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In the classical contextual bandits problem, in each round t, a learner observes some context c, chooses

some action i to perform, and receives some reward ri,t(c). We consider the variant of this problem where in

addition to receiving the reward ri,t(c), the learner also learns the values of ri,t(c
′) for some other contexts

c′ in set Oi(c); i.e., the rewards that would have been achieved by performing that action under different

contexts c′ ∈ Oi(c). This variant arises in several strategic settings, such as learning how to bid in non-

truthful repeated auctions, which has gained a lot of attention lately as many platforms have switched to

running first-price auctions. We call this problem the contextual bandits problem with cross-learning. The

best algorithms for the classical contextual bandits problem achieve Õ(
√
CKT ) regret against all stationary

policies, where C is the number of contexts, K the number of actions, and T the number of rounds. We

design and analyze new algorithms for the contextual bandits problem with cross-learning and show that

their regret has better dependence on the number of contexts. Under complete cross-learning where the

rewards for all contexts are learned when choosing an action, i.e., set Oi(c) contains all contexts, we show

that our algorithms achieve regret Õ(
√
KT ), removing the dependence on C. For any other cases, i.e., under

partial cross-learning where |Oi(c)|<C for some context-action pair of (i, c), the regret bounds depend on

how the sets Oi(c) impact the degree to which cross-learning between contexts is possible. We simulate

our algorithms on real auction data from an ad exchange running first-price auctions and show that they

outperform traditional contextual bandit algorithms.

Key words : contextual bandits, cross learning, bidding, first-price auctions*

1. Introduction In the contextual bandits problem, a learner repeatedly observes some con-

text and, depending on the context, the learner takes some action and receives some reward. The

* Part of this work has appeared in Balseiro et al. (2019).
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learner’s goal is to maximize their total reward over some number of rounds. The contextual ban-

dits problem is a fundamental problem in online learning: it is a simplified (yet analyzable) variant

of reinforcement learning and it captures a large class of repeated decision problems. In addition,

the algorithms developed for the contextual bandits problem have been successfully applied in

domains like ad placement, news recommendation, and clinical trials (Kale et al. 2010, Li et al.

2010, Villar et al. 2015).

Ideally, one would like an algorithm for the contextual bandits problem which performs approxi-

mately as well as the best stationary strategy (i.e., the best fixed mapping from contexts to actions).

This can be accomplished by running a separate instance of some low-regret algorithm for the

non-contextual bandits problem (e.g., EXP3 proposed in Auer et al. 2002) for every context. This

algorithm achieves regret Õ(
√
CKT ), where C is the number of contexts, K the number of actions,

and T the number of rounds. This bound can be shown to be tight (Bubeck and Cesa-Bianchi

2012). Since the number of contexts can be very large, these algorithms can be impractical to

use, and modern current research on the contextual bandits problem instead aims to achieve low

regret with respect to some smaller set of policies (Auer et al. 2002, Langford and Zhang 2008,

Beygelzimer et al. 2011).

Some settings, however, possess additional structure between the rewards and contexts that allow

one to achieve less than Õ(
√
CKT ) regret while still competing with the best stationary strategy.

In this paper, we look at a specific type of structure we call cross-learning between contexts that

is particularly common in strategic settings with private information in which agents can compute

counterfactual rewards under different contexts. In variants of the contextual bandits problem with

this structure, playing an action i in some context c at round t not only reveals the reward ri,t(c) of

playing this action in this context (which the learner receives), but also reveals to the learner the

rewards ri,t(c
′) for some other context c′ in some set Oi(c), which depends on the action played.

The set Oi(c) can include every context, a case which we refer to as complete cross-learning, or

only a subset of contexts, which we refer to as partial cross-learning. Partial cross learning setting

can be used to model conservative learners that only use local information obtained from contexts

that are “close” to each other in some sense. Such a conservative learner might be concerned about

inaccuracies in their cross-learning model due to a significant differences in the contexts.

Contextual bandits with cross learning appear in many settings including (i) bidding in non-

truthful auctions, (ii) multi-armed bandits with exogenous costs, (iii) dynamic pricing with variable

cost, (iv) sleeping bandits, and (v) repeated Bayesian games with private types. While our model

and results are general, the main application of interest in this paper is the problem of bidding in

non-truthful auctions (such as first-price auctions), which we describe in detail below. We refer the

reader to Section 5 for more details about the other applications.
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1.1. Bidding in Non-truthful Auctions The problem of bidding in non-truthful auctions

has gained a lot of attention recently as online advertising platforms have recently switched from

running second-price to first-price auctions. Many online publishers have adopted header bidding,

in which publishers offer ad impressions to multiple ad exchanges simultaneously using a first-

price auction, rather than offering ad impressions sequentially to different exchanges, which would

typically auction impressions using second-price auctions, in a waterfall fashion. Additionally, some

major ad exchanges have adopted first-price auctions to sell all their inventory (Cox 2019). In

a first-price auction, the highest bidder is the winner and pays their bid (as opposed to second-

price auctions where the winner pays the second highest-bid). First-price auctions are non-truthful

mechanisms as bidders have incentives to shade bids so that they enjoy a positive utility when they

win (Vickrey 1961). As opposed to second-price auctions in which bidding is simple, determining

bids in first-price auctions is challenging as bidders need to take into account the competitive

landscape, which is typically unknown.

More formally, in the problem of bidding in repeated non-truthful auctions, at every round, the

bidder receives a (private) value for the current item, and based on this, must submit a bid for the

item. The auctioneer then collects the bids from all participants, and decides whether to allocate

the item to our bidder, and if so, how much to charge the bidder. The bidding problem in first-price

auctions can be seen as a contextual bandits problem for the bidder where the context c is the

bidder’s value for the item, the action i is their bid, and their reward is their net utility from the

auction: zero if they do not win, and their value for the item minus their payment p if they do win.

Note that this problem also allows for cross-learning between contexts – the net utility ri,t(c
′) that

would have been received if they had value c′ instead of value c is just (c′− p) · I(win item), which

can be computed from the outcome of the auction assuming the value and highest competing bid

(that influences I(win item)) are independent of each other; that is Oi(c) is the set of all possible

contexts.

This independence assumption, however, may not hold in practice, as we also observe in our

empirical studies in Section 6. When the bidder’s value (context) is correlated with the highest

competing bid, with the same action/bid, the chance of winning (i.e., I(win item)) under two values

that are far from each other may not be the same. For instance, when there is a positive correlation

between values and highest competing bids, as the value increases, the highest competing bid may

increase as well, reducing the chance of winning. To handle this, such learners can only allow for

cross-learning between close values. That is, Oi(c) can be chosen to be the set of contexts c′ that

are close enough to c.
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1.2. Main Contributions We introduce and study contextual bandit problems with cross-

learning between contexts. In this problem, for every action i ∈ [K], there is a directed graph Gi

over the set of contexts [C], where an edge c→ c′ in Gi indicates that playing action i in context c,

reveals the reward of action i in context c′. We refer to these graphs as cross-learning (CL) graphs,

where these graphs are known to the learner. (Set Oi(c), defined before, is the set of vertices of

out-neighbors of node/context c in CL graph Gi.) We study to what extent cross-learning between

contexts can improve regret bounds. In many settings, the number of possible contexts C can

be huge: exponential in the number of actions K or uncountably infinite. This makes the naive

O(
√
CKT )-regret algorithm undesirable in these settings. We show that the extent with which

cross-learning can improve the regret bounds depend on how “well-connected” the CL graphs are.

For instance, when CL graphs are complete graphs, i.e., under complete cross-learning between

contexts, we show that it is possible to design algorithms which completely remove the dependence

on the number of contexts C in their regret bound. For any other general CL graphs, i.e., under

partial cross-learning, in addition to the CL graphs themselves, the improvement in obtained regret

depends on how contexts and rewards are generated.

We consider both settings where the contexts are generated stochastically (from some distribu-

tion D that may or may not be known to the learner) and settings where the contexts are chosen

adversarially. Similarly, we also consider settings where the rewards are generated stochastically

and settings where they are chosen adversarially. By considering stochastic rewards, we can capture

environments under which the obtained reward (given a context) is stationary and predictable.

Whereas by considering adversarial rewards, we can capture environments with non-stationary and

hard-to-predict rewards. Similarly, stochastic (respectively adversarial) contexts model environ-

ments with stationary and predictable (respectively unpredictable) side information. Our results,

which are also summarized in Table 1, include:

• Stochastic rewards, stochastic or adversarial contexts: We design an algorithm

called UCB1.CL with regret of Õ(
√
κKT ), where κ is the average size of the minimum clique

cover of the CL graphs; the minimum clique cover of a directed graph is defined in Definition 1.

Observe that for complete CL graphs, κ= 1, and hence UCB1.CL obtains regret Õ(
√
KT ) under

complete cross-learning, removing the dependence of the regret bound on the number of contexts

C. On the other hand, when CL graphs contain only self-loops, i.e., under no cross-learning,

κ=C, which leads to a regret of Õ(
√
CKT ), as expected.

• Adversarial rewards, stochastic contexts with known distribution: We design an algo-

rithm called EXP3.CL with regret of Õ(
√
λKT ), where λ is the average size of the maximum

acyclic subgraph of the CL graphs; see Definition 3. We again note that for complete CL graphs,

we have λ = 1, which implies that EXP3.CL obtains regret of Õ(
√
KT ) under complete cross-

learning.
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Stoc. Rewards
Adv. Rewards &

Adv. Rewards &
Stoc. Contexts

Stoc. Adv. Known Unknown
Adv. Contexts

Contexts Contexts Context Dist. Context Dist.

Complete CL
Upper Bound Õ(

√
KT ) Õ(K1/3T 2/3) Õ(

√
CKT )

Lower Bound Ω̃(
√
KT ) Ω̃(

√
CKT )

Partial CL
Upper Bound Õ(

√
κKT logT ) Õ(

√
λKT ) Õ(λ̄K1/3T 2/3) Õ(

√
CKT )

Lower Bound Ω̃(
√
ν2(G)KT ) Ω̃(

√
λ(G)KT ) Ω̃(

√
ν2(G)KT ) Ω̃(

√
CKT )

Table 1. Here, κ= 1
K

∑
i∈[K] κ(Gi), and κ(Gi), which is the clique covering number of the CL graph Gi, is defined

in Definition 1. Moreover, λ̄= 1
K

∑
i∈[K] λ(Gi), and λ(Gi), which is the maximum acyclic subgraph number of Gi, is

defined in Definition 3. Finally, ν2(G), which is defined in Definition 4, can be seen as L2 variant of the maximum

acyclic subgraph number λ(G). (Our regret upper bound for partial CL with adversarial rewards and stochastic

context with unknown distribution (i.e., regret of EXP3.CL-U) hold when all CL graphs Gi, i∈ [K] are the same cross

all the actions.) The best known regret upper bound prior to this work is Õ(
√
CKT ). In our regret lower bounds, we

assume that Gi =G for any i∈ [K].

• Adversarial rewards, stochastic contexts with unknown distribution: We design an

algorithm called EXP3.CL-U with regret Õ(λ̄K1/3T 2/3).1 Here, “U” stands for Unknown distribu-

tion.

• Lower bound for adversarial rewards, adversarial contexts: We show that when both

rewards and contexts are controlled by an adversary, even under complete cross-learning, any

algorithm must obtain a regret of at least Ω̃(
√
CKT ).

All of these algorithms are easy to implement, in the sense that they can be obtained via simple

modifications from existing multi-armed bandit algorithms like EXP3 (Auer et al. (2002)) and

UCB1 (Robbins 1952, Lai and Robbins 1985a), and efficient, in the sense that all algorithms run

in time at most O(C+K) per round (and for many of the applications mentioned above, this can

be further improved to O(K) time per round). Our main technical contribution is our analysis of

UCB1.CL, which requires arguing that UCB1 can effectively use the information from cross-learning

despite it being drawn from a distribution that differs from the desired exploration distribution.

We accomplish this by constructing a linear program whose value upper bounds (one of the terms

in) the regret of UCB1.CL, and bounding the value of this linear program.

Our EXP3.CL and EXP3.CL-U algorithms that are designed for the adversarial rewards and stochas-

tic contexts setting are modifications of the EXP3 algorithm. These algorithms maintain a weight

for each action in each context, and update the weights via multiplicative updates by an exponen-

tial of an estimator of the reward, taking advantage of cross-learning between contexts via their

update rules and estimators. The main difference between EXP3.CL and EXP3.CL-U is how their

1 For this result to hold we need an assumption that CL graph Gi =G for any i∈ [K].
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reward estimators are constructed. In EXP3.CL, which is designed for the case of known context

distribution D, the estimator is unbiased, and crucially uses the knowledge of D to obtain minimal

variance. In EXP3.CL-U, which is designed for the case of unknown context distribution D, the

estimator is only unbiased under the complete cross-learning setting. The estimator, however, is

consistently biased for the partial cross-learning setting, easing the analysis. See Section 3.2.2 for

more details.

To shed lights on how tight regret bounds of our algorithms are, we further present regret lower

bound for the aforementioned settings; see Table 1. We show that when both rewards and contexts

are generated stochastically, any algorithm must obtain a regret of at least Ω̃(
√
ν2(G)KT ), where

ν2(G), which is defined in Definition 4, can be seen as L2 variant of the maximum acyclic subgraph

number λ(G). In all of regret lower bounds, we assume that CL graphs do not depend on actions;

that is, Gi = G for any i ∈ [K]. We further show a regret lower bound of Ω̃(
√
λ(G)KT ) when

rewards are generated stochastically and contexts are generated adversarially. This regret lower

bound also leads to the same regret lower bound for the case of adversarial rewards and stochastic

contexts.

By comparing our regret lower bounds with the regret of our algorithms, we observe that regret

of our algorithms are indeed tight for many CL graphs in various settings. Consider settings where

either (i) rewards are generated stochastically and contexts are either stochastic or adversarial, or

(ii) rewards are adversarial and contexts are stochastic (with known context distribution). Then,

for these settings, our regret upper bounds are tight for CL graphs that are the union of r disjoint

cliques. In fact, our regret upper bounds are tight for an even larger family of graphs, including

line graphs, and any undirected graph that is perfect. Perfect graphs include all bipartite graphs,

forests, interval graphs, and comparability graphs of posets (see, e.g., West et al. 1996).

Our regret upper bound for the settings with adversarial rewards and stochastic contexts (with

unknown context distribution), i.e., regret of EXP3.CL-U algorithm, does not match its associated

regret lower bound. In Appendix D, we present another candidate algorithm for this setting, which

can be viewed as a variant of EXP3.CL algorithm that uses an empirical estimate of context distri-

bution in place of the true context distribution, which is not available. While this variant performs

very well in our empirical studies in Section 6, because of several technical challenges explained in

Appendix D, we are not able to show the regret of this algorithm matches the regret lower bound.

We leave analyzing the regret of this variant as a future research direction.

We also apply our results to some of the applications listed above. In each case, our algorithms

obtain optimal regret bounds with asymptotically less regret than a naive application of contextual

bandits algorithms. In particular, for the problem of learning to bid in a first-price auction, standard

contextual bandit algorithms get regret O(T 3/4). Our algorithms achieve regret O(T 2/3). This is
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optimal even when there is only a single context (value). Note that in this problem, the set of

contexts (values) and actions (bids) are infinite. Thus, one needs to discretize the set of contexts

and actions, and such discretizations increases regret. Since our algorithms have regret bounds

that are independent of C, discretizing the context space arbitrarily finely does not deteriorate

performance (indeed, as we show in Section 5, we can often implement our algorithms for infinite

context spaces). We discuss the results for the other applications in Section 5.

Finally, we test the performance of these algorithms on real auction data from a first-price

ad exchange. In order for cross-learning to be effective in first-price auctions, the bidder should

be able to determine the counterfactual utility for different values. That is, after observing the

outcome of the auction, the bidder should predict how would their utility change if their value

was different. As stated earlier, this is possible when the bidder’s values are independent of other

players’ bid. In practice, however, one would expect certain degree of correlation between these

quantities and, thus, the independence assumption might not hold. Even though our algorithms

under the assumption of complete cross-learning do not explicitly account for correlation, numerical

results show that our algorithms are somewhat robust to errors in the cross-learning hypothesis

and outperform traditional bandit algorithms.

1.3. Related Work For a general overview of research on the multi-armed bandit problem,

we recommend the reader to the survey by Bubeck and Cesa-Bianchi (2012). Our algorithms build

off of pre-existing algorithms in the bandits literature, such as EXP3 (Auer et al. 2002) and UCB1

(Robbins 1952, Lai and Robbins 1985a). Contextual bandits were first introduced under that name

in Langford and Zhang (2008), although similar ideas were present in previous works (e.g., the

EXP4 algorithm was proposed in Auer et al. 2002).

One line of research related to ours studies bandit problems under other structural assumptions

on the problem instances which allow for improved regret bounds. Slivkins (2011) study a setting

where contexts and actions belong to a joint metric space, and context/action pairs that are close

to each other give similar rewards, thus allowing for some amount of “cross-learning.” See also

Hazan and Megiddo (2007) and Lu et al. (2009) for works that consider local smoothness over

a continuum of contexts that lie in a known metric space. Some other structural assumptions

widely studied in the contextual bandit literature include contextual Gaussian process bandits

(Krause and Ong 2011), linear bandits (Li et al. 2010), and contextual bandits with covariates

(Rigollet and Zeevi 2010, Perchet et al. 2013, Qian and Yang 2016, Guan and Jiang 2018). These

structural assumptions allow for some amount of cross-learning between contexts; however, they

do not capture the general cross-learning setting we study in this paper, nor do they fit into our

setting as we require the learner to be able to obtain sample rewards from other contexts.2

2 See also Van Parys and Golrezaei (2020) for the work that leverages convex structural information and Kakade et al.
(2009), Niazadeh et al. (2021) for work that exploits combinatorial structures.
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Several works (Mannor and Shamir 2011, Alon et al. 2015) study a partial-feedback variant of

the (non-contextual) multi-armed bandit problem where performing some action provides some

information on the rewards of performing other actions (thus interpolating between the bandits

and experts settings). Our setting can be thought of as a contextual version of this variant, and

our results in the partial cross-learning setting share similarities with these results (indeed, three

of the four graph invariants we consider – κ(G), λ(G), and the independence number of graph

G, denoted by ι(G) – appear prominently in the bounds of Mannor and Shamir 2011, Alon et al.

2015, albeit applied to different graphs). However, since the learner cannot choose the context each

round, these two settings are qualitatively different. As far as we are aware, the specific problem of

contextual bandits with cross-learning between contexts has not appeared in the literature before.

Recently there has been a surge of interest in applying methods from online learning and bandits

to auction design. The majority of the work in this area has been from the perspective of the

auctioneer (Morgenstern and Roughgarden 2016, Mohri and Medina 2016, Cai and Daskalakis

2017, Dud́ık et al. 2017, Kanoria and Nazerzadeh 2017, Golrezaei et al. 2019, 2021b) in which

the goal is to learn how to design an auction over time based on bidder behavior. In fact, many

papers have looked at this problem in a simple posted price auction; see, for example Araman

and Caldentey (2009), Farias and Van Roy (2010), Cheung et al. (2017), den Boer and Zwart

(2013), and Besbes and Zeevi (2009). Some recent work, which is at the intersection of learning

and auction design, studies this problem from the perspective of a buyer learning how to bid (Weed

et al. 2016, Feng et al. 2018, Braverman et al. 2018). (See Golrezaei et al. (2021a) for a recent work

that considers both perspectives of a buyer and a seller.) In particular, Weed et al. (2016) studies

the problem of learning to bid in a second-price auction over time, but where the bidder’s value

remains constant (so there is no context). More generally, ideas from online learning (in particular,

the concept of no-regret learning) have been applied to the study of general Bayesian games, where

one can characterize the set of equilibria attainable when all players are running low-regret learning

algorithms; see, for example, (Hartline et al. 2015, Golrezaei et al. 2020).

2. Model and Preliminaries We start with providing a short overview of non-contextual

multi-armed bandits. We then present contextual multi-armed bandits problems, which will be our

focus.

2.1. Non-Contextual Multi-Armed Bandits In the classic (non-contextual) multi-armed

bandit problem, a learner chooses one of K arms per round over the course of T rounds. On round

t, the learner receives some reward ri,t ∈ [0,1] for pulling arm i (where the rewards ri,t may be

chosen adversarially and may depend on T ). The learner’s goal is to maximize their total reward.
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Let It denote the arm pulled by the decision maker’s algorithm A at round t. The algorithm maps

the history set {(I1, rI1,1), (I2, rI2,2), . . . , (It−1, rIt−1,t−1)} of pulled arms and their realized rewards

during the first t− 1 rounds, any (realized) randomness in the first t− 1 rounds, and the total

number of rounds T to an arm It, where this mapping can be deterministic or random. Throughput

this work, we assume that all the algorithms know the total number of rounds T . This assumption,

which is common in the literature, can be relaxed via the doubling trick (see, e.g., Auer et al. 2002,

Bubeck and Cesa-Bianchi 2012, Lattimore and Szepesvári 2020). This trick, which can be applied

in a black-box fashion, can efficiently deal with an unknown number of rounds T by repeatedly

running an algorithm with horizons of increasing length.

2.2. Contextual Multi-Armed Bandits In our model, we consider a contextual multi-

armed bandits problem. In the contextual bandits problem, in each round t, the learner is addi-

tionally provided with a context ct, and the learner now receives reward ri,t(ct) if they pull arm i

on round t while having context ct. The contexts ct are either chosen adversarially at the beginning

of the game or drawn independently each round from some distribution D. Similarly, the rewards

ri,t(c) are either chosen adversarially or each independently drawn from some distribution Fi(c).
We assume as is standard that ri,t(c) is always bounded in [0,1].

Again, let It denote the arm pulled by the decision maker’s algorithm A at

round t under context ct. Here, at around t, the algorithm maps the history set

{(I1, rI1,1, c1), (I2, rI2,2, c2), . . . , (It−1, rIt−1,t−1, ct−1), ct} of contexts, the pulled arms and their real-

ized rewards during the first t−1 rounds, as well as, the current context ct, any (realized) random-

ness in the first t− 1 rounds, and the total number of rounds T to an arm It, where this mapping

can be deterministic or random.

In the contextual bandits setting, we define the regret of an algorithm A in terms of regret

against the best stationary benchmark π : {1, . . . ,C} → {1, . . . ,K}, mapping a context c to an

action π(c). That is, the regret is defined as
∑T

t=1 rπ(ct),t(ct)−
∑T

t=1 rIt,t(ct), where It is the arm

pulled by A on round t. The definition of best stationary policy π depends slightly on how contexts

and rewards are generated. In all of these definitions, as is common in the bandit literature (e.g.,

the seminal work of Lai and Robbins 1985b), we assume that the best stationary policy π is unique.

Nonetheless, all of our gap-independent results continue to hold even when the best stationary

policy is non-unique.

• Benchmark under stochastic rewards. When rewards are stochastic, i.e., ri,t(c) is drawn

independently3 from Fi(c) with mean µi(c), we define π to be the stationary policy that maxi-

mizes the expectation of performance over rewards
∑T

t=1 Eri,ct∼Fi(ct)[rπ(ct),t(ct)] =
∑T

t=1 µπ(ct)(ct),

3 As is the case with standard stochastic bandits, our proofs work even when the rewards ri,t(c) are correlated across
actions and contexts, as long as they are independent across rounds.
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which leads to the optimal policy π(c) = arg maxi∈[K] µi(c). That is, under the best stationary

policy, for every context c, an arm with the highest average reward is pulled. We highlight that

unlike our algorithms, the benchmark π has full knowledge of the reward distributions of all the

arms under any contexts and given this knowledge, under context c, it chooses arm i with the

highest average reward µi(c).

• Benchmark under adversarial rewards and stochastic contexts. When rewards are

adversarial but contexts are stochastic, we define π to be the stationary policy that maximizes

the expectation of performance over contexts
∑T

t=1 Ect∼D[rπ(ct),t(ct)] =
∑

c∈[C] Pr[c]
∑T

t=1 rπ(c),t(c),

where the last equation follows because contexts are identically distributed across all the rounds.

This is achieved by the policy π(c) = arg maxi∈[K]

∑T

t=1 ri,t(c) since the benchmark is separable

over contexts.

• Benchmark under adversarial rewards and contexts. When both rewards and contexts

are adversarial, we define π(c) to be the stationary policy which maximizes
∑T

t=1 rπ(ct),t(ct).

Precisely, π(c) = arg maxi∈[K]

∑T

t=1 ri,t(c)I(ct = c). In this case, it suffices for the adversary to

only specify {ri,t(ct)}Ki=1 in each round t, i.e., the K rewards for context ct, as the other rewards

are never realized.

Our choices of benchmarks are unified in the following way: in all of the above cases, π is

the best stationary policy in expectation for someone who knows all the decisions of the adver-

sary and details of the system ahead of time, but not the randomness in the instantiations of

contexts/rewards from distributions. This matches commonly studied notions of regret in the con-

textual bandits literature.

We now comment on our benchmark when rewards are adversarial and contexts are stochastic.

In this case, there are two different natural ways to define “the best stationary policy.” The first

maximizes the empirical cumulative rewards or, equivalently, the rewards the specific contexts ct

we observed in the run of our algorithm: π′(c) = arg maxi∈[K]

∑T

t=1 ri,t(c)I(ct = c) . The second way

that we consider in this work simply maximizes the reward of this strategy in expectation over

all time π(c) = arg maxi∈[K]

∑T

t=1 ri,t(c). Under π, at the beginning of the game, the adversary

knows all the rewards, but not when each context will occur, and hence, π is the best stationary

strategy in expectation, where the expectation is taken with respect to contexts. (Recall that∑T

t=1 Ect∼D[rπ(ct),t(ct)] is maximized under the best stationary strategy π.) Under π′, on the other

hand, at the beginning of the game, the adversary knows all the rewards and contexts in each

round, and hence π′ is the best stationary strategy in hindsight.

In this paper, when rewards are adversarial and contexts are stochastic, all bounds we show are

with respect to the best stationary strategy in expectation, i.e., π(c) = arg maxi∈[K]

∑T

t=1 ri,t(c).
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This is because the best stationary strategy in hindsight π′ is too strong when contexts are stochas-

tically drawn from a known distribution. With the latter strategy as a benchmark, no algorithm

can be shown to achieve sub-linear regret when the number of contexts is large enough (see The-

orem 7 in Appendix A). That being said, when rewards and contexts are chosen adversarially,

policy π(c) = arg maxi∈[K]

∑T

t=1 ri,t(c) is no longer well motivated as contexts are not generated

stochastically. Hence, when rewards and contexts are chosen adversarially, the stationary policy

we consider is the best policy in hindsight (i.e., π′(c) = arg maxi∈[K]

∑T

t=1 ri,t(c)I(ct = c).)

We conclude by noting that there is a simple way to construct an algorithm A′ with sublinear

regret of o(T ) for the contextual bandits problem from a sublinear-regret algorithm A for the

classic bandits problem: simply maintain a separate instance of A for every different context c. In

the contextual bandits literature, this is sometimes referred to as the S-EXP3 algorithm when A

is EXP3 (Bubeck and Cesa-Bianchi 2012). The S-EXP3 algorithm has regret of order Õ(
√
CKT ).

We define the S-UCB1 algorithm similarly, which also obtains Õ(
√
CKT ) regret when rewards are

generated stochastically. Our goal in this work is to develop algorithms with better dependence

on the number of contexts by exploiting the possibility of cross learning between them. See the

formal definition of cross learning between contexts in the next section.

2.3. Contextual Multi-Armed Bandits with Cross-Learning between Contexts We

consider a variant of the contextual bandits problem we call (partial) contextual bandits with cross-

learning. In this variant, whenever the learner pulls arm i in round t while having context c and

receives reward ri,t(c), they also learn the value of ri,t(c
′) for some subset of contexts c′ (e.g.,

contexts similar to c). More precisely, for every action i∈ [K], we specify a directed graph Gi over

the set of contexts [C]. An edge c→ c′ in Gi indicates that playing action i in context c, reveals

the reward of action i in context c′. We assume that all self-loops c→ c are present in all graphs

Gi (i.e., playing action i in context c, reveals the reward of action i in context c). We refer to these

graphs as cross-learning (CL) graphs, and we assume that the CL graphs are known to the learner.

Throughout the paper, we pay a special attention to two particular cases of contextual bandits

with cross learning: (i) contextual bandits with no cross-learning and (ii) contextual bandits with

complete cross-learning. In the former, the graphs Gi for every i ∈ [K] only contain self-loops.

In the latter, the graphs Gi are fully connected, that is, there is an edge between every pair of

contexts. When we are not in either of these two special cases, we refer to the setting as contextual

bandits with partial cross-learning. Figure 1 depicts three examples of CL graphs: (i) a CL graph

with three contexts (C = 3) and no cross-learning between contexts (see Figure 1a), (ii) a CL graph

with three contexts (C = 3) and complete cross-learning between contexts (see Figure 1b), and (iii)
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(c) A CL graph with partial cross-learning

Figure 1. Examples of CL graphs

a CL graph with partial cross-learning (see Figure 1c). In Figure 1c, contexts are ordered and cross

learning happens when |c− c′| ≤ 1, i.e., between consecutive contexts.

In most of the applications we consider in this work (see Section 5), one can consider complete

cross-learning between contexts. For example, in the problem of bidding in non-truthful auctions,

if a bidder wins an auction with a certain bid, it is generally possible to evaluate the counterfactual

outcome “how much utility would have been obtained if the valuation was different but the bid

was the same.” Such counterfactual outcomes can be estimated if, for the same bid, a change

in the bidder’s value would not affect the bids of competitors. In many applications, however,

such counterfactual outcomes cannot be estimated for all contexts but, instead, for contexts that

are “close” to each other in some sense. In the bidding example, it is reasonable to assume that

small changes in the bidder’s valuation should not drastically impact the competitive landscape.

Therefore, partial cross-learning can be used to model conservative learners that only use local

information obtained from cross-learning. Such a conservative learner might be concerned about

inaccuracies in their cross-learning model due to a significant differences in the contexts.

We highlight that in defining our regret bounds for the contextual bandit setting with cross-

learning between contexts, we use our stationary benchmarks defined in Section 2.2. We finish this

section by presenting graph invariants. These invariants appear in our analysis of our algorithms,

as well as, our regret bounds.

2.3.1. Graph Invariants Throughout the remainder of this section, we will assume that all

graphs G are directed and contain all self-loops. Given a vertex v in G, let I(v) denote the set of

in-neighbors, i.e., the set of vertices w such that there exists an edge w→ v, and let O(v) denote

the set of vertices of out-neighbors, i.e., the set of vertices w such that there exists an edge v→w.

Because all our graphs contain self-loops, v ∈O(v) and v ∈ I(v).
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We define the following quantities of graph G: (i) clique covering number, denoted by κ(G),

(ii) independence number, denoted by ι(G), and (iii) maximum acyclic subgraph number, denoted

by λ(G). These quantities will appear in our regret bounds. We further define another metric,

denoted by ν2(G), which can be thought of as an “L2 variant” of λ(G) (see Lemma 1). This

function will appear in our lower bounds, provided in Section 4. Finally, at the end of this section,

we present a lemma comparing these quantities. To wit, we show that for any graph G, we have

ι(G)≤ ν2(G)≤ λ(G)≤ κ(G).

Definition 1 (Clique Covering Number). A subclique of a graph G is a subset of vertices

S such that for any two vertices u, v ∈ S, there exists an edge u→ v. A clique cover of a graph G

is a partition of its set of vertices into subcliques S1, S2, . . . , Sr (we say r is the size of the clique

cover). The clique covering number κ(G) is the minimum size of a clique cover of G.

For CL graphs associated with complete cross-learning (see Figure 1b), κ(G) = 1. For CL graphs

associated with no cross-learning (see Figure 1a), κ(G) = C. For the CL graph in Figure 1, κ(G)

is dC/2e.

Definition 2 (Independence Number). An independent set in a graph G is a subset of

vertices S such that for any two distinct vertices u, v ∈ S, the edge u→ v does not exist in G. The

independence number ι(G) is the maximum size of an independent set of G.

Again, it is easy to see that for the CL graphs in Figures 1a, 1b, and 1c, ι(G) is C, 1, and dC/2e,

respectively.

Definition 3 (Maximum Acyclic Subgraph Number). An acyclic subgraph of a graph G

is a set of vertices that can be ordered v1, v2, . . . , vr such that for any i > j, there is no edge vi→ vj.

The maximum acyclic subgraph number λ(G) is the size of the largest acyclic subgraph of G.

We note that for the CL graphs in in Figures 1a, 1b and 1c, λ(G) is again C, 1, and dC/2e,

respectively. The following lemma sheds light on the maximum acyclic subgraph number λ(G).

Lemma 1. For all directed graphs G with self-loops,

λ(G) = sup
f :V→R+

∑
v∈V

f(v)∑
w∈I(v) f(w)

.

Next, we define another graph quantity and compare all the quantities that we have defined so

far.

Definition 4. The value ν2(G) of a graph G (with vertex set V ) is given by

ν2(G) = sup
f :V→R+∑
v∈V f(v)=1

∑
v∈V

f(v)√∑
w∈I(v) f(w)

2

.



Author: Contextual Bandits with Cross-Learning

14 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Comparing the definition of ν2(G) with λ(G) in Lemma 1 confirms that ν2(G) can be seen as

L2 variant of the maximum acyclic subgraph number λ(G). For the CL graphs in Figures 1a, 1b

and 1c, ν2(G) is again C, 1, and dC/2e, respectively. The result for the CL graph in Figure 1c

can be obtained by choosing f(v) = 1/dC/2e for all v in an independent set of G in Definition 4;

alternatively, it follows from the fact that ι(G) = κ(G) = dC/2e; see the following lemma.

Lemma 2 (Comparing Graph Quantities). For all graphs G,

ι(G)≤ ν2(G)≤ λ(G)≤ κ(G).

Furthermore, when G is the union of r disjoint cliques, equality holds for all inequalities and all

invariants equal r.

Lemma 2 shows that for any graph G, its independence number ι(G) is smaller than its L2

variant of the maximum acyclic number, i.e., ν2(G), and the latter is smaller than or equal to

the maximum acyclic number of the graph, i.e., λ(G). Finally, λ(G) is smaller than or equal to

the clique covering number of the graph κ(G). These inequalities will help us compare our regret

bounds under the cross learning; see Section 4. In Lemma 2, we further show that if graph G is

the union of r disjoint cliques, then ι(G) = ν2(G) = λ(G) = κ(G) = r.

3. Algorithms for Cross-Learning Between Contexts In this section, we present three

algorithms for the contextual bandits problem with cross-learning. The first algorithm called

UCB1.CL is designed for settings with stochastic rewards and adversarial contexts (Section 3.1).

The two other algorithms called EXP3.CL and EXP3.CL-U are designed for settings with adversarial

rewards and stochastic contexts. While EXP3.CL (Section 3.2.1) has full knowledge of the context

distribution, EXP3.CL-U (Section 3.2.2) does not have this knowledge. (“U” in EXP3.CL-U stands for

“Unknown” context distribution.) Then, in Section 3.3, we show that even with complete cross-

learning, it is impossible to achieve regret better than Õ(
√
CKT ) when both rewards and contexts

are controlled by an adversary (in particular, when both rewards and contexts are adversarial,

cross-learning may not be beneficial at all).

3.1. UCB1.CL Algorithm for Stochastic Rewards In this section, we present a low-regret

algorithm, called UCB1.CL, for the contextual bandits problem with cross-learning in the stochastic

reward setting: i.e., every reward ri,t(c) is drawn independently from an unknown distribution Fi(c)
supported on [0,1]. Importantly, this algorithm works even when the contexts are chosen adver-

sarially, unlike our algorithms for the adversarial reward setting. We call this algorithm UCB1.CL

(Algorithm 1). For simplicity, we will begin by describing UCB1.CL and the intuition behind it in

the complete cross-learning setting (when all the graphs Gi are the complete directed graph). We

will then describe how to modify it for the case of partial cross-learning.
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3.1.1. UCB1.CL Algorithm for Complete Cross-learning The UCB1.CL algorithm is a gen-

eralization of S-UCB1; both algorithms maintain a mean and upper confidence bound for each

action in each context, and always choose the action with the highest upper confidence bound. The

difference being that UCB1.CL uses cross-learning to update the means and confidence bounds for

every context. Namely, when arm i is pulled in a round under context c, we update the means and

confidence bounds for arm i in every other context c′. (Recall that we under complete cross-learning,

the CL graphs are complete directed graphs.)

UCB1.CL Algorithm

• Define the function ω(s) =
√

(2 logT )/s (with ω(0) = +∞).

• For all i ∈ [K] and c ∈ [C], maintain a counter τi,t(c) equal to the number of times
we have observed the reward of arm i in context c up to round t, i.e., τi,t(c) =∑t−1

t′=1 I(It′ = i, c∈Oi(ct′)).
• For all i ∈ [K] and c ∈ [C], maintain a running total σi,t(c) of the total reward

observed from arm i in context c up to round t, i.e., σi,t(c) =
∑t−1

t′=1 ri,t′(c)I(It′ =
i, c∈Oi(ct′)).

• Write ri,t(c) as shorthand for σi,t(c)/τi,t(c). If τi,t(c) = σi,t(c) = 0, let ri,t(c) = 0.

• For t= 1 to T ,
— Receive context ct.

— Let It be the arm which maximizes rIt,t−1(ct) + ω(τIt,t−1), breaking ties arbi-
trarily. That is, It ∈ arg maxi∈[K] ri,t−1(ct) +ω(τi,t−1).

— Pull arm It, receiving reward rIt,t(ct), and learning the value of rIt,t(c) for all
c∈OIt(ct).

— For each c in OIt(ct), set τIt,t(c) = τIt,t−1(c)+1. For each c /∈OIt(ct), set τIt,t(c) =
τIt,t−1(c). For each i∈ [K] \ {It} and c∈ [C], set τi,t(c) = τi,t−1(c).

— For each c in OIt(ct), set σIt,t(c) = σIt,t−1(c) + rIt,t(c). For each c /∈OIt(ct), set
σIt,t(c) = σIt,t−1(c). For each i∈ [K] \ {It} and c∈ [C], set σi,t(c) = σi,t−1(c).

Algorithm 1: O(
√
κKT logT ) regret algorithm (UCB1.CL) for the contextual bandits problem

with cross-learning where rewards are stochastic. Here, κ= 1
K

∑
i∈[K] κ(Gi), and κ(Gi), which

is the clique covering number of the CL graph Gi, is defined in Definition 1.

While there are similarities between S-UCB1 and UCB1.CL, the analysis of UCB1.CL requires new

ideas to deal with the fact that the observations of rewards may be drawn from a very different

distribution than the desired exploration distribution. Very roughly, the analysis is structured as

follows. Since rewards are stochastic, in every context c, there is a “best arm” i?(c) that the optimal

policy always plays. Every other arm i is some amount ∆i(c) worse in expectation than the best

arm. Here, ∆i(c) = µi?(c)(c)−µi(c) and µi(c) is the average reward of arm i under context c. After

observing this arm mi(c)≈ log(T )/∆2
i (c) times, one can be confident that this arm is not the best
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arm. We can decompose the regret into the regret incurred “before” and “after” the algorithm

is confident that an arm is not optimal in a specific context. The regret after the algorithm is

confident, which we call “post-regret,” can be bounded using standard techniques from the bandit

literature. Our main contribution is the bound of the regret that UCB1.CL incurs before it gets

confident. We refer to this regret as “pre-regret.”

Consider a complete cross-learning setting and fix an arm i and let Xi(c) be the number of times

the algorithm pulls arm i in context c before pulling arm i a total of mi(c) times across all contexts.

Because once arm i is pulled mi(c) times, we are confident about the optimality of pulling that

arm in context c, we only need to control the number pulls before mi(c). Therefore, the pre-regret

of arm i is roughly
∑C

c=1Xi(c)∆i(c).

We control the pre-regret by setting up a linear program in the variables Xi(c) with the objective

of
∑

c∈[C],i∈[K]Xi(c)∆i(c). Because Xi(c) counts all pulls of arm i before mi(c), we have that

Xi(c) ≤ mi(c). This inequality, while valid, does not lead to a tight regret bound. To obtain a

tighter inequality, we first sort the contexts in terms of the samples needed to learn whether an

arm is optimal, i.e., in increasing order of mi(c). Because a different context is realized in every

round, we can consider the inequality
∑

c′:mi(c
′)≤mi(c)

Xi(c
′) ≤mi(c), which counts the subset of

first mi(c) pulls of arm i. This set of inequalities give us our desired bound for pre-regret. Under

partial cross-learning, we have similar set of inequalities. These inequalities, however, are slightly

modified to incorporate the CL graph under partial cross-learning.

3.1.2. UCB1.CL Algorithm for Partial Cross-learning In the case of partial cross-learning,

we can run almost the same algorithm as described above, with the slight change that instead of

updating our statistics for arm i in every context, we only update these statistics for the contexts

which we learn about – i.e., exactly the contexts in Oi(c) (recall that an edge c→ c′ in Gi indicates

that playing action i in context c, reveals the reward of action i in context c′). Much of the

same intuition applies to the analysis as well, with the change that now the solution of the linear

program we obtain will depend on properties of the graphs Gi (specifically, their clique numbers;

see Theorem 1).

3.1.3. Regret of UCB1.CL Algorithm Let κ = 1
K

∑
i∈[K] κ(Gi) be the average clique cover

size of all graphs Gi. Recall that κ(G) is the clique covering number of graph G and is defined in

Definition 1. In Theorem 1, we show that algorithm UCB1.CL incurs at most O(
√
κKT logT ) regret.

Observe that when we have complete cross-learning, the CL graph Gi, i∈ [K], is a complete graph

with κ(Gi) = 1. Thus, Theorem 1 gives the regret of O(
√
KT logT ) for the case of complete cross-

learning. Observe that the dependency on the number of contexts C is completely removed in the
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regret bound. For the case of no cross-learning, the CL graph Gi, i ∈ [K], only contains self-loops

with κ(Gi) =C. Then, with no cross-learning, Theorem 1 gives the regret of O(
√
KCT logT ), as

expected.

Theorem 1 (Regret of UCB1.CL). Let ∆∗ = mini∈[K],c∈[C](µ
?(c)− µi(c)) > 0 (where µ?(c) =

maxi∈[K] µi(c)). Then, UCB1.CL (Algorithm 1) has an expected gap-dependent regret of O
(
Kκ̄ logT

∆∗

)
and an expected gap-independent regret of O(

√
κKT logT ) for the contextual bandits problem

with cross-learning in the setting with stochastic rewards and adversarial contexts, where κ =

1
K

∑
i∈[K] κ(Gi), and κ(Gi), which is the clique covering number of the CL graph Gi, is defined in

Definition 1.

To develop some intuition for Theorem 1, consider the case when G is the union of r disjoint

cliques. In this case, all metrics (including κ(G)) presented in Lemma 2 of Section 2.3.1 take value r.

Because each component is disjoint and fully connected, it is possible to cross learn for all contexts

within each clique, but contexts from different cliques provide no information on each other. Hence,

the learning problem perfectly decouples across cliques and leads to a regret of O(
√
rKT logT ).

The clique covering number measures the number of cliques needed to cover the graph and thus

captures to what extent we can cross learn on graphs that do not perfectly decompose into disjoint

cliques.

3.1.4. Proof of Theorem 1

Proof of Theorem 1 We begin by defining the following notation. Let µi(c) be the mean of

distribution Fi(c). Let i?(c) = arg maxj∈[K] µj(c), and let µ?(c) = µi?(c)(c). Let ∆i(c) = µ?(c)−µi(c)

be the gap between the expected reward of playing arm i in context c and of playing the optimal

arm i?(c) in context c. Let τ ′i,t(c)=
∑t−1

t′=1 I(It′ = i, ct′ = c) be the number of times arm i has been

pulled in context c up to round t. Note that the regret Reg(A) of our algorithm is then equal to

Reg(A) =
K∑
i=1

C∑
c=1

∆i(c)τ
′
i,T (c) =

K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)I(It = i, ct = c).

Fix a value ∆min to be chosen later. Note that the sum of all terms in the above expression with

∆i(c)≤∆min is at most ∆minT . We can therefore write

Reg(A)≤∆minT +
K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)I(It = i, ct = c,∆i(c)≥∆min).

For convenience of notation, from now on, without loss of generality, we assume that all ∆i(c)≥

∆min, and suppress the condition ∆i(c)≥∆min in the indicator variables.
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Now, define mi(c) = 8 logT

∆2
i (c)

. This quantity represents the number of times one must pull arm i

to observe that arm i is not the best arm in context c (we will show this later). Define (as in

Algorithm 1)

τi,t(c) =
∑

c′∈Ii(c)

τ ′i,t(c
′).

Note that τi,t(c), which can be written as τi,t(c) =
∑t−1

t′=1 I(It′ = i, c∈Oi(ct′)), is equal to the number

of times up to round t we observe the reward of arm i in context c. We now define

RegPre =
K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)I(It = i, ct = c, τi,t(c)≤mi(c)), (1)

RegPost =
K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)I(It = i, ct = c, τi,t(c)>mi(c)). (2)

These two quantities represent the regret incurred before and after (respectively) the algorithm

“realizes” an arm is not optimal in a specific context. We refer to RegPre and RegPost as pre- and

post-regret, respectively. With these quantities, almost surely, we have

K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)I(It = i, ct = c) = RegPre +RegPost . (3)

In the following two lemmas, we will bound the expected values of RegPre and RegPost. In partic-

ular, the following lemma that bounds E[RegPre] is our main technical contribution in this proof.

Lemma 3 (Bounding the Pre-regret). Let RegPre be the quantity defined in (1). Then,

E [RegPre]≤
16 logT

(∑K

i=1 κ(Gi)
)

∆min

.

Proof of Lemma 3 Fix an action i, and let S1, S2, . . . , Sκ(Gi) be a minimal clique covering of the

graph Gi. Let r(c) equal the value of r such that c∈ Sr. For each r ∈ [κ(Gi)], define

τ̃i,t(r) =
∑
c∈Sr

τ ′i,t(c).

The quantity τ̃i,t(r) can be thought of the number of times we play arm i in a context belonging

to clique r. Note that since Sr is a clique, this is also (a lower bound on) the number of times we

observe the reward of all the arms in clique r.

Note that for all c, Sr(c) ⊆Ii(c) (since Sr(c) is a clique, all contexts in Sr(c) have an edge leading

to c). It follows that τ̃i,t(r(c)) ≤ τi,t(c). (Under complete cross-learning, τ̃i,t(r(c)) = τi,t(c).) Now,

define Xi(c) as

Xi(c) =
T∑
t=1

I(ct = c, It = i, τ̃i,t(r(c))≤mi(c)).
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The quantity Xi(c) can be thought of as the number of times action i is played during context

c before the mi(c)th time we have observed the payoff of action i in this context (and the other

contexts of Sr(c)). Note that since τ̃i,t(r(c))≤ τi,t(c), it is true that

I(ct = c, It = i, τ̃i,t(r(c))≤mi(c))≥ I(ct = c, It = i, τi,t(c)≤mi(c)),

and therefore
C∑
c=1

T∑
t=1

∆i(c)I(It = i, ct = c, τi,t(c)≤mi(c))≤
C∑
c=1

∆i(c)Xi(c).

Fix an r, and order the contexts in Sr given by c(1), c(2), . . . , c(|Sr|) so that ∆i(c(1))≥∆i(c(2))≥
· · · ≥∆i(c(|Sr|)) (and thus mi(c(1))≤mi(c(2))≤ · · · ≤mi(c(|Sr|))). From the ordering of the mi(c(j)),

we have the following system of inequalities:

Xi(c(1))≤mi(c(1))

Xi(c(1)) +Xi(c(2))≤mi(c(2))

...

Xi(c(1)) +Xi(c(2)) + · · ·+Xi(c(|Sr|))≤mi(c(|Sr|)) . (4)

To see why the above inequalities hold, for simplicity, focus on the second inequality (the same

argument can be applied for other inequalities). First note that by the fact that mi(c(1))≤mi(c(2)),

we have

Xi(c(1))+Xi(c(2))≤
T∑
t=1

I(ct = c(1), It = i, τ̃i,t(r)≤mi(c(2)))+
T∑
t=1

I(ct = c(2), It = i, τ̃i,t(r)≤mi(c(2))) .

(Recall that τ̃i,t(r) =
∑

c∈Sr τ
′
i,t(c).) This implies that

Xi(c(1)) +Xi(c(2)) ≤
T∑
t=1

I((ct = c(1) or ct = c(2)), It = i, τ̃i,t(r)≤mi(c(2))).

The right hand side of the above inequality is in turn at most mi(c(2)), since each time ct = c(1) or

c(2) and It = i, τ̃i,t(r) increases by 1. This proves the second inequality in (4); the other inequalities

follow similarly.

Now, we wish to bound
∑|Sr|

j=1 ∆i(c(j))Xi(c(j)). To do this, multiply the jth inequality in Equation

(4) by ∆i(c(j))−∆i(c(j+1)) (for the last inequality, just multiply it through by ∆i(c(|Sr|))), and sum

all of these inequalities to obtain

|Sr|∑
j=1

∆i(c(j))Xi(c(j)) ≤ ∆i(c(|Sr|))mi(c(|Sr)|)) +

|Sr|−1∑
j=1

(∆i(c(j))−∆i(c(j+1)))mi(c(j))

= 8 logT

(
1

∆i(c|Sr|)
+

|Sr|−1∑
j=1

∆i(c(j))−∆i(c(j+1))

∆i(c(j))2

)
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≤ 8 logT

(
1

∆min

+

∫ 1

∆min

dx

x2

)
≤ 16 logT

∆min

,

where the second equation follows because mi(c) = 8 logT

∆2
i (c)

, and the third equation holds because

∆i(cj)≥∆min for any j ∈ [|Sr|]. Therefore, summing over all r ∈ [κ(Gi)], we have that

C∑
c=1

∆i(c)Xi(c)≤
16κ(Gi) logT

∆min

.

Finally, summing over all actions i, we have that

RegPre ≤
16 logT

∆min

(
K∑
i=1

κ(Gi)

)
. �

We next proceed to bound the expected value of RegPost. This follows from the standard analysis

of UCB1. A proof is provided in the appendix.

Lemma 4 (Bounding the Post-regret). Let RegPost be the quantity defined in (2). Then,

E [RegPost]≤
Kπ2

3
.

Substituting the results of Lemmas 3 and 4 into (3) with ∆min = ∆∗, we obtain

E[Reg(A)]≤ 16K logT

∆∗

(
K∑
i=1

κ(Gi)

)
+
Kπ2

3
=O

(
K logT

∆∗
κ̄

)
, (5)

where the inequality holds because by definition, κ̄= 1
K

∑K

i=1 κ(Gi). This proves our gap-dependent

regret bound. For the gap-independent bound, observe that E[Reg(A)]≤∆minT +RegPre +RegPost.

Then, one can still apply the the results of Lemmas 3 and 4 to bound RegPre and RegPost. By doing

so, we obtain

E[Reg(A)]≤∆minT +
16Kκ logT

∆min

+
Kπ2

3
.

Substituting in ∆min =
√
κK logT/T , it is straightforward to verify that E[Reg(A)] ≤

O(
√
κKT logT ), as desired.

3.2. Algorithms for Adversarial Rewards and Stochastic Contexts Here, we consider

contextual bandits problem with cross learning when the rewards are adversarially chosen but

contexts are stochastically drawn from some distribution D. We consider two settings: in the first

setting, the learner knows the distribution over contexts D and in the second setting, the context

distribution is unknown.
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3.2.1. EXP3.CL Algorithm for Known Context Distribution In this section, we present

an algorithm called EXP3.CL (Algorithm 2). Similar to S-EXP3, discussed in the introduction,

EXP3.CL maintains a weight for each action in each context, and updates the weights via multi-

plicative updates by an exponential of an unbiased estimator of the reward. There are two main

differences between S-EXP3 and EXP3.CL. First, while S-EXP3 only updates the weight of the cho-

sen action for the current context (i.e., wIt,t(ct)), EXP3.CL uses the information from cross-learning

to update the weight of the chosen action for more contexts. Precisely, suppose that EXP3.CL plays

arm It in round t under context ct. Then, EXP3.CL updates the weight of any context c in OIt(ct).

(For the case of complete cross-learning, the weight of all contexts c are updated.)

Second, to take advantage of the information from cross-learning, EXP3.CL modifies S-EXP3 by

changing the unbiased estimator in the update rule. For S-EXP3, r̂i,t(c) = (ri,t(c)/pi,t(ct))I(It = i)

is an unbiased estimator (over the algorithm’s randomness) of the reward the adversary chooses

from pulling arm i in context c, where pi,t(c) is the probability the algorithm chooses action i in

round t if the context is c. However, to minimize regret, EXP3.CL chooses an unbiased estimator

with minimal variance (as the expected variance of this estimator shows up in the final regret

bound). The new estimator in question is

r̂i,t(c) =
ri,t(c)∑

c′∈Ii(c)
Pr[c′] · pi,t(c′)

I(It = i, ct ∈ Ii(c)) . (6)

It is easy to see that this is an unbiased estimator of the reward of arm i under context c (see the

proof of Theorem 2). Observe that in the denominator of the estimator, we only consider contexts

c′ ∈ Ii(c). This is because we only learn the reward of arm i under context c when this arm is

played under context c′ ∈ Ii(c). Note that by definition, c∈ Ii(c).

Let λ̄= 1
K

∑
i∈[K] λ(Gi) be the average size of the maximum acyclic subgraph over all graphs Gi.

We will show that EXP3.CL obtains at most O(
√
λKT log(K)) regret. Then, with complete cross-

learning, Theorem 2 provides regret of O(
√
KT log(K)), completing removing the dependency on

the number of contexts C. This is because under complete cross-learning, CL graphs are complete

graphs and their maximum acyclic subgraph number λ(G) is one. In addition, as expected, with

no cross-learning, Theorem 2 provides regret of O(
√
KTC log(K)).

Theorem 2 (Regret of EXP3.CL). EXP3.CL (Algorithm 2) has regret O(
√
λKT logK) for the

contextual bandits problem with cross-learning when rewards are adversarial and contexts are

stochastic, where λ̄= 1
K

∑
i∈[K] λ(Gi), and λ(Gi), which is the maximum acyclic subgraph number

of Gi, is defined in Definition 3.

At a high level, the fact that EXP3.CL obtains a good regret bound follows from the quality of the

estimator used in this algorithm. Once we have this estimator, we follow the standard analysis of
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EXP3.CL Algorithm

• Choose α= β =
√

logK

λKT
(where λ= 1

K

∑K

i=1 λ(Gi)).

• Initialize K ·C weights, one for each pair of action i and context c, letting wi,t(c) be
the value of the ith weight for context c at round t. Initially, set all wi,0 = 1.

• For t= 1 to T ,
— Observe context ct ∼D.

— For all i∈ [K] and c∈ [C], let

pi,t(c) = (1−Kα)
wi,t−1(c)∑K

j=1wj,t−1(c)
+α.

— Sample an arm It from the distribution pt(ct) = (pi,t(ct))i∈[K].

— Pull arm It, receiving reward rIt,t(ct), and learning the value of rIt,t(c) for all
c∈Oi(ct).

— For each c in OIt(ct), set

wIt,t(c) =wIt,t−1(c) · exp
(
β · rIt,t(c)∑

c′∈IIt (c) Pr[c′] · pIt,t(c′)

)
.

Algorithm 2: O(
√
λKT logK) regret algorithm (EXP3.CL) for the contextual bandits prob-

lem with cross-learning where rewards are adversarial and contexts are stochastic. Here, λ̄ =
1
K

∑
i∈[K] λ(Gi), and λ(Gi), which is the maximum acyclic subgraph number of Gi, is defined

in Definition 3.

multiplicative weights/EXP3 algorithms. More specifically, we use the sum of the weights Wt(c) =∑K

i=1wi,t(c) as a proxy for the regret bound of the EXP3.CL. Roughly speaking, the higher the

sum of the weights Wt(c), the better EXP3.CL has performed till time t (see how the weights are

updated in this algorithm). In light of this, in the proof, for any context c, we lower/upper bound

the expected value of log (WT+1(c)/W0(c)) as a function of mean and variance of the estimator in

EXP3.CL, as well as, the expected reward earned by EXP3.CL. Comparing the lower bound with the

upper bound gives us the desired regret bound.

3.2.2. EXP3.CL-U Algorithm for Unknown Context Distribution In Section 3.2.1, we

presented an algorithm called EXP3.CL with regret of O(
√
λKT logK) for the setting with adversar-

ial rewards and stochastic contexts. This algorithm uses the knowledge of the context distribution

D to come up with an unbiased estimator with low variance. In this section, we relax the assump-

tion of knowing distribution D, and we present an algorithm for the contextual bandits problem

with cross-learning in the setting when rewards are adversarial and contexts are stochastic, but

when the learner does not know the distribution D over contexts. We call this algorithm EXP3.CL-U

(see Algorithm 3). In this algorithm, we additionally assume all the CL graphs Gi, i∈ [K], are the
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same and equal to a single graph G (we will see that this assumption is critical to constructing

a consistently biased estimator for the rewards; see our discussion about the expectation of our

estimator, i.e., E[r̂i,t(c)] later in this section). Since we assume that Gi =G for any i∈ [K], in the

algorithm, we simply write O(c) and I(c) in place of Oi(c) and Ii(c)).

EXP3.CL-U Algorithm

• Choose α= (logK/K2T )1/3, and β =
√

α logK
T

.

• Initialize K ·C weights, one for each pair of action i and context c, letting wi,t(c) be
the value of the ith weight for context c at round t. Initially, set all wi,0 = 1.

• For t= 1 to T ,
— Observe context ct ∼D.

— For all i∈ [K] and c∈ [C], let pi,t(c) = (1−Kα)
wi,t−1(c)∑K

j=1wj,t−1(c)
+α.

— Sample an arm It from the distribution pt(ct).

— Pull arm It, receiving reward rIt,t(ct), and learning the value of rIt,t(c) for all c.

— For each c in O(ct), set wIt,t(c) =wIt,t−1(c) · exp
(
β · rIt,t(c)

pIt,t(ct)

)
.

Algorithm 3: O(λK1/3T 2/3(logK)1/3) regret algorithm (EXP3.CL-U) for the contextual bandits
problem with cross-learning where rewards are adversarial and contexts are stochastic and the
distribution D over contexts is unknown. We additionally assume all the CL graphs Gi, i∈ [K],
are equal to a single graph G (and hence simply write O(c) and I(c) in place of Oi(c) and
Ii(c), respectively). Further, λ= λ(G) is the maximum acyclic subgraph number of G (defined
in Definition 3).

EXP3.CL-U is similar to EXP3.CL, in that all the algorithms maintain a weight for each action in

each context, and update the weights via multiplicative updates by an exponential of an estimator of

the reward. The main difference between EXP3.CL-U and EXP3.CL is their estimators. The estimator

in EXP3.CL, given in Equation (6), uses the knowledge of distribution D while the estimator in

EXP3.CL, which is defined below, cannot use such knowledge:

r̂i,t(c) =
ri,t(c)

pi,t(ct)
I(It = i, c∈O(ct)) . (7)

We highlight that unlike the estimator in EXP3.CL, r̂i,t(c) is not an unbiased estimator of ri,t(c) for

partial cross learning. (This estimator is only unbiased under complete cross-learning.) Indeed, we

have that:

E[r̂i,t(c)] =
∑
c′∈I(c)

Pr[c′]pi,t(c
′) · ri,t(c)

pi,t(c′)
=

 ∑
c′∈I(c)

Pr[c′]

 ri,t(c) .

However, note that we can write E[r̂i,t(c)] in the form f(c)ri,t(c), where f(c) is a function which

only depends on a context (and in this case is given by f(c) =
∑

c′∈I(c) Pr[c′]). That is, our estimator
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is consistently biased across all actions i ∈ [K] for a fixed context c. It turns out this property is

enough to adapt the previous analysis of Theorem 2.

Given this estimator, the question is why does EXP3.CL-U have regret of order T 2/3 (see Theo-

rem 3) when the dependence on T in EXP3.CL is only of order
√
T? The answer lies in understanding

how the variance of the unbiased estimator used affects the regret bound of the algorithm. In the

standard analysis of EXP3 (and EXP3.CL and S-EXP3), one of the quantities in the regret bound

is the total expected variance of the estimator of rewards. In S-EXP3, this quantity takes the form

T∑
t=1

pi,t(ct)E[r̂i,t(c)
2] =

T∑
t=1

pi,t(ct)

pi,t(ct)
r̂i,t(c)

2 =
T∑
t=1

r̂i,t(c)
2 ≤ T.

However, in EXP3.CL-U (where the desired exploration distribution pi,t(c) can differ from the explo-

ration distribution due to cross-learning), this quantity becomes

T∑
t=1

pi,t(c)E[r̂i,t(c)
2] =

T∑
t=1

pi,t(c)

pi,t(ct)
r̂i,t(c)

2 ≤ T

mini∈[K],t∈[T ] pi,t(c)
.

Optimizing mini∈[K],t∈[T ] pi,t(c) (through selecting the parameter α) leads to a Õ(λT 2/3K1/3) regret

bound. In the case of complete cross-learning, λ= 1 and we have a Õ(T 2/3K1/3) regret bound.

Theorem 3 (Regret of EXP3.CL-U). Consider the contextual bandits problem with adversar-

ial rewards, and stochastic contexts, where all the CL graphs Gi are equal to G and the context

distribution D is unknown. Let λ= λ(G) be the maximum acyclic subgraph number of G (defined

in Definition 3). Then EXP3.CL-U (Algorithm 3) incurs at most O(λK1/3T 2/3(logK)1/3) regret in

this setting.

Observe that the regret bound of both EXP3.CL-U and EXP3.CL algorithm scales with the maxi-

mum acyclic subgraph number of G (i.e., λ(G) defined in Definition 3), where λ(G) = 1 for complete

cross-learning settings and λ(G) = C when there is no cross-learning between contexts. However,

as stated earlier, while the regret of EXP3.CL scales with O(
√
T ), the regret of EXP3.CL-U scales

with O(T 2/3). An interesting open problem is determining whether it is possible to achieve Õ(
√
T )

regret in the adversarial reward regime without knowing the distribution over contexts.

We have explored this open problem by considering an extension of EXP3.CL algorithm. For

this discussion, we focus on the complete cross-learning setting. The main feature of EXP3.CL

is its low-variance unbiased estimator r̂i,t(c) = (ri,t(c)/Di,t)I(It = i), where the denominator is

Di,t =
∑C

c′=1 Pr[c′] · pi,t(c′). However, this unbiased estimator and, in particular, its denominator

Di,t require knowledge of the distribution over contexts. Our idea is to replace this unbiased

estimator with a similar estimator r̃i,t(c) = (ri,t(c)/D̃i,t)I(It = i), where D̃i,t is some sufficiently close

approximation toDi,t that does not require knowledge of the distribution over contexts. One natural
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choice is to replace the true probability Pr[c′] of context c′ with the current empirical probability

P̂r[c′] to get D̃i,t =
∑C

c′=1 P̂r[c′]pi,t(c
′) . While our empirical evaluation in Section 6 provides some

convincing evidence that the proposed approach works well, we were not able to theoretically prove

that the described algorithm obtains regret on the order of O(
√
T ). In Appendix D, we discuss the

main technical challenges we encountered for analyzing this algorithm. Nonetheless, we conjecture

that this proposed algorithm incurs at most O(
√
T ) regret.

3.3. Adversarial Rewards and Adversarial Contexts A natural question is whether we

can design an algorithm whose regret is lower than that of S-EXP3 when both the rewards and

contexts are chosen adversarially (but where we still can cross-learn between different contexts). A

positive answer to this question would subsume the results of the previous sections. Unfortunately,

we next show that even under complete cross-learning, any learning algorithm for the contextual

bandits problem with cross-learning must necessarily incur Ω(
√
CKT ) regret (which is achieved

by S-EXP3).

We will need the following regret lower-bound for the (non-contextual) multi-armed bandits

problem from Auer et al. (2002).

Lemma 5 (Auer et al. 2002). There exists a distribution over instances of the multi-armed

bandit problem where any algorithm must incur an expected regret of at least Ω(
√
KT ).

For concreteness, we describe one instance of a reward distribution over instances (parametrized

by K and T ), denoted by DK,T , that satisfies Lemma 5. This distribution is the uniform distri-

bution over K instances under which rewards of each arm are drawn from independent Bernoulli

distributions. In the ith instance, the rewards of arm i are drawn from Bern(1/2 +
√
K/T ) (i.e., a

Bernoulli distribution with mean 1/2 +
√
K/T ), and the rewards of all other arms j 6= i are drawn

from Bern(1/2) (i.e., in ith instance, arm i is the optimal arm and this arm outperforms all other

arms by at least
√
K/T ).

With this lemma, we can construct the following lower-bound for the contextual bandits problem

with (complete) cross-learning by connecting C independent copies of these hard instances in

sequence with one another so that cross-learning between instances is not possible.

Theorem 4 (Regret Lower Bound for Adversarial Rewards and Adversarial Contexts).

There exists a distribution over instances of the contextual bandit problem with complete

cross-learning where any algorithm must incur a regret of at least Ω(
√
CKT ).

Proof of Theorem 4 Divide the T rounds into C epochs of T/C rounds each. Label the C

contexts c1, c2, . . . , cC , and adversarially assign contexts so that the context during the jth epoch

is always cj.
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co
n
te

x
ts

c1 P1 ∼DK,T/C 0 · · · 0

c2 0 P2 ∼DK,T/C · · · 0
...

...
...

. . .
...

cC 0 0 · · · PC ∼DK,T/C
1, . . . , T

C
,︸ ︷︷ ︸

epoch 1
ct=c1

T
C

+ 1, . . . ,2T
C
,︸ ︷︷ ︸

epoch 2
ct=c2

· · · (C − 1)T
C

+ 1, . . . , T︸ ︷︷ ︸
epoch T
ct=cC

time

Figure 2. Structure of the worst-case instance for the lower bound for adversarial rewards and adversarial contexts

in Theorem 4. The entries of the table correspond to the distribution of rewards for each context/epoch pair.

Next, assign rewards so that ri,t(c) = 0 if t is in the jth epoch and c 6= cj. In other words,

during the jth epoch in which the context is cj, the rewards of all other contexts are zero. On

the other hand, for t in the jth epoch, set rewards ri,t(cj) according to a hard instance for the

multi-armed bandit problem sampled from the distribution DK,T/C satisfying Lemma 5. Call this

random instance Pj, and let ij be the (random) optimal action to play in Pj, i.e., the action with

rewards drawn from Bern(1/2 +
√
K/(T/C)). Figure 2 provides a pictorial representation of the

worst-case instance.

Note that in this construction, cross-learning between contexts offers zero additional information,

since all cross-learned rewards will be deterministically 0 (and thus can be simulated by a learner

without access to cross-learning). It suffices to show that any contextual bandits algorithm in the

classic setting (i.e., without cross-learning) must incur regret at least Ω(
√
CKT ) on this distribution

over instances.

Consider the (optimal) stationary strategy π that plays ij (i.e., the optimal action under instance

Pj) whenever the context is cj. Fix an arbitrary contextual bandit algorithm A and consider its

performance on the jth epoch. We argue that π receives at least Ω(
√
KT/C) more reward in

expectation than algorithm A on this epoch because the length of the epochs is T/C. To see this,

note that if this were not the case, by examining the restriction of A to the rounds in this epoch,

we can construct an algorithm A′ for the regular multi-armed bandit problem that would violate

Lemma 5.

It follows that over all C epochs our strategy π receives at least Ω(C
√
KT/C) = Ω(

√
CKT )

more reward in expectation than algorithm A. Thus, any algorithm A must have regret at least

Ω(
√
CKT ) when compared to the optimal stationary strategy. �

4. Regret Lower Bounds under Cross-Learning In this section, we prove some lower

bounds on regret for contextual bandits with cross-learning that complement the results of the

previous two sections. In our lower bounds, we will consider a restricted set of instances where the
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graph Gi of each arm i is equal to the same graph G. We present two lower bounds. The first lower

bound, presented in Theorem 5, is for a setting with stochastic rewards and stochastic contexts. We

show that in this setting, any algorithm must incur expected regret of Ω(
√
ν2(G)KT ), where ν2(G)

is defined in Definition 4. The second lower bound, presented in Theorem 6, is for a setting with

stochastic rewards and adversarial contexts. We show that in this setting, any algorithm must incur

expected regret of Ω(
√
λ(G)KT ), where λ(G) is the maximum acyclic subgraph number of graph

G and is defined in Definition 3. Recall that by Lemma 2, for all graphs G, ν2(G)≤ λ(G)≤ κ(G),

and by Theorem 1, when Gi =G, i∈ [K], the expected regret of UCB1.CL under stochastic rewards

and stochastic/adversarial contexts is O(
√
κ(G)KT logK).

We note that per Lemma 2, if graph G is the union of r disjoint cliques, then ι(G) = ν2(G) =

λ(G) = κ(G) = r. Note that for complete cross-learning setting (i.e., fully connected CL graph),

r = 1 and for no cross-learning setting (i.e., CL graphs with only self loops), r is equal to the

number of contexts C. This shows that our regret bounds are tight for certain graphs that are

the union of r disjoint cliques. In fact, our regret bounds are tight for an even larger family of

graphs: all graphs where ι(G) = κ(G). This is true for unions of disjoint cliques, for the line graph

in Figure 1c, and more generally for any undirected graph (i.e., directed graphs with symmetric

edges) which is perfect. In graph theory, a perfect (undirected) graph G is a graph where for any

subgraph G′ of G, the size of the largest clique of G′ is equal to the chromatic number of G′ (the

minimum number of colors needed to color the vertices of G′ so that no two adjacent vertices share

the same color). It follows as a simple corollary of the perfect graph theorem (Lovász 1972b,a)

that any perfect graph G satisfies ι(G) = κ(G). Perfect graphs include all bipartite graphs, forests,

interval graphs, and comparability graphs of posets (see, e.g., West et al. 1996).

4.1. Regret Lower Bound with Stochastic Rewards and Contexts The following the-

orem is the main result of this section.

Theorem 5 (Lower Bound with Stochastic Rewards and Contexts). Any learning

algorithm solving the contextual bandits problem with cross-learning (for a fixed CL graph G) and

stochastic rewards and stochastic contexts must incur expected regret of Ω(
√
ν2(G)KT ), where

ν2(G) is defined in Definition 4.

Note also Theorem 5 holds as a lower bound in the adversarial rewards and stochastic con-

texts setting. Although the regret benchmarks differ slightly between the adversarial rewards and

stochastic rewards setting, they differ by at most Õ(
√
T ), which is subsumed by the regret bound

in Theorem 5. See Appendix A.1 for more details.

Roughly, the proof of Theorem 5 proceeds as follows. For each context, we choose a “hard”

distribution of rewards such that any algorithm that has only seen t samples of rewards must incur
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Ω(
√
K/t) expected regret in their next round. Now, if we fix a distribution f(c) over contexts, then

after t rounds, we expect to have seen approximately g(c)t total samples of rewards from context c,

where g(c) =
∑

c′∈I(c) f(c′). Over all T rounds, our regret is therefore at least
∑C

c=1 f(c)T
√

K
g(c)T

.

Taking the supremum over f , we find that the total expected regret is at least Ω(
√
ν2(G)KT ); see

the definition of ν2(G) in Definition 4.

4.2. Regret Lower Bound with Stochastic Rewards and Adversarial Contexts We

now present our second lower bound for the setting with stochastic rewards and adversarial con-

texts. When we allow the contexts to be adversarially chosen, we can improve the lower bound to

Ω(
√
λ(G)KT ).

Theorem 6 (Lower Bound with Stochastic Rewards and Adversarial Contexts).

Any learning algorithm solving the contextual bandits problem with cross-learning (for a fixed CL

graph G) with stochastic rewards and adversarial contexts must incur regret Ω(
√
λ(G)KT ), where

λ(G) is the maximum acyclic subgraph number of graph G and is defined in Definition 3.

Note that when the graphs are undirected, λ(G) = ι(G) (since in that case, the definition of

acyclic subgraph and independent set coincide), and therefore λ(G) = ν2(G) = ι(G) (by Lemma

2). It follows that when all Gi are undirected and equal, the lower bound of Theorem 6 matches

the upper bound of Theorem 2 in the setting where contexts are stochastic. Likewise, as stated

earlier, when G is the disjoint union of r cliques, all of our graph invariants coincide, and our lower

bounds are tight. In other settings and for other feedback structures an instance-dependent gap

between the best upper bound and best lower bound persists; reducing this gap is an interesting

open problem.

5. Discussion on Applications of Cross-Learning and Implementation of Proposed

Algorithms In this section, we discuss how to apply our results on cross-learning to the problem

of how to bid in a first-price auction. We show that our algorithms yield a non-trivial improvement

over naively applying S-EXP3 or S-UCB. We further discuss how to efficiently implement our

algorithms when the number of contexts is infinite. Before presenting our results for first-price

auctions, we provide other applications that enjoy cross-learning between contexts and thus fit our

framework.

5.1. Applications with Cross-learning: Beyond Bidding in First-price Auctions

The following applications can be modeled as contextual bandit problems with cross-learning

between contexts. Here, we present an overview of these applications and we defer the details of

how to apply our algorithms to these applications to Appendix E.
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1. Multi-armed bandits with exogenous costs: Consider a multi-armed bandit problem

where at the beginning of each round t, a cost si,t for playing arm i at this round is publicly

announced. That is, choosing arm i this round results in a net reward of ri,t−si,t. This captures

settings where, for example, a buyer must choose every round to buy one of K substitutable

goods – they are aware of the price of each good (which might change from round to round)

but must learn over time the utility each type of good brings them.

This is a contextual bandits problem where the context in round t is the K costs si,t (i∈ [K])

at this time. Cross-learning between contexts is present in this setting: given the net utility of

playing action i with a given up-front cost si, one can infer the net utility of playing i with any

other up-front cost s′i. For the problem of multi-armed bandits with exogenous costs, standard

contextual bandit algorithms get regret O(T (K+1)/(K+2)K1/(K+2)). Our algorithms get regret

Õ(
√
KT ), which is tight. See Appendix E for more details.

2. Dynamic pricing with variable cost: Consider a dynamic pricing problem where a firm

offers a service (or sells a product) to a stream of customers who arrive sequentially over time.

Consumers have private and independent willingness-to-pay and the cost of serving a customer

is exogenously given and customer dependent. After observing the cost, the firm decides on

what price to offer to the consumer who decides whether to accept the service at the offered

price. The optimal price for each consumer is contingent in the cost; for example, when demand

is relatively inelastic consumers that are more costly to serve should be quoted higher prices.

This extends dynamic pricing problems to cases where the firm has exogenous costs (see, e.g.,

den Boer 2015 for an overview of dynamic pricing problems).

This is a special case of the multi-armed bandits with exogenous costs problem defined earlier,

and hence an instance of contextual bandits with cross-learning.

3. Sleeping bandits: Consider the following variant of “sleeping bandits,” where there are K

arms and in each round some subset St of these arms are awake. The learner can play any arm

and observe its reward, but only receives this reward if they play an awake arm. This problem

was originally proposed in Kleinberg et al. (2010), where one of the motivating applications is

ecommerce settings where not all sellers or items (and hence “arms”) might be available every

round.

This is a contextual bandits problem where the context is the set St of awake arms. Again,

cross-learning between contexts is present in this setting: given the observation of the reward of

arm i, one can infer the received reward for any context S′t by just checking whether i∈ S′t. For

our variant of sleeping bandits, standard contextual bandit algorithms get regret Õ(
√

2KKT ).

Our algorithms get regret Õ(
√
KT ), which is tight. By applying our algorithms, we can achieve

regret Õ(
√
KT ) in the original sleeping bandits setting studied in Kleinberg et al. (2010), which

recovers their results and is similarly tight.
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4. Repeated Bayesian games with private types: Consider a player participating in a

repeated Bayesian game. Each round the player learns their (private and independent) type for

the current game, performs some action, and receives some utility (which depends on their type,

their action, and the other players’ actions). Again, this can be viewed as a contextual bandit

problem where a player’s types are contexts, actions are actions, and utilities are rewards, and

once again this problem allows for cross-learning between contexts (as long as the player can

compute their utility based on their type and all players’ actions).

5.2. Bidding in first-price auctions In the problem of learning to bid in a first-price auc-

tion, every round t (for a total of T rounds) an item is put up for auction. This item has value

vt ∈ [0,1] to our bidder. Based on vt, our bidder submits a bid bt ∈ [0,1]. Simultaneously, other

bidders submit bids for this item; we let ht be the highest bid of the other bidders in the auction.

If bt ≥ ht, the buyer receives the item and pays bt, obtaining an utility of vt − bt; otherwise, the

buyer does not receive the item and pays nothing, obtaining a utility of zero. More formally, the

net utility is rb,t(v) = (v− b) · I(b≥ ht). The buyer only learns whether or not they receive the item

and how much they pay – notably, they do not learn ht (i.e., this is a non-transparent first price

auction). The bidder’s goal is to maximize their total utility (total value of items received minus

total payment) over the course of T rounds.

As stated in the introduction, this problem can be seen as a contextual bandits problem for the

bidder where the context c is the bidder’s value for the item, the action is their bid, and their

reward is their net utility from the auction: 0 if they do not win, and their value for the item minus

their payment p if they do win. This problem, indeed, allows for cross-learning between contexts:

The net utility ri,t(c
′) that would have been received if they had value c′ instead of value c is just

(c′− p) · I(win item), which can be computed from the outcome of the auction assuming the value

and highest competing bid (that influences I(win item)) are independent of each other.

Here, we assume that the value vt and the highest competing bid ht are independently drawn

each round from distributions Dv and Dh, respectively, where both distributions are unknown to the

bidder. The independence assumption is motivated by the fact that, in online advertising markets,

most advertisers base bids on cookies, which are bits of information stored on users’ browsers.

Because cookies are private, cookie-based bids are typically weakly correlated. In Section 6, we

conduct some experiments using data from a major advertising platform and observe that our

cross-learning algorithms that assume complete cross-learning between values perform well even

when values are not perfectly independent of the other bids. Nonetheless, conservative learners

might be still concerned about such correlation. Under such correlation, with the same action/bid,

the chance of winning (i.e., I(win item)) under two values that are far from each other may not be
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the same. For instance, when there is a positive correlation between values and highest competing

bids, as the value increases, the highest competing bid may increase as well, reducing the chance

of winning. To handle this, such learners can only allow for cross-learning between close values.

We remark that, from the theoretical perspective, when the correlation between values and bids

is arbitrary, cross-learning is impossible and the decision maker cannot do better than running

a different learning algorithm for each context. A promising research direction is to incorporate

correlation by introducing a statistical or behavioral model to capture the dependency between

bids and values.

Naively applying S-UCB to our problem by discretizing the value space and bid space into C

and K pieces respectively results in a regret bound of Õ(
√
CKT +T/C+T/K) (here the last two

terms come from discretization error). Optimizing C and K, we find that when C = K = T 1/4,

we can achieve Õ(T 3/4) regret in this way. On the other hand, by taking advantage of (complete)

cross-learning between contexts and applying UCB1.CL, after discretizing the bid space into K

pieces, results in a regret bound of Õ(
√
KT +T/K). By optimizing this, we get an algorithm which

achieves Õ(T 2/3) regret. It follows from a reduction to known results about dynamic pricing that

any algorithm must incur Ω(T 2/3) regret when learning to bid (even when the value v is fixed) –

see Appendix B for details.4

Interestingly, in the case of bidding in first-price auctions, the decision maker can also potentially

cross-learn across different actions/bids. For example, if the decision maker wins when submitting a

bid bt, then they simultaneously learn that any higher bid b′ would also win the auction. Conversely,

if the decision maker does not win, then they learn that lower bids also would necessarily lose in the

auction. While our algorithm does not explicitly take into account cross-learning across actions,

the previous lower bound shows that, in the worst case, cross-learning across actions does not lead

to any additional benefit (in terms of lower regret) if we are already cross-learning across contexts.

We emphasize that our algorithms apply when the auctioneer runs other non-truthful auctions.

5.3. Implementation of Proposed Algorithms We conclude with a brief note on imple-

mentation efficiency of our algorithms. Even though, under complete cross-learning, the regret

bounds we prove in Section 3 do not scale with C, note that the computational complexity of all

three of our algorithms from Section 3 (UCB1.CL, EXP3.CL, and EXP3.CL-U) scales with the number

of contexts C: both algorithms have time complexity O(C +K) per round and space complexity

O(CK). In many of the above settings, the number of contexts can be very large. For example,

4 The regret lower bound of Ω(T 2/3) is driven by our binary feedback structure. Under the binary feedback structure,
which is commonly assumed in the literature, a bidder can only learn whether they win or lose in an auction. The
follow-up paper Han et al. (2020) shows that a regret bound of Õ(

√
T ) is attainable when the highest bid is revealed

at the end of each auction to all the bidders who lost the auction.
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when the space of contexts is the interval [0,1], the number of contexts is infinite. However, these

settings often also have additional structure which let us run these same algorithms with improved

complexity.

Most generally, for all the settings we consider, the observed reward is always affine with respect

to a function ρ(c) mapping a context into Rd for some small dimension d. The function ρ is

computable by the learner. That is, for each i and t, it is possible to write ri,t(c) = a>i,tρ(c) + bi,t,

where ai,t ∈ Rd and bi,t ∈ R; moreover, the coefficients aIt,t and bIt,t are directly revealed to the

learner each round. It in turn follows that the averages ri,t(c) stored by UCB1.CL are simply linear

functions of ρ(c). Since there is one such function for each arm i, this requires a total of O(Kd)

space (i.e., we simply store the running averages ai,t and bi,t and then determine the average reward

using the formula bi,t = a>i,tρ(c) + bi,t). Similarly, the coefficients can be updated each round in

O(d) time simply by updating the average for It. For example, for bi,t the update is given by

bIt,t =
τIt,t−1bIt,t−1+bIt,t

τIt,t−1+1
.

Likewise, the weights wi,t(c) stored by EXP3.CL, for example, are always of the form exp(xi,tρ(c)+

yi,t), and again it suffices to just maintain a linear function of ρ(c) (with the caveat that to compute

the estimators, we must be able to efficiently take expectations over our known distribution on

contexts).

6. Empirical Evaluation In this section, we empirically evaluate the performance of our

contextual bandit algorithms on the problem of learning how to bid in a first-price auction.

Recall that our cross-learning algorithms rely on cross-learning between contexts being possible:

if the outcome of the auction remains the same, the bidder can compute their net utility they would

receive given any value they could have for the item. This is true if the bidder’s value for the item is

independent of the other bidders’ values for the item. Of course, this assumption (while common in

much research in auction theory) does not necessarily hold in practice. We can nonetheless run our

contextual bandit algorithms (with complete cross-learning) as if this were the case, and compare

them to existing contextual bandit algorithms which do not make this assumption.

Our basic experimental setup is as follows. We take existing first-price auction data from a

large ad exchange that runs first-price auctions on a significant fraction of traffic, remove one

participant (whose true values we have access to), substitute in one of our bandit algorithms for

this participant, and replay the auction. This experiment answers the question “how well would

this (now removed) participant do if they instead ran this bandit algorithm?”

We collected anonymized data from 10 million consecutive auctions from this ad exchange, which

were then divided into 100 groups of 105 auctions. To remove outliers, bids and values above the
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90% quantile were removed, and remaining bids/values were normalized to fit in the [0,1] interval.5

We then replayed each group of 105 auctions, comparing the performance of our algorithms with

cross-learning (UCB1.CL, EXP3.CL, and EXP3.CL-U) and the performance of classic contextual bandits

algorithms that take no advantage of cross-learning (S-EXP3, and S-UCB1). To run EXP3.CL, we

do not assume that we know the distribution over contexts. Instead, we replace the estimator in

EXP3.CL with its empirical version, presented at the end of Section 3.2.2. More specifically, we

consider the following estimator r̃i,t(c) = (ri,t(c)/D̃i,t)I(It = i), where D̃i,t =
∑C

c′=1 P̂r[c′] · pi,t(c′)

does not require knowledge of the distribution over contexts. Here, P̂r[c′] is the empirical estimate

(sample mean) of the true probability Pr[c′] of context c′.

All algorithms considered here require a discretized set of actions. Thus, allowable bids are

discretized to multiples of 0.01. Parameters for each of these algorithms (including level of dis-

cretization of contexts for S-EXP3 and S-UCB1) were optimized via cross-validation on a separate

data set of 105 auctions from the same ad exchange.

Figure 3. Graph of average cumulative regrets of various learning algorithms (y-axis) versus time (x-axis). Shaded

regions indicate 95% confidence intervals.

The results of this evaluation are summarized in Figure 3, which plots the average cumulative

regret of these algorithms over the 105 rounds. To compute the regret of all algorithms, we consider

the best in hindsight benchmark (i.e., for each context/value, we choose the bid that performs the

best for that value in hindsight after observing the bidder’s values and highest competing bids in all

T rounds). This regret benchmark, which does not require any assumption on the stochasticity of

values or the highest competing bids, matches our stationary policy under adversarial rewards and

5 Our numerical results in Appendix F show that the performance of our algorithms is robust to outliers and, thus,
not sensitive to how outliers are handled.
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adversarial contexts. The three algorithms that take advantage of cross-learning (UCB1.CL, EXP3.CL,

and EXP3.CL-U) significantly outperform the two algorithms that do not (S-EXP3 and S-UCB1).

Note that UCB1.CL outperforms EXP3.CL and EXP3.CL-U. Furthermore, it is worth highlighting that

EXP3.CL performs better than EXP3.CL-U. Recall that in our empirical studies, both EXP3.CL and

EXP3.CL-U do not know context/value distribution.

What is surprising about these results is that cross-learning works at all, let alone gives an advan-

tage, given that the basic assumption necessary for cross-learning – that values are independent

from other players’ bids, so that the learner can predict what would have happened if the value

was different – does not hold. Indeed, for this data, the Pearson correlation coefficient between the

values v and the maximum bids r of the other bidders is approximately 0.4. This suggests that

these algorithms are somewhat robust to errors in the cross-learning hypothesis. It is an interesting

open question to understand this phenomenon theoretically.

7. Conclusion In this paper, we studied the contextual multi-armed bandit problem with

cross-learning between contexts. Our model can be applied to various applications including bidding

in non-truthful auctions, dynamic pricing with variable costs, and sleeping bandits. We show that

in all of these applications cross-learning between contexts can lead to a non-trivial improvement

over the existing algorithms that do not consider cross-learning.

We designed different learning algorithms that are tailored to distinct environments. These envi-

ronments vary in several fronts: (i) how rewards and contexts are generated (stochastically versus

adversarially), and (ii) to what extend cross-learning is possible (complete versus partial cross-

learning). For all of these environments, we proposed effective learning algorithms that harness the

benefit of cross-learning.

An interesting future direction is to design algorithms that take advantage of cross learning

between both actions and contexts. Learning algorithms might exploit the particular structure of

the problem at hand to obtain regret bounds with better dependence on the number of actions.

For example, in some settings the reward function could be Lipschitz continuous or concave in

the actions. When rewards are adversarial and contexts are stochastic, we designed an algorithm

that under complete cross-learning obtains regret Õ(
√
KT ) when the distribution of contexts is

known. It is an interesting research direction to obtain similar regret bounds when the distribution

of contexts is unknown to the learner. Finally, an application of cross-learning that has received

a considerable amount of attention lately is the problem of bidding in non-truthful auctions. Our

algorithms for this problem assume that values are independent of the highest competing bid.

Although these algorithms perform well in practice, a promising future direction is to study whether

more value can be captured by algorithms that explicitly account for correlation between values

and bids.
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Appendix A: Regret in contextual bandits In this section, we elaborate on our discussion

of regret in Section 2.2, contrasting the difference between the different notions of regret for different

settings.

Recall that we define the regret of an algorithm A in the contextual setting as the difference

between the performance of our algorithm and the performance of the best stationary strategy π.

In other words,

Reg(A) =
T∑
t=1

rπ(ct),t(ct)−
T∑
t=1

rIt,t(ct).

However, when rewards are adversarial and contexts are stochastic, there are two different natural

ways to define “the best stationary policy” π. The first maximizes the reward of this strategy for

the specific contexts ct we observed in our run of algorithm A:

π′(c) = arg max
i∈[K]

T∑
t=1

ri,t(c)I(ct = c)

The second way simply maximizes the reward of this strategy in expectation over all time

π(c) = arg max
i∈[K]

T∑
t=1

ri,t(c).

Note that the policy π maximizes the expectation of performance over contexts∑T

t=1 Ect∼D[rπ(ct),t(ct)] =
∑

c∈[C] Pr[c]
∑T

t=1 rπ(c),t(c).

These two stationary strategies give rise to two different definitions of regret. We call the regret

against strategy π′ the ex post regret RegPost(A) (and denote the associated strategy by πPost), and

we call the regret against strategy π the ex ante regret, RegAnte(A) (and denote the associated

strategy by πAnte). This captures the idea that to the adversary at the beginning of the game

(who knows all the rewards, but not when each context will occur), the best stationary strategy in

expectation is πAnte. On the other hand, after the game has finished, the best stationary strategy

in hindsight is πPost.

In this paper, our bounds for the adversarial rewards and stochastic contexts are for ex ante

regret. One reason for this is that, while it is possible to eliminate the dependence on C in the ex

ante regret, it is impossible to do so for the ex post regret. In particular, for a large enough number

of different contexts C, it is impossible to get ex post regret that is sublinear in T .

Theorem 7. Under adversarial rewards and stochastic contexts, for any algorithm A, there is

an instance of the contextual bandits problem with cross-learning where lim infC→∞E[RegPost(A)]≥

T/2.
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Proof of Theorem 7 We will consider an instance of the problem where there are K = 2 actions

and C contexts, where the distribution D is uniform over all C contexts. We will choose C to be

large enough so that with high probability all the observed contexts ct are distinct. The adversary

will assign rewards as follows. For each round t and context c, with probability 1/2, the adversary

sets r1,t(c) = 1 and r2,t(c) = 0, and with probability 1/2 sets r1,t(c) = 0 and r2,t(c) = 1.

Now consider the best strategy πPost in hindsight. Since each context only appears once with high

probability, and since there is always an arm with reward 1, for any context and any time, πPost will

receive total reward T as C goes to ∞. To see this, let B the event that all contexts are distinct,

i.e., |{t∈ [T ] : ct = c}| ≤ 1 for all c ∈ C. The expected performance of best stationary policy πPost

can be lower bounded as follows

E

[
T∑
t=1

rπPost(ct),t(ct)

]
≥E

[
T∑
t=1

rπPost(ct),t(ct)I(B)

]
= TP(B) ,

where the first inequality follows because rewards are non-negative and the equality holds because

the best strategy with the benefit of hindsight is to pick the arm with reward one because all

contexts are distinct. Additionally, the probability that the contexts are distinct can be lower

bounded by

P(B) =
C!

(C −T )!CT
≥
(

C

C −T

)C−T
exp(−T )≥ exp(−T 2/C)≥ 1− T

2

C
,

where the first equation follows from a combinatorial argument (out of all CT possible sample

paths of contexts we have C!/(C − T )! distinct ones). The first inequality follows from writing

C!/(C − T )! = exp
(∑C

x=C−T+1 log(x)
)

and then using the integral bound for summations. The

second inequality holds because (C/(C −T ))
C−T

= exp((C − T ) log(C/(C − T )) and using that

log(x)≥ 1−1/x, and the last because exp(x)≥ 1 +x. Combining both inequalities, we obtain that

E

[
T∑
t=1

rπPost(ct),t(ct)

]
≥ T

(
1− T

2

C

)
. (8)

On the other hand, since each ri,t is completely independent of the rewards from previous rounds,

the maximum expected reward any learning algorithm can guarantee is at most T/2 as C goes

to infinity. To see this, denote by Nc = |{t∈ [T ] : ct = c}| the number of times that context c ∈ [C]

appears and by tj(c) the time period corresponding to the jth occurrence of context c for j ∈ [Nc].

The expected reward of a learning algorithm A can be written as follows:

E

[
T∑
t=1

rIt,t(ct)

]
=E

[
C∑
c=1

T∑
t=1

rIt,t(c)I(ct = c)

]
=

C∑
c=1

E

[
Nc∑
j=1

rItj(c),tj(c)(c)

]
.
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For every context c ∈ [C], the first time the context is seen the best possible expected reward is

1/2, which is obtained by playing any arm at random, because rewards are independent and, thus,

the two arms are ex-ante identical to the learner. Therefore,

E

[
Nc∑
j=1

rItj(c),tj(c)(c)

]
≤E

[
1

2
I(Nc ≥ 1) + (Nc− 1)I(Nc ≥ 2)

]
=E [Nc]−

1

2
P(Nc ≥ 1) ,

where the first inequality follows because the highest possible reward is one and the last equality

because (Nc− 1)I(Nc ≥ 2) = (Nc− 1)I(Nc ≥ 1) =Nc− I(Nc ≥ 1). Now, using that Nc is binomially

distributed with T trials as success probability 1/C, we conclude that

E

[
T∑
t=1

rIt,t(ct)

]
≤C

(
E [Nc]−

1

2
P(Nc ≥ 1)

)
= T − C

2

(
1−

(
1− 1

C

)T)

=
T

2
+

1

2

(
T +C

((
1− 1

C

)T
− 1

))

≤ T

2
+

1

4

T 2

C
, (9)

where we used that E [Nc] = T/C and P(Nc ≥ 1) = 1− P(Nc = 0) = 1− (1− 1/C)T for the first

equality, and the last inequality follows because (1− 1/C)
T

= exp(T log(1−1/C))≤ exp(−T/C)≤
1−T/C + 1/2(T/C)2 because log(1−x)≤−x and exp(−x)≤ 1−x+x2/2 for x> 0.

Putting everything together, from combining (8) and (9) it follows that any algorithm A must

have

lim inf
C→∞

RegPost(A) = lim inf
C→∞

E

[
T∑
t=1

rπPost(ct),t(ct)−
T∑
t=1

rIt,t(ct)

]
≥ T

2
. �

A.1. Translating regret lower bounds from stochastic rewards to adversarial rewards

The previous section focuses on the stochasticity of the contexts. In this section, we focus on the

stochasticity of the rewards and how it affects our regret bounds. Specifically, we aim to show that

any regret lower bound we prove in a model with stochastic rewards and contexts (see Theorem

6) continues to hold in a model with adversarial rewards and stochastic contexts (as long as this

bound is at least Ω̃(
√
T )).

The reason why this is not entirely obvious is that the regret benchmarks we give for stochastic

rewards and adversarial rewards are slightly different. When the rewards are stochastic, we compete

against the “pseudo-regret” benchmark that plays the arm with the highest mean for each context,

i.e.,

πStoc(c) = arg max
i∈[K]

µi(c).

When the rewards are adversarial, there are no reward distributions so the above strategy is

undefined; instead, we play the best action in hindsight:

πAdv(c) = arg max
i∈[K]

T∑
t=1

ri,t(c).



Author: Contextual Bandits with Cross-Learning

42 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

In some sense, πStoc and πAdv can be thought of as analogues to πPost and πAnte in thee previous

section.

Theorem 8. Assume that, for any algorithm A, there is an instance of multi-armed bandits

with learning with stochastic rewards and contexts where

E

[
T∑
t=1

(rπStoc(ct),t(ct)− rIt,t(ct))

]
≥R,

where the expectation is with respect to rewards and contexts. Then, for any algorithm A, there

exists an instance of multi-armed bandits with learning with adversarial rewards and stochastic

contexts where

E

[
T∑
t=1

(rπAdv(ct),t(ct)− rIt,t(ct))

]
≥R−

√
T log(KT ) ,

where the expectation is with respect to contexts and the potential randomness in the adversarially

chosen rewards.

Proof Fix an algorithm A. Consider a stochastic bandits instance which achieves regret R. This

bandits instance is parameterized by a distribution D over contexts and a distribution Fi(c) of

rewards for each arm i∈ [K] and context c∈ [C].

We will now randomly sample a bandits instance with adversarial rewards and stochastic contexts

as follows. The distribution over contexts will remain as D. For each time step t, arm i, and context

c, sample the reward ri,t(c) independently from Fi(c). We will prove that, in expectation, algorithm

A achieves regret at least R−
√
T log(KT ) on such a sampled instance. In particular, this implies

that there exists a specific instance with adversarial rewards and stochastic contexts where A incurs

at least R−
√
T log(KT ) regret, as desired.

Note that in expectation, E[
∑T

t=1 rIt,t(ct)] is the same for both the stochastic rewards instance

and the distribution over adversarial rewards instances (since A sees the same distribution over

instances in both cases). It suffices to show that the two benchmarks perform similarly.

First, note that both

E

[
T∑
t=1

rπStoc(ct),t(ct)

]
=

C∑
c=1

Pr
D

[c]E

[
T∑
t=1

rπStoc(c),t(c)

]
,

and

E

[
T∑
t=1

rπAdv(ct),t(ct)

]
=

C∑
c=1

Pr
D

[c]E

[
T∑
t=1

rπAdv(c),t(c)

]
,

where in both cases we have applied the law of total expectation to the randomness in the contexts.

Now, fix a context c. Let



Author: Contextual Bandits with Cross-Learning

Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 43

RAdv(c) =E

[
T∑
t=1

rπAdv(c),t(c)

]
=Eri,t(c)∼Fi(c)

[
max
i∈[K]

T∑
t=1

ri,t(c)

]
,

and

RStoc(c) =E

[
T∑
t=1

rπStoc(c),t(c)

]
= T ·max

i∈[K]
µi(c).

We will show that RAdv(c) − RStoc(c) ≤
√
T log(KT ), and this completes the proof. Let ∆ =√

T log(KT )/2. Note that

RAdv(c) = E

[
max
i∈[K]

T∑
t=1

ri,t(c)

]

= E

[
max
i∈[K]

T∑
t=1

ri,t(c)I

(
max
i∈[K]

T∑
t=1

ri,t(c)≤RStoc(c) + ∆

)]

+ E

[
max
i∈[K]

T∑
t=1

ri,t(c)I

(
max
i∈[K]

T∑
t=1

ri,t(c)>RStoc(c) + ∆

)]

≤ RStoc(c) + ∆ +T ·Pr

[
max
i∈[K]

T∑
t=1

ri,t(c)>RStoc(c) + ∆

]

≤ RStoc(c) + ∆ +T
∑
i∈[K]

Pr

[
T∑
t=1

ri,t(c)>Tµi(c) + ∆

]
≤ RStoc(c) + ∆ +T

∑
i∈[K]

exp(−2T (∆/T )2)

≤ RStoc(c) + ∆ +T
∑
i∈[K]

1/(TK)

≤ RStoc(c) + 2∆ ,

where the second equation follows from conditioning, the second inequality follows from an union

bound together with RStoc(c)≥ Tµi(c), the third by Hoeffding’s inequality, and the fourth inequality

from our definition of ∆. It thus follows that Ec[RAdv(c)]−Ec[RStoc(c)]≤
√
T log(KT ), as desired.

Appendix B: Lower bound for learning to bid In this section, will show that any algo-

rithm for learning to bid in a first-price auction must incur at least Ω(T 2/3) regret even if there is

only one value (so no potential for cross-learning between contexts). To show this, we will use a

reduction to the problem of dynamic pricing.

The problem of dynamic pricing is as follows. The learner must repeatedly (for T rounds) sell

an item to a buyer with value xt drawn i.i.d. from some unknown distribution D. At each point

in time, a price pt is proposed. If xt ≥ pt, the buyer purchases the item and the learner receives

payment pt (alternatively, regret (xt − pt)); otherwise if xt < pt the buyer does not purchase the



Author: Contextual Bandits with Cross-Learning

44 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

item and regret is xt. The goal of this game is to maximize total revenue, or equivalently, minimize

the total regret (with respect to the optimal fixed price p?).

Kleinberg and Leighton (2003) prove the following bounds on this problem.

Theorem 9 (Theorem 4.3 in Kleinberg and Leighton (2003)). For any T , there exists

a family of distributions P = {Di} on [0,1] such that if D is sampled uniformly from P and the

buyer’s valuations are sampled iid according to D, any pricing strategy must incur expected regret

Ω(T 2/3).

This lower bound can be matched (up to log factors) by discretizing (to K =O(T 1/3) intervals)

and running EXP3.

We now show this lower bound immediately implies a lower bound on the learning to bid problem,

even when there is only one context/value.

Theorem 10 (Lower Bound for Learning to Bid). Any algorithm must incur Ω(T 2/3)

regret for the learning to bid in first price auctions problem, even if the value of the bidder is fixed

(i.e., there is only one context).

Proof of Theorem 10 We will show how to use a learning algorithm for the learning to bid

problem to solve the dynamic pricing problem.

Consider an instance of the learning to bid problem where vt = 1 always (i.e., Dv is the singleton

distribution supported on 1). If the bidder bids bt in this auction, then with probability Prh∼Dh
[bt ≥

h], the bidder wins the auction and receives reward (1−bt), and with probability 1−Prh∼Dh
[bt ≥ h]

the bidder loses the auction and receives reward 0. Here, Dh is the distribution of the highest

competing bid in the auction.

Now consider pricing when the value of the buyer is drawn from D = 1−Dh (that is, one can

sample from D by sampling x from Dh and returning 1− x). If we set a price pt in this auction,

then with probability Prx∼D[x ≥ pt], the item is sold and the seller receives reward pt, and with

probability 1−Prx∼D[x≥ pt], the item is not sold and the seller receives reward 0.

But note that Prx∼D[x ≥ pt] = Prh∼Dh
[1− h ≥ pt] = Prh∼Dh

[1− pt ≥ h]. In particular, setting a

price of pt in the pricing problem with distribution 1−Dh results in the exact same feedback and

rewards as bidding 1− pt in the learning to bid problem with distribution Dh. One can therefore

use any algorithm for the learning to bid problem to solve the dynamic pricing problem with the

same regret guarantee; since Theorem 9 implies any learning algorithm must incur Ω(T 2/3) regret

on the dynamic pricing problem, it follows that any learning algorithm must incur Ω(T 2/3) regret

for the learning to bid problem. �

Appendix C: Omitted proofs
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C.1. Proof of Lemma 4 Essentially, we must show that after observing arm i mi(c) times,

we no longer lose substantial regret from that arm in context c. Begin by noting that

K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)I(It = i, ct = c, τi,t(c)>mi(c)) ≤
K∑
i=1

C∑
c=1

T∑
t=1

I(It = i, ct = c, τi,t(c)>mi(c))

=
K∑
i=1

T∑
t=1

I(It = i, τi,t(ct)>mi(ct)) ,

where the inequality holds since the reward of each arm i (and consequently the gap ∆i(c)) is

bounded in [0,1].

In expectation, this is equal to

K∑
i=1

T∑
t=1

Pr[It = i, τi,t(ct)>mi(ct)].

Now, define Ui,t(c) = ri,t(c)+ω(τi,t(c)) to be the upper confidence bound for arm i under context

c in round t. Note that if It = i, then Ui,t−1(ct)≥Uj,t−1(ct) for any other arm j. This holds because

the algorithm chooses the arm with the highest upper confidence bound. It follows that (fixing i

and t)

Pr[It = i, τi,t(ct)>mi(ct)]≤Pr
[
Ui,t−1(ct)≥Ui?(ct),t−1(ct), τi,t(ct)>mi(ct)

]
.

(Here i?(ct) is the optimal arm under context ct).

Define ti(n, c) to be the minimum round t such that τi,t(c) = n, and define xi,n(c) = ri,ti(n,c)(c)

(in other words, xi,n(c) is the average value of the first n rewards from arm i, in context c). Note

that if τi,t(c)≥mi(c), then Ui,t−1(c)≥Ui?(c),t−1(c) implies that

max
mi(ct)≤n<t

xi,n(c) +ω(n)≥ min
0<n′<t

xi?(c),n′(c) +ω(n′).

We can therefore write

Pr
[
Ui,t−1(ct)≥Ui?(ct),t−1(ct), τi,t(ct)>mi(ct)

]
≤ Pr

[
max

mi(ct)≤n<t
xi,n(ct) +ω(n)≥ min

0<n′<t
xi?(ct),n′(ct) +ω(n′)

]
≤

t∑
n=mi(ct)

t∑
n′=1

Pr
[
xi,n(ct) +ω(n)≥ xi?(ct),n′(ct) +ω(n′)

]
.

Here the last inequality follows from applying the union bound over all choices of n and n′.

Finally, observe that if xi,n(ct) + ω(n) ≥ xi?(ct),n′(ct) + ω(n′), then one of the following events

must occur:

1. xi?(ct),n′(ct)≤ µ?(ct)−ω(n′).

2. xi,n(ct)≥ µi(ct) +ω(n).
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3. µ?(ct)<µi(ct) + 2ω(n).

Now, recall that mi(c) = 8 logT
∆i(c)

2 . Note that since n ≥mi(ct), we have that ω(n) ≤ ω(mi(ct)) ≤
∆i(ct)/2, so µi(ct)+2ω(n)≤ µi(ct)+∆i(ct)≤ µ?(ct), and therefore the third event can never occur.

The first two events both occur with probability at most t−4 by Hoeffding’s inequality. For

example, for the first event, Hoeffding’s inequality implies that

Pr
[
xi?(ct),n′(ct)−µ?(ct)≤−ω(n′)

]
≤ exp(−2n′ω(n′)2) = exp(−4 logT )≤ t−4.

It is similarly true that the probability of the second event is at most t−4. We thus have that

Pr[It = i, τi,t(ct)>mi(ct)] ≤
t∑

n=mi(ct)

t∑
n′=1

Pr
[
xi,n(ct) +ω(n)≥ xi?(ct),n′(ct) +ω(n′)

]
≤

t∑
n=mi(ct)

t∑
n′=1

2t−4 ≤ 2t−2.

Further summing this over all i∈ [K] and t∈ [T ], we have that

K∑
i=1

T∑
t=1

Pr[It = i, τi,t(ct)>mi(ct)]≤
Kπ2

3
.

C.2. Proof of Theorem 2 We proceed similarly to the analysis of EXP3. Begin by defining

the estimator

r̂i,t(c) =
ri,t(c)∑

c′∈Ii(c)
Pr[c′] · pi,t(c′)

I(It = i, ct ∈ Ii(c)).

Note that

Pr[It = i, ct ∈ Ii(c)] =
∑

c′∈Ii(c)

Pr[c′] · pi,t(c′),

so taking expectations over the algorithm’s choice of It, we have that

E[r̂i,t(c)] = ri,t(c),

and

E[r̂i,t(c)
2] =

ri,t(c)
2∑

c′∈Ii(c)
Pr[c′] · pi,t(c′)

.

Now, let Wt(c) =
∑K

i=1wi,t(c). Note that

Wt+1(c)

Wt(c)
=

K∑
i=1

wi,t(c)

Wt(c)
· eβr̂i,t(c)

=
K∑
i=1

pi,t(c)−α
1−Kα

eβr̂i,t(c)

≤ 1

1−Kα

K∑
i=1

(pi,t(c)−α)
(
1 +βr̂i,t(c) + (e− 2)β2r̂i,t(c)

2
)

≤ 1 +
β

1−Kα

K∑
i=1

pi,t(c)r̂i,t(c) +
(e− 2)β2

1−Kα

K∑
i=1

pi,t(c)r̂i,t(c)
2 ,
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where the first equation holds because for any c ∈ [C], wi,t+1(c) = wi,t(c) · eβr̂i,t(c), and the second

equation follows because pi,t(c) = (1−Kα)
wi,t(c)

Wt(c)
+α. In the first inequality, we have used the fact

that βr̂i,t(c)≤ βri,t(c)/α≤ 1 (since β/α≤ 1 for any choice of T and K), that ex ≤ 1 +x+ (e− 2)x2

for x∈ [0,1], and that all rewards ri,t(c) are bounded in [0,1]. Now, using the fact that log(1+x)≤ x,

we have that:

log

(
Wt+1(c)

Wt(c)

)
≤ β

1−Kα

K∑
i=1

pi,t(c)r̂i,t(c) +
(e− 2)β2

1−Kα

K∑
i=1

pi,t(c)r̂i,t(c)
2 ,

and therefore (summing over all t)

log

(
WT (c)

W0(c)

)
≤ β

1−Kα

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c) +
(e− 2)β2

1−Kα

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c)
2. (10)

Recall that we compute regret against the optimal stationary policy π(c) = arg maxi
∑T

t=1 ri,t(c).

Then,

log

(
WT (c)

W0(c)

)
≥ log

wπ(c),T (c)

K

= β
T∑
t=1

r̂π(c),t(c)− logK , (11)

where the first inequality holds because (i) wi,0(c) = 1 for any i ∈ [K] and as a result, W0(c) =K,

and (ii) WT (c) =
∑K

i=1wi,T (c)≥wπ(c),T (c). From (10) and (11), we get

β

1−Kα

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c) +
(e− 2)β2

1−Kα

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c)
2 ≥ β

T∑
t=1

r̂π(c),t(c)− logK. (12)

Simplifying (12) (multiplying through by (1−Kα)/β and applying the fact that ri,t(c) is bounded),

this becomes6

T∑
t=1

r̂π(c),t(c)−
T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c)≤
logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c)
2 +KTα. (13)

We now take expectations (with respect to all randomness, both of the algorithm and of the

contexts) of both sides of (13).

T∑
t=1

rπ(c),t(c)−
T∑
t=1

K∑
i=1

E[pi,t(c)]ri,t(c)

≤ logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

E

[
pi,t(c)∑

c′∈Ii(c)
Pr[c′] · pi,t(c′)

]
ri,t(c)

2 +KTα. (14)

6 Note that for T ≥K logK, α≤ 1/K, so 1−Kα is always positive.
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Note that the expected regret E[Reg(A)] of our algorithm is equal to

E[Reg(A)] = E

[
T∑
t=1

rπ(ct),t(ct)−
T∑
t=1

rIt(ct),t(ct)

]

=
T∑
t=1

E
[
rπ(ct),t(ct)− rIt(ct),t(ct)

]
=

T∑
t=1

C∑
c=1

Pr[c]E
[
rπ(c),t(c)− rIt(c),t(c)

]
=

T∑
t=1

C∑
c=1

Pr[c]
(
rπ(c),t(c)−E

[
rIt(c),t(c)

])
.

Since arm It is drawn from distribution pt(c), we have

E[Reg(A)] =
T∑
t=1

C∑
c=1

Pr[c]

(
rπ(c),t(c)−

K∑
i=1

E[pi,t(c)]ri,t(c)

)

=
C∑
c=1

Pr[c]

(
T∑
t=1

rπ(c),t(c)−
T∑
t=1

K∑
i=1

E[pi,t(c)]ri,t(c)

)
.

From Equation (14), we get that

E[Reg(A)] ≤
C∑
c=1

Pr[c]

(
logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

E

[
pi,t(c)∑

c′∈Ii(c)
Pr[c′] · pi,t(c′)

]
ri,t(c)

2 +KTα

)

=
logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

C∑
c=1

Pr[c] ·E

[
pi,t(c)∑

c′∈Ii(c)
Pr[c′] · pi,t(c′)

]
ri,t(c)

2 +KTα

≤ logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

E

[
C∑
c=1

Pr[c]pi,t(c)∑
c′∈Ii(c)

Pr[c′] · pi,t(c′)

]
+KTα

≤ logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

ν(Gi) +KTα

=
logK

β
+ (e− 2)βνKT +KTα

= O(
√
νKT logK).

where ν̄ = 1
K

∑
i=1 ν(Gi) and ν(Gi) = sup f :[C]→R+∑C

c=1 f(c)=1

∑C

c=1
f(c)∑

c′∈Ii(c)
f(c′) . The last inequality follows

because

C∑
c=1

Pr[c]pi,t(c)∑
c′∈Ii(c)

Pr[c′] · pi,t(c′)
≤ sup

f :[C]→R+∑C
c=1 f(c)=1

C∑
c=1

f(c)∑
c′∈Ii(c)

f(c′)
= ν(Gi) = λ(Gi) .

Here, the inequality holds by setting f(c) = Pr[c] ·pi,t(c) and renormalizing such that
∑C

c=1 f(c) = 1,

and the last equality follows from Lemma 1.
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C.3. Proof of Lemma 1 Let

ν(G) = sup
f :[C]→R+∑C
c=1 f(c)=1

C∑
c=1

f(c)∑
c′∈I(c) f(c′)

,

where I(c) is the set of in-neighbors of node/context c in graph G. We begin by showing that

ν(G)≥ λ(G).

Let (v1, v2, . . . , vλ(G)) be an acyclic subgraph of G of maximum size. Fix a large M > 1, and

consider the following function f : V →R
+: f(v) =M i if v= vi, i∈ [λ(G)], and f(v) = 1 otherwise.

We claim that as M →∞, the quantity ∑
v∈V

f(v)∑
w∈I(v) f(w)

(15)

approaches a value larger than or equal to λ(G). To do this, we will simply show that for each vi

in our acyclic subgraph, the quantity
f(vi)∑

w∈I(vi)
f(w)

approaches a value larger than or equal to 1. Since there are at least λ(G) such terms, and since

all terms are always nonnegative, this implies the desired result.

To see this, note that by the definition of an acyclic subgraph, for all j > i, there is no edge

vj→ vi. Therefore, for every w ∈ I(vi) (with the exception of vi itself), f(w)≤M i−1 because every

w in I(vi) is of the form vj for some j < i, and therefore
∑

w∈I(vi)
f(w)≤ |V |M i−1 +M i. It follows

that
f(vi)∑

w∈I(vi)
f(w)

≥ M i

|V |M i−1 +M i
.

The right hand side of this expression converges to 1 as M approaches infinity.

The proof that ν(G)≤ λ(G) follows from Lemma 10 in Alon et al. (2017).

C.4. Proof of Lemma 2 We prove the inequalities in order.

ι(G)≤ ν2(G): Let S be an independent set in G of size ι(G). Define the distribution f via

f(v) = 1−ε
ι(G)

(for some small ε) for v ∈ S and f(v) = ε
|V |−ι(G)

for v 6∈ S. As ε→ 0, we have that

∑
v∈V

f(v)√∑
w∈I(v) f(w)

−→
∑
v∈S

1/ι(G)√
1/ι(G)

=
√
ι(G).

It follows that

ν2(G) = sup
f :V→R+∑
v∈V f(v)=1

∑
v∈V

f(v)√∑
w∈I(v) f(w)

2

≥ ι(G).
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ν2(G)≤ λ(G): By Jensen’s inequality, for any distribution f over V , we have that∑
v∈V

f(v)√∑
w∈I(v) f(w)

2

≤
∑
v∈V

f(v)∑
w∈I(v) f(w)

.

To see why note that by Jensen’s inequality, for any concave function φ and positive weights a(v)

and any numbers x(v), we have φ(
∑

v a(v)x(v)∑
v a(v)

)≥
∑

v a(v)φ(x(v))∑
v a(v)

. Here, φ(y) =
√
y, weights are f(v)’s

and x(v)’s are 1∑
w∈I(v) f(w)

. Taking suprema of both sides, it follows that

ν2(G) = sup
f :V→R+∑
v∈V f(v)=1

∑
v∈V

f(v)√∑
w∈I(v) f(w)

2

≤ sup
f :V→R+∑
v∈V f(v)=1

∑
v∈V

f(v)∑
w∈I(v) f(w)

= λ(G),

where the last equality follows from Lemma 1.

λ(G)≤ κ(G): Let (S1, S2, . . . , Sκ(G)) be a minimum size clique covering of G. Note that no two

elements v, v′ in the same Si can belong to the same acyclic subgraph (since by the definition of a

clique, there exist edges v→ v′ and v′→ v). It follows that the size of the largest acyclic subgraph

is at most κ(G), and thus λ(G)≤ κ(G).

Unions of cliques We now show that when G is a disjoint union of r cliques, ι(G) = ν2(G) =

λ(G) = κ(G) = r. To do so it suffices (from the above inequalities) to show that ι(G) = r and

κ(G) = r. The independence number ι(G) = r since choosing one element from each clique creates

an independent set, and any set of r+ 1 or more vertices must have two vertices from the same

clique. The clique covering number κ(G) = r since we can cover the graph with the r given cliques,

and any covering with fewer than r sets must combine elements in disjoint cliques (thus violating

the fact that each set is a clique).

C.5. Proof of Theorem 3 As in our analysis of EXP3.CL, we define the estimator

r̂i,t(c) =
ri,t(c)

pi,t(c′)
I(It = i, c∈O(c′)).

Note that r̂i,t(c) is not an unbiased estimator of ri,t(c). Indeed, we have that:

E[r̂i,t(c)] =
∑
c′∈I(c)

Pr[ct]pi,t(c
′) · ri,t(c)

pi,t(c′)
=
( ∑
c′∈I(c)

Pr[c′]
)
ri,t(c).

However, note that we can write E[r̂i,t(c)] in the form f(c)ri,t(c), where f(c) is a function which

only depends on a context (and in this case is given by f(c) =
∑

c′∈I(c) Pr[c′]). It turns out this

property is enough to adapt the previous analysis of Theorem 2.
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Indeed, proceeding in the same way as the proof of Theorem 2, we arrive at the inequality

T∑
t=1

r̂π(c),t(c)−
T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c)≤
logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c)
2 +KTα. (16)

In addition, note that it is still true that

E[r̂i,t(c)
2]≤ ri,t(c)

2

α
.

Taking expectations of (16), we therefore have that:

f(c)

(
T∑
t=1

rπ(c),t(c)−
T∑
t=1

K∑
i=1

E[pi,t(c)]ri,t(c)

)
≤ logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

E[pi,t(c)]

α
ri,t(c)

2 +KTα

≤ logK

β
+ (e− 2)KT

β

α
+KTα

= O(K1/3T 2/3(logK)1/3).

Now, multiply both sides of this inequality by Pr[c]/f(c), and sum over all c. On the left hand

side, we have
C∑
c=1

T∑
t=1

Pr[c](rπ(c),t(c)−E[pi,t(c)]ri,t(c)) =E[Reg(A)] .

(by the same logic as in Theorem 2). On the other hand, the right hand side is now(
C∑
c=1

Pr[c]∑
c′∈I(c) Pr[c′]

)
·O(K1/3T 2/3(logK)1/3) =O(λK1/3T 2/3(logK)1/3),

where this inequality follows due to Lemma 1. It follows that the expected regret is at most

O(λK1/3T 2/3(logK)1/3).

C.6. Proof of Theorem 5 To prove this, we will need a slightly stronger variant of Lemma

5. Recall that Lemma 5 states that in the non-contextual multi-armed bandit setting, any algorithm

incurs an expected cumulative regret of Ω(
√
KT ). The following lemma states that in the same

setting, any algorithm incurs an expected regret of at least Ω(
√
K/T ) per round.

Lemma 6. There exists a distribution over instances of the multi-armed bandit problem (with

K arms and T rounds) where for any round t ∈ [T ], any algorithm must incur an expected regret

of at least Ω(
√
K/T ) in round t.

Proof of Lemma 6 See Section C.7. �

Now, let f : [C] → R+ be any distribution on contexts (i.e.,
∑C

c=1 f(c) = 1). Define g(c) =∑
c′∈I(c) f(c′). Consider the following distribution over instances of the contextual bandits problem

with partial cross-learning:

• Every round, the context ct is drawn independently from the distribution f .
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• The distribution of rewards for a context c is drawn from the distribution over hard instances

in Lemma 6 for a multi-armed bandit problem with K arms and g(c)T/2 rounds.

Note that in the second point, the distribution over rewards changes per context depending on

g(c). Intuitively, this is because we expect to observe (through learning) the performance of some

action in context c in approximately g(c)T rounds.

For each context c and round t, let τc(t) =
∑t

s=1 I(cs ∈ I(c)) be the number of rounds up to

round t where we observe the performance of some action in context c. Let Tc be the total number

of rounds t where ct = c and τc(t)≤ g(c)T . We claim that any algorithm must incur regret at least

Ω

(
E[Tc]

√
K

g(c)T

)
(17)

from the rounds where ct = c. To see this, let {t1, t2, . . . , tmin(τc(T ),g(c)T )} be the set of (the first

g(c)T ) rounds where ct ∈ I(c) and let S(c) = {j|ctj = c} be the subset of indices where ctj equals

c. We claim that, conditioned on S(c), any algorithm must incur expected regret at least

Ω

(
|S(c)|

√
K

g(c)T

)

from the rounds tj for j ∈ S(c). If not, this means that there is one j ∈ S(c) where the expected

regret from this round is o(
√
K/(g(c)T )); but this would violate Lemma 6 (in particular, this gives

a regular multi-armed bandits algorithm which incurs expected regret o(
√
K/(g(c)T )) in round j).

Since |Sc|= Tc, taking expectations over Tc, equation (17) follows.

Now, we claim that E[Tc] = Ω(f(c)T ). This follows since

E[Tc] =

g(c)T∑
j=1

Pr[ctj = c] ·Pr[τc(T )≥ j]

=
f(c)

g(c)

g(c)T∑
j=1

Pr[τc(T )≥ j]

≥ f(c)

g(c)
(g(c)T/2) ·Pr[τc(T )≥ g(c)T/2]

≥ f(c)T

2
· (1− exp(−g(c)2T/2))

≥ Ω(f(c)T ) ,

where the second inequality holds because conditioned on cross-learning the reward under context c,

the probability that context is c is f(c)/g(c). Recall that we learn the reward under context c when

the realized context belongs to set I(c) and by our definition, g(c) =
∑

c′∈I(c) f(c′). Furthermore,

in the last step, we use that (1− exp(−g(c)2T/2))≥Ω(1) for sufficiently large T .
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This implies that the expected regret from rounds where ct = c is at least Ω(f(c)
√
KT/g(c)).

Summing over all contexts c, the total expected regret is at least

Ω

((
C∑
c=1

f(c)√
g(c)

)
√
KT

)
.

Since ν2(G) = supf

(∑C

c=1
f(c)√
g(c)

)2

, taking the supremum over f we find that any algorithm must

incur expected regret at least Ω(
√
ν2(G)KT ), as desired.

C.7. Proof of Lemma 6 Consider the following distribution over instances of the multi-

armed bandit problem. Let ε= Θ(
√
K/T ) (the precise value to be chosen later). An arm i is drawn

uniformly at random from [K]. The rewards from arm i are distributed according to B((1 + ε)/2),

and the arms for all j 6= i are distributed according to B((1−ε)/2) (where here B(p) is the Bernoulli

distribution with probability p).

We wish to claim that at any round t ≤ T , the probability any learner plays the optimal arm

i is less than 1/2, and therefore the learner must incur Ω(ε) = Ω(
√
K/T ) regret this round. This

is therefore a best-arm identification problem. Theorem 4 in Audibert and Bubeck (2010) implies

there exists some ε= Θ(
√
K/T ) such that this result holds for our distribution of instances.

C.8. Proof of Theorem 6 Let {v1, v2, . . . , vλ(G)} be a maximum acyclic subset of G (with

the property that if i < j, there is no edge vi→ vj). We now proceed as in the proof of Theorem

4. Divide the T rounds into λ(G) epochs of T/λ(G) rounds each. The adversary must decide both

the contexts every round, and the reward distributions for each context. The adversary will do so

as follows:

• For each round t in epoch i, the adversary will set the context ct = vi.

• For each context c, the adversary will set the reward distribution equal to a hard instance for

the multi-armed bandit problem sampled from the distribution from Lemma 5.

Note that since the contexts vi belong to an acyclic subset of G, any information cross-learned

in epoch i will reveal nothing about the reward distribution for any context vj with j > i (and

hence nothing about the reward distribution in any epoch j > i). Since the hard instances are all

independent of each other, any algorithm for the contextual bandits problem with partial cross-

learning which achieves o(
√
λ(G)KT ) expected regret on this instance must achieve o(

√
KT/λ(G))

expected regret on one of the individual instances, which contradicts Lemma 5.

Appendix D: Settings with Adversarial Rewards and Stochastic Contexts, and

Unknown Context Distribution One of the biggest open questions in this work is whether

there exists an algorithm in the adversarial rewards setting that can achieve regret that scales with
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O(
√
T ) (as opposed to O(T 2/3)) in the setting where the context distribution D is unknown. Since

there is an Õ(
√
KT ) regret in the case where the context distribution is known (EXP3.CL), it is

natural to ask whether there is some way to generalize this algorithm to the setting where the

context distribution is unknown (perhaps by using an empirical estimate of the context distribution

in place of the known distribution).

We conjecture that doing this should indeed work and result in a Õ(
√
KT ) regret – one piece of

empirical evidence in favor of this is that the variant of EXP3.CL tested in our empirical simulations

in Section 6 does exactly this (uses the empirical distribution of contexts observed thus far to com-

pute the value estimator in EXP3.CL). Nonetheless, showing that this modified algorithm achieves

regret that scales with O(
√
T ) remains stubbornly out of reach of our current analytical tools. In

this appendix, we provide a short discussion of some of the difficulties that come with rigorously

analyzing this modified algorithm.

Before we proceed, we quickly present a brief reminder of the main properties of EXP3.CL. For this

discussion, we will work entirely in the complete cross-learning setting, and suppress dependence on

K (which we can take to be a constant) and logarithmic terms in T . The main feature of EXP3.CL

is that it updates the weights by multiplying them by the unbiased estimator

r̂i,t(c) =
ri,t(c)∑C

c′=1 Pr[c′] · pi,t(c′)
I(It = i). (18)

This unbiased estimator has low variance, but computing the denominator requires knowledge of

the distribution over contexts. We would like to replace it with a similar estimator

r̃i,t(c) =
ri,t(c)

D̃i,t

I(It = i), (19)

where D̃i,t is some sufficiently close approximation to the quantity
∑C

c′=1 Pr[c′] · pi,t(c′) (which we

will refer to from now on as Di,t) that does not require full knowledge about D to compute. One

natural choice for D̃i,t is

D̃i,t =
C∑
c′=1

P̂rt[c
′]pi,t(c

′), (20)

where we have replaced the true probability Pr[c′] of context c′ with the empirical probability

P̂rt[c
′] from our observation of contexts thus far.

The first difficulty we run into is that even when D̃i,t is a good approximation to Di,t, since these

terms occur in the denominators of equations (18) and (19), tiny additive errors can be amplified

if both quantities are small. To be more concrete, assume that with high probability |D̃i,t −Di,t|

is at most δ (at best we should expect δ to be around T−1/2, since we have at most T samples
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of contexts). We can then relate the first and second moments of our new approximate estimator

r̃i,t(c) to those of our original unbiased estimator:

E[r̃i,t(c)] =E[r̂i,t(c)] +
Di,t− D̃i,t

D̃i,t

ri,t(c)

and

E[r̃i,t(c)
2] =E[r̂i,t(c)

2] +

(∑C

c′=1 Pr[c′]pi,t(c
′)
)2

− D̃2
i,t

D̃2
i,tDi,t

ri,t(c)
2.

If Di,t and D̃i,t are both reasonably large (e.g. bounded away from 0 by a constant), these

approximations are quite good: in both cases, we have an O(δ) additive approximation to the

corresponding moment for the unbiased estimator r̂i,t(c). These O(δ) additive approximations end

up contributing an extra O(δT ) regret, which is fine if δ=O(T−1/2).

But when Di,t and D̃i,t are close to zero, these additive errors explode. And although it may be

rare, it is possible for Di,t to be small (this just means that it is unlikely to pick action i this round

over all contexts). In this case, the best direct lower bound we can show for Di,t is the exploration

constant α – but setting α to a value smaller than O(1/
√
T ) would result more than

√
T regret,

and lower bounding Di,t by 1/
√
T increases the additive error in these approximations to O(δ

√
T ).

Since we sustain this additive error each round, for δ=O(T−1/2) this leads to O(1) extra regret per

round for a total of O(T ) regret, so we get no meaningful regret guarantee. (By balancing δ and α

it is possible to recover an Õ(T 2/3) regret algorithm, albeit one more complicated than EXP3.CL-U).

The second difficulty we face is more subtle, but arguably more pernicious. Recall that ear-

lier we mentioned that with O(T ) samples from D, we should be able to approximate Di,t to

within O(T−1/2) with high probability. Ordinarily, this type of bound would follow from Hoeffding’s

inequality: if we have S samples from D, we can rewrite the definition of D̃i,t in Equation (20) as

D̃i,t =
∑S

s=1 pi,t(cs), which is a sum of S bounded independent random variables (where the sth

such variable takes on value pi,t(cs) if cs is the sth context we observe), which should not differ

from their mean by more than O(1/
√
S). But there is one big caveat here: in practice, we do not

see a fresh (independent) set of samples from D each round, but rather we add a single new sample

to our empirical distribution each round. Since our choice of function pi,t(c) in round t depends on

the contexts we have observed before round t, our sample of contexts at round t is not statistically

independent from the values of pi,t(c) at round t. To wit, if we use the realized contexts observed so

far c1, . . . , ct as samples, we could write D̃i,t =
∑t

s=1 pi,t(cs) and, now, the random variables pi,t(cs)

are no longer independent because the historical contexts c1, . . . , ct−1 are used to compute pi,t. This

prevents the above random variables from being independent, and hence prevents us from applying

Hoeffding’s inequality as desired.
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Appendix E: Other Applications of Cross-Learning

Multi-armed bandits with exogenous costs: In this problem, as in the standard stochastic

multi-armed bandit problem, a learner must repeatedly (for T rounds) make a choice between K

options, where the reward ri,t ∈ [0,1] from choosing option i is drawn from some distribution Di
with mean µi. However, in addition to this, at the beginning of each round t, a cost si,t ∈ [0,1]

for playing arm i is adversarially chosen and publicly announced (and choosing arm i this round

results in a net reward of ri,t−si,t). The learner’s goal is to get low regret compared to the optimal

strategy, which always chooses the option which maximizes µi− si,t.
This can be thought of as a contextual bandits problem where the context ct is the cost vector st.

Discretizing the context space [0,1]K into (1/ε)K pieces and running S-UCB results in an overall

regret bound of Õ(
√
TKε−K + εT ). Optimizing over ε yields ε= (K/T )1/(K+2), which results in a

regret of Õ(T (K+1)/(K+2)K1/(K+2)).

Again, cross-learning between contexts is possible. Applying UCB1.CL, this immediately leads

to an algorithm which achieves regret Õ(
√
KT ) (which is optimal since the standard stochastic

multi-armed bandit problem is a special case of this problem).

Sleeping bandits: In this variant of sleeping bandits, there are K arms (with stochastically

generated rewards in [0,1]) and in each round some nonempty subset St of these arms are awake.

The learner can play any arm and observe its reward, but only receives this reward if they play

an awake arm. The learner would like to get low regret compared to the best policy (which always

plays the awake arm whose distribution has the highest mean).

This is a contextual bandits problem where the context ct is the set St of awake arms. Since there

are 2K − 1 possible contexts, naively applying S-UCB results in an regret bound of Õ(
√

2KKT ).

On the other hand, cross-learning between contexts is again present in this setting: given the

observation of the reward of arm i, one can infer the received reward for any context S′t by just

checking whether i∈ S′t. Applying UCB1.CL, this leads to an optimal Õ(
√
KT ) regret algorithm for

this problem.

In the setting of sleeping bandits originally studied by Kleinberg et al. (2010), the learner can

neither play nor observe sleeping arms. We can capture this setting via contextual bandits with

partial cross-learning. We adjust the previous setting so that if a learner chooses an asleep arm,

they receive zero reward and observe nothing else. Note that in this case, we have the following

partial learning structure between contexts:

• If arm It ∈ St, rewards rIt,t(S) are revealed for all other subsets S. These rewards are given

by rIt,t(S) = I(It ∈ S)rIt,t(St).

• If arm It 6∈ St, rewards rIt,t(S) are revealed only for subsets S where It 6∈ S. These rewards are

given by rIt,t(S) = 0.
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In other words, Gi is the following graph: there is an edge from S1→ S2 if either i ∈ Si or if

i 6∈ S1∪S2. Note that Gi has clique cover number κ(Gi) = 2; the set of subsets containing i and the

set of subsets not containing i both form subcliques of Gi. It follows from Theorem 1 that running

Algorithm 1 results in an optimal regret bound of Õ(
√
KT ).

In Kanade et al. (2009), the authors study a variant of sleeping bandits where the subsets St are

generated stochastically, but the rewards are chosen adversarially. They demonstrate an algorithm

for this setting with Õ(K1/5T 4/5) regret, which was later improved to Õ(K1/3T 2/3) regret by Neu

and Valko (2014). In our language, this is simply the adversarial contexts/stochastic rewards variant

of the above problem. Applying Theorem 2, it follows that if the distribution over subsets is known,

Algorithm 2 incurs regret at most Õ(
√
KT ) for this problem.

Appendix F: Further Numerical Studies In this section, we investigate if our algorithms

– when used in the problem of bidding in the first-price auctions – are sensitive to how outliers

are handled. To do so, we generate synthetic auction data in which the value of a bidder and their

highest competing bid are generated from a correlated log-normal distribution with a correlation

coefficient of 0.4. (Recall that in our empirical results presented in Section 6, the correlation

coefficient between the bidder’s value and their highest competing bid is 0.4.) In the generated

auction data, the probability that the maximum of the bidder’s value and the highest competing

bid are larger than 1 is 0.1. (The bidder’s bid and highest competing bid are independent across

auctions.)

We consider two settings. In the first setting, we remove all the auctions in which the maximum

of the bidder’s value and the highest competing bid is greater than 1, and in the second setting, we

keep all the auctions. In both of these settings, in all the considered algorithms, the submitted bids

by the bidders are restricted to the range of [0,1], and allowable bids are discretized to multiples

of 0.01.

Figures 4a and 4b show the cumulative regret versus time t of our three algorithms (UCB1.CL,

EXP3.CL, and EXP3.CL-U) that use cross-learning between values/contexts and the two benchmark

algorithms S-EXP3, and S-UCB1 under the two aforementioned settings. We again observe that our

three algorithms outperform S-EXP3, and S-UCB1, demonstrating robustness of our algorithms

to outliers. In addition, as in Figure 3, EXP3.CL surpasses EXP3.CL-U despite the fact that both

algorithms do not know the context distribution.
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Figure 4. Graph of average cumulative regrets of various learning algorithms (y-axis) versus time (x-axis). Taking

advantage of cross-learning via our algorithms (UCB1.CL, EXP3.CL, and EXP3.CL-U) leads to a lower regret,

regardless of how outliers are handled.
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