
ar
X

iv
:2

00
8.

07
08

0v
4

 [
m

at
h.

O
C

]
 5

 J
ul

 2
02

2
MATHEMATICS OF OPERATIONS RESEARCH

Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0364-765X | eissn 1526-5471 | 00 | 0000 | 0001

INFORMS
doi 10.1287/xxxx.0000.0000

© 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Iteration complexity of a proximal augmented Lagrangian

method for solving nonconvex composite optimization

problems with nonlinear convex constraints

Weiwei Kong
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830. wwkong92@gmail.com

Jefferson G. Melo
Instituto de Matemática e Estatística, Universidade Federal de Goiás, Campus II- Caixa Postal 131, CEP 74001-970,

Goiânia-GO, Brazil. jefferson@ufg.br

Renato D.C. Monteiro
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0205.

monteiro@isye.gatech.edu

This paper proposes and analyzes a proximal augmented Lagrangian (NL-IAPIAL) method for solving
smooth nonconvex composite optimization problems with nonlinear K-convex constraints, i.e., the constraints
are convex with respect to the order given by a closed convex cone K. Each NL-IAPIAL iteration consists
of inexactly solving a proximal augmented Lagrangian subproblem by an accelerated composite gradient
(ACG) method followed by a Lagrange multiplier update. Under some mild assumptions, it is shown that
NL-IAPIAL generates an approximate stationary solution of the constrained problem in O(log(1/ρ)/ρ3)
inner iterations, where ρ > 0 is a given tolerance. Numerical experiments are also given to illustrate the
computational efficiency of the proposed method.

Key words : inexact proximal augmented Lagrangian method, K-convexity, nonlinear constrained smooth
nonconvex composite programming, accelerated first-order methods, iteration complexity.

MSC2000 subject classification : 49M05, 49M37, 90C26, 90C30, 90C60, 65K05, 65K10, 68Q25, 65Y20.
OR/MS subject classification : Primary: programming: nonlinear: theory, algorithms; Secondary:

programming: nonlinear: nondifferentiable; mathematics: convexity

1. Introduction This paper presents a nonlinear inner-accelerated proximal inexact augmented

Lagrangian (NL-IAPIAL) method for solving the cone convex constrained nonconvex composite

optimization (CCC-NCO) problem

φ∗ := inf
z∈ℜn

{φ(z) := f(z) +h(z) : g(z)�K 0} , (1)

where K is a closed convex cone such that ∅ 6= K 6= ℜℓ, g : ℜn 7→ ℜℓ is a differentiable K-convex

function with a Lipschitz continuous gradient, h is a proper closed convex function with compact

domain, f is a nonconvex differentiable function on the domain of h with a Lipschitz continuous

gradient, and the relation g(z)�K 0 means g(z)∈−K.

1

http://arxiv.org/abs/2008.07080v4
mailto:wwkong92@gmail.com
mailto:jefferson@ufg.br
mailto:monteiro@isye.gatech.edu

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
2 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

More specifically, the NL-IAPIAL method is based on the augmented Lagrangian (AL) (see [29]
and [38, Section 11.K])

Lβ(z, p) := (f +h)(z) +
1

2β

[
dist2(p+ βg(z),−K)−‖p‖2

]
∀β > 0, (2)

where dist(y,S) denotes the Euclidean distance between a point y ∈ℜℓ and a set S ⊆ℜℓ. It performs
the following proximal point-type update to generate its k-th iterate: given (zk−1, pk−1) and (λk, βk),
compute

zk ≈ argmin
u

{
λkLβk

(u;pk−1) +
1

2
‖u− zk−1‖2

}
, (3)

pk = ΠK∗(pk−1 + βkg(zk)), (4)

where K∗ denotes the dual cone of K, the function ΠK∗ denotes the projection onto K∗, and zk is
a suitable approximate solution of the composite problem underlying (3). Even though there are
different approaches for obtaining zk as in (3), NL-IAPIAL employs an accelerated composite gradient
(ACG) algorithm to obtain it, and hence the “inner-accelerated” qualifier in its name. Moreover, at
the end of the k-th iteration above, it performs a key test to decide whether βk is left unchanged or
doubled.

Under a Slater-like assumption1 and a suitable choice of the inputs (λ,β), it is shown that for any
(ρ̂, η̂)∈ℜ2

++, the NL-IAPIAL method obtains a near stationary solution, i.e., a quadruple (ẑ, p̂, ŵ, q̂)
satisfying

ŵ ∈∇f(ẑ) + ∂h(ẑ) +∇g(ẑ)p̂, 〈g(ẑ) + q̂, p̂〉= 0, g(ẑ) + q̂ �K 0, p̂�K∗ 0 (5)
‖ŵ‖≤ ρ̂, ‖q̂‖≤ η̂, (6)

in O((η̂−1/2ρ̂−2 + ρ̂−3) log(ρ̂−1 + η̂−1)) ACG iterations. If (1) satisfies a certain regularity condition,
then it is well-known that a necessary condition for a point ẑ to be a local minimum of (1) is that
there exists a multiplier p̂∈K∗ such that (ẑ, p̂, q̂, ŵ) = (ẑ, p̂,0,0) satisfies (5). Moreover, the aforemen-
tioned complexity bound is derived without assuming that the initial point z0 ∈ domh is feasible, i.e.,
it also satisfies g(z0)�K 0. A key fact derived in this work is that the sequence of Lagrange multipliers
generated by NL-IAPIAL is bounded, and its proof strongly uses the fact that its constraint function
g is K-convex (although (1) is nonconvex due to the nonconvexity assumption on f).

Overview of AL methods. The discussion below separates the AL methods into two classes:
(i) Proximal AL (PAL) methods whose k-th iteration is: given a pair (zk−1, pk−1) and a penalty

parameter βk, choose a prox parameter λk such that the objective function of (3) is strongly convex,
compute an approximate solution zk of (3), set

pk = (1− θ)ΠK∗(pk−1 +χkβkg(zk)) (7)

for some χk ∈ (0,1] and fixed θ ∈ [0,1), and choose the next penalty parameter βk+1 from [βk,∞). A
classical PAL method for the case where f is convex has been studied by Rockafellar [36] under the
assumption that θ = 0, χk = 1, and λk = βk for every k. It is worth noting that when f is convex,
his method, as well as the aforementioned PAL method, can be viewed as a primal-dual, variable
stepsize, inexact proximal point method, i.e, one which inexactly solves

∂zL0(z;p) +
1

λk
(z− zk−1)∋ 0, −∂pL0(z;p) +

1

χkβk
(p− pk−1)∋ 0, (8)

1 See Proposition 2.1 in view of assumption (A4) in Subsection 2.1.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 3

for (z, p) = (zk, pk) where L0(z;p) := (f + h)(z) + 〈p, g(z)〉 − δK∗(p), for every (z, p) ∈ ℜn ×ℜℓ with
the convention that +∞−∞= +∞, and δK∗(p) takes value 0 if p�K∗ 0 and +∞ otherwise. Note
that system (8) is equivalent to

∇f(z) + ∂h(z) +∇g(z)p+
1

λk
(z− zk−1)∋ 0, −g(z) + ∂δK∗(p) +

1

χkβk
(p− pk−1)∋ 0.

(ii) Non-proximal AL (n-PAL) methods whose k-th iteration is: given a pair (zk−1, pk−1) and a
penalty parameter βk, compute an approximate stationary point zk of Lβk

(·;pk−1), set

pk = ΠK∗(pk−1 +χkβkg(zk)) (9)

for some χk ∈ (0,1], and choose the next penalty parameter βk+1 from [βk,∞). Detailed discussion
of dual-only methods can be found, for example, in [5] where the conditions βk > βk−1 > 0 for all
k ≥ 1 and βk ↑∞ are assumed, and in [9, 33] where βk = βk−1 is allowed at iterations for which the
feasibility gap decreases sufficiently. It is worth noting that when f is convex, these methods can be
viewed as a dual-only, variable stepsize, inexact proximal point method for the same operator above,
i.e., one which inexactly solves

∂zL0(z;p)∋ 0, −∂pL0(z;p) +
1

χkβk
(p− pk−1)∋ 0, (10)

for (z, p) = (zk, pk) and L0(·; ·) is as in (i).
Notice how both kinds of AL methods include a prox term in the p block, which leads to the

multiplier update (9). However, while the first one adds a proximal term to the z-block (hence the
qualifier PAL), the other ones do not (hence the qualifier n-PAL). For a more detailed comparison
of the above classes, see the first paragraph in Section 5.

Related works. The literature of AL-based methods is quite vast, so we focus our attention on
those dealing with iteration complexities. Since AL-based methods for the convex case have been
extensively studied in the literature (see, for example, [1, 2, 22, 23, 28, 29, 31, 35, 41]), we focus
on papers that deal with nonconvex problems with nontrivial composite functions Methods for the
nonconvex problems where the composite h is the zero function have already been studied in [14, 40].

Papers [12, 19, 30] as well as this one propose and study the complexity of PAL methods for solving
the CCC-NCO problem or its linearly constrained version in which K= {0}. More specifically, both
papers [12, 30] consider PAL methods applied to the linearly constrained CCC-NCO problem where
θ ∈ (0,1] and χk = 1 for every k. However, as θ approaches zero, the prox stepsizes λk of both methods
converge to zero which causes the following issues: 1) their derived complexity bounds diverge to
infinity (see the second column in Table 2 below), which makes their analyses invalid for the case
where θ = 0; and 2) deteriorating computational performance. Using a different approach, i.e., one
that does not rely on a merit function, paper [19] establishes the iteration complexity of a PAL
method, with θ = 0 and χk = 1 for every k, for solving the linearly constrained CCC-NCO problem
under the condition that pk is reset to zero whenever βk is increased.

Papers [24, 39] propose and study the iteration complexity of n-PAL methods for solving nonlin-
early constrained NCO problems. More specifically, [39] uses the AG method of [11] to obtain the
approximate stationary point zk of Lβk

(·;pk−1). On the other hand, [24] obtains such zk by applying
an inner accelerated prox method as in [7, 17] whose generated subproblems are convex and similar
to the ones generated by the PAL methods. It is worth mentioning that both of these papers make a
strong assumption about how the feasibility of an iterate is related to its stationarity (see condition
F in Table 1).

We now describe other papers that have motivated this work or are tangentially related to it.
Papers [17, 18, 21, 26] establish the complexity of quadratic penalty-based methods for solving (1).

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
4 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Paper [6] considers a primal-dual proximal point scheme and analyzes its complexity under strong
conditions on the initial point. Papers [42, 43] present a primal-dual first-order algorithm for solving
(1) when h is the indicator function of a box (in [43]) or more generally a polyhedron (in [42]). Paper
[15] considers a penalty-ADMM method that solves an equivalent reformulation of (1). Paper [25]
presents an inexact proximal point method applied to the function defined as φ(z) if z is feasible
and +∞ otherwise. It can be viewed as an extension to the nonconvex setting of the proximal point
method (PPM) applied to (1) (see, for example, [36] for the analysis of inexact versions of PPMs for
solving (1) in the convex setting).

Before closing this literature review, we list the assumptions of the above PAL and n-PAL methods
in Table 1 and give a summary of these methods in Table 2, which compares some of the more recent
methods in terms of iteration complexity, type of constraints, necessary conditions, and ranges of θ
and χk.

B
Either (i) the quantity supx∈dom h |φ(x)| is finite, (ii) dom h is bounded, and/or

(iii) the feasible set is bounded.

A
If the constraints have an affine component of the form Ax = b then A has full

row rank.

F
There exists some ν > 0 such that ν‖g(xk)‖ ≤ dist(0, ∇g(xk)g(xk) + β−1

k ∂h(xk))

for algorithmically generated sequences {xk}k≥1 and {βk}k≥1.

N The function h restricted to its domain is r-Lipschitz continuous.

SP
If g(x) �K 0 can be divided into ge(x) = 0 and gι(x) �J 0 for some closed convex

cone J , then there exists x̄ ∈ int(dom h) such that ge(x) = 0 and gι(x) ≺J 0 .

Table 1. Abbreviations for common boundedness and regularity conditions. A discussion of the relationship between
SP and SP ◦ is given in Subsection 2.1. It is known (see, for example, [19]) that N is equivalent to requiring that,
for every x ∈ dom h, there exists r > 0 such that ∂h(x) ⊆ Ndom h(x) + Br(0) where Br(0) = {x : ‖x‖ ≤ r}.

Name Complexity Constraints θ χk Key Conditions AL group

PProx-PDA2 [12] O(θ−2ε−4) Linear (0, 1) 1 B, A PAL

θ-IPAAL3 [30] Õ(θ−15/4ε−2.5) Linear (0, 1) 1 N , SP PAL

IAIPAL [19] Õ(ε−3) Linear 0 1 B, N , SP PAL

iALM (2019) [39] Õ(ε−3) Nonlinear - O(β−1

k) B, F n-PAL

iALM (2020)4 [24] Õ(ε−3) Nonlinear - O(β−1

k) B, F n-PAL

NL-IAPIAL Õ(ε−3) K-Convex 0 1 B, N , SP PAL

Table 2. Comparison of relevant PAL and n-PAL methods with NL-IAPIAL where the first three methods assume
that g is an affine function of the form g(x) = Ax − b. For simplicity, we let ε = min{ρ̂, η̂}, and let Õ(·) be the same
as O(·) with all logarithmic dependencies on ε removed.

Contributions. We start by highlighting the differences and novelties of the NL-IAPIAL compared
to the ones in [12, 19, 30]. In contrast to the PAL methods of [12, 30], whose iteration-complexities in

2 This method generates prox subproblems of the form argminx∈X{λh(x) + c‖Ax − b‖2/2 + ‖x − x0‖2/2} and the
analysis of [12] makes the strong assumption that they can be solved exactly for any x0, c, and λ.

3 It is also shown that conditions N and SP can be removed to yield an iteration complexity of Õ(θ−4ε−3).

4 An Õ(ε−2.5) iteration complexity bound is established for the case where the constraints are linear. Moreover, the
method considered in this table is Algorithm 3 of [24] where it is shown that the associated sequence of multipliers
is bounded under assumption F .

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 5

terms of θ only (see the second column in Table 2) are O(θ−2) and O(θ−15/4), respectively, this work
presents a PAL method and its corresponding iteration-complexity, both of which do not depend
on θ. Moreover, its analysis only assumes the existence of a Slater point and its multiplier update
uses θ = 0 and χk = 1 for every k, as prescribed in the classical versions of both PAL and n-PAL
methods. In contrast to [19] (see the end of the second paragraph of Related Works), our proposed
PAL method has the following extra features: 1) it always updates pk as in (4), regardless of whether
βk increases or not; and 2) it solves the more general nonlinear CCC-NCO problem.

Even though NL-IAPIAL is not an n-PAL method, it is still worth discussing some of its features
relative to the n-PAL methods of [24, 39]. First, in contrast to [24, 39], this work does not assume
the strong condition F of Table 1 on the iterates generated by their methods (see the fifth column of
Table 2). Second, in contrast to the methods in [24, 39] whose choices of χk in (7) converge to zero
as βk tends to infinity5, NL-IAPIAL chooses χk = 1 for every k (see the sixth columns of Table 2).

Additional discussion of how NL-IAPIAL compares with other related first-order methods that are
neither PAL nor n-PAL methods (i.e., [25, 42, 43]) is given in Section 5.

Organization of the Paper. Subsection 1.1 provides some basic definitions and notation. Section 2
contains three subsections. The first one describes the main problem of interest and the assump-
tions made on it. The second one motivates and states the NL-IAPIAL method, whereas the third
one presents its main complexity results. Section 3 is divided into two subsections. The first one
proves Proposition 2.6(b)–(c) which presents iteration-complexity bounds for NL-IAPIAL. The sec-
ond one proves Proposition 2.5 which gives a bound on the multipliers sequence generated by NL-
IAPIAL. Section 4 is devoted to numerical experiments that illustrate the numerical efficiency of
NL-IAPIAL. Section 5 gives several concluding remarks. The Appendix section contains three sub-
sections. Appendix A reviews an ACG variant, Appendix B describes some basic convex analysis
results, and Appendix C is devoted to the proof of a basic result considered in the main part of the
paper.

1.1. Basic Definitions and Notations This subsection presents notation and basic definitions
used in this paper.

Let ℜ+ and ℜ++ denote the set of nonnegative and positive real numbers, respectively, and let
ℜ2

++ :=ℜ++×ℜ++. We denote by Rn an n-dimensional inner product space with inner product and
associated norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. For a given closed convex set Z ⊂ ℜn, its
boundary is denoted by ∂Z and the distance of a point z ∈ ℜn to Z is denoted by dist(z,Z). The
indicator function of Z, denoted by δZ , is defined by δZ(z) = 0 if z ∈Z, and δZ(z) = +∞ otherwise.
For any t > 0, we let log+

1 (t) := max{log t,1}, and we define O1(·) =O(1 + ·).
The domain of a function h :ℜn→ (−∞,∞] is the set domh := {x∈ℜn : h(x)<+∞}. Moreover,

h is said to be proper if domh 6= ∅. The set of all lower semi-continuous proper convex functions
defined in ℜn is denoted by Conv ℜn. The ε-subdifferential of a proper function h : ℜn→ (−∞,∞]
is defined by

∂εh(z) := {u∈ℜn : h(z′)≥ h(z) + 〈u, z′− z〉− ε, ∀z′ ∈ℜn} (11)

for every z ∈ ℜn. The classical subdifferential, denoted by ∂h(·), corresponds to ∂0h(·). Recall that,
for a given ε≥ 0, the ε-normal cone of a closed convex set C at z ∈C, denoted by N ε

C(z), is

N ε
C(z) := {ξ ∈ℜn : 〈ξ, u− z〉 ≤ ε, ∀u∈C}.

The normal cone of a closed convex set C at z ∈C is denoted by NC(z) =N 0
C(z). If ψ is a real-valued

function which is differentiable at z̄ ∈ℜn, then its affine approximation ℓψ(·, z̄) at z̄ is given by

ℓψ(z; z̄) := ψ(z̄) + 〈∇ψ(z̄), z− z̄〉 ∀z ∈ℜn. (12)

5 Methods with this feature tend to become more like penalty-type methods as more iterations are performed.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
6 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

For a closed convex cone K⊂ℜl, the dual cone K∗ is defined as

K∗ :=
{
y ∈ℜl : 〈y, x〉 ≥ 0, x∈K} . (13)

For given u, v ∈ ℜl, the notation u�K v (or v �K u) means that v− u ∈ K. Moreover, the notation
u≺K v means that v−u∈ intK. A function g :ℜn→ℜℓ is said to be K-convex if

g(tz′ + [1− t]z)− tg(z′)− [1− t]g(z)�K 0 ∀z, z′ ∈ℜn, ∀t∈ [0,1]. (14)

Under the assumption that g is differentiable, it is well-known that g is K-convex if and only if

〈p, g′(z)(z′− z)〉 ≤ 〈p, g(z′)− g(z)〉 ∀z, z′ ∈ℜn, ∀p∈K∗. (15)

2. The NL-IAPIAL Method This section consists of three subsections. The first one precisely
describes the problem of interest and its assumptions. The second one motivates and states the
NL-IAPIAL method. The third one presents the main complexity results for NL-IAPIAL.

2.1. Problem of Interest This subsection presents the main problem of interest and discusses
the assumptions underlying it.

Consider problem (1) where K is a closed convex cone such that ∅ 6= K 6= ℜl, and functions f, g
and h satisfy the following assumptions:

(A1) h ∈Conv ℜn and its domain H := domh is a compact set; moreover, for some scalar Kh ≥ 0,
function h is Kh-Lipschitz continuous on H, i.e., it satisfies

|h(z′)−h(z)| ≤Kh‖z′− z‖ ∀z, z′ ∈H;

(A2) f is a nonconvex function which is differentiable on H, and there exist 0 < mf ≤ Lf such
that f is mf -weakly convex on H (i.e., f +mf‖ · ‖2/2 is convex on H) and

‖∇f(z′)−∇f(z)‖≤Lf‖z′− z‖ ∀z′, z ∈H; (16)

(A3) g :ℜn 7→ ℜℓ is K-convex and differentiable, and there exists Lg > 0 such that

‖∇g(z′)−∇g(z)‖ ≤Lg‖z′− z‖ ∀z′, z ∈ℜn;

(A4) there exist z̄ ∈ intH and τg > 0 such that g(z̄)�K 0 and

max{‖∇g(z)p‖, |〈p, g(z̄)〉|} ≥ τg‖p‖ ∀z ∈H, ∀p�K∗ 0. (17)

We now make some comments about the above assumptions. First, any function h of the form
h= h̃+ δZ where h̃ is a finite everywhere Lipschitz continuous convex function and Z is a compact
convex set clearly satisfies condition (A1). Second, it is easy to see that (A2) implies that

− mf

2
‖z′− z‖2≤ f(z′)− ℓf (z′; z) ∀z′, z ∈H, (18)

where ℓf (·; ·) is as in (12). Moreover, it is well-known that (16) implies that |f(z′) − ℓf (z′; z)| ≤
Lf‖z′−z‖2/2 for every z, z′ ∈H, and hence that (18) holds with mf = Lf . However, we will show that
better iteration-complexity bounds for our method can be derived when a scalar mf <Lf satisfying
(18) is available. Third, since f is nonconvex on H, (A2) implies the smallest mf satisfying (18)
is positive. Fourth, the assumption that K 6= ℜl implies that K∗ 6= {0}. Finally, the cone K is not
assumed to have a nonempty interior.

The result below, whose proof is given in Appendix D, shows that if K = J × {0} where J is
a closed convex cone such that intJ 6= ∅, then (A4) is equivalent to a Slater-like assumption with
respect to g. Hence, (A4) is a mild assumption on (1).

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 7

Proposition 2.1. Suppose J ⊆ ℜs is a closed convex cone with nonempty interior, gι : ℜn 7→ ℜs
is a (possibly nonconvex) continuously differentiable function, and ge : ℜn 7→ ℜt is an onto affine
map. Moreover, suppose ∇gι(·) is Lgι-Lipschitz continuous on the set H defined in (A1), and let
g := (gι, ge) and K :=J ×{0}. Then, the following statements are equivalent:

(a) there exists τg > 0 and z̄ ∈ intH such that g(z̄)�K 0 and (17) holds;
(b) there exists τ̃g > 0 and z̄ ∈ intH such that g(z̄)�K 0 and

max {‖∇g(z̄)p‖, | 〈p, g(z̄)〉 |} ≥ τ̃g‖p‖ ∀p�K∗ 0; (19)

(c) there exists z̄ ∈ intH such that gι(z̄)≺J 0 and ge(z̄) = 0;
Some comments about Proposition 2.1 are in order. First, if gι is J -convex and ge is affine, then

g is K-convex. Second, the Slater condition is in regard to a single point z̄ ∈ H, as opposed to
condition (17) which involves inequality (17) at all pairs (z, p)∈H×K∗. Third, (A4) can be replaced
by the Slater-like assumption of Proposition 2.1 when K = J × {0} since the former is equivalent
to the latter in this case. Actually, a slightly more involved analysis can be done to show that the
assumption that ge is onto (which is part of the assumption of Proposition 2.1) can be removed
at the expense of obtaining a weaker version of (A4), namely: inequality (17) holds for every pair
(z, p) ∈ H× (J ∗ × Im∇ge), instead of (z, p) ∈ H× (J ∗ ×ℜt) =H×K∗. Finally, since the analysis
of this paper can be easily adapted to this slightly weaker version of (A4), the Slater-like condition
of Proposition 2.1 without ge assumed to be onto (or equivalently, ∇ge to have full column rank)
can be used in place of (A4) in order to guarantee that all of the results derived in this paper for
NL-IAPIAL hold.

Under assumptions (A1)–(A4), it can be shown that: (i) a necessary condition for a point z∗ to be
a local minimum of (1) is that there exists a multiplier p∗ ∈K∗ satisfying

0∈∇f(z∗) + ∂h(z∗) +∇g(z∗)p∗, 〈g(z∗), p∗〉= 0, g(z∗)�K 0, p∗�K∗ 0; (20)

and (ii) the last three conditions in (20) are equivalent6 to the inclusion g(z∗)∈NK∗(p∗). The following
definition describes the type of approximate solution of (1) that is sought after by the NL-IAPIAL
method.
Definition 2.2. Given a tolerance pair (ρ̂, η̂)∈ℜ++×ℜ++, a quadruple (ẑ, p̂, ŵ, q̂)∈H×ℜl×ℜn×ℜl
is said to be a (ρ̂, η̂)-approximate stationary quadruple of (1) if it satisfies (5) and (6).

We now make some observations about Definition 2.2. Another notion of approximate stationarity
for (1) is as follows: a pair (ẑ, p̂) ∈ H × ℜl is a (ρ̂, η̂)-approximate stationary solution of (1) if it
satisfies the inequalities

dist (0,∇f(ẑ) + ∂h(ẑ) +∇g(ẑ)p̂)≤ ρ̂, dist(g(ẑ),NK∗(p̂))≤ η̂. (21)

It turns out that (ẑ, p̂) is a (ρ̂, η̂)-approximate stationary solution in the above sense if and only if
there exists a residual pair (ŵ, q̂) ∈ ℜn ×ℜl such that (ẑ, p̂, ŵ, q̂) is a (ρ̂, η̂)-approximate stationary
quadruple of (1). In this regard, the residual pair (ŵ, q̂) in Definition 2.2 can be viewed as a certificate
that the pair (ẑ, p̂) in the same definition is a (ρ̂, η̂)-approximate stationary solution of (1). Finally,
our analysis is entirely based on the notion of Definition 2.2 even though it could also have been
carried out using the notion of a (ρ̂, η̂)-approximate stationary solution instead. The main reason for
this choice is that the NL-IAPIAL method presented in Subsection 2.2 naturally generates residual
pairs which always satisfy (5), and eventually (6) after a sufficient number of iterations. Moreover,
as opposed to the residual pairs which “realize” the two distances in (21), the computation of these
residual pairs do not require projections onto ∂h(ẑ) or NK∗(p̂).

We end this subsection by stating a technical result which describes some properties about the
smooth part of the Lagrangian in (2).

6 See Lemma B.1(c).

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
8 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Lemma 2.3. Assume that conditions (A2) and (A3) hold, and define the function

L̃β(z, p) := f(z) +
1

2β

[
dist2(p+ βg(z),−K)−‖p‖2

]
∀(z, p, β)∈ℜn×ℜℓ×ℜ++ (22)

and the quantities
B(0)
g := sup

z∈H
‖g(z)‖, B(1)

g := sup
z∈H
‖∇g(z)‖. (23)

Then, for every β > 0 and p∈ℜℓ, the following properties hold:
(a) L̃β(·, p) is mf -weakly convex on H, where mf is as in (A2);
(b) L̃β(·, p) is a differentiable function whose gradient is given by

∇zL̃β(z, p) =∇f(z) +∇g(z)ΠK∗(p+ βg(z)) ∀z ∈ℜn;

(c) ∇zL̃β(·, p) is M̃-Lipschitz continuous where

M̃= M̃(β, p) :=Lf +Lg‖p‖+ βMg, Mg :=B(0)
g Lg + [B(1)

g]2, (24)

and the quantities Lf and Lg are as in (A2) and (A3), respectively.

Proof. The statements of the lemma with f ≡ 0 (and hence mf = Lf = 0) immediately follow from
[29, Proposition 5]. Hence, the general case of the lemma easily follows from assumption (A2) and
the definition of L̃β in (22).

2.2. The NL-IAPIAL Method This subsection motivates and states the NL-IAPIAL method.
Before presenting the method, we give a short but precise outline of its key steps, as well as

a description of how its iterates are generated. Recall from the introduction that the NL-IAPIAL
method, whose goal is to find a (ρ̂, η̂)-approximate stationary quadruple as in (5) and (6), is an
iterative method which, at its k-th step, computes its next iterate (zk, pk) according to (3) and (4).

We now describe the conditions which are required on the approximate solution zk of (3). For
a given scalar σ ∈ (0,1/

√
2], NL-IAPIAL requires that zk, together with a residual pair (vk, εk) ∈

ℜn×ℜ++, satisfy

vk ∈ ∂εk

(
λLβk

(·, pk−1) +
1

2
‖ ·−zk−1‖2

)
(zk), ‖vk‖2 + 2εk ≤ σ2

k‖vk + zk−1− zk‖2. (25)

where
σk :=

σ√
M̃k

, M̃k := λM̃(βk, pk−1) + 1, (26)

and M̃(·, ·) is as in (24). Note that if σ = 0 then the inequality in (25) implies that (vk, εk) = (0,0),
and hence that zk is a global solution of (3) in view of the inclusion in (25) and the definition of
ε-subdifferential given in (11). By relaxing σ to be positive, we are then allowing zk to be an inexact
(global) solution of (3).

The following result now describes a way of computing the approximate triple (zk, vk, εk) as in the
above paragraph. Its proof strongly relies on the fact that zk−1 is chosen to be the initial point for
the ACG variant (see the fifth identity in (27)) and Proposition A.1 of Appendix A.
Lemma 2.4. Let λ= 1/(2mf) where mf is as in (A2), and define

ψs = λL̃βk
(·, pk−1) +

1

2
‖ ·−zk−1‖2, ψn = λh,

M̃ = M̃k, µ̃=
1

2
, x0 = zk−1, σ̃ = σk,

(27)

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 9

where M̃k is as in (26). Then, the ACG algorithm of Appendix A, with inputs given by (27), computes
a triple (zk, vk, εk) := (y, u, η) satisfying (25) in a number of ACG iterations bounded by

⌈
5

√
M̃k log+

1

(
4M̃k

σ

)⌉
. (28)

Proof. We first show that the inputs in (27) satisfy conditions (B1)–(B2) in Appendix A. Indeed,
using assumption (A1) and Lemma 2.3(a), it is easy to see that both ψs + (λmf − 1)‖ · ‖2/2 and ψn
are convex. Since λ = 1/(2mf), it then follows that ψs is a 1/2-strongly convex and hence that µ̃
satisfies the first inequality in (69). Now, in view of Lemma 2.3(c) and the definition of ψs in (27),
it follows that M̃ satisfies the second inequality in (69). Hence, we conclude that the inputs in (27)
satisfy the conditions (B1)–(B2) in Appendix A.

We now derive the desired complexity bound. It follows from Proposition A.1 and the above result
that the ACG algorithm of Appendix A with inputs given by (27) generates a triple (zk, vk, εk) :=
(y, u, η) satisfying (25) in at most

⌈
1 +

(
1

2
+

√
2M̃k− 1

)
log+

1 Ã
⌉

(29)

iterations, where Ã = 4(1 + σ̃)2(M̃k − 1/2)σ̃−2. Now, note that the definitions of σk and σ̃ in (26)
and (27), respectively, yield Ã ≤ 16(M̃k)

2σ−2. Hence, (28) follows from (29), the latter inequality,
and the fact that log+

1 (·)≥ 1 and M̃k ≥ 1.

It is worth mentioning that the main effort of an ACG iteration consists of: (i) the computation
of ∇ψs(x̃j) where x̃j is one of the iterates obtained in the j-th iteration of ACG (see (71)); and, (ii)
the solution of the prox subproblem in (71). Its description given in Appendix A assumes that both
(i) and (ii) can be carried out exactly with the aid of given oracles. Moreover, for the case where the
functions ψs and ψn are chosen as in (27), it follows from Lemma 2.3(b) that

∇ψs(z) = λ [∇f(z) +∇g(z)ΠK∗(pk−1 + βkg(z))] + z− zk−1.

Finally, since we make the blanket assumption that an oracle for exactly evaluating ΠK∗(·) at any
given point is available, it follows that∇ψs(x) can be obtained exactly by means of the above formula.

We are now ready to provide a complete description of the NL-IAPIAL method.

NL-IAPIAL Method

Input: a function triple (f, g, h) and a quadruple of parameters (Kh,mf , Lf , Lg) satisfying assump-
tions (A1)–(A4), a scalar σ ∈ (0,1/

√
2], a penalty parameter β1 > 0, an initial pair (z0, p0)∈H×ℜl,

and a tolerance pair (ρ̂, η̂)∈ℜ2
++;

Output: a triple (ẑ, p̂, ŵ, q̂) satisfying (5)-(6);
0. set k̂= 0, k= 1 and

λ=
1

2mf

, β = β1, Cσ =
2(1 + 2σ)2

1−σ2
; (30)

1. use the ACG described in Appendix A with inputs (M̃, µ̃, ψs, ψn), x0 and σ̃ given by (27) to
obtain a triple (zk, vk, εk) := (y, u, η) satisfying (25), and compute

pk := ΠK∗(pk−1 + βkg(zk)), rk := vk + zk−1− zk; (31)

2. compute the point ẑk as

ẑk := argmin
u

{
λ
[〈
∇zL̃βk

(zk, pk−1), u− zk
〉

+h(u)
]
−〈rk, u− zk〉+

M̃k

2
‖u− zk‖2

}
, (32)

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
10 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

and the triple (p̂k, ŵk, q̂k) as

p̂k := ΠK∗ (pk−1 + βkg(ẑk)) ,

ŵk :=wk +∇zL̃βk
(ẑk, pk−1)−∇zL̃βk

(zk, pk−1),

q̂k :=
1

βk
(pk−1− p̂k),

(33)

where M̃k and L̃βk
are as in (22) and (26), respectively, and

wk :=
1

λ

[
rk +M̃k(zk− ẑk)

]
; (34)

if (ŵ, q̂) := (ŵk, q̂k) satisfies (6) then stop and output (ẑ, p̂, ŵ, q̂) = (ẑk, p̂k, ŵk, q̂k);
3. if k > k̂+ 1 and

∆k :=
1

k− k̂− 1

[
Lβk

(zk̂+1, pk̂)−Lβk
(zk, pk)−

‖pk‖2

2βk

]
≤ λρ̂2

2Cσ
, (35)

then set βk+1 = 2βk and k̂ = k; otherwise, set βk+1 = βk;
4. update k← k+ 1, and go to step 1.

Some remarks about NL-IAPIAL are in order. First, it performs two kinds of iterations, namely,
the ones indexed by k and the ones performed by the ACG algorithm every time it is called in step 1.
We refer to the former as “outer” iterations and the latter as “inner” (or ACG) iterations. Second,
its input z0 can be any element in the domain of h and does not necessarily need to be a point
satisfying the constraint g(z0)�K 0. Third, the ACG described in Appendix A is invoked in step 1 to
compute a triple (zk, vk, εk) satisfying (25), which can be seen as an approximate stationary solution
for the prox-subproblem (3). Fourth, it will be shown in Lemma 3.4 that the refined quadruple
(ẑ, p̂, ŵ, q̂) := (ẑk, p̂k, ŵk, q̂k) computed in step 2 satisfies all the relations in (5) at any outer iteration.
As a consequence, the NL-IAPIAL output (ẑ, p̂, ŵ, q̂) is a (ρ̂, η̂)-approximate stationary quadruple of
(1) in the sense of Definition 2.2. Finally, it follows from Lemma 2.3(b), and the first identities in
(31) and (33), that the gradients of the function L̃βk

(·, pk−1) which appear in (33) can be computed

as ∇zL̃βk
(zk, pk−1) =∇f(zk) +∇g(zk)pk and ∇zL̃βk

(ẑk, pk−1) =∇f(ẑk) +∇g(ẑk)p̂k.
In the remaining part of this subsection, we give some intuition about step 3 of NL-IAPIAL. Define

the l-th cycle Cl as the l-th set of consecutive indices k for which βk remains constant, i.e.,

Cl := {k : βk = β̃l := 2l−1β1}. (36)

For every l≥ 1, we let kl denote the largest index in Cl. Hence,

Cl = {kl−1 + 1, . . . , kl} ∀l≥ 1

where k0 := 0. Clearly, the different values of k̂ that arise in step 3 are exactly the indices in the
index set {kl : l ≥ 0}. Moreover, in view of the test performed in step 3, we have that kl − kl−1 ≥ 2
for every l≥ 1, or equivalently, every cycle contains at least two indices. While generating the indices
in the l-th cycle, if an index k≥ kl−1 + 2 satisfying (35) is found, k becomes the last index kl in the
l-th cycle and the (l + 1)-th cycle is started at iteration kl + 1 with the penalty parameter set to
β̃l+1 = 2β̃l, where β̃l is as in (36).

Finally, the role played by criterion (35) is as follows. It is shown in Lemma 3.5 that for every
k ∈ Cℓ, there exists j ∈ Cℓ, j ≤ k such that

‖ŵj‖2 =
Cσ∆k

λ
+O

(
1

β̃l

)
, ‖q̂j‖=O

(
1

β̃l

)
. (37)

Hence, if criterion (35) holds, then (37) implies that ‖ŵj‖2 = ρ̂2/2 +O(1/β̃l) and ‖q̂j‖=O(1/β̃l). On
the other hand, since β̃l is doubled from one cycle to another, these residual estimates imply that
the stopping criterion in step 2 will eventually be satisfied.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 11

2.3. Complexity results for NL-IAPIAL This subsection contains the main complexity
results for NL-IAPIAL.

We start by considering a proposition, whose proof is presented in Section 3.2, that shows that the
sequence of Lagrange multipliers {pk} is bounded. Before presenting the result, we first introduce
the following quantities:

d̄ := dist(z̄, ∂H), Dh := sup
z′,z∈H

‖z′− z‖, θh :=
Dh

min{1, d̄} B
(1)
f := sup

z∈H
‖∇f(z)‖, (38)

κ0 := 2
[
Kh +B

(1)
f

]
+

[
σ2

(1−σ)2
+ 4

(
1 + σ

1−σ

)]
mfDh, (39)

where σ ∈ (0,1/
√

2] is an input of NL-IAPIAL, Kh and mf are as in (A1) and (A2), respectively,
and ∂H denotes the boundary of H. Observe that d̄ > 0 in view of the fact that, by (A4), z̄ ∈ intH.
Moreover, using the fact that H is compact and ∇f is continuous on H due to (A1) and (A2),
respectively, it follows that Dh and B

(1)
f are finite. These two observations then imply that θh and

κ0 are also finite.
Proposition 2.5. The sequence {pk} generated by NL-IAPIAL satisfies

‖pk‖ ≤ κp := max

{
‖p0‖,

θhκ0

τg

}
, ∀k≥ 0, (40)

where θh, κ0, and τg, are as in (38), (39), and (A4), respectively.
The following quantities will be used in the subsequent results:

∆φ∗ := φ∗−φ∗, φ∗ := inf
z∈ℜn

φ(z), (41)

κ1 :=

(
3Lf +Lgκp

2mf

)1/2

, κ2 := 6κp
√
MgCσ, κ3 :=

[(
τg + 4

√
Mg

) κp
√
Mg

2mf

]1/2

, (42)

β̄ = β̄(ρ̂, η̂) :=
mf

Mg

(
κ2

2

ρ̂2
+
κ2

3

η̂

)
, (43)

where the quantities (mf , Lf), Lg, φ
∗, Mg, Cσ, Dh, and κp are as in (A2), (A3), (1), (24), (30), (38),

and (40), respectively.
The following result, whose proof is given in Subsection 3.1, establishes bounds on the number

of ACG and outer iterations performed during an NL-IAPIAL cycle, and shows that NL-IAPIAL
outputs a (ρ̂, η̂)-approximate stationary quadruple of (1) within a logarithmic number of cycles.
Proposition 2.6. The following statements about NL-IAPIAL hold:

(a) every outer iteration within the l-th cycle performs at most




5


κ1 +

√
β̃lMg

2mf


 log+

1

(
4κ2

1

σ
+

2β̃lMg

σmf

)


ACG iterations, where mf , Mg, β̃l, and κ1 are as in (A2), (24), (36), and (42), respectively;
(b) every cycle performs at most

⌈
4mfCσ (∆φ∗ + 2mfDh)

ρ̂2

⌉

outer iterations, where Cσ, Dh, and ∆φ∗ are as in (30), (38), and (41), respectively;

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
12 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

(c) the last cycle l̄ outputs a (ρ̂, η̂)-approximate stationary quadruple of (1) and satisfies

l̄≤ log+
1

(
4β̄

β1

)
, β̃l̄ ≤max{β1,2β̄}

where β̄ is as in (43).
Notice that if β1 > 4β̄, then Proposition 2.6(c) implies the number of ACG iterations of NL-IAPIAL

is bounded above by the product of the quantities in Proposition 2.6(a)–(b). The next result bounds
the number of ACG iterations of NL-IAPIAL when β1 ≤ 4β̄.
Theorem 2.7. Suppose β1 ≤ 4β̄. Then NL-IAPIAL outputs a (ρ̂, η̂)-approximate stationary quadru-
ple of (1) in

O

([
1 +

mfCσ (∆φ∗ +mfDh)

ρ̂2

] [
κ1 +

κ2

ρ̂
+
κ3√
η̂

]
(log+

1)2

[
β̄

β1

+
κ2

1

σ
+
β̄Mg

σmf

])
(44)

ACG iterations, where mf , Cσ, Dh, ∆φ∗, (κ1, κ2, κ3), and β̄ are as in (A2), (30), (38), (41), (42),
and (43), respectively.

Proof. First recall that in the l-th cycle of NL-IAPIAL, we have βk = β̃l = 2l−1β1, for every l ≥ 1
(see (36)). Also, Proposition 2.6(c) implies that NL-IAPIAL outputs a (ρ̂, η̂)-approximate stationary
quadruple of (1) in at most l̄ := ⌊log+

1 (4β̄/β1)⌋ cycles. Hence, since β1 ≤ 4β̄, we have

β̃l = 2l−1β1 ≤ 4β̄, ∀l= 1, . . . , l̄.

It now follows from the above inequality and the definition of β̄ in (43) that the number of ACG
iterations performed by NL-IAPIAL at every outer iteration (see Proposition 2.6 (a)) is

O

([
κ1 +

κ2

ρ̂
+
κ3√
η̂

]
log+

1

[
κ2

1

σ
+
β̄Mg

σmf

])
.

The conclusion now follows from the above fact and Proposition 2.6 (b)–(c).

It is worth mentioning that the iteration complexity bound in Theorem 2.7, in terms of the tolerance
pair (ρ̂, η̂), is

O1

([
1√
η̂ · ρ̂2

+
1

ρ̂3

]
(log+

1)2

(
1

η̂
+

1

ρ̂2

))
,

as previously claimed in Section 1.

3. Proofs of Proposition 2.5 and Proposition 2.6 This section contains two subsections,
the first of which proves Proposition 2.6 and the second one proves Proposition 2.5. It is worth
noting that the proof of Proposition 2.6 uses Proposition 2.5, but the proof of Proposition 2.5 is
self-contained. Moreover, we opted to postpone the proof of Proposition 2.5 due to its technicalities.

3.1. Proof of Proposition 2.6 The first result below presents some relations about the iterates
generated by NL-IAPIAL.
Lemma 3.1. Let {(zk, pk, βk)} be generated by NL-IAPIAL and define, for every k≥ 1,

sk := Π−K(pk−1 + βkg(zk)). (45)

Then, the following relations hold for every k≥ 1:

pk−1 + βkg(zk) = pk + sk, 〈pk, sk〉= 0, (pk, sk)∈K∗× (−K), (46)

Lβk
(zk, pk−1) = φ(zk) +

1

2βk

(‖pk‖2−‖pk−1‖2
)
. (47)

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 13

Proof. The relations in (46) follow from the definitions of pk and sk in (31) and (45), respectively,
and Theorem III.3.2.5 of [13]. Now, in view of the definitions of Lβ in (2) and sk in (45), respectively,
we have

Lβk
(zk, pk−1) = φ(zk) +

1

2βk

[‖pk−1 + βkg(zk)− sk‖2−‖pk−1‖2
]

which, in view of the first identity in (46), immediately implies (47).

The next technical result characterizes the change in the augmented Lagrangian between consec-
utive iterations of the NL-IAPIAL method.
Lemma 3.2. The sequence {(zk, pk)} generated by NL-IAPIAL satisfies, for every k≥ 1, the relations

Lβk
(zk, pk)≤Lβk

(zk, pk−1) +
1

βk
‖pk− pk−1‖2, (48)

Lβk
(zk, pk)≤Lβk

(zk−1, pk−1)−
(

1−σ2

2λ

)
‖rk‖2 +

1

βk
‖pk− pk−1‖2, (49)

where (σ,λ) is given by the input of NL-IAPIAL and {rk} is as in (31).

Proof. Let sk be as in (45). Using (47), the definition of Lβ in (2), the fact that sk ∈ −K and
pk−1 + βkg(zk) = pk + sk in view of (46), we have that

Lβk
(zk, pk)−Lβk

(zk, pk−1) =Lβk
(zk, pk)−φ(zk)−

1

2βk

(‖pk‖2−‖pk−1‖2
)

=
1

2βk

(
dist2(pk + βkg(zk),−K)−‖pk‖2

)
− 1

2βk

(‖pk‖2−‖pk−1‖2
)

≤ 1

2βk

(‖pk + βkg(zk)− sk‖2−‖pk‖2
)− 1

2βk

(‖pk‖2−‖pk−1‖2
)

=
1

2βk

(‖2pk− pk−1‖2− 2‖pk‖2 + ‖pk−1‖2
)
,

which immediately implies (48). Now, in view of the definition of the ε-subdifferential given in (11)
and the fact that (zk, vk, εk) satisfies both the inclusion and the inequality in (25), we conclude that

λLβk
(zk, pk−1)−λLβk

(zk−1, pk−1)≤−1

2
‖zk− zk−1‖2 + 〈vk, zk− zk−1〉+ εk

=−1

2
‖vk + zk− zk−1‖2 +

1

2
‖vk‖2 + εk ≤−

(
1−σ2

k

2

)
‖rk‖2 ≤−

(
1−σ2

2

)
‖rk‖2, (50)

where the last inequality follows from the fact that σk ≤ σ in view of (26). Inequality (49) now follows
by combining (48) with (50).

Recall that the l-th cycle Cl of NL-IAPIAL is defined in (36). The next results present some
properties of the iterates generated during an NL-IAPIAL cycle. The first one shows that the sequence
{‖rk‖}k∈Cl

is bounded and can be controlled by {∆k}k∈Cl
plus a term which is of O(1/β̃l).

Lemma 3.3. Consider the sequences {(zk, vk, εk)} and {∆k} generated by NL-IAPIAL and the
sequence {rk} as in (31). Then, the following statements hold:

(a) for every k≥ 1, we have

‖rk‖≤
Dh

1−σ ; (51)

(b) k ∈ Cl and k≥ kl−1 + 2, there exists an index j ∈ {kl−1 + 2, . . . , k} such that

‖rj‖2 ≤ 2λ

1−σ2

(
∆k +

9κ2
p

β̃l

)
, (52)

where σ, κp, and Dh are as in (26), (40), and (38), respectively.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
14 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Proof. (a)The definition of σk in (26), the inequality in (25), the triangle inequality for norms, and
the fact that zk, zk−1 ∈H imply that

‖rk‖= ‖vk + zk−1− zk‖ ≤ ‖vk‖+Dh ≤ σk‖rk‖+Dh ≤ σ‖rk‖+Dh,

which, after a simple re-arrangement, proves (51).
(b) Now, to simplify notation, let k̄ = kl−1 + 1. Now, using (40) and the fact that ‖pj − pj−1‖2 ≤
2‖pj‖2 + 2‖pj−1‖2, it follows that for any k ≥ k̄+ 1,

‖pk‖2

2
+

k∑

j=k̄

‖pj − pj−1‖2≤ κ2
p

2
+ 4(k− k̄+ 1)κ2

p =
(1 + 8(k− k̄+ 1))κ2

p

2
≤ 9(k− k̄)κ2

p. (53)

Hence, (48) with k= k̄, (49), (53), and the fact that βk = β̃l for every k ∈ Cl, imply that for any k ∈ Cl
such that k ≥ k̄+ 1,

(1−σ2)

2λ

k∑

j=k̄+1

‖rj‖2
(49)

≤
k∑

j=k̄+1

[
Lβj

(zj−1, pj−1)−Lβj
(zj , pj) +

1

βj
‖pj − pj−1‖2

]

j∈Cl=
k∑

j=k̄+1

[
Lβ̃l

(zj−1, pj−1)−Lβ̃l
(zj, pj) +

1

β̃l
‖pj − pj−1‖2

]

≤Lβ̃l
(zk̄, pk̄)−Lβ̃l

(zk, pk) +
1

β̃l

k∑

j=k̄+1

‖pj − pj−1‖2

(48)

≤ Lβ̃l
(zk̄, pk̄−1)−Lβ̃l

(zk, pk) +
1

β̃l

k∑

j=k̄

‖pj − pj−1‖2

(53)

≤ Lβ̃l
(zk̄, pk̄−1)−Lβ̃l

(zk, pk)−
‖pk‖2

2β̃l
+

9(k− k̄)κ2
p

β̃l

= (k− k̄)

[
∆k +

9κ2
p

β̃l

]
,

where the last equality follows from the definition of ∆k in (35) and the fact that k̂ = k̄ − 1. The
proof of (52) now follows by dividing the above inequality by (k− k̄)(1− σ2)/(2λ) and by taking j
such that ‖rj‖= mink̄+1≤j≤k ‖rj‖.

The next result, whose proof can be found in Appendix C, contains some useful relations about
the sequence {(ẑk, p̂k, ŵk, q̂k)} generated by NL-IAPIAL.
Lemma 3.4. Consider the sequences {(ẑk, p̂k, ŵk, q̂k)}, {pk}, and {rk} generated by NL-IAPIAL.
Then, for every k ≥ 1, we have:

ŵk ∈∇f(ẑk) + ∂h(ẑk) +∇g(ẑk)p̂k, 〈g(ẑk) + q̂k, p̂k〉= 0, g(ẑk) + q̂k �K 0, p̂k �K∗ 0, (54)

‖ŵk‖ ≤
1

λ
(1 + 2σ)‖rk‖, ‖q̂k‖ ≤

B(1)
g σ

M̃k

‖rk‖+
1

βk
‖pk− pk−1‖, (55)

where B(1)
g is as in (23) and (M̃k, σ) is given in (26).

Some comments about Lemma 3.4 are in order. First, in view of the fact that (54) implies that the
quadruple (ẑ, p̂, ŵ, q̂) = (ẑk, p̂k, ŵk, q̂k) satisfies all the relations in (5), it follows that such a quadruple
becomes a (ρ̂, η̂)-approximate stationary quadruple of (1) whenever ‖ŵk‖ ≤ ρ̂ and ‖q̂k‖ ≤ η̂. The
inequalities in (55) provide useful bounds for these residual pair in terms of ‖rk‖ and ‖pk−pk−1‖/βk
which are used to prove that {(ŵk, q̂k)} eventually approaches zero. Hence, the latter two inequalities

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 15

will eventually be satisfied, which implies that NL-IAPIAL computes a (ρ̂, η̂)-approximate stationary
quadruple of (1) after a finite number of iterations.

The next result shows that during an l-th cycle of NL-IAPIAL, the residual sequence {(ŵk, q̂k)}
can be controlled by β̃l and {∆k} defined in (35).
Lemma 3.5. Consider the sequence {(ŵk, q̂k)}k∈Cl

generated during the l-th cycle of NL-IAPIAL.
Then, for every k ∈ Cl and k ≥ kl−1 + 2, there exists an index j ∈ {kl−1 + 2, . . . , k} such that

‖ŵj‖2 ≤ 2mfCσ∆k +
mfκ

2
2

2Mgβ̃l
, ‖q̂j‖≤

mfκ
2
3

Mgβ̃l
, (56)

where Cσ, ∆k, and (κ2, κ3) are as in (30), (35), and (42), respectively.

Proof. First, recall that for any k ∈ Cl, we have βk = β̃l in view of (36). Hence, the proof of the first
inequality in (56) for some j ∈ {kl−1 + 2, . . . , k} follows immediately from Lemma 3.3(b), the first
inequality in (55), and the definitions of (Cσ, λ) and κ2 in (30) and (42), respectively. Now, from the
second inequality in (55), the definition of λ in (30), the triangle inequality for norms, Proposition 2.5,
(51), and the fact that M̃k ≥ λβ̃lMg (see (24) and (26)), we have

‖q̂j‖ ≤
B(1)
g σ

M̃k

‖rj‖+
1

β̃l
(‖pj‖+ ‖pj−1‖)≤

σB(1)
g Dh

λ(1−σ)Mgβ̃l
+

2κp

β̃l

=

(
σB(1)

g Dh

1−σ +
Mgκp
mf

)
2mf

Mgβ̃l
.

On the other hand, it follows from the fact that B(1)
g ≤

√
Mg (see (24)) and the definitions of θh, κ0,

and κp in (38), (39), and (40), respectively, that

σB(1)
g Dh

1−σ ≤ σmin{1, d̄}θh
√
Mg

1−σ ≤ σDhθh
√
Mg

1−σ ≤ κ0θh
√
Mg

4mf

≤ τgκp
√
Mg

4mf

.

Hence, we conclude that

‖q̂j‖≤
(
τg
√
Mg + 4Mg

) κp

2Mgβ̃l
∀j ∈ {kl−1 + 2, . . . , k},

which, together with the previous conclusion about ‖ŵj‖ and the definition of κ3 in (42), implies the
existence of an index j ∈ {kl−1 + 2, . . . , k} satisfying (56).

The next result establishes the rate in which the sequence {∆k} defined in (35) converges to zero
Lemma 3.6. Consider the sequence {(zk, pk)}k∈Cl

generated during the l-th cycle of NL-IAPIAL and
let ∆k be as in (35). Then, for every k ∈ Cl and k ≥ kl−1 + 2, we have

∆k ≤
∆φ∗ + 2mfDh

k− kl−1− 1
,

where Dh, ∆φ∗, and mf are as in (38), (41), and (A2), respectively.

Proof. From step 1 of NL-IAPIAL we have that (λ, zk, vk, εk, σk) satisfies (25). Moreover, we also
have 1− 2σ2

k ≥ 0 due to σk ≤ σ ∈ (0,1/
√

2] (see NL-IAPIAL input and (26)). Hence, it follows from
Lemma B.3 with φ̃= λLβk

(·, pk−1), (σ̃, s) = (σk,1), and (x0, x) = (zk−1, zk) that

λLβk
(zk, pk−1)≤ λLβk

(z, pk−1) + ‖z− zk−1‖2, ∀z ∈H. (57)

Since the definition of Lβ in (2) implies that Lβk
(z, pk−1)≤ φ(z) for every z ∈F := {z ∈H : g(z)�K

0}, it follows from (57) and the definitions of φ∗ and Dh in (1) and (38), respectively, that

Lβk
(zk, pk−1)≤ φ∗ +

D2
h

λ
. (58)

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
16 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Now, in view of the definitions of Lβ and φ∗ given in (2) and (43), respectively, we have

Lβk
(zk, pk) +

‖pk‖2

2β̃l
= φ(zk) +

1

2β̃l
dist2(pk + β̃lg(zk),−K)≥ φ∗.

Since the l-th cycle Cl starts at iteration kl−1 + 1 and βk = β̃l for any k ∈ Cl, it follows from the
definition of ∆k given in (35), (58) with k= kl−1 + 1, and the above inequality that

∆k =
1

k− kl−1− 1

(
Lβ̃l

(zkl−1+1, pkl−1
)−Lβ̃l

(zk, pk)−
‖pk‖2

2β̃l

)
≤ 1

k− kl−1− 1

(
φ∗ +

D2
h

λ
−φ∗

)
,

which proves the lemma in view of the definitions of λ and ∆φ∗ in (30) and (43), respectively.

Now we are ready to present the proof of Proposition 2.6.

Proof of Proposition 2.6.
(a) First note that NL-IAPIAL calls in its step 1 the ACG algorithm of Appendix A with inputs

given by (27). Note also that within the l-th cycle, we have βk = β̃l in view of (36). Hence, since
mf ≤ Lf (see (A2)), we conclude that (a) follows from Lemma 2.4 and the fact that (40) and the
definitions of M̃k, λ, and κ1 given in (26), (30), and (42), respectively, imply that

M̃k = λ (Lf +Lg‖pk−1‖+ βkMg) + 1

≤ λ
(
Lf +Lgκp + β̃lMg

)
+ 1≤ κ2

1 +
β̃lMg

2mf

.

(b) Fix a cycle l and note that k̂ in step 3 corresponds to k̂= kl−1. It follows from Lemma 3.6 that,
for every k ∈ Cl and k≥ k̂+ 2,

∆k ≤
∆φ∗ + 2mfDh

k− k̂− 1
.

Hence, we have that if some k ∈ Cl is such that

k > k̂+ 1 +
2Cσ (∆φ∗ + 2mfDh)

λρ̂2
(59)

then ∆k satisfies inequality (35), ending the l-th cycle. Hence, (b) follows immediately from this
conclusion, the definition of λ in (30), and the fact that the l-th cycle starts at k̂+ 1.

(c) First, recall that in the l-th cycle of NL-IAPIAL, we have βk = β̃l = 2l−1β1, for every l≥ 1 (see
(36)). If NL-IAPIAL performs just one cycle then l̄= 1 and then the result immediately follows from
(54), the stopping criterion in step 2 and Definition 2.2. Assume then that NL-IAPIAL performs
more than one cycle. We argue that NL-IAPIAL stops before or at the first cycle l̄ where β̃l̄ ≥ β̄(ρ̂, η̂)
and β̄(ρ̂, η̂) is as in (43). Suppose that the algorithm has not stopped before a cycle l̄, and note that
the definition of β̄(ρ̂, η̂) in (43) implies

β̃l̄ ≥
mf

Mg

(
κ2

2

ρ̂2
+
κ2

3

η̂

)
, (60)

where κ2 and κ3 are as in (42). Now, if at the l̄-th cycle, NL-IAPIAL performs at least k̄ ≥ kl̄−1 + 2
outer iterations, where k̄ is the smallest index such that

2mfCσ (∆φ∗ + 2mfDh)

k̄− kl̄−1− 1
≤ ρ̂2

2
, (61)

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 17

then, in view of (56), Lemma 3.6, (60), and (61), there exists an index j ∈ {kl̄−1 + 2, . . . , k̄} such that

‖ŵj‖2 ≤ 2mfCσ∆k̄ +
mfκ

2
2

2Mgβ̃l̄
≤ 2mfCσ (∆φ∗ + 2mfDh)

k̄− kl̄−1− 1
+
κ2

2

2

(
κ2

2

ρ̂2
+
κ2

3

η̂

)−1

≤ ρ̂2

2
+
ρ̂2

2
= ρ̂2,

and also

‖q̂j‖ ≤
mfκ

2
3

Mgβ̃l̄
≤ κ2

3

(
κ2

2

ρ̂2
+
κ2

3

η̂

)−1

≤ η̂.

More specifically, since we assumed that at least k̄ iterations are performed, we have j = k̄. Hence,
NL-IAPIAL must stop before or on iteration k̄ within the l̄ cycle, in view of the stopping criterion
in step 2. In view of step 3 of NL-IAPIAL, we then have that

βk = β̃l = 2l−1β1 ≤ 2β̄, ∀l≤ l̄.

The conclusion now follows from the above bound, step 2 of NL-IAPIAL, (54), and Definition 2.2.

3.2. Proof of Proposition 2.5 The first lemma describes some basic facts about the sequence
{(zk, pk,wk, rk, εk)} generated by NL-IAPIAL.
Lemma 3.7. Consider the sequence {(zk, pk,wk, rk, εk)} generated by NL-IAPIAL. Then, the follow-
ing statements hold for every k≥ 1:

(a) the quintuple (zk, pk,wk, rk, εk) satisfies

wk ∈∇f(zk) + ∂(λ−1εk)h(zk) +∇g(zk)pk,

‖wk‖≤
1

λ
(1 + σ)‖rk‖, εk ≤

σ2

2
‖rk‖2;

(62)

(b) the residual pair (wk, εk) satisfies

εk ≤
σ2D2

h

2(1−σ)2
, ‖wk‖ ≤

(
1 + σ

1−σ

)
Dh

λ
, (63)

where σ and Dh are as in (26) and (38), respectively.

Proof. (a) The proof of this statement is presented in Appendix C.
(b) The first inequality in (63) follows by combining (51), the inequality in (25), and the definition

of σk in (26). The last inequality in (63) follows from (51) and the first inequality in (62).

The following technical result, whose proof can be found in Lemma 3.10 of [19], plays an important
role in the proof of Lemma 3.10 below.
Lemma 3.8. Let h be a function as in (A1). Then, for every u, z ∈ H, δ ≥ 0, and ξ ∈ ∂δh(z), we
have

‖ξ‖dist(u, ∂H)≤ [dist(u, ∂H) + ‖z−u‖]Kh + 〈ξ, z−u〉+ δ,

where ∂H denotes the boundary of H.
The idea behind the proof of Lemma 3.10 of [19] is based on the following two observations: i) any

h as in (A1) satisfies the condition that ∂εh(z)⊂N ε
H(z) + B̄(0,Kh) (see Lemma A.2(ii) of [19]); and,

ii) any closed convex function satisfying the latter condition satisfies the conclusion of Lemma 3.8. It
is worth mentioning that the proof of the second observation uses a technical inequality that appears
in the proof of Lemma 3 of [26].

The following technical result, whose proof is based on the two previous lemmas, is used in
Lemma 3.10 to derive a recursive formula below relating pk−1 and pk.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
18 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Lemma 3.9. Consider the sequence {(zk, pk)} generated by NL-IAPIAL and let z̄, κ0, and d̄ be as
in (A4), (39), and (38), respectively. Then, the following inequality holds

〈∇g(zk)pk, zk− z̄〉 ≤Dhκ0− d̄‖∇g(zk)pk‖, ∀k≥ 1. (64)

Proof. Let {(zk, pk,wk)} be generated by NL-IAPIAL and note that, in view of the inclusion in (62),
we have wk−∇f(zk)−∇g(zk)pk ∈ ∂(λ−1εk)h(zk) for every k≥ 1. Hence, it follows from the definition
of d̄, and Lemma 3.8 with ξ =wk−∇f(zk)−∇g(zk)pk, z = zk, u= z̄ and δ = λ−1εk, that

d̄‖wk−∇f(zk)−∇g(zk)pk‖≤
(
d̄+ ‖zk− z̄‖

)
Kh + 〈wk−∇f(zk)−∇g(zk)pk, zk− z̄〉+

εk
λ

≤ (d̄+Dh)Kh−〈∇g(zk)pk, zk− z̄〉+ ‖wk−∇f(zk)‖Dh +
εk
λ
,

where the last inequality is due to Cauchy-Schwarz inequality and the fact that ‖zk − z̄‖ ≤Dh (in
view of z̄, zk ∈ H and the definition of Dh in (38)). Now, using the reverse triangle inequality for
norms and rearranging the resulting inequality, we have

〈∇g(zk)pk, zk− z̄〉+ d̄‖∇g(zk)pk‖≤ (d̄+Dh)Kh + ‖wk−∇f(zk)‖ (d̄+Dh) +
εk
λ

≤ 2DhKh + 2

(
(1 + σ)Dh

λ(1−σ)
+B

(1)
f

)
Dh +

σ2D2
h

2λ(1−σ)2

where the last inequality is due to the definition of B
(1)
f in (38), the inequalities in (63), and the fact

d̄≤Dh. Hence, (64) follows in view of the definition of κ0 in (39).

We are now ready to show that the sequence {pk} is bounded.
Lemma 3.10. Consider the sequence {(pk, βk)} generated by NL-IAPIAL and let κ0, τg, and d̄ be
as in (39), (A4) and (38), respectively. Then, for every k ≥ 1, we have

min{1, d̄}τg‖pk‖+
‖pk‖2

βk
≤Dhκ0 +

1

βk
〈pk, pk−1〉. (65)

Proof. First note that the first two identities in (46) imply that

〈pk, g(zk)〉=
1

βk
〈pk, sk + pk− pk−1〉=

‖pk‖2

βk
− 1

βk
〈pk, pk−1〉.

Using this identity, (64), the fact that pk ∈ K∗, and relation (15) with (z, z′, p) = (zk, z̄, pk), we
conclude that

Dhκ0− d̄‖∇g(zk)pk‖
(64)

≥ 〈∇g(zk)pk, zk− z̄〉= 〈pk, g′(zk)(zk− z̄)〉
(15)

≥ 〈pk, g(zk)〉− 〈pk, g(z̄)〉=
‖pk‖2

βk
− 1

βk
〈pk, pk−1〉+ |〈pk, g(z̄)〉|,

or equivalently,

d̄‖∇g(zk)pk‖+ |〈pk, g(z̄)〉|+
‖pk‖2

βk
≤Dhκ0 +

1

βk
〈pk, pk−1〉.

Inequality (65) now follows from (17) and the latter inequality.

Based on the recursive formula (65), we are now ready to give the proof of Proposition 2.5.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 19

Proof of Proposition 2.5. The proof is done by induction. Inequality (40) trivially holds for k = 0.
Assume that (40) holds with k = i − 1 for some i ≥ 1. This assumption together with (65), the
Cauchy-Schwarz inequality, and the definitions of θh and κp in (38) and (40), respectively, imply that

(
min{1, d̄}τg +

‖pi‖
βi

)
‖pi‖ ≤Dhκ0 +

‖pi‖ · ‖pi−1‖
βi

≤Dhκ0 +
‖pi‖κp
βi

= min{1, d̄}τg
θhκ0

τg
+
‖pi‖κp
βi

≤
(

min{1, d̄}τg +
‖pi‖
βi

)
κp,

which implies that ‖pi‖ ≤ κp. Then, (40) also holds with k= i and hence, by induction, we conclude
that (40) holds for the whole sequence {pk}.

4. Numerical Experiments This section presents numerical experiments that highlight the
performance of two variants of NL-IAPIAL, named IPL and IPL(A), against six other benchmark
methods for solving NCO problems with linear or nonlinear convex constraints. It contains five
subsections. The first four present the numerical results on different classes of constrained NCO
problems, while the last one contains a summary and some comments. For replication purposes, the
MATLAB code for generating the results of this section is available online7.

Before proceeding, we first precisely describe the implementations of NL-IAPIAL. The IPL and
IPL(A) variants considered differ from the description in Section 2 in two important ways. First,
they both modify the parameter σ̃ that is given to the ACG algorithm in its step 1. More specifically,
instead of choosing σ̃ = σk at the k-th iteration, the implementation chooses σ̃ = min{ν/(M̃k)

1/2, σ}
for ν≫ 0. Second, in view of the first modification, they both replace condition (35) with the modified
condition

∆k ≤
λ(1−σ2)ρ̂2

4(1 + 2ν)2
,

where ν is as previously described. In addition to these modifications, IPL(A) replaces the ACG
algorithm with an ACG variant that adapts the ACG stepsize for every ACG prox subproblem. In
particular, it uses the line search subroutine outlined in Appendix A, and it applies a warm-start
strategy8 for choosing the parameter M̃ given to ACG for each prox-subproblem. Regarding (σ, ν)
and the other hyperparameters, both variants choose

β1 = max





1,
Lf[
B

(1)
g

]2




, λ=

1

2mf

, σ =
√

0.3, ν =
√
σ (λLf + 1), p0 = 0.

While we do not show how the above changes affect the convergence of IPL and IPL(A), we do note
that their convergence can be analyzed using the techniques of this paper and those in [19].

We also describe the six benchmark algorithms of this section namely, two variants of the QP-
AIPP method of [17] (nicknamed QP and QP(A)), the iALM of [24], two variants of the S-prox-ALM
(nicknamed SPA1 and SPA2) of [42, 43], and the HiAPeM of [25] (nicknamed HPM). QP is the
method in [16, Algorithm 4.1.1] while QP(A) is a modification of QP that uses the same adaptive
ACG variant and parameter warm-start strategy used by IPL(A). iALM was implemented by the
authors to be exactly as stated in [24, Algorithm 3] with the parameters σ, β0, w0, y0, and γk chosen
as

σ = 2, β0 = max

{
1,

Lf
‖A‖2

}
, w0 = 1, y

0 = 0, γk =
(log 2)‖c(x1)‖

(k+ 1) [log(k+ 2)]
2 ∀k≥ 1,

7 See the examples in ./tests/papers/nl-IAPIAL from the GitHub repository https://github.com/wwkong/nc_opt/.

8 For the first prox subproblem, M̃ is initialized to λM̃k/2 + 1. For k ≥ 1, if Lj is the last (estimated) curvature

constant generated by the adaptive ACG for the kth prox-subproblem, then M̃ for the (k + 1)th subproblem is
initialized to λJk+1/2 + 1, where Jk+1 := (Lj − 1)/λ.

https://github.com/wwkong/nc_opt/

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
20 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

as suggested in [24, Theorem 2]. Moreover, the starting point for each APG9 call is the prox center
for the current prox subproblem. SPA1–SPA2 were also implemented by the authors to be exactly
as stated in [42, Algorithm 2] with the parameters α1, p, c, β, y0, and z0 chosen as

α1 =
Γ

4
, p= 2(Lf + Γ‖A‖2), c=

1

2(Lf + Γ‖A‖2)
, β = 0.5, y0 = 0, z0 = x0,

where Γ = 1 in SPA1 and Γ = 10 in SPA2. Finally, the code for HiAPeM was provided by the authors
of [25] with the parameters σ, β0, γ, γ1, γ2, N0, and N1 chosen as

σ = 3, β0 = 10−2, γ = 1.1, γ1 = 1.5, γ2 = 1, N0 = 100, N1 = 2.

We next describe numerical and mathematical details that are common to all the experiments.
First, throughout this section, we denote I to be the identity matrix, Sn to be the set of symmetric n-
by-n matrices, and Sn+ to be the set of positive semidefinite matrices in Sn. Second, given a tolerance
pair (ρ̂, η̂)∈ ℜ2

++, a pointed convex cone K, and z0 ∈ domh, all the methods attempt to find a pair
(ẑ, p̂) satisfying

dist(0,∇f(ẑ) + ∂h(ẑ) +∇g(ẑ)p̂)
1 + ‖∇f(z0)‖

≤ ρ̂, dist(g(ẑ),NK∗(p̂))

1 + dist(g(z0),−K)
≤ η̂. (66)

Third, as all the methods tested utilize an ACG variant to solve a sequence of convex proximal
subproblems, the number of iterations reported in the experiments are the total number of ACG
iterations needed to obtain a quadruple satisfying (66) (including those which fail to satisfy parameter
line searches within the adaptive ACG variants used in IPL(A), QP(A), and HiAPeM). Fourth, the
bold numbers in each of the tables of this section indicate the method that performed the most
efficiently for a given metric, e.g., runtime or iteration count. Finally, all algorithms described at the
beginning of this section are implemented in MATLAB 2021a and are run on Linux 64-bit machines,
each containing Xeon E5520 processors and at least 8 GB of memory.

We now end with some comments about the choice of algorithms in the experiments presented in
the subsections below. First, QP and QP(A) methods are not included in the experiments of Sub-
sections 4.2 and 4.3 because their current implementations are only available for linearly-constrained
problems (even though they can be extended to nonlinearly-constrained problems). Second, HiAPeM
is only included in the experiments of Subsection 4.3 because the code provided to the authors is
specifically designed to solve the problem class considered in that subsection. Third, S-prox-ALM is
only included in the experiments of Subsection 4.4 because its convergence is only guaranteed when
the composite function h is the indicator function of a polyhedron. Finally, we do not include QP and
IPL in Subsection 4.4 because the results of Subsections 4.1, 4.2, and 4.3 show that their adaptive
variants are substantially more efficient.

4.1. Nonconvex QSDP Given a pair of dimensions (ℓ, n) ∈ N2, a scalar pair (α1, α2) ∈ ℜ2
++,

linear operators A : Sn+ 7→ ℜℓ, B : Sn+ 7→ ℜn, and C : Sn+ 7→ ℜℓ defined pointwise by

[A(Z)]i = 〈Ai, Z〉 , [B(Z)]j = 〈Bj , Z〉 , [C(Z)]i = 〈Qi, Z〉 ,

for matrices {Ai}ℓi=1,{Bj}nj=1,{Qi}ℓi=1 ⊆ℜn×n, positive diagonal matrix D ∈ℜn×n, and a vector pair
(b, d) ∈ ℜℓ ×ℜℓ, we consider the following nonconvex quadratic semidefinite programming (QSDP)
problem:

min
z∈Sn

+

− α1

2
‖DB(z)‖2 +

α2

2
‖C(z)− d‖2

s.t. A(z) = b, 0� z � rI.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 21

Parameters Iteration Count Runtime

n r m Lf iALM QP QP(A) IPL IPL(A) iALM QP QP(A) IPL IPL(A)

50 1.0 1 10 - 23296 1633 18618 1257 - 201.7 17.2 172.9 15.1

50 1.0 1 20 - 15402 1210 10610 782 - 132.8 12.5 98.6 9.3

50 1.0 1 40 - 12611 1076 7614 884 - 108.7 11.0 70.8 10.5

50 1.0 5 40 - 16499 1239 10578 753 - 144.8 13.5 100.6 9.8

50 1.0 10 40 - 17868 1582 15238 1207 - 157.5 17.4 147.4 16.1

50 1.0 20 40 - 74732 4425 53599 1633 - 665.1 51.6 506.2 22.6

50 5.0 1 20 - 40716 2648 35138 2335 - 353.3 28.3 326.9 28.2

50 10.0 1 20 - 110657 6130 99621 5998 - 964.1 66.9 928.7 72.8

50 20.0 1 20 - 129175 7112 116263 6936 - 1125.8 77.7 1088.4 86.5

75 1.0 1 10 - 41201 1948 35565 1626 - 363.6 21.0 336.2 19.5

75 1.0 1 20 - 32647 1576 27857 1289 - 289.1 16.8 264.0 15.4

75 1.0 1 40 - 24932 1289 19939 984 - 220.7 13.7 202.4 18.3

75 1.0 5 40 - 31641 1462 23537 1025 - 375.5 17.5 317.1 17.9

75 1.0 10 40 - 31874 1557 25519 1011 - 367.1 27.8 344.3 18.4

75 1.0 20 40 - 38605 1945 23725 1077 - 481.9 27.3 312.9 21.8

75 5.0 1 20 - 92271 3830 87426 3648 - 1137.5 57.2 1088.7 42.0

75 10.0 1 20 - 104348 4245 98207 4060 - 886.5 44.3 926.3 48.2

75 20.0 1 20 - 152856 5961 143057 5807 - 1312.4 66.2 1380.6 71.3

100 1.0 1 10 - 103570 3251 95110 2928 - 1641.3 62.2 1590.0 61.6

100 1.0 1 20 - 74587 2466 66010 2262 - 1180.4 46.9 1102.5 47.2

100 1.0 1 40 - 59253 2040 50282 1689 - 934.5 38.6 837.6 35.1

100 1.0 5 40 - 55305 1646 46890 1499 - 880.3 32.4 790.3 32.9

100 1.0 10 40 - 82005 3133 61144 2698 - 1311.5 63.9 1034.8 62.2

100 1.0 20 40 - 70045 2266 50591 1499 - 1127.7 46.7 866.5 36.3

100 5.0 1 20 - 129478 3998 119623 3649 - 2059.9 77.6 2008.2 76.8

100 10.0 1 20 - 174666 5178 163769 4844 - 2774.6 99.5 2750.9 101.7

100 20.0 1 20 - 238866 6887 225963 6563 - 3798.7 133.3 3789.0 139.3

Table 3. Iteration counts and runtimes (in seconds) for the Nonconvex QSDP Problem in Subsection 4.1. Cells
marked with “–” are those that did not obtain a solution within the given time limit.

In particular, the problem instances tested are given in Table 3 for algorithms QP, QP(A), IPL,

IPL(A), and iALM. For additional clarity, we describe below how the instances were generated.

First, we chose ℓ= 10, varied n across different problem instances, set ρ̂= 10−2 and η̂ = 10−4, and

ensured that only 5% of the entries of Ai,Bj , and Qi were set to be nonzero. Second, the entries

of Ai, Bj , Qi, and d (resp. D) were generated by sampling from the uniform distribution U [0,1]

(resp. U{1, ...,1000}). Third, the vector b was set to b=A(diag(u)) where u is a random vector in

U [0, r]n×n. Fourth, the initial starting point z0 was set to be the zero matrix. Finally, each problem

instance considered was based on a specific triple (r,mf , Lf), for which the scalar pair (α1, α2) is

selected so that Lf = λmax(∇2f) and −mf = λmin(∇2f), and we set a time limit of 6000 seconds.

4.2. Nonconvex QC-QSDP Given a dimension pair (ℓ, n) ∈ N2, scalar r > 0, matrices

P,Q,R ∈ ℜn×n, and the quantities (α1, α2), B, C, D, and d as in Subsection 4.1, we consider the

9 APG is the name of the ACG subroutine used by iALM.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
22 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

nonconvex quadratically constrained QSDP (QC-QSDP) problem:

min
Z
− α1

2
‖DB(Z)‖2 +

α2

2
‖C(Z)− d‖2

s.t.
1

2
(PZ)∗PZ +

1

2
Q∗QZ +

1

2
ZQ∗Q�R∗R,

0�Z � rI.

In particular, the problem instances tested are given in Table 4 for algorithms iALM, IPL, and
IPL(A). For additional clarity, we describe below how the instances were generated.

Parameters Iteration Count Runtime

n r m Lf Lg iALM IPL IPL(A) iALM IPL IPL(A)

50 1.0 100 103 6.2 - 11058 6760 - 108.5 80.1

50 1.0 100 104 10.9 - 244 213 - 2.4 2.4

50 1.0 100 105 17.1 1862 778 580 18.2 7.5 6.7

50 1.0 101 105 10.9 - 244 213 - 2.3 2.4

50 1.0 102 105 6.2 - 11058 6760 - 107.5 79.7

50 1.0 103 105 2.7 - 13062 7381 - 134.4 89.5

50 5.0 100 105 3.4 724 778 580 7.2 7.5 6.7

50 10.0 100 105 1.7 726 778 580 7.1 7.4 6.7

50 20.0 100 105 0.9 720 778 580 7.1 7.5 6.7

75 1.0 100 103 8.9 - 22766 12386 - 418.4 280.3

75 1.0 100 104 15.8 - 244 212 - 4.4 4.5

75 1.0 100 105 24.7 3409 777 579 61.5 14.1 12.8

75 1.0 101 105 15.8 - 244 212 - 4.4 4.6

75 1.0 102 105 8.9 - 20257 12317 - 377.3 281.3

75 1.0 103 105 4.0 - 135657 19950 - 2515.9 571.6

75 5.0 100 105 4.9 5879 777 579 140.4 14.2 13.0

75 10.0 100 105 2.5 1115 777 579 20.2 14.2 13.0

75 20.0 100 105 1.2 10832 777 579 194.9 14.2 13.0

100 1.0 100 103 11.9 - 40755 16292 - 1230.0 612.6

100 1.0 100 104 21.2 - 252 213 - 7.5 7.7

100 1.0 100 105 33.2 4710 778 580 128.2 23.1 21.5

100 1.0 101 105 21.2 - 244 213 - 7.3 7.7

100 1.0 102 105 11.9 - 158085 22101 - 4714.2 831.4

100 1.0 103 105 5.3 - - 61179 - - 2306.2

100 5.0 100 105 6.6 3575 778 580 97.7 23.1 21.5

100 10.0 100 105 3.3 2406 778 580 65.8 23.3 21.5

100 20.0 100 105 1.7 1706 778 580 46.5 23.1 21.4

Table 4. Iteration counts and runtimes (in seconds) for Nonconvex QC-QSDP Problems in Subsection 4.2. Cells
marked with “–” are those that did not obtain a solution within the given time limit.

First, we chose ℓ= 10, varied n across different problem instances, and chose ρ̂= η̂ = 10−3. Second,
the quantities B, C, D, and d were generated in the same way as in Subsection 4.1, the matrix R
was set to I, and the entries of matrices P and Q were sampled from the uniform distributions
log(Lf/mf) · U [0,1/

√
100nr] and U [0,1/n], respectively. Third, the initial starting point z0 was set

to be the zero matrix. Finally, like in Subsection 4.1, each problem instance considered was based on
a specific triple (r,mf , Lf), for which the scalar pair (α1, α2) is selected so that Lf = λmax(∇2f) and
−mf = λmin(∇2f), and a time limit of 6000 seconds.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 23

4.3. Nonconvex QC-QP Given a dimension pair (ℓ, n) ∈ N
2, matrices {Qj}ℓj=0, vectors

{cj}ℓj=0, scalars {dj}ℓj=0, and scalar r > 0, we consider the nonconvex quadratically constrained
quadratic programming (QC-QP) problem:

min
z

1

2
zTQ0z+ cT0 z+ d0

s.t.
1

2
zTQjz+ cTj z+ dj ≤ 0, j ∈ {1, ..., ℓ},
− r≤ zi ≤ r, i∈ {1, ..., n},

where Qj � 0 for j = 1, ..., ℓ, Q0 is indefinite, and the constraint set has nonempty interior. In par-
ticular, the problem tested are given in Table 5 for algorithms iALM, IPL, IPL(A), and HPM. For
additional clarity, we describe below how the instances were generated and the organization of the
tables.

Parameters Iteration Count

n r m Lf Lg iALM IPL IPL(A) HPM

250 1.0 100 103 7.3 - 2690 273 2679

250 1.0 100 104 9.7 - 2973 644 27934

250 1.0 100 105 12.1 - 3521 1788 59381

250 1.0 101 105 9.7 - 2690 1717 60335

250 1.0 102 105 7.3 - 947 676 8206

250 1.0 103 105 4.8 - 487 390 8262

250 5.0 100 105 12.1 - 13766 863 14963

250 10.0 100 105 12.1 - 27590 1632 11390

250 20.0 100 105 12.1 - 28430 2694 10545

500 1.0 100 103 7.3 - 3834 332 2383

500 1.0 100 104 9.7 - 3287 659 26618

500 1.0 100 105 12.1 - 4316 2554 49287

500 1.0 101 105 9.7 - 3605 1912 61336

500 1.0 102 105 7.3 - 1498 908 9221

500 1.0 103 105 4.8 - 1000 750 8659

500 5.0 100 105 12.1 - 14452 1075 13387

500 10.0 100 105 12.1 - 29301 1877 10549

500 20.0 100 105 12.1 - 91119 4720 7311

1000 1.0 100 103 7.3 - 8862 679 16812

1000 1.0 100 104 9.7 - 4678 726 22044

1000 1.0 100 105 12.1 - 5969 1825 42739

1000 1.0 101 105 9.7 - 5108 2026 58180

1000 1.0 102 105 7.3 - 1018 594 142579

1000 1.0 103 105 4.8 - 1187 847 36673

1000 5.0 100 105 12.1 - 13553 1491 17706

1000 10.0 100 105 12.1 - 26983 2621 11514

1000 20.0 100 105 12.1 - 53820 5658 13451

Table 5. Iteration counts for the Nonconvex QC-QP Problem in Subsection 4.3. Cells marked with “–” are those
that did not obtain a solution within the given time.

First, we chose ℓ= 10, varied n across different problem instances, and set ρ̂= η̂ = 10−5. Second,
the entries of d0 and cj for j = 0, .., ℓ were generated from the U [0,1] distribution. On the other
hand, the entries of dj were generated from the −20− 10 · U [0,10] distribution, the eigenvectors of

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
24 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Qj were taken from the QR decomposition of a random matrix from the U [0,1]n×n distribution, the

eigenvalues of Q0 are taken from the U [−mf , Lf] distribution for a given (mf , Lf) ∈ ℜ2, and the

eigenvalues of Qj for j = 1, .., n are taken from the log(Lf/mf) · U [0,1/3] distribution. Third, the

initial starting point z0 was taken from the U [−r, r]n×n distribution. Finally, each problem instance

considered was based on a specific triple (r,mf , Lf), that specifies the eigenvalues for Q0 and the

domain of h, a time limit of 3000 seconds, and an iteration limit of 1000000.

Also, for the sake of fairness, we compare HPM against iALM, IPL, and IPL(A) in terms of

ACG iteration counts only. This is because: (i) all the tested methods perform ACG iterations that

essentially require the same amount of effort; and (ii) there is substantially more computational

overhead found in the more general implementations of iALM, IPL, and IPL(A) compared to the

more specialized implementation of HPM 10.

4.4. Nonconvex QP Given a pair of dimensions (ℓ, n)∈N2, a scalar pair (ω1, ω2)∈ℜ2
++, matri-

ces Q,C ∈ℜℓ×n and B ∈ℜn×n, positive diagonal matrix D ∈ℜn×n, and a vector pair (b, d)∈ℜℓ×ℜℓ,
we consider the problem

min
z

f(z)− ω1

2
‖DBz‖2 +

ω2

2
‖Cz− d‖2

s.t. Qz = b,
− r≤ zi ≤ r, i∈ {1, ..., n}.

In particular, the problem instances tested are given in Table 6 for algorithms IPL(A), QP(A),

SPA1, and SPA2. For additional clarity, we describe below some differences between NL-IAPIAL and

S-prox-ALM, as well as how the instances were generated.

We now describe the experiment parameters for the problem instances considered. First, we chose

ℓ = 25, varied n across different problem instances, set ρ̂ = η̂ = 10−5, and ensured all generated

matrices were fully dense. Second, the entries of Q, B, C, and d (resp. D) were generated by sampling

from the uniform distribution U [0,1] (resp. U{1, ...,1000}), and the vector b was set to b=Q(u) where

u is a random vector in U [−r, r]n. Third, the initial starting point z0 was a set to be a random vector

in U [−r, r]n. Finally, all experiments were run with a time limit of 3000 seconds, and the tables of

this subsection also report the minimum of the aggregate residuals

r̂ := max

{
dist(0,∇f(ẑ) + ∂h(ẑ) +∇g(ẑ)p̂)

1 + ‖∇f(z0)‖
,

dist(g(ẑ),NK∗(p̂))

1 + dist(g(z0),−K)

}
. (67)

It is worth mentioning that we only report the above residuals in our numerical experiments because

it is (computationally) difficult to choose the right parameters in the S-prox-ALM that guarantee

convergence (see Section 5 for more details).

10 More specifically, the implementation of HPM given by authors of [25] takes the problem data {Qj}ℓ
j=0, {cj}ℓ

j=0,
{dj}ℓ

j=0, and r as input and directly applies the HiAPeM algorithm instance for QC-QP problems. In contrast, the
implementations of iALM, IPL, and IPL(A) take function oracles for f , ∇f , h, g, ∇g, and

proxλh(·) = argmin
u∈dom h

{λh(u) +
1

2
‖u − z‖2}, ΠK(·), ΠK∗(·),

as input and manipulate these oracles to run their algorithm instances. As executing floating-point operations is
substantially less costly than manipulating (symbolic) function oracles, the HPM implementation is drastically more
efficient on an iteration-to-iteration basis (roughly 8-10x more) compared to the iALM, IPL, and IPL(A) implemen-
tations, at the cost of a less general-purpose API.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 25

Parameters Iteration Count Residual r̂/Runtime

n r m Lf iALM QP(A) IPL(A) SPA1 SPA2 iALM QP(A) IPL(A) SPA1 SPA2

250 1.0 100 103 111250 53625 23000 - - -/894 -/403 -/177 3E-04/- 2E-03/-

250 1.0 100 104 103710 60997 50195 - - -/1009 -/541 -/452 3E-04/- 3E-04/-

250 1.0 100 105 58049 38963 30024 - - -/406 -/255 -/199 2E-05/- 2E-05/-

250 1.0 101 105 103800 60851 50195 - - -/550 -/344 -/284 2E-04/- 2E-04/-

250 1.0 102 105 130970 49208 20775 - - -/695 -/277 -/119 4E-04/- 3E-04/-

250 1.0 103 105 427430 279680 16146 269460 256820 -/2257 -/1609 -/96 -/1860 -/1771

250 5.0 100 105 52603 40483 33431 - - -/277 -/228 -/187 2E-05/- 2E-05/-

250 10.0 100 105 67225 41561 33706 - - -/355 -/233 -/190 2E-05/- 2E-05/-

250 20.0 100 105 57393 41786 34756 - - -/302 -/234 -/195 2E-05/- 2E-05/-

500 1.0 100 103 - - 35529 - - 8E-04/- 6E-02/- -/677 5E-03/- 5E-03/-

500 1.0 100 104 - 67928 48991 - - 5E-03/- -/1103 -/807 6E-04/- 5E-04/-

500 1.0 100 105 69861 49650 35549 - - -/1491 -/789 -/568 4E-04/- 4E-05/-

500 1.0 101 105 - 67875 48991 - - 7E-03/- -/1089 -/801 2E-03/- 6E-04/-

500 1.0 102 105 - 123980 24988 - - 7E-02/- -/2009 -/425 1E-03/- 1E-03/-

500 1.0 103 105 - - 67534 - - 1E+00/- 6E-01/- -/1185 1E-03/- 5E-04/-

500 5.0 100 105 68644 50567 35274 - - -/1441 -/791 -/556 5E-04/- 3E-05/-

500 10.0 100 105 73137 50497 35396 - - -/1566 -/794 -/559 3E-04/- 3E-05/-

500 20.0 100 105 79126 50586 35242 - - -/1599 -/760 -/534 2E-04/- 3E-05/-

1000 1.0 100 103 - - 30340 - - 6E-03/- 3E-02/- -/2868 2E-03/- 6E-03/-

1000 1.0 100 104 - 27184 16540 - - 4E-03/- -/2250 -/1380 1E-04/- 1E-04/-

1000 1.0 100 105 - 35192 27672 - - 4E-04/- -/2952 -/2515 3E-02/- 2E-05/-

1000 1.0 101 105 - 27217 16540 - - 4E-03/- -/2298 -/1411 3E-02/- 1E-04/-

1000 1.0 102 105 - - 16129 - - 4E-02/- 3E-02/- -/1461 2E-02/- 3E-03/-

1000 1.0 103 105 - - 11325 - - 3E-01/- 2E-01/- -/1155 7E-03/- 3E-03/-

1000 5.0 100 105 - 35564 27810 - - 4E-04/- -/2986 -/2340 3E-02/- 2E-05/-

1000 10.0 100 105 - 35515 27973 - - 4E-04/- -/2983 -/2354 3E-02/- 2E-05/-

1000 20.0 100 105 - - 28033 - - 4E-04/- 7E-06/- -/2358 3E-02/- 2E-05/-

Table 6. Iteration counts, runtimes, and residuals (see (67)) for the Nonconvex QP Problem in Subsection 4.4.
Entries marked with “–” are those that either: (i) obtained a solution with a residual below the prescribed tolerance;
or (ii) did not obtain a solution within the given time limit.

4.5. Comments about the numerical results Overall, the most efficient methods for the
above experiments were the NL-IAPIAL variants (IPL and IPL(A)). IPL(A) performed particularly
well on the linearly-constrained instances where the ratio Lf/m was relatively small. Between the
two NL-IAPIAL variants, IPL(A) is substantially more efficient. In the QC-QP experiments, we also
noticed that the results of IPL variants did not fluctuate as much as the ones of HiAPeM across
different problem instances.

We conjecture that IPL and IPL(A) perform significantly better than HiAPeM and iALM on some
instances because they apply their multiplier updates more often.

5. Concluding Remarks We first discuss how the n-PAL methods and PAL methods described
in the Overview of AL methods part Section 1 above compare to one another. First, the subproblems
generated by the n-PAL methods can be nonconvex whereas the ones generated by the PAL methods
are always strongly convex. Second, some n-PAL algorithms compute the approximate stationary
point zk of Lβk

(·;pk−1) by using prox-type methods that generate a sequence of convex subproblems
similar to those of the PAL methods. Hence, the subproblems generated by the n-PAL methods are
generally much harder to solve than those generated by the PAL methods.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
26 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

We now give a detailed comparison of NL-IAPIAL with the HiAPeM of [25]. Both methods employ
an ACG-type subroutine to inexactly solve a generated sequence of strongly convex proximal subprob-
lems. Using nearly the same assumptions as in this paper and denoting ε= min{ρ̂, η̂}, [25] establishes
an improved O(ε−2.5 log ε−1) ACG iteration complexity of HiAPeM starting from any point in domh
for problems where K = {0}×ℜn+. However, as noted in the Related works part of Section 1, HiA-
PeM is neither a PAL method (like NL-IAPIAL), nor an n-PAL method (like the iALM of [24]), but
rather an inexact PPM applied to nonconvex problem (1) (see, for example, [36] for the analysis of
inexact PPMs for solving (1) in the convex setting). Loosely speaking, for some suitable prox stepsize
λ > 0, its k-th prox iteration computes an approximate stationary point zk of the strongly convex
subproblem minz{λφ(z) + ‖z− zk−1‖2/2 : g(z)�K 0} by using either an accelerated penalty method
or an accelerated AL method. It is worth mentioning that in the case where f is convex, solving the
k-th subproblems corresponds to inexactly solving

∂zL0(z;p) +
1

λk
(z− zk−1)∋ 0, −∂pL0(z;p)∋ 0,

for (z, p) = (zk, pk) (cf. (8) and (10)).
We next compare NL-IAPIAL with the S-prox-ALM of [43], which is neither a PAL nor n-PAL

method, but is based on the augmented Lagrangian function and performs multiplier updates similar
to the ones in PAL or n-PAL methods. First, it is shown in [43] that S-prox-ALM has an O(ε−2)
iteration complexity under the assumption that g is affine and the strong assumption that the func-
tion h in (1) is the indicator function of a polyhedron. Second, S-prox-ALM generates a sequence
of proximal subproblems as in (3), but applies a single composite gradient step to inexactly solve
a variant11 of (3) instead of an ACG-type subroutine. Finally, while the NL-IAPIAL method only
requires choosing its parameters based on the scalars mf , Lf , Lg, and Mg to guarantee convergence,
the S-prox-ALM requires choosing its parameters based on the supremum of a set of Hoffman con-
stants (see the proof of [43, Lemma 3.10] and [43, Lemma 4.8]) that is generally difficult to compute
and compare with the other constants of NL-IAPIAL.

Finally, it is worth mentioning that NL-IAPIAL is a slightly modified version of the proximal
method of multipliers (PMM) studied by Rockafellar in [37]. More specifically, the k-th iteration
of the PMM consists of (3)–(4) with K = ℜℓ+ and λk = βk for every k and, hence, can be viewed
as inexactly solving (8) with λk = βk and χk = 1 so that both inclusions on it have the same prox
stepsize. Under the assumption that (1) is a convex optimization problem, Rockafellar then uses
classical results for inexact proximal point methods to analyze the convergence of the PMM. However,
the approach outlined above does not generalize to the nonconvex setting in several aspects, namely:
(i) while the PMM converges when βk is constant, convergence of NL-IAPIAL requires βk to grow
significantly; (ii) in contrast to the PMM, NL-IAPIAL chooses λk to be a sufficiently small constant
to convexify the subproblem in (3); and (iii) the analysis of NL-IAPIAL does not rely on proximal
point theory for maximal monotone operators since the operator (z, p) 7→ [∂zL0(z;p),−∂pL0(z;p)] is
not monotone in the setting of NL-IAPIAL.

Appendix A Review of an ACG Algorithm This section reviews an ACG algorithm
invoked by NL-IAPIAL for solving the sequence of subproblems (3) which arise during its implemen-
tation. It also describes a bound on the number of ACG iterations performed in order to obtain a
certain type of inexact solution of each subproblem.

Consider the composite optimization problem

11 Instead of inexactly minimizing the function λL(·; pk−1) + ‖ · −zk−1‖2/2, the S-prox-ALM exactly minimizes the
linear approximation of the function λL(·; pk−1) + ‖z − z̃k−1‖/2 for a point z̃k−1 different from zk−1. Hence, S-prox-
ALM is neither a PAL method nor an n-PAL method.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 27

min {ψ(x) :=ψs(x) +ψn(x) : x∈ℜn}, (68)

where the following conditions are assumed to hold: where the following conditions are assumed to
hold:

(B1) ψn :ℜn→ (−∞,+∞] is a proper closed convex function;
(B2) ψs is a convex differentiable function on domψn and there exists (µ̃, M̃) ∈ ℜ2

+ satisfying

M̃ > µ̃ and
µ̃‖u−x‖2/2≤ ψs(u)− ℓψs(u;x)≤ M̃‖u−x‖2/2 (69)

for every x,u∈ domψn, where ℓψs(· ; ·) is defined in (12).
The ACG algorithm, given (y0, σ̃) ∈ domψn × ℜ++, inexactly solves (68) by computing a triple

(y, u, η)∈ domψn×ℜn×ℜ+ satisfying

u∈ ∂η(ψs +ψn)(y) ‖u‖2 + 2η≤ σ̃2‖y0− y+ u‖2. (70)

With this in mind, we now state the ACG variant considered in this paper.

ACG

(0) Let a pair of functions (ψs, ψn) satisfying (B1) and (B2) for some (µ̃, M̃)∈ℜ2
+, a scalar σ̃ > 0,

and an initial point y0 ∈ domψn be given; set x0 = y0, A0 = 0, τ0 = 1, and j = 0;
(1) ζ = 1/(M̃ − µ̃) and compute the quantities

aj+1 =
ζτj +

√
(ζτj)2 + 4τjAj

2
, Aj+1 =Aj + aj+1, x̃j+1 =

Ajyj + aj+1xj
Aj+1

τj+1 = τj + µ̃aj+1, yj+1 = argmin
y∈ℜn

{
ℓψs(y; x̃j+1) +ψn(y) +

M̃

2
‖y− x̃j+1‖2

}
, (71)

xj+1 =
1

τj+1

[
aj+1

ζ
(yj+1− x̃j+1) + µ̃aj+1yj+1 + τjxj

]
;

(2) compute the quantities

uj+1 = µ̃(yj+1−xj+1) +
x0−xj+1

Aj+1

,

ηj+1 =
1

2Aj+1

(‖x0− yj+1‖2− τj+1‖xj+1− yj+1‖2
)
;

(3) if the inequality
‖uj+1‖2 + 2ηj+1 ≤ σ̃2‖y0− yj+1 + uj+1‖2

holds, then stop and output (y, u, η) := (yj+1, uj+1, ηj+1); otherwise, set j = j+ 1 and go to (1).

Some remarks about ACG follow. First, the most common way of describing an iteration of ACG
is as in step 1. Second, the auxiliary iterates pair {(uj, ηj)} computed in step 2 is used to develop a
stopping criterion for ACG when it is called as a subroutine for solving the subproblems generated
in step 1 of NL-IAPIAL in Subsection 2.2. Third, it can be shown (see for example [10, 20]) that
ACG (without steps 2 and 3) with µ̃= 0 corresponds to the well-known FISTA algorithm. Fourth,
the sequence {Aj} has the following increasing property:

Aj ≥
1

M̃ − µ̃
max




j2

4
,

(
1 +

√
µ̃

4(M̃ − µ̃)

)2(j−1)


 , ∀j ≥ 1.

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
28 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Finally, notice that each iteration of an ACG-type method consists of an O(1) number of ψs function,
ψs gradient, and ψn prox evaluations.

It is worth mentioning that adaptive variants12 of ACG have been studied, for example, in [4,
16, 27, 32, 34]. One kind of adaptiveness used in these variants, which is also used inside some
methods benchmarked in Section 4, involves replacing M̃ in the computation of yj+1 in step 1 by
an estimate Mj+1 computed as follows: Mj+1 is initially set to be Mj and, if necessary, is increased
(either additively, multiplicatively, or both) and step 1 is repeated a few times (if needed) until the
inequality ψs(yj+1)− ℓψs(yj+1; x̃j+1) ≤Mj+1‖yj+1 − x̃j+1‖2/2 is satisfied. Observe that every time
step 1 is repeated within the j-th iteration of ACG, ζ changes (and hence so do aj+1, Aj+1, x̃j+1,
τj+1, and yj+1) since Mj+1 = M̃ changes adaptively.

The next result, whose proof can be found in [20, Lemma 2.13], summarizes the main properties
of the above ACG.
Proposition A.1. Let {(yj, uj, ηj)}j≥1 be the sequence generated by ACG applied to (68), where
(ψs, ψn) is a given pair of data functions satisfying (B1) and (B2). Then, the following statements
hold:

(a) for every j ≥ 1, we have ηj ≥ 0 and uj ∈ ∂ηj
(ψs +ψn)(yj);

(b) for any σ̃ > 0, the ACG method outputs a triple (y, u, η)∈ domψn×ℜn×ℜ+ satisfying

u∈ ∂η(ψs +ψn)(y) ‖u‖2 + 2η≤ σ̃2‖y0− y+ u‖2 (72)

in at most 


1 +


1

2
+

√
M̃ − µ̃
µ̃


 log+

1 Ã



(73)

iterations, where

Ã := (2µ̃+ 3)(1 + σ̃)2(M̃ − µ̃)σ̃−2.

Appendix B Convex Analysis The first result presents some well-known properties about
the projection and distance functions over a closed convex set.
Lemma B.1. Let K⊆ℜn be a nonempty closed convex cone and S be a nonempty closed convex set.
Then the following properties hold:

(a) for every u, z ∈ℜn, we have ‖ΠS(u)−ΠS(u)‖≤ ‖u− z‖;
(b) the function d(·) := dist2(·, S)/2 is differentiable, and its gradient is given by

∇d(u) = u−ΠS(u)∈NS(ΠS(u)) ∀u∈ℜn; (74)

(c) it holds that u∈NK∗(p) if and only if 〈u, p〉= 0, u∈−K, and p∈K∗.

Proof. See [3, Theorem 5.4] for (a), [3, Example 6.61] and [3, Theorem 6.39(ii)] for (b), and [38,
Example 11.4] for (c).

The next result presents a well-known fact (see, for example, [8, Sub-subsection 2.13.2]) about
closed convex cones.
Lemma B.2. For any closed convex cone K, we have that x∈ intK if and only if

〈x, p〉> 0 ∀p∈K∗ such that ‖p‖= 1. (75)

The below technical result presents a fact about approximate subdifferentials, and its proof can be
found, for example, in [30, Lemma A.3].

12 The closest variant to ACG in this paper can be found in [16, Section 5.2].

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 29

Lemma B.3. Let a proper function φ̃ :ℜn→ (−∞,∞], scalar σ̃ ∈ (0,1) and (x0, x)∈ℜn×dom φ̃ be
given, and assume that there exists (v, ε) such that

v ∈ ∂ε
(
φ̃+

1

2
‖ ·−x0‖2

)
(x), ‖v‖2 + 2ε≤ σ̃2‖v+ x0−x‖2. (76)

Then, for every x∈ℜn and s > 0, we have

φ̃(x) +
1

2

[
1− σ̃2(1 + s−1)

]‖v+ x0−x‖2≤ φ̃(z) +
s+ 1

2
‖z−x0‖2.

Appendix C Proof of Lemma 3.4 and Lemma 3.7(a) The first result, whose proof is
given in [17, Appendix A], describes some properties of a composite gradient step.
Lemma C.1. Assume that h̃∈Conv ℜn, g̃ is a differentiable function on dom h̃, and (z, ε)∈ dom h̃×
ℜ+ is such that

0∈ ∂ε(g̃+ h̃)(z). (77)

Assume also that there exists L̃ > 0 such that

g̃(u)− ℓg̃(u; z)≤ L̃

2
‖u− z‖2 ∀u∈ domh̃, (78)

and define

z̃ := argmin
u

{
ℓg̃(u; z) + h̃(u) +

L̃

2
‖u− z‖2

}
, w̃ := L̃(z− z̃). (79)

Then, the quadruple (z, z̃, w̃, ε) satisfies

w̃ ∈∇g̃(z) + ∂h̃(z̃), w̃ ∈∇g̃(z) + ∂εh̃(z), ‖w̃‖≤
√

2L̃ε. (80)

The next result specializes the above results to our setting and gives two technical identities.
Lemma C.2. Let L̃β be as in (22), let βk, (zk, vk, εk), ẑk, and (zk−1, pk−1) be as in the k-th iteration
of NL-IAPIAL, and define

g̃ := λL̃βk
(·;pk−1)−〈vk, ·〉+

1

2
‖ ·−zk−1‖2, h̃ := λh, w̃k := M̃k(zk− ẑk) (81)

Then, it holds that

w̃k ∈∇g̃(zk) + ∂h̃(ẑk), w̃k ∈∇g̃(zk) + ∂εk
h̃(zk), ‖w̃k‖ ≤

√
2εkM̃k. (82)

where M̃k is as in (26). Moreover, it holds that

1

λ
(rk +∇g̃(zk)) =∇zL̃βk

(zk;pk−1) =∇f(zk) +∇g(zk)ΠK∗(pk−1 + βkg(zk)) ∀u∈ℜn. (83)

Proof. It follows from the definition of ε-subdifferential in (11) and the fact that the triple (zk, vk, εk)
satisfies the inclusion in (25) that (77) holds with (g̃, h̃) and (z, ε) = (zk, εk). In view of assumptions
(A1)–(A3), Lemma 2.3, and the definition of M̃k in (26), the functions pair (g̃, h̃) defined above
satisfies the assumptions of Lemma C.1 with L̃ = M̃k. Note also that the element z̃ computed
according to (79) corresponds to ẑk computed in (32), in view of the definition of rk given in (31).
Hence, it follows from Lemma C.1 that (82) holds. The last statement of the lemma follows from the
definition of rk in (31) and Lemma 2.3(b).

We are now ready to prove Lemma 3.7(a).

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
30 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Proof of Lemma 3.7(a). Let h̃ be as in (31). In view of (11), the definitions of pk and wk in (31) and
(34), respectively, and Lemma C.2, we have

wk =
1

λ

(
rk +M̃k(zk− ẑk)

)
∈ 1

λ

(
rk +∇g̃(zk) + ∂εk

h̃(zk)
)

=∇f(zk) +∇g(zk)ΠK∗(pk−1 + βkg(zk)) + ∂(λ−1εk)h(zk)
=∇f(zk) +∇g(zk)pk + ∂(λ−1εk)h(zk),

which proves the inclusion in (62). We now show that the inequalities in (62) hold. The bound on εk
in (62) follows immediately from the inequality in (25) and the definition of rk given in (34). Now,
it follows from the inequality in (25), the definition of rk and wk in (31) and (34), respectively, the
triangle inequality for norms, and Lemma C.2 that

λ‖wk‖= ‖rk +M̃k(zk− ẑk)‖≤ ‖rk‖+M̃k‖zk− ẑk‖
≤ ‖rk‖+

√
2εkM̃k ≤

(
1 + σk

√
M̃k

)
‖rk‖, (84)

which immediately implies the desired bound on ‖wk‖ in view of the definition of σk in (26).

We now close with the proof of Lemma 3.4.

Proof of Lemma 3.4.
We first show that the inclusion in (54) holds. Using the first identity in (83), Lemma C.2,

Lemma 2.3(b), and the definitions of wk and (ŵk, p̂k) in (34) and (33), respectively, we have

ŵk =
1

λ

[
rk +M̃k(zk− ẑk)

]
+
[
∇zL̃βk

(ẑk;pk−1)−∇zL̃βk
(zk;pk−1)

]

∈ 1

λ

[
rk +∇g̃(zk) + ∂h̃(ẑk)

]
+
[
∇zL̃βk

(ẑk;pk−1)−∇zL̃βk
(zk;pk−1)

]

=∇zL̃βk
(ẑk;pk−1) + ∂h(ẑk) =∇f(ẑk) +∇g(ẑk)ΠK∗(pk−1 + βkg(ẑk)) + ∂h(ẑk)

=∇f(ẑk) +∇g(ẑk)p̂k + ∂h(ẑk),

which is the desired inclusion in (54). We now show that the bound on ‖ŵk‖ in (55) holds. Using
its definition in (33), Lemma 2.3(c) and the definition of M̃k in (26), the inequality in (25), the
definition of rk given in (34), Lemma C.2, the triangle inequality for norms, and (84), we have

λ‖ŵk‖≤ λ‖wk‖+λ‖∇zL̃βk
(ẑk;pk−1)−∇zL̃βk

(zk;pk−1)‖
≤
(

1 + σk

√
M̃k

)
‖rk‖+M̃k‖ẑk− zk‖≤

(
1 + 2σk

√
M̃k

)
‖rk‖,

which immediately implies the desired bound on ‖ŵk‖ in view of the definition of σk in (26).
To show the bound on q̂k, we first use the definitions of B(1)

g , pk, and p̂k given in (23), (31), and
(33), respectively, the last two inequalities in (84), the Mean Value Inequality, and Lemma B.1(a) to
obtain

1

βk
‖p̂k− pk‖=

1

βk
‖ΠK∗ (pk−1 + βkg(ẑk))−ΠK∗ (pk−1 + βkg(zk))‖≤

1

βk
‖βkg(ẑk)−βkg(zk)‖

≤ sup
t∈[0,1]

‖∇g(tẑk + [1− t]zk)‖ · ‖ẑk− zk‖≤B(1)
g ‖ẑk− zk‖≤

B(1)
g σk√
M̃k

‖rk‖.

Hence, using the triangle inequality for norms and the definition of q̂k given in (33), we have

‖q̂k‖=
1

βk
‖p̂k− pk−1‖≤

1

βk
‖p̂k− pk‖+

1

βk
‖pk− pk−1‖ ≤

B(1)
g σk√
M̃k

‖rk‖+
1

βk
‖pk− pk−1‖,

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 31

which proves the bound on q̂k in view of the definition of σk in (26).
To finish the proof of Lemma 3.4, it remains to show that the last three relations in (54) hold. The

last relation in (54) follows immediately from the definition of p̂k in (33). Now, using Lemma B.1(b)
with S =K∗ and u= pk−1 + βkg(ẑk) as well as the definitions of q̂k and p̂k in (33), we have that

g(ẑk) + q̂k =
1

βk
[pk−1 + βkg(ẑk)− p̂k]∈NK∗(p̂k). (85)

Hence, the remaining relations in (54) follow from the above relation and Lemma B.1(c) with u=
g(ẑk) + q̂k and p= p̂k.

Appendix D Proof of Proposition 2.1

(a) =⇒ (b). This is immediate.
[(b) =⇒ (c)] Suppose (b) holds. If z̄ satisfies (c) then we are done, so suppose that gι(z̄) 6≺J 0 and

ge(z̄) = 0. Our goal is to find d∈ℜn such that (c) holds with z̄ = z̄+ d, which in view of Lemma B.2
with x=−gι(z̄+ d) and the fact that ge is affine, is equivalent to

g′
e(z̄)d= 0, inf

‖pι‖=1,pι∈J ∗
〈−gι(z̄+ d), pι〉> 0. (86)

We now bound the left-hand-side of the inequality in (86). Using the assumption that ∇gι(·) is
Lgι-Lipschitz, we have

inf
‖pι‖=1,pι∈J ∗

−〈gι (z̄+ d) , pι〉= inf
‖pι‖=1,pι∈J ∗

−〈gι(z̄) + g′
ι(z̄)d+ [gι (z̄+ d)− gι(z̄)− g′

ι(z̄)d] , pι〉
≥ inf

‖pι‖=1,pι∈J ∗
〈−gι(z̄)− g′

ι(z̄)d, pι〉− ‖gι (z̄+ d)− gι(z̄)− g′
ι(z̄)d‖

≥ inf
‖pι‖=1,pι∈J ∗

〈−gι(z̄)− g′
ι(z̄)d, pι〉−

Lgι‖d‖2

2
, (87)

for any d ∈ℜn, so it suffices to find d ∈ℜn so that the last expression in (87) is positive. To find an
appropriate direction, we let 0 6= qι ∈ intJ and consider the primal-dual conic optimization problems




min
p
−〈pι, gι(z̄)〉

s.t. ∇gι(z̄)pι +∇ge(z̄)pe = 0
〈qι, pι〉= 1
pι ∈K∗, pe ∈ℜt︸ ︷︷ ︸

(P)




≡




max
d,µ

µ

s.t. − gι(z̄)− g′
ι(z̄)d�J µqι

g′
e(z̄)d= 0
d∈ℜn, µ∈ℜ

︸ ︷︷ ︸
(D)




. (88)

Denoting p∗
ι and (d∗, µ∗) to be optimal solutions of (P) and (D), respectively, we show that µ∗ is

positive and then argue that d∗ is an appropriate direction. Using the fact that (D) has a Slater point
(and hence strong duality holds for (88)), our assumption that−g(z̄)∈K (and hence−〈p∗, g(z̄)〉 ≥ 0),
and (19), it follows that

µ∗ =−〈p∗
ι , gι(z̄)〉= max

{∣∣∣∣
〈[

p∗
ι

0

]
, g(z̄)

〉∣∣∣∣ ,
∥∥∥∥∇g(z̄)

[
p∗
ι

0

]∥∥∥∥
}
≥ τ̃g‖p∗

ι‖> 0, (89)

where the last inequality follows from the second constraint in (P), the fact that qι ∈ intJ , and
Lemma B.2 with (p, x) = (p∗

ι , qι). Since g′
e(z̄)d

∗ = 0 from the second constraint of (D), it only remains
to show that the last expression in (87) is positive for some positive multiple of d∗, i.e., d= λd∗ for

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
32 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

some λ> 0. Using the fact that d∗ is feasible to (D) and our assumption that gι(z̄)�J 0 (and hence
−〈pι, g(z̄)〉 ≥ 0 for every pι ∈J ∗), we first have that for λ< 1 and d= λd∗,

inf
‖pι‖=1,pι∈J ∗

〈−gι(z̄)− g′
ι(z̄)d, pι〉−

Lgι‖d‖2

2

= λ

[
inf

‖pι‖=1,pι∈J ∗

〈
− 1

λ
gι(z̄)− g′

ι(z̄)d
∗, pι

〉
− λLgι‖d∗‖2

2

]

≥ λ
[

inf
‖pι‖=1,pι∈J ∗

〈−gι(z̄)− g′
ι(z̄)d

∗, pι〉−
λLgι‖d∗‖2

2

]

≥ λ
[
µ∗ inf

‖pι‖=1,pι∈J ∗
〈qι, pι〉−

λLgι‖d∗‖2

2

]

= λ

[
µ∗ν− λLgι‖d∗‖2

2

]
, (90)

where ν := inf‖pι‖=1,pι∈J ∗〈qι, pι〉. Using (89) and Lemma B.2 with (p, x) = (pι, qι), it holds that µ∗ν > 0
and, hence, there exists λ > 0 sufficiently small so that the last expression in (90) is positive. As a
consequence, it follows from (87) that (86) holds, or equivalently, (c) holds with z̄ = z̄+λd∗.

[(c) =⇒ (a)] Suppose (c) holds. Since ge is affine and onto, its gradient matrix Ge := ∇ge is
independent of z and has full column rank. Hence, there exists τge > 0 such that

‖Gepe‖≥ τge‖pe‖1 ∀pe ∈ℜt. (91)

On the other hand, the assumption that gι(z̄)≺J 0, and Lemma B.2 with K = J and x =−gι(z̄),
imply that there exists τgι > 0 such that

−〈pι, gι(z̄)〉 ≥ τgι‖pι‖ ∀pι ∈J ∗.

Using the previous inequality and the fact that ‖∇gι(z)‖ is bounded on H, we conclude that there
exists γ > 0 such that

−‖∇gι(z)pι‖− 2γ〈pι, gι(z̄)〉 ≥ [2γτgι −‖∇gι(z)‖] · ‖pι‖≥ τgι‖pι‖1 ∀z ∈H. (92)

Relations (91), (92), and the reverse triangle inequality, then imply that for every z ∈H,

‖∇g(z)p‖− 2γ 〈p, g(z̄)〉= ‖∇gι(z)pι +Gepe‖− 2γ 〈pι, gι(z̄)〉
≥ ‖Gepe‖−‖∇gι(z)pι‖− 2γ 〈pι, gι(z̄)〉 ≥ τge‖pe‖1 + τgι‖pι‖1 ≥ τ̂‖p‖1≥ τ̂‖p‖,

where τ̂ := min{τge , τgι}. It is now straightforward to see that the above inequality yields inequality
(17) with τg = τ̂ /(1 + 2γ). Statement (a) now follows from (17) and the previous conclusion.

Acknowledgments. The first author has been supported by the US Department of Energy
(DOE) and UT-Battelle, LLC, under contract DE-AC05-00OR22725 and also supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration. The second author was partially
supported by ONR Grant N00014-18-1-2077 and AFOSR Grant FA9550-22-1-0088.

References

[1] Aybat N, Iyengar G (2011) A first-order smoothed penalty method for compressed sensing. SIAM J.

Optim. 21(1):287–313.

[2] Aybat N, Iyengar G (2012) A first-order augmented Lagrangian method for compressed sensing. SIAM

J. Optim. 22(2):429–459, URL http://dx.doi.org/10.1137/100786721.

[3] Beck A (2017) First-order methods in optimization (SIAM).

http://dx.doi.org/10.1137/100786721

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 33

[4] Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1):183–202.

[5] Bertsekas D (2016) Nonlinear programming (Athena Scientific), "3" edition.

[6] Boob D, Deng Q, Lan G (2019) Stochastic first-order methods for convex and nonconvex functional
constrained optimization. Available on arXiv:1908.02734 .

[7] Carmon Y, Duchi JC, Hinder O, Sidford A (2018) Accelerated methods for nonconvex optimization.
SIAM J. Optim. 28(2):1751–1772, URL http://dx.doi.org/10.1137/17M1114296.

[8] Dattorro M, Dattorro J (2005) Convex Optimization & Euclidean Distance Geometry (Meeboo Pub-
lishing).

[9] Fletcher R (2013) Practical methods of optimization (John Wiley & Sons).

[10] Florea MI, Vorobyov SA (2018) An accelerated composite gradient method for large-scale composite
objective problems. IEEE Transactions on Signal Processing 67(2):444–459.

[11] Ghadimi S, Lan G (2016) Accelerated gradient methods for nonconvex nonlinear and stochastic pro-
gramming. Math. Program. 156:59–99, ISSN 1436-4646.

[12] Hajinezhad D, Hong M (2019) Perturbed proximal primal–dual algorithm for nonconvex nonsmooth
optimization. Math. Program. 176:207–245.

[13] Hiriart-Urruty J, Lemarechal C (1993) Convex Analysis and Minimization Algorithms I (Berlin:
Springer).

[14] Hong M (2016) Decomposing linearly constrained nonconvex problems by a proximal primal dual
approach: algorithms, convergence, and applications. Available on arXiv:1604.00543 .

[15] Jiang B, Lin T, Ma S, Zhang S (2019) Structured nonconvex and nonsmooth optimization algorithms
and iteration complexity analysis. Comput. Optim. Appl. 72(3):115–157.

[16] Kong W (2021) Accelerated inexact first-order methods for solving nonconvex composite optimization
problems. arXiv:2104.09685 .

[17] Kong W, Melo JG, Monteiro RDC (2019) Complexity of a quadratic penalty accelerated inexact prox-
imal point method for solving linearly constrained nonconvex composite programs. SIAM J. Optim.

29(4):2566–2593.

[18] Kong W, Melo JG, Monteiro RDC (2019) An efficient adaptive accelerated inexact proximal point
method for solving linearly constrained nonconvex composite problems. Comput. Optim. Appl.

76(2):305–346.

[19] Kong W, Melo JG, Monteiro RDC (2020) Iteration-complexity of an inner accelerated inexact prox-
imal augmented Lagrangian method based on the classical Lagrangian function. arXiv preprint

arXiv:2008.00562 .

[20] Kong W, Melo JG, Monteiro RDC (2021) FISTA and Extensions - Review and New Insights. Optimiza-

tion Online .

[21] Kong W, Monteiro RDC (2021) An accelerated inexact proximal point method for solving nonconvex-
concave min-max problems. SIAM Journal on Optimization 31(4):2558–2585.

[22] Lan G, Monteiro RDC (2013) Iteration-complexity of first-order penalty methods for convex program-
ming. Math. Program. 138(1):115–139.

[23] Lan G, Monteiro RDC (2016) Iteration-complexity of first-order augmented Lagrangian methods for
convex programming. Math. Program. 155(1):511–547.

[24] Li Z, Chen PY, Liu S, Lu S, Xu Y (2020) Rate-improved inexact augmented Lagrangian method for
constrained nonconvex optimization. Available on arXiv:2007.01284 .

[25] Li Z, Xu Y (2020) Augmented Lagrangian based first-order methods for convex and nonconvex programs:
nonergodic convergence and iteration complexity. arXiv e-prints arXiv–2003.

[26] Lin Q, Ma R, Xu Y (2019) Inexact proximal-point penalty methods for non-convex optimization with
non-convex constraints. Available on Arxiv:1908.11518 .

[27] Lin Q, Xiao L (2014) An adaptive accelerated proximal gradient method and its homotopy continuation
for sparse optimization. Proc. 31st Int. Conf. Mach. Learn. 32:73–81.

http://dx.doi.org/10.1137/17M1114296

Kong, Melo, and Monteiro: An NL-IAPIAL Method for Cone-Constrained Composite Optimization
34 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

[28] Liu Y, Liu X, Ma S (2019) On the nonergodic convergence rate of an inexact augmented Lagrangian
framework for composite convex programming. Math. Oper. Res. 44(2):632–650.

[29] Lu Z, Zhou Z (2018) Iteration-complexity of first-order augmented Lagrangian methods for convex conic
programming. Available on arXiv:1803.09941 .

[30] Melo JG, Monteiro RDC, Wang H (2020) Iteration-complexity of an inexact proximal accelerated aug-
mented Lagrangian method for solving linearly constrained smooth nonconvex composite optimization
problems. Available on arXiv:2006.08048 .

[31] Necoara I, Patrascu A, Glineur F (2017) Complexity of first-order inexact Lagrangian and penalty
methods for conic convex programming. Optim. Methods Softw. 1–31.

[32] Nesterov Y (2012) Gradient methods for minimizing composite functions. Math. Program. 1–37.

[33] Nocedal J, Wright S (2006) Numerical optimization (Springer Science & Business Media).

[34] Parikh N, Boyd S (2014) Proximal algorithms. Foundations and Trends in optimization 1(3):127–239.

[35] Patrascu A, Necoara I, Tran-Dinh Q (2017) Adaptive inexact fast augmented Lagrangian methods for
constrained convex optimization. Optim. Lett. 11(3):609–626.

[36] Rockafellar R (1976) Augmented Lagrangians and applications of the proximal point algorithm in convex
programming. Mathematics of operations research 1(2):97–116.

[37] Rockafellar RT (1976) Augmented Lagrangians and applications of the proximal point algorithm in
convex programming. Math. Oper. Res. 1(2):97–116, ISSN 0364-765X.

[38] Rockafellar RT, Wets RJB (1998) Variational analysis (Berlin: Springer), ISBN 3-540-62772-3, URL
http://opac.inria.fr/record=b1093869.

[39] Sahin M, Eftekhari A, Alacaoglu A, Latorre F, Cevher V (2019) An inexact augmented Lagrangian
framework for nonconvex optimization with nonlinear constraints. Available on arXiv:1906.11357 .

[40] Xie Y, Wright S (2019) Complexity of proximal augmented Lagrangian for nonconvex optimization with
nonlinear equality constraints. arXiv preprint arXiv:1908.00131 .

[41] Xu Y (2019) Iteration complexity of inexact augmented Lagrangian meth-
ods for constrained convex programming. Math. Program. ISSN 1436-4646, URL
http://dx.doi.org/10.1007/s10107-019-01425-9.

[42] Zhang J, Luo ZQ (2020) A global dual error bound and its application to the analysis of linearly
constrained nonconvex optimization. Available on arXiv:2006.16440 .

[43] Zhang J, Luo ZQ (2020) A proximal alternating direction method of multiplier for linearly constrained
nonconvex optimization. Available on arXiv:2006.16440 .

http://opac.inria.fr/record=b1093869
http://dx.doi.org/10.1007/s10107-019-01425-9

	1 Introduction
	1.1 Basic Definitions and Notations

	2 The NL-IAPIAL Method
	2.1 Problem of Interest
	2.2 The NL-IAPIAL Method
	2.3 Complexity results for NL-IAPIAL

	3 Proofs of Proposition 2.5 and Proposition 2.6
	3.1 Proof of Proposition 2.6
	3.2 Proof of Proposition 2.5

	4 Numerical Experiments
	4.1 Nonconvex QSDP
	4.2 Nonconvex QC-QSDP
	4.3 Nonconvex QC-QP
	4.4 Nonconvex QP
	4.5 Comments about the numerical results

	5 Concluding Remarks
	A Review of an ACG Algorithm
	B Convex Analysis
	C Proof of Lemma 3.4 and Lemma 3.7(a)
	D Proof of Proposition 2.1

