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Abstract

Integer programs with m constraints are solvable in pseudo-polynomial time in A, the
largest coefficient in a constraint, when m is a fixed constant. We give a new algorithm with a
running time of O(y/mA)?™ + O(nm), which improves on the state-of-the-art. Moreover, we
show that improving on our algorithm for any m is equivalent to improving over the quadratic
time algorithm for (min, +)-convolution. This is a strong evidence that our algorithm’s
running time is the best possible. We also present a specialized algorithm with running time
O(\/EA)(HO(I))’" + O(nm) for testing feasibility of an integer program and also give a tight
lower bound, which is based on the SETH in this case.

1 Introduction

Vectors vV, ..., v(™ € R™ that sum up to 0 can be seen as a circle in R™ that walks from 0 to
v to v + 0| ete. until it reaches (M + ... + v(™ = 0 again. The Steinitz Lemma [42] says
that if each of the vectors is small with respect to some norm, we can reorder them in a way that
each point in the circle is not far away from 0 with respect to the same norm.

Recently Eisenbrand and Weismantel found a beautiful application of this lemma in the area
of integer programming [22]. They looked at ILPs in standard form

max{c’z: Az = b,z € 75}, (1)

where A € Z™*" b € Z™ and ¢ € Z™ and obtained a pseudo-polynomial algorithm in A, the
biggest absolute value of an entry in A, when m is treated as a constant. The running time they
achieve is n - O(mA)?™ - ||b||? for finding the optimal solution and n - O(mA)™ - ||b||; for finding
only a feasible solution. This improves on a classic algorithm by Papadimitriou [38], which has a

running time of
Om*™ 2 - (m - max{A, [[b]|o}) "I ETHL),

The central idea in [22] is that a solution z* for the ILP above can be viewed as a walk in Z™
starting at 0 and ending at b. Every step is a column of the matrix A: For every i € {1,...,n} we
step x} times in the direction of A4; (see left picture in Figure[ll). By applying the Steinitz Lemma
they show that there is an ordering of these steps such that the walk never strays off far from the
direct line between 0 and b (see right picture in Figure[l). They construct a directed graph with
one vertex for every integer point near the line between 0 and b and create an edge from u to v,
if v —w is a column in A. The weight of the edge is the same as the c-value of the column. An
optimal solution to the ILP can now be obtained by finding a longest path from 0 to b. This can
be done in the mentioned time, if one is careful with cycles.

In this work we present a different algorithm for the same problem. In our approach we do not
reduce to a longest path problem, but rather solve the ILP in a divide and conquer fashion. We
use the (weaker) assumption that a walk from 0 to b visits a vector b’ near b/2 at some point. The
distance of this point to b/2 is closely related to the discrepancy of the matrix A, see Lemma [
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Figure 1: Steinitz Lemma in Integer Programming

for more details. A natural approach is to guess the vector ¥’ and solve the problem with Az =/
and Az = b — b’ independently. Both results can be merged to a solution for Az = b. In the
subproblems the norm of b and the norm of the solution are roughly divided in half. We use this
idea in a dynamic program and speed up the process of merging solutions using algorithms for
convolution. This approach leads to better running times for both the problem of finding optimal
solutions and for finding any feasible solution. We complement our study by giving (almost) tight
conditional lower bounds on the running time in which such ILPs can be solved. Finally, we
discuss some applications to Knapsack, Change Making, and Scheduling problems.
We proceed by giving a detailed outline of the results.

Optimal solutions for ILPs. We show that a solution to (Il) can be found in time
O(vmA)*™ + O(nm). (2)

We note that throughout the article we work with the assumption that arithmetics on the input
numbers require constant time. Comparing to the state-of-the-art, we remove the dependence
on b from the running time and save a factor of n without increasing the dependence on A
and even mildly improving the dependence on m. The running time can be improved if there
exists a truly sub-quadratic algorithm for (min, +)-convolution (see Section B2l for details on the
problem). However, it has been conjectured that no such algorithm exists and this conjecture
is the base of several lower bounds in fine-grained complexity [17) 31 [32] [4]. We show that for
every m the running time above is essentially the best possible unless the (min, +)-convolution
conjecture is false. More formally, for every m there exists no algorithm that solves ILP in time
fm) - (n?7° 4+ (A + ||b]|0o)?>™ %), where 6 > 0 and f is an arbitrary computable, unless there
exists a truly sub-quadratic algorithm for (min, +)-convolution. Indeed, this means there is an
equivalence between improving algorithms for (min, +)-convolution and for ILPs with fixed number
of constraints. It may be surprising that the lower bound has a dependence on A + ||b]|o and the
upper bound only on A. This implies that hardness cannot come from only letting b grow and,
in particular, it rules out improvements by adding a dependence on ||b||sc. Our lower bound does
leave open some other trade-offs between n and O(y/mA)™ such as n-O(y/mA)™, which would be
an interesting improvement for sparse instances, i.e., when n < (2A 4 1)™. Such an improvement
has recently been made for Unbounded Knapsack [I2], a notable special case of m = 1, see also
Definition [l A running time of n/("™) - (A 4 ||b]|oo)™ %, however, is not possible (see feasibility
below).



Feasibility of ILPs. Finding only a feasible solution of an ILP is easier than finding an optimal
solution. It can be done in time

O(VmA) oM™ 4 O(nm) (3)

by solving a Boolean convolution problem that has a more efficient algorithm than the (min, +)-
convolution problem that arises in the optimization version. Under the Strong Exponential Time
Hypothesis (SETH) this running time is tight except for sub-polynomial factors. The SETH and
the Exponential Time Hypothesis (ETH) are conjectures commonly used to prove conditional
lower bounds. The SETH asserts that the satisfiability problem (SAT) cannot be solved in time
O(2°") for any § < 1, while the (weaker) ETH asserts that this holds for some 6 > 0. If the SETH
holds, then there is no nf(™) . (A + ||b||o0)™° time algorithm for testing feasibility of ILPs for any
0 > 0 and any computable function f.

Comparison to previous version. A preliminary version of this article has appeared in the
proceedings of ITCS 2019 [25]. The analysis in that version has relied completely on the Steinitz
Lemma, whereas the present article uses bounds on hereditary discrepancy, which is a cleaner fit
given the requirements in the proof. Furthermore, this change leads to a slightly improved base
O(y/mA) in the running times instead of the previous base O(mA). This can be improved further
in case of constraint matrices with small hereditary discrepancy. Moreover, by utilizing specialized
algorithms for linear programming in fixed dimension we avoid the logarithmic dependency on
|Ib]|co as in the previous version. This also allows us to simplify the proof by removing a lemma
that bounds the norm of the solution, which was required earlier. To the applications, we added
the Coin Change problem.

Other related work

It is notable that the case where the number of variables n is fixed and not m as here behaves
differently. There is a 20(?1°8(m).| 1|9(1) time algorithm (|I| being the encoding length of the input),
whereas an algorithm of the kind f(m) - [I|°") (or even |I]/(™)) is impossible for any computable
function f, unless P = NP. This can be seen with a trivial reduction from Unbounded Knapsack
(where m = 1). The 20(*1°8(™) . |1]9() time algorithm is due to Kannan [27] improving over a
20(n*) . |1°() time algorithm by Lenstra [33]. It is a long open question whether 20 . |1]0() jg
possible instead; see also [18| [19] for progress towards this question.

Another intriguing question is whether a similar running time as in this work, e.g., (\/EA)O(’”) .
nPW | is possible when upper bounds on variables are added to the ILP and they are not counted
in m. In [22] an algorithm for this extension is given, but the exponent of A is O(m?).

As for other lower bounds on pseudo-polynomial algorithms for integer programming, Fomin
et al. [23] prove that the running time cannot be n°(™/10g(m)). ||b||g§m) unless the ETH (a weaker
conjecture than the SETH) fails. Their reduction implies that there is no algorithm with running
time n(m/198(m) . (A 4+ ||b]|o0)°(™), since in their construction the matrix A is non-negative and
therefore columns with entries larger than ||b||c can be discarded; thus leading to A < ||b]|eo. Very
recently, Knop et al. [30] show that under the ETH there is also no 2°0™1°8(m) . (A + ||b]| o) 2™
time algorithm. An interesting aspect of this function is that it matches the dependency in m
achieved here and in [22] up to a constant in the exponent. Our lower bound differs substantially
from the two above. We concentrate on the dependency on A and give a precise value of the
constant in its exponent.

Linear programming in fixed dimension, that is, solving () where 2 € RZ, instead of = €
7%, has also been studied extensively. In a seminal work [37], Megiddo gave the first linear
time algorithm for m = O(1). Since then there have been numerous improvements [36, [15, 20}
211, 16, B9, 26 [2, 14, 10, 01]. The currently best randomized algorithm has a running time of

m?n + 200V mlos(m)) (5 combination of [16} 26} 36]) and the best deterministic algorithm [I1] has
a running time of O(m)™/? - log®™(m) - n. These works typically solve the dual of this problem,



which is equivalent by standard complementary slackness arguments. Our algorithm for ILP uses
these results as a subroutine.

2 Preliminaries

In the remainder of the article we will assume that A has no duplicate columns. Note that we can
completely ignore a column 4, if there is another identical column i’ with ¢;; > ¢;. This implies
that in time O(nm) + O(A)™ we can reduce to an instance without duplicate columns and, in
particular, with n < (2A + 1)™. The running time can be achieved as follows. We create a new
matrix for the ILP with all (2A+1)™ possible columns (in lexicographic order) and objective value
¢; = —oo for all columns i. Now we iterate over all n old columns and compute in time O(m) the
index of the new column corresponding to the same entries. We then replace its objective value
with the current one if this is bigger. In the upcoming running times we will omit the additive
term O(nm) and assume the duplicates are already eliminated (O(A)™ is always dominated by
actual algorithms running time).

Eisenbrand and Weismantel observed that using the Steinitz Lemma (with ¢, norm) one can
solve integer programs efficiently, if all entries of the matrix are small integers and the number of
constraints is fixed.

Theorem 1 (Steinitz Lemma). Let ||-| be a norm in R™ and vV, ... 0o € R™ such that
o@D < A for all i and v 4---+v® = 0. Then there exists a permutation © € Sy such that for
all je{l,...,t}

J
||Z oD < mA.
i=1

The proof of the bound mA is due to Sevastyanov [40] (see also [22] for a good overview). Our
algorithmic results rely on a similar, but weaker property. Roughly speaking, we only need that
there is some j ~ ¢/2 with ||37_, v("@)|| being small. All other partial sums are insignificant.
As it is a weaker property, we can hope for better bounds than mA, which is indeed true. The
bounds we need come from discrepancy theory, for which we now state relevant definitions and
results.

Definition 2. For a matriz A € R™*" its discrepancy is

2= (1))

Discrepancy theory originates in the problem of coloring the elements of a ground set with two
colors such that a given family of subsets are all colored evenly, i.e., the number of elements of each
color is approximately the same. When A is the incidence matrix of this family of sets, z in the
definition above gives a coloring and the £, norm its discrepancy. Discrepancy, however, is also
studied for arbitrary matrices. If A is the matrix of a linear program as in our case, this definition
corresponds to finding an integral solution that approximates z = (1/2,...,1/2)7. Our algorithm
is based on dividing a solution into two similar parts. Therefore, discrepancy is a natural measure.
However, we need a definition that is stable when restricting to a subset of the columns.

disc(A4) = r{%irll}
z€10,1;™

oo

Definition 3. The hereditary discrepancy of a matriz A € R™*™ is
herdisc(A) = max disc(Ay),
Ic

c{1,...,n
where Ay denotes the matriz A restricted to the columns I.

Hereditary discrepancy is often used in the context of rounding non-integral solutions, see for
example [34]. For our algorithm we need to split a solution z into two similar parts, which can be
seen as rounding x/2. The following lemma shows that by paying a factor of 2 in the discrepancy
we can also get a balanced split of the £; norm of the solutions.



Lemma 4. Let x € Zgo. Then there is a vector z € Zgo with z; < x; for all i and
X .
HA (z - 5) H < herdisc(A).

Furthermore, if ||z||1 > 1, then there is a vector z' € Z%, with z; < z; for all i, 1/6 - [|z[1 <
12l <5/6- [[z]r, and
T
HA (2’ — 5) H < 2 - herdisc(A4).

We emphasize that the lemma is symmetric in the sense that the same properties hold when
substituting z for © — z (2’ for © — z’). For completeness a proof of the lemma is given in the
appendix. Our algorithm’s running time will depend on herdisc(A), so we will state some standard
bounds on it.

Theorem 5 (Spencer’s Six Standard Deviations Suffice [41]). For every matrizx A € R™*"™ with
biggest absolute value of an entry A,

herdisc(A) < 6v/m - A.

This slightly differs from the original statement. The original paper considers square matrices
(n = m) with biggest absolute value 1 and gives a bound of 6y/n = 64/m. However, the proof
easily holds also for 61/m in non-square matrices, as mentioned for example in [34]. By scaling
both sides we obtain 61/m - A for matrices with biggest absolute value A.

Spencer’s proof is not constructive, that is, it is unclear how to compute the z from the defintion
of discrepancy. There has been significant work towards making it constructive [l 35]. For our
algorithm, however, we will not need a constructive variant.

There are matrices for which Spencer’s bound is tight up to a constant factor. For specific
matrices it might be lower. The linear dependency on A, however, is required for any matrix A.

Lemma 6. For every matrix A € R™*™ with absolute value of an entry < A,

herdisc(A4) >

w| >

This can be seen by taking I = {i} in the definition of herdisc(A) with A; being a column with
an entry of absolute value A. An example where the dependency on m is lower than in Spencer’s
theorem are matrices with a small ¢; norm in every column.

Theorem 7 (Beck, Fiala [6]). For every matriz A € R™*™, where the {1 norm of each column is
at most t it holds that herdisc(A) < t.

3 Algorithm

First, we will show how to compute the best solution z* to () with the additional constraint
|lz*[l1 < K. Here the running time has a logarithmic dependence on K. Then, we will remove this
dependence while allowing arbitrarily large solutions. Further, we will elaborate an improvement
for finding any feasible solution and show how to cope with unbounded problems. Finally, we give
a more fine-grained study of the problem when the maximum entries of the rows differ.

3.1 Dynamic program

Let H > herdisc(A) be a given upper bound on the hereditary discrepancy of A. For every
i=0,1...,0=[logg/s(K)] and every b" with [|b" — 2174 . b|| < 4H we solve

max{ch:A:r—b’,H:z:h < <g> ,:EGZ’ZLO}. (4)



We iteratively derive solutions for ¢ using pairs of solutions for ¢ — 1. Ultimately, we will compute
a solution for s = £ and b’ = b.

If i = 0 the solutions are trivial, since ||z||; < 1. This means they correspond exactly to the
columns of A. Fix some ¢ > 0 and b’ and let 2* be an optimal solution to ). By Lemma @l there
exists a 0 < z < z* with ||Az — V' /2||c < 2H and

{énxm ST (9 =97 2l >,
2l <{ 8 6 \5/ 5

otherwise.

The same holds for z* — z. Then z is an optimal solution to

6\ i1
max{cT:r:Ax—b",||:17|1 < <5> ,xEZQO},

where b = Az. This is because if there was a solution z* of higher value, then z* + z* — z would
be feasible for (@) and have a higher value than z*, contradicting its optimality. Likewise, z* — z
is an optimal solution to

i1
6
max {ch:szb'—b",Hxh < (g) =16Z20}~

We will prove that ||b” — 20=D=¢ . p||, < 4H and [|() —b") —20-D=L . p||, < 4H. This implies
that we can look up solutions for ¥ and b —b” in the dynamic table and their sum is a solution for
b'. Clearly it is also optimal. We do not know b”, but we can guess it: There are only (8H + 1)™
candidates. To compute an entry, we therefore enumerate all possible " and take the two partial
solutions (for »” and b’ — "), where the sum of both values is maximized. To verify that the
inequalities above holds, we calculate

b — 2(“”*%” - HAZ - %b’ + %b’ _9li=D=¢

‘ o0

1
<||Az — =¥
<la=-

+ H%b’ — 201~

o0 ’ oo

< 2-herdisc(A4) + % 0" — 21-7%”00 <4H.

The same holds for ' — ", since z and z* — 2z are interchangeable. The dynamic table has
O(H)™ - log(K) entries. To compute an entry, O(n - m) < O(A)™ < O(H)™ operations are
necessary during initialization and O(H)™ in the iterative calculations. This gives a total running
time of

O(H)*™ -log(K). (5)

3.2 Convolution

The careful reader may wonder, whether the computation of entries in the dynamic table can
be improved. Let D; be the set of vectors b’ with ||b’ — 20~ - b||oc < 4H. Recall, the dynamic
programs computes values for each element in Dy, D1, ..., Dy. More precisely, for the value of
b € D; we consider vectors b” such that v, —b” € D;_1 and take the maximum sum of the
values for b, 0" — 0" among all. For illustration consider the case of m = 1. Here we have that
b’ € D; is equivalent to —4H < b — 2i=¢ . h < 4H. Tt is not hard to see that then the problem can
be formulated as the following well-studied problem.

Definition 8 ((min, +)-convolution). Given input variables r1,...,r, € R and s1,...,8, € R,
compute t1,...,t, € R, where t, = min;y;—p r; + 5.



We can also define (max, +)-convolution as the counterpart where the maximum is taken
instead of the minimum. The two problems are equivalent as each of them can be transformed
to the other by negating the elements. There is a trivial O(n?) time algorithm for (min, +)-
convolution and it has been conjectured that there exists no truly sub-quadratic algorithm [I7].
There does, however, exist an O(n?/log(n)) time algorithm [8], which we are going to use. In fact,

there is an even faster algorithm that runs in time O(n?/24V1&(m)) [T3].

Also when m > 1 the task of deriving D; from D;_; can be reformulated as a (min, +)-
convolution instance. For this, the m dimensions of each V' € D, are embedded in a single
dimension with appropriate zero padding between them. The precise construction and its proof
of correctness require some tedious calculations, which are deferred to the appendix. Using an
algorithm for (min, +)-convolution with running time 7'(n) we get an algorithm for ILP with
running time T(O(H)™) - log(K). Inserting T'(n) = n?/log(n) and using H > A/2, we slightly
improve on (@) and obtain a running time of

log(K)
log(A)’ ©)

O(H)2m

Even more interesting though, a sub-quadratic algorithm for (min, +)-convolution, where T'(n) =
n?~9 for some 6 > 0, would directly improve the exponent. Next, we will consider the problem of
only testing feasibility of an ILP. Since we only record whether or not there exists a solution for
a particular right-hand side, the convolution problem reduces to the following.

Definition 9 (BOOLEAN CONVOLUTION). Given input variablesr1,...,m, € {0,1} and s1,...,8, €

{0,1} compute t1, ..., t, € {0,1}, where ti, =\, ;_y 13 A\ s;.

This problem can be solved very efficiently via fast Fourier transform. We compute the (+, -)-
convolution of the input. It is well known that this can be done using FFT in time O(nlog(n)).
The (+,)-convolution of r and s is the vector ¢, where ), = >, ;_; 7; - s;. To get the Boolean
convolution instead, we simply replace each ¢ > 0 by 1. Using T'(n) = O(nlog(n)) for the
convolution algorithm yields that a feasible solution can be found in time

O(H)™ -log(A) - log(K). (7)

3.3 Proximity

Eisenbrand and Weismantel gave the following bound on the proximity between fractional and
integral solutions.

Theorem 10 ([22]). Let max{c"z : Az = b,x € Z%,} be feasible and bounded. Let z* be an
optimal vertex solution of the fractional relaxation. Then there exists an optimal solution z* with

|z = z*|ls < m(2mA +1)™.

We use the theorem to bound the value of K at the expense of computing the optimum of
the fractional relaxation. This follows a similar approach as used in [22]. Note that z} > ¢; :=
max{0, [z}] —m(2mA+1)™}. By setting y = z — £ we obtain the equivalent ILP max{cTy : Ay =
b—Al,y € Z%,}. It suffices to find an optimal solution to it. Notice that z* — ¢ is optimal for this

ILP and we can bound
2" = £)l1 < |lz* — 2|1 + | — %1 < m2mA +1)™ +m2(2mA +1)™ = O(mA)™.

Here, we use that * and ¢ can only differ in the m many non-zero components of * and in those
by at most m(2mA + 1)™. Also, note that the O-notation hides polynomial terms in m. Using
K = O0(mA)", H < O(y/mA) and the O(m)™/?1og®™(m) - n time algorithm [I1] for solving the



relaxation, we derive a running time of

~

m m log(K
O(m) /21og "(m)-n+ O(H)? 'log(A)

< O(y/m)™ 1og®™ (m) - O(A)™ + O(V/IA)?™ - % < O(/mAY™. (8)

Similarly, we can improve the running time for finding any feasible solution to

O(m)™?10g®™ (m) - n+ O(H)™ - log(A) log(K)
< O(/m)™ og®™ (m) - O(A)™ + O(VmA)™ log(A) - mlog(md) < O(/mA)H+m  (g)

This proves the running times (2) and (@) in the case that the ILP is bounded. Testing whether
an ILP is unbounded can be done without increasing the asymptotic running time, as we will lay
out next.

3.4 Unbounded solutions

The ILP max{c’z : Az = b,z € Z%,} is unbounded, if and only if it is feasible and max{c’z :
Az = 0,z € Z%,} has a solution with positive value. The former can be checked with our
algorithm, hence it remains to check if the latter condition holds. We can simply solve the LP
relaxation for this. If there is a fractional solution with positive value, there is also an integral
one. This is because by Cramer’s rule there exists a fractional solution with denominators det(A),
hence multiplying by det(A) yields an integral solution.

3.5 Heterogeneous rows

Let Aq1,..., A, < A denote the largest absolute values of each row in A. When some of these
values are much smaller than A, the maximum among all, we can do better than O(y/mA)?™.
Define A’ = diag(A; ', ..., A1) - A, where

AT! 0
diag(AY, ..., AN = .
0 AL

m

We claim that in the dynamic program a table of size [[;-, O(H'Ay) suffices, where H' >
herdisc(A’). Clearly, the ILP max{c"z, Az = b,z € Z2} is equivalent to

max{c’z, A’z =V, x € Z%,},

where b/ = diag(Afl, ., A1) b, At first glance, our algorithm cannot be applied to this problem,
since the entries are not integral. However, in the algorithm we only use the fact that the number
of points Az with = € ZZ, close to some point b”, that is, with ||Az — b"||cc < 4H, is small and
can be enumerated. The points A’z with z € Z2, and HA’ —V'||eo < 4H' are exactly those
with [(Az), — b} - Ag| < 4H' - Ay for all k. These are [[;-; O(H'Ay) many and they can be
enumerated. This way, we get a running time of [[;-, O(H'Ay)?, which using the bound from
Theorem [{ yields

ﬁ (mAZ). (10)

If one is only interested in a feasible solution, then this improves to

m

O(v/m) 0+ T] [may] - log*(A). (11)

k=1



4 Lower bounds

In this section we give conditional lower bounds that match the running time of our algorithm
both for finding an optimal solution and for finding a feasible solution.

4.1 Optimization problem

We use an equivalence between the problems Unbounded Knapsack and (min, +)-convolution
regarding sub-quadratic algorithms.

Definition 11 (Unbounded Knapsack). Given C € N, wq,...,w, € N, and p1,...,pn € N find
integer multiplicities x1, ..., %y, such that E?:l z; - w; < C and E?:l xT; - p; 1S maxrimized.

Note that when we instead require Y . ; x; - w; = C in the problem above, we can transform
it to this form by adding an item of profit zero and weight 1.

Theorem 12 ([I7,31]). For any § > 0 there exists no O((n+C)%~°%) time algorithm for Unbounded
Knapsack unless there is a truly sub-quadratic algorithm for (min, +)-convolution.

When using this theorem, we assume that the input already consists of the at most C' relevant
items only, n < C, and w; < C for all 4. This preprocessing can be done in time O(n + C).

Theorem 13. Let m € N. For any 6 > 0 and any computable function f there does not exist
an algorithm that solves ILPs with m constraints in time f(m) - (n?>7° 4+ (A + [|b]loo)?™ ), unless
there ezists a truly sub-quadratic algorithm for (min, +)-convolution.

Proof. Proof. Let § > 0 and m € N. Assume that there exists an algorithm that solves ILPs
of the form max{c’z : Az = b,z € Z%,} where A € Z™*", b € Z™, and ¢ € Z" in time
fm) - (n?79 4+ (A + ||b]|oo)?>™ %), where A is the greatest absolute value in A. We will show that
this implies an O((n + C)2~%") time algorithm for Unbounded Knapsack for some & > 0. Let
(C, (wy)_, (ps)_1) be an instance of this problem. Let us first observe that the claim holds for
m = 1. Clearly Unbounded Knapsack (with equality) can be written as the following ILP.

max ipi o
i=1
=1

xr €28

Since w; < C for all i (otherwise the item can be discarded), we can solve this ILP by assumption
in time f(1)-(n?7°+(2C)27%) < O((n+C)?>7?). Now consider the case where m > 1. We want to
reduce A by exploiting the additional rows. Let A = |[CY/™] +1 > CY/™. We write C in base-A
notation, that is,

C=CO 4 Ac® 4... 4 Amflo(mfl),

where 0 < C®) < A for all k. Likewise, write w; = wgo) + Awgl) +-+ Am_lwgmfl) with



0< wgk) < A for all k. We claim that (UKS1) is equivalent to the following ILP.

n
max E DPi - X4
i=1

Sl 2] = Ay =c© (12)
1=1
Z[wgl)'xi]"’yl Ayy=cW (13)
=1
(UKSm)
STl w4 Yz — A gy = C02 (14)
=1
Dl ] + oy = 0 (15)
=1
T € 2%
Yy € Z’go_l

Implication =z € (USK1) = z € (USKm). Let z be a solution to (UKS1). Then for all

1< <m,
n (-1 —1
ZZAkwEk Zwl z, =C= ZAkC(k) mod A’.
i=1 k=0 i=1 k=0

This is because all Alw (é) .. ,Amflwgm_l) and ACWO .. A™=1C(m=1) are multiples of A’ Tt
follows that there ex1sts an yy € Z such that
n (-1

-1
ZZ[AkwEk) cxg) = Ay = ZAkC’(k).
k=0

i=1 k=0

Furthermore, y, is non-negative, because otherwise

ZMOW < ZM ) < AFHA - 1)%&’6

{—
=A< Ay <3S AR - zi] - Aty

[u

We choose y1,...,ym exactly like this. The first constraint (I2)) follows directly. Now let ¢ €
{2,...,m}. By choice of y,—1 and y, we have that

n l—1 -2
> { <Z A -3 Akwg’“)) x] ATy Ay = Z AFC®) Z AFC™ | (16)
= k=0

i=1 =

:Al—lwy*l) —AL-1C(L—-1)

Dividing both sides by Af~1 we get every constraint (I3)) - (I4)) for the correct choice of . Finally,
consider the special case of the last constraint (I5]). By choice of y,, we have that

n m—1 m—1
Z Akw(k) A™ -y = Z AFC®)
=1 k= =

07 . ~

Thus, ¥, = 0 and ([I6]) implies the last constraint (with £ = m).

10



Implication z € (USKm) = z € (USK1). Letzy,...,Zn,¥Y1,---,Ym—1 be a solution to (UKSm)
and set ¥, = 0. We show by induction that for all £ € {1,...,m} it holds that

>

i=1

~

-1 —1
Akwgk) ST — Alyg = ZAkC’(k).
k=0

el
Il

0

With ¢ = m this implies the claim as y,, = 0 by definition. For £ = 1 the equation is exactly the
first constraint (I2)). Now let £ > 1 and assume that the equation above holds. We will show that
it also holds for £ + 1. From (USKm) we have

Z[wz@ x4+ ye — A yep = 0O,
i1

Multiplying each side by Af we get

Z[Azwl@) . xi] + Aew AL Yo = ALC®
i=1

By adding and subtracting the same elements, it follows that

n 1 0—1 Vi -1
Z [<2Akw£k) _ ZAkwgk)) Cx + AL Yo — AT Y1 = ZAkO(k) _ ZAkC(k)'
i=1 k=0 k=0 k=0 k=0

By inserting the induction hypothesis we conclude
n £ 4
k
Z[Akwf ). zi] — Ay = Z AFC®),
=1 k=0 k=0

i=1

Constructing and solving the ILP. The ILP (UKSm) can be constructed easily in O(Cm +
nm) < O((n + C)279/™) operations (recall that m is a constant). We obtain A = |CY/™| + 1 by
guessing: More precisely, we iterate over all numbers Ag < C and find the one where (Ag—1)™ <
C < AF'. Although there are more efficient, non-trivial ways to compute the rounded m-th root,
this is not required here. The base-A representation for wi, ..., w, and C can be computed with
O(m) operations for each of these numbers.

All entries of the matrix in (UKSm) and the right-hand side are bounded by A = O(C'/™).
Therefore, by assumption this ILP can be solved in time

f(m) - (n2—5 + O(Cl/m)2m—6) < f(m)- 0(1)2771—6 “(n+ 0)2—5/771 =0((n+ 0)2_5/m).

This yields a truly sub-quadratic algorithm for Unbounded Knapsack. O

4.2 Feasibility problem

We will show that our algorithm for solving feasibility of ILPs is optimal (except for sub-polynomial
improvements). We use a recently discovered lower bound for k-SUM based on the SETH.

Definition 14 (k-SUM). Given T € Ny and Z1,...,Zx C Ng where |Z1|+|Z2|+---+|Zk| =n €N
find z1 € Z1,20 € Zo, ..., 2k € Zk such that z1 + 20+ -+ 2z, =T.

Theorem 15 ([1]). If the SETH holds, then for every § > 0 there exists a value v > 0 such that
k-SUM cannot be solved in time O(T*=% - n7*).

This implies that for every p € N there is no O(T'~°-nP) time algorithm for k-SUM if k > p/~.

11



Theorem 16. Let m € N. If the SETH holds, then for every 6 > 0 and every computable
function f, there does not exist an algorithm that solves feasibility of ILPs with m constraints in
time nd ™) - (A 4 ||b]|oo)™°.

Proof. Proof. Like in the previous reduction we start with the case of m = 1. For higher values
of m the result can be shown in the same way as before.

Suppose there exists an algorithm for solving feasibility of ILPs with one constraint in time
nf M (A 4 [|b]|oo)' 0 for some § > 0 and f(1) € N. Let « be the constant given by Theorem [I5]
for this 6 and set k = [f(1)/7]. Now consider an instance (T, Z1,. .., Zj) of k-SUM. We will show
that this can be solved in O(T"'~? - n/M) which contradicts the SETH. For every i < k and every
z € Z; we use a binary variable z; , that describes whether z is used. We can easily model k-SUM
as the following ILP:

k
ZZz~xiyz:T

i=1z2€2;

dowia=1 Vie{l,...,k}
LL‘iZEZZQ ViE{l,...,k},ZEZi

However, since we want to reduce to an ILP with one constraint, we need a slightly more sophisti-
cated construction. We will show that the cardinality constraints can be encoded into the k-SUM
instance by increasing the numbers by a factor of 29%) | which is in O(1) since k is some constant
depending on f(1) and v only. We will use this to obtain an ILP with only one constraint and
values of size at most O(T'). A similar construction is also used in [IJ.

Our goal is to construct an instance (17, Z;, ..., Z;) such that for every z* it holds that z* is
a solution to the first ILP if and only if

k
ez Y zomi.=T 2w} (17)

i=1zeZ/

We will use one element to represent each element in the original instance. Consider the binary
representation of numbers in Z] U---UZ;, and of T". The numbers in the new instance will consist
of three parts and [log(k)] many Os between them to prevent interference. For an illustration of
the construction see Figure[2 The [log(k)] most significant bits ensure that exactly k elements are
selected; the middle part are k bits that ensure of every set Z! exactly one element is selected; the
least significant [log(7T')] bits represent the original values of the elements. Set the values in the
first part of the numbers to 1 for all elements Z{ U---UZ} and to k in T”. Clearly this ensures that
at most k elements are chosen. The sum of at most k elements cannot be larger than k < 2/1°8(®)]
times the biggest element. This implies that the buffers of [log(k)] zeroes cannot overflow and
we can consider each of the three parts independently. It follows that exactly k elements must be
chosen by any feasible solution. The system {z : Zle 2ip; = 281 1, ||z||y = k, ZE )} has exactly
one solution and this solution is (1,1,...,1): Consider summing up k powers of 2 and envision the
binary representation of the partial sums. When we add some 2¢ to the partial sum, the number
of ones in the binary representation increases by one, if the ¢’th bit of the current sum is zero.
Otherwise, it does not increase. However, since in the binary representation of the final sum there
are k ones, it has to increase in each addition. This means no power of two can be added twice
and therefore each has to be added exactly once.

It follows that the second part of the numbers enforces that of every Z! exactly one element
is chosen. We conclude that (7)) solves the initial k-SUM instance. By assumption this can
be done in time nfM - (A + [|b]|oo)? ™% = 2D . O(T") =% = O(nf) . T179). Here we use that
T’ < 23los(k)+htlog(T)+4 — O(k32FT) = O(T), since k is a constant.

For m > 1 we can use the same construction as in the reduction for the optimization problem:
Suppose there is an algorithm that finds feasible solutions to ILPs with m constraints in time

12



bin(1) bin(2%) bin(z)
Z{Bz':p...OO()lJ 0...0 |p...010...q| 0...0 |.0110"'.
[log(k)]  [log(k)] k [log(k)]  [log(T)]

bin(k) bin(2F+1 1) bin(T)
, ——— ——
T :.0---1011.| 0...0 |.1111"'1111.| 0...0 |.1011"'.
[log(k)]  [log(k)] k [log(k)]  [log(T)]

Figure 2: Construction of Z! and T’

nf ™) . (A 4 ||b]|oo)™°. Choose « such that there is no algorithm for k-SUM with running time
O(T*=9/™.n7*) (under SETH). We set k = [f(m)/v]. By splitting the one constraint of (I7) into
m constraints we can reduce the upper bound on elements from O(T) to O(T"/™). This means
the assumed running time for solving ILPs can be used to solve k-SUM in time

nf(m) . O(Tl/m)m—5 < nka(l)m—6T1—5/m _ O(nval—é/m)' 0

5 Applications

In this section we apply our results to some well-known problems, which can be formulated using
ILPs with few constraints and small entries. In particular, we give examples, where the reduction
of the running time by a factor n improves on the state-of-the-art, the heterogeneity of rows plays
a role, and one where the use of hereditary discrepancy and the removal of the dependence on
|Ib]|co are relevant.

5.1 Unbounded Knapsack and Unbounded Subset-Sum

Recall Definition [Tl which introduces the problem Unbounded Knapsack. Traditionally, C' is only
an upper bound on Z?:l w; - x; in most of the literature, but that variant easily reduces to the
problem above by adding a slack variable. Unbounded Subset-Sum is the same problem without
an objective function, i.e., the problem of finding a multi-set of items whose weights w; sum up
to exactly C'. We assume that no two items have the same weight. Otherwise in time O(n + A)
we can remove all duplicates by keeping only the most valuable ones. This gives algorithms
with running time O(n 4+ A?) and O(n + Alog?(A)) for Unbounded Knapsack and Unbounded
Subset-Sum, respectively, where A is the maximum weight among all items (using the results from
Section B3]). The previously best pseudo-polynomial algorithms for Unbounded Knapsack, have
running times O(nC) (standard dynamic programming; see e.g. [28]), O(nA?) [22], or very recently
O(A%log(C)) [3]. We note that the last algorithm, which was discovered simultaneously and
independently to ours, follows a very similar approach to ours when restricted to the Unbounded
Knapsack case. After our work Chan and He gave an interesting improvement, which achieves a
running time of O(nAlog®(A)) [12]. Note that n is potentially much smaller than A, but not vice
versa

For Unbounded Subset-Sum the state-of-the-art is a O(C'log(C)) time algorithm [9]. Hence,
our algorithm is preferable when A <« C. Very recently Klein [29] studied this problem and
showed the perhaps surprising fact that there is also a pseudo-polynomial algorithm in terms of
the smallest weight (and not the largest), but then the dependence on it is quadratic and cannot
be improved unless the (min, +)-convolution conjecture is false.
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5.2 Change Making

In the Change Making problem we are given an infinite supply of coins with values ¢; < c3 < --- <
¢, and a target t. The goal is to match ¢ with as few coins as possible. In the decision variant,
where we want to find a solution with at most k& coins, this can be written as finding a solution to

the ILP
{qui —t,zxi+5—k,I€Z>o,S€Z>o}.

i=1 i=1
In other words, this is a feasibility ILP with two rows, where the first row has maximum coefficient
¢n and the second row has maximum coefficient 1. Using (@) this can be solved in time

O(en 1og2 (cn)).

This matches exactly the running time in [12]. In fact, that algorithm behaves very similar to ours
when restricted to this problem.

5.3 Scheduling Jobs on Identical Parallel Machines

The problem Scheduling Jobs on Identical Parallel Machines asks to distribute IV jobs onto M < N
machines. Each job j has a processing time p; and the objective is to minimize the makespan,
that is, the maximum sum of processing times on a single machine. Since an exact solution cannot
be computed unless P = NP, we are satisfied with a (1 + €)-approximation, where € > 0 is part
of the input. We will outline how this problem can be solved using our algorithm. This gives the
best known running time, which is even a slight improvement over the sophisticated algorithm for
this problem in [24].

We consider here the variant, in which a makespan 7 is given and we have to find a schedule
with makespan at most (1 + €)7 or prove that there exists no schedule with makespan at most 7.
This suffices by using a standard dual approximation framework. It is easy to see that one can
discard all jobs of size at most € - 7 and add them greedily after a solution for the other jobs is
found. The big jobs can each be rounded to the next value of the form ¢ -7 - (1 + €)® for some
i. This reduces the number of different processing times to O(1/elog(1/€)) many and increases
the makespan by at most a factor of 1 4+ e¢. We are now ready to write this problem as an ILP. A
configuration is a way to use a machine. It describes how many jobs of each size are assigned to
this machine. Since we aim for a makespan of (1 + €) - 7, the sum of these sizes must not exceed
this value. The configuration ILP has a variable for every valid configuration and it describes
how many machines use this configuration. Let C be the set of valid configurations and C}, the
multiplicity of size k in a configuration C' € C. The following ILP solves the rounded instance. We
note that there is no objective function in it.

Zxc:M
cecC
ch'CCCZNk vk e K
cecC
xCEZZQ VC eC

Here K are the rounded sizes and Nj the number of jobs with rounded size k € K. The first
constraint enforces that the correct number of machines is used, the next |K| many enforce that
for each size the correct number of jobs is scheduled.

It is notable that this ILP has only few constraints (a constant for a fixed choice of €) and also
the ¢1-norm of each column is small. More precisely, it is at most 1/¢, since every size is at least
€ - 7 and therefore no more than 1/¢ jobs fit in one configuration. By the Theorem [ we know
that H = 1/e is an upper bound on the hereditary discrepancy, A < 1/e, m = O(1/elog(1/e)),
[b]lsc < N, and n < (1/€)©(/€los(1/€) Notice also that K = N is a trivial upper bound on the
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¢1-norm of any solution. Using (@) and rounding in time O(N + 1/elog(1/¢)) yields a running
time of

O(H)™ log(A)log(K) + O(nm) + O (N + élog <1>)

€

< 9001/c196*(1/9) Jog(N) + O (N + Liog (l)) < 9001/c108*(1/9) 4 O(N).
€ €
The inequality above follows from distinguishing between 2°0(1/¢ log*(1/e)) < log(N) and 20(1/elog?(1/e)
log(N). The same running time (except for a higher constant in the exponent) could be obtained
with [22]. However, in order to avoid a multiplicative factor of N, one would have to solve the
LP relaxation first and then use proximity. Our approach gives an easier, purely combinatorial
algorithm. The advantage of our algorithm comes from removing the dependence on ||b]|s. Re-
cently, the authors together with Berndt and Deppert [7] introduced a more involved ILP for this
problem, which reduces the ¢1-norm of each column to O(log(1/€)) while maintaining the other
bounds. Still using the algorithm from this work, this leads to a mild improvement of the running

time to
2O(l/elog(1/e) log log(1/€)) + O(N)

This improvement relies on the low hereditary discrepancy and does not follow with the weaker
bounds on the Steinitz Lemma as in [22].
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Omitted proofs

Splitting a solution into two even parts. Recall that Lemma [l says that a vector z can be
split into two parts z and & — z such that Az, A(x — z) &= 1/2 - Az and the ¢;-norm of each part
is at least a constant fraction of that of z.

Proof. Proof of Lemma [ Let «; = |x;/2] and 2} = [x;/2] — |=;/2] € {0,1} for all i. Then
x; = |@;i /2] 4 [2;/2] = 22} + . Now apply the definition of disc(Ay) to 2", where I = supp(z”)
are the indices ¢ with «/ = 1. This way we obtain a vector z” € {0,1}" with ||A(z" — 2" /2)||ec <
disc(As) < herdisc(A). We now use z = 2’ + 2" to show the first part of the lemma. Then

Ja(= Pl = |4 (@ -252)| = [a (-5 < eraiecan

Furthermore, for all ¢

()ng—l—zl’»/gxg—l—x;/§2x;+x;’:xi.
——

=z;

In order to control the #; norm in the second part of the lemma, we first split = into two non-
empty ¢',y" € Z%y with y' +¢" =z and |||z]l1/2] = [[y'llh < [[y"llx = [ll=[l1/2]. Now apply
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and [|A(z" — y"/2)||co < herdisc(A). We can assume w.l.o.g. that ||2']l1 < ||¥'|l1/2 < ||z|l1/4 and
127111 > lly"1l1/2 > ||z||1/4, since otherwise we can swap them for ¢’ — 2z’ and y” — 2", respectively.
We will use z = 2’ + 2 for the second part of the lemma. As for the lower bound,

the first part of the lemma to obtain 2’ < ¢y’ and 2" < y” with ||A(z' — y'/2)||sc < herdisc(A)

2

1zl = 11271 = =

For the upper bound we first consider the case where [|z||; < 5 and note that |21 < ||¥/]l1/2 =
191 =1yl /2 < 1l9/l]x- Thus,

1 4
1zl = 12"+ 2"l < Hly" + 3" h = 1 < llzfls = llzll = zllzlh-

If flz]ly = 6,

1 3 1 5
et < el el el el Jelh 18, 15
el = o' +2"h < oyl = o0 | A | < B B2 < Sl el < 2l

Finally, z; = 2z} 4+ 2! <y, +y/ = z; and

(=Dl = Ja (e -55)]

/_y_/ /I_y_ll .
<||A| =z 5 + 1A 2 5 < 2-herdisc(4). O

Computing the dynamic table using convolution. In the following we explain the details on

how to reduce the computation of the entries of the dynamic table to a 1-dimensional convolution.

We first need to handle that 2°~!~%h might not be integral. Let ° = [2¢717%p| denote the

vector rounded down in every component. Then D;_; is completely covered by the points with

loo-distance 4H + 2 from b°. Likewise, D; is covered by the points with distance 4H + 2 from 2b°.
We project a vector b € D;_; to

fioa(b) = Zm:(16H+ 11771 (4H + 3+ —b°). (18)

Jj=1

€{1,....8H+5}

Notice that 16 H 411 is always bigger than the sum of two values of the form 4H + 3+ b;- —b°. We
define f;(V') for all b’ € D; in the same way, except we substitute b° for 2b°. For all a,a’ € D;_1,b' €
D;, it holds that fi_i(a) + fi—1(a’) = fi(¥), if and only if a +a’ = b — (4H +3,...,4H + 3)7:

Implication =. Let f;_1(a) + fi—1(a’) = f;(b'). Then, in particular,
fi_l(a) + fi_l(a’) = fl(bl) mod 16H + 11

Since all but the first element of the sum (I8) are multiples of 16 H + 11, i.e., they are equal 0
modulo 16 H + 11, we can omit them in the equation. Hence,

(4H +3+4+a; — b))+ (4H +3+a} —b9) = (4H + 3+ b, —20%) mod 16H + 11.

We even have equality (without modulo) here, because both sides are smaller than 16mA + 11.
Simplifying the equation gives a; +aj = b] — (4H +3). Now consider again the equation f;_1(a)+
fizi(a’) = fi(b). In the sums leave out the first element. The equation still holds, since by the
elaboration above this changes the left and right hand-side by the same value. We can now repeat
the same argument to obtain as + a) = b, — (4H + 3) and the same for all other dimensions.
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Implication <. Leta+a =V — (4H +3,...,4H + 3)”. Then for every j,
(4H +3+a; — b)) + (4H + 3+ a; — b)) = 4H + 3+ b, — 2b).
It directly follows that fi—1(a) + fi—1(a’) = fi(V').
This means when we write the value of each b” € D;_;y to r; and s;, where j = f;_1(b"”) and

every entry not used is set to —oo, the correct solutions will be in ¢t. More precisely, we can read
the result for some b’ € D; at t; where j = fi(b' + (4H + 3,...,4H + 3)T).
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