N,
PT{'VELR{'\I](.SYM - - -
where LEX} N denotes the set of N-DM randomized policies which are the restrictions of

policies in Lgx to the N first components. By Lemma 4.1 since LJCVO is convex, without
losing global optimality, we can optimize over L3, N LY. Let € > 0, and consider P,’:;eN €

L&, N LY, such that
(D.3)

inf /Pév(dz)uN(dwo,dg)CN(zvg,wo) > /P;‘,’iv(dz)uN(dwo,dg)cN(z,g,wo) —c
PNeLNLY

Following from the proof of Lemma 4.2, using P*N ¢ L o N LY, and by considering
the indexes as a sequence of i.i.d. random varlables with umform distribution on the set
{1,..., N}, we can construct an infinitely-exchangeable policy P;+>° where the restriction

of an infinitely-exchangeable policy to N first components P;f\fe € LJCVO N LEX‘ > satisfies
(D.4)

/ P (dy) N (dwo, dy)e™ (v, y, wo) / PN (dy)p (dwo, dy)c™ (v, y, wo) + en.
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Hence, (D.3) and (D.4) imply that

inf / PN (dy)™ (duwo, dy)e™ (7, , wo)
PNeLNNLY - - -

> inf /Pfrv(dl)uN(dwo, dg)cN('_y, Y,Wo) — € — €N.

N
P,{VGLCOWLEX‘N

Since € is arbitrary, this implies (D.1). By Theorem 3.2, without losing optimality, we can
optimize over L&, gyy. Equality (D.2) is true since L, gyy is convex with extreme points
in L sy and the map [ PN (dy)p® (dwo, dy)c™ (v, y,wo) + L&y sym — R is linear.

Now, we show (6.2) holds. We have

(D.5)

it [ P () don, dy)eV (g goon)= it [ P (@) (don, dy)e? (3, o)
PNeLY — = - = PNeLX - = ==
(D.6) > P 61rL1f /Pév(dl);/\](dwo7 dg)cN(l, Y,wo) — €N,

where (D.5) follows from Blackwell’s irrelevant information theorem [l?] and since LY o 18
convex with extreme points in L} and the map [ P (dv)p™ (dwo, dy)c™ (v, y, wo) : L&y —
R is linear, hence, without losing optimality, we can optimaize over Lévo. Inequality (D.6)
follows from (6.1) and this completes the proof of (i).

(ii) Let Py € Lpgrsym be an optimal policy of (Ps) and P N is the restriction of P to
the first N components. Define for all N € N

ay = /P:yN(dl)/rN(dwo,dy)cN(l, Y, wo)

bN inf /PN d7 dw07 dy) (17 ga wo)'

P 6LPR SYM

Following from (Step 4) of the proof of Theorem 4.3, since the cost function is bounded,

lim sup / P:’N(dl)uN (dwy, dg)cN (17 Y, wo)

N—o0

D.7) =limsup inf /P,iv(dl)uN(dwo, dg)cN(l, Y, Wo)-

N—oo PN eLPRWM

Hence, lim sup ay = limsup by . Following from (Step 4) of the proof of Theorem 4.3, and
N—o00 N —00
symmetry, Nlim an = a < oo and also there exists a subsequence such that klirn by, =
—00 —00

a < oo. On the other hand, since ay > by for all N € N, we can find €5 > 0 such

that ay = by + €y. Taking limit as k£ goes to infinity from both sides, we have a =
lim (by, +€n,) = a+ lim ey,. Hence, lim ey, = 0 since éx > 0. Hence, there exists
k— o0 k— o0 k— o0

én > 0 where €5 — 0 as N goes to infinity such that

[ P2ty (oo, dye® (3, o)

(D.8) < inf PN (dy)p™ (dwo, dy)c (v, y,wo) + en + En
PNeLl - = - =

where (D.8) follows from (6.2), and this completes the proof of (ii).
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