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Abstract: The literature on interior point algorithms shows impressive results related to the
speed of convergence of the objective values, but very little is known about the convergence
of the iterate sequences.

This paper studies the horizontal linear complementarity problem, and derives general
convergence properties for algorithms based on Newton iterations. This problem provides a
simple and general framework for most existing primal-dual interior point methods. The con-
clusion is that most of the published algorithms of this kind generate convergent sequences.
In many cases (whenever the convergence is not too fast in a certain sense), the sequences

converge to the analytic center of the optimal face.
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Sur la convergence des algorithmes de point intérieur
pour le probleme de complémentarité linéaire
monotone

Résumé : La littérature des algorithmes de point intérieur montre des résultats impres-
sionants concernant la vitesse de convergence du critere, mais on sait peu de choses sur la
convergence de la suite des points.

Cet article étudie le probleme de complémentarité linéaire, et obtient des résultats géné-
raux de convergence pour les algorithmes baseés sur les itérations de Newton. Ce probleme
fournit un cadre simple et général pour la plupart des méthodes existantes de point intérieur
de type primal-dual. La conclusion est que la plupart des algorithmes publiés de ce type
génerent des suite convergeantes. Dans beaucoup de cas (lorsque la convergence n’est pas
trop rapide en un certain sens), ces suites convergent vers le centre analytique de la face

optimale.

Mots-clé : Probleme de complémentarité linéaire, algorithme de point intérieur primal-

dual, algorithme prédicteur-correcteur, centre analytique
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1 Introduction

Among several different statements of the linear complementarity problem, we chose the

following one, known as the monotone horizontal linear complementarity problem:
minimize sTx

Qr+ Rs = b

z,s > 0,

where b € IR™, and (), R € IR™*" are such that for any u,v € IR",

(P)

subject to

if Qu + Rv = 0 then ulv > 0.

The problem will be formally studied in section 2, where we shall state two hypotheses:
the existence of an interior feasible solution, and the existence of a strictly complementary
optimal solution. As we shall see, this problem trivially includes the linear programming
problem and the convex quadratic programming problem in their usual formulations, and
thus provides a quite general framework for the study of algorithms. The algorithms studied
in this paper are restricted to feasible interior point methods.

Rather than developing new methods, the scope of this paper is a unified study of the
iterate convergence of methods for which an R-linear convergence of the objective values z7's
is already guaranteed. We describe the usual variants of Newton iterations for the perturbed
version of this problem (exact Newton steps, centering steps and affine-scaling steps) and
concentrate our attention on methods based on combinations of these steps. We conclude

that among the methods found in the literature, the following ones generate convergent

iterate sequences:

o All the path following methods that work in an Euclidean norm neighborhood of the
central path. Predictor-corrector algorithms (already studied by Gonzaga and Tapia
(1992) in the linear programming case) and linearly convergent methods generate ite-
rates that converge linearly to the analytic center of the optimal face. One step su-
perlinearly convergent methods that use only exact Newton iterates may converge to
another optimal solution. In particular, all the known primal-dual algorithms with a

complexity of O(y/nL) iterations generate convergent sequences.

e All methods for which superlinear convergence of the objective values has been proved.
If the convergence in values is very fast (say, quadratic), the iterates usually converge to
a non-central optimal solution. Otherwise, the iterates converge linearly to the analytic

center of the optimal face.
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4 J. Frédéric Bonnans , Clovis C. Gonzaga

Among the methods that we have considered, the only ones that may generate non-
convergent sequences are the ones that do not follow the central path closely and do not
achieve superlinear convergence.

Apart from this study of convergence, this paper has two other contributions that may

be of interest:

o We formulate the problem carefully, and show that by a simple change in the order
of the variables the properties of Newton steps become very clear. The least-squares
problems associated with the systems, as well as the relationship between “large” and

“small” variables become straightforward.

o We develop in section 4 a general convergence theorem for nonlinear programming

algorithms that may be useful in other contexts.

The algorithms to which these results apply cover the whole history of primal-dual interior
point methods. The first algorithm was introduced by Kojima, Mizuno and Yoshise (1989),
based on a work by Megiddo (1989). The same authors (1987) and independently Monteiro
and Adler (1989), developed a low-complexity version of the algorithm. Kojima, Megiddo,
Noma and Yoshise in their monograph (1991) make an extensive treatment of methods
for linear complementarity problems that, like the Kojima-Mizuno-Yoshise algorithm, use
exact Newton iterations followed or not by line searches. The largest possible step for a
path following algorithm using complete Newton steps is described by McShane (1991) for
linear programming and for linear complementarity McShane (1994). He proves superlinear
convergence under the hypothesis that the iterate sequence converges: this hypothesis, as a
consequence of our results, is naturally satisfied.

Another consequence that will be discussed ahead is that the extension of the large step
primal path following methods developed by Gonzaga (1991) and by Roos and Vial (1989)
to the primal-dual setting is always convergent to the central optimum.

Primal-Dual algorithms for linear programming with superlinear convergence were deve-
loped by Zhang and Tapia (1991), without following the central path. Algorithms that follow
the central path and achieve 2-step quadratic convergence are based on the Mizuno-Todd-Ye
algorithm (1990). This rate of convergence was first proved by Ye, Tapia and Zhang (1991),
with the hypothesis of convergence of the sequence of iterates, and afterwards by Ye, Giiler,
Tapia and Zhang (1993) and by Mehrotra (1991) without this hypothesis.

The extension of these results to linear complementarity problems was done by Kojima,
Kurita and Mizuno (1991), Kojima, Megiddo and Noma (1989), Ji, Potra, Tapia and Zhang
(1991), Ji, Potra and Huang (1995), either using a nondegeneracy hypothesis or assuming

INRIA
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that the sequences converge. The result without these hypotheses was found by Ye and Ans-
treicher (1993), who show convergence of order 2 for the objective values and low polynomial
complexity.

The study of interior point algorithms is greatly simplified by the description of properties
of the so-called w-weighted trajectories associated with the problems. These trajectories for
the horizontal linear complementarity problem are described by Monteiro and Tsuchiya
(1992), extending results by Kojima, Mizuno and Noma (1990).

The convergence of the sequences of iterates for the Mizuno-Todd-Ye algorithm for li-
near programming was studied by Gonzaga and Tapia (1992). The present paper extends
the results in this references to the horizontal linear complementarity problem, and studies
algorithms that are not of the predictor-corrector type.

The paper is structured as follows: section 2 describes the LCP and its main properties.
Section 3 describes the class of algorithms under consideration and states the main results.
Section 4 is a self contained convergence study of non linear programming descent algorithms.
Sections 5 and 6 contain the mathematical treatment of Newton methods, and the proofs of

the results described in section 3.

Conventions. Given a vector x,d, the corresponding upper case symbol denotes as usual
the diagonal matrix X, D defined by the vector. The symbol e will represent the vector of
all ones, with dimension given by the context.

We shall denote component-wise operations on vectors by the usual notations for real
numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc. will denote the
vectors with components w;v;, u;/v;, etc. This notation is consistent as long as component-
wise operations always have precedence in relation to matrix operations. Note that uv = Uv
and if A is a matrix, then Auv = AUwv, but in general Auv # (Au)v.

We shall frequently use the O(-) and Q(-) notation to express the relationship between
functions. Our most common usage will be associated with a sequence {z*} of vectors and
a sequence {y} of positive real numbers. In this case ¥ = O(ui) means that there is a
constant K (dependent on problem data) such that for every k € IV, ||z*|| < K py. Similarly,
if 2F > 0, 2F = Q(py) means that (z%)~! = O(1/py). Finally, 2% ~ pj, means that % = O(uy)
and zF = Q(ug).

We use the same notations for a point x in a set parameterized by p, say F,. We say that
x = O(p) (resp. x = Q(p), @ ~ p) whenever there is a constant K such that (for g small
enough) for all z € F,,, ||z|| < Kpu (resp. 7' = O(1/u), = ~ p). In particular, z ~ 1 in F
means that there are constants Ky > K; > 0, such that any = € F satisfies K; < x; < K3,

r=1,...,n.

RR n"2074



6 J. Frédéric Bonnans , Clovis C. Gonzaga

Given two vector functions x and y, * & y means that z; ~ y; fori =1,...,n

2 The linear complementarity problem

The problem (P) can be stated in the following format, which will be used in the paper:

Solve
zs = 0
(P) Qe+ Rs = b
z,s > 0

where b € IR", and @), R € IR"*" are such that for any u,v € IR",
if Qu + Rv = 0 then ulv > 0.
The feasible set for (P) is
F={(z,8) € R | Qe+ Rs=b, z,5 >0},
and the set of interior solutions is
F°={(z,s) € F'|zs > 0}.
We say that respectively x or s is feasible if there exists s or  such that (z,s) € F.

Remark. We shall prove below that [() R] has rank n under the monotonicity hypothesis.
One can use ), R € IR™*" with m > n, as long as r([Q R]) = n.

Example: the quadratic programming problem. This format is quite general. For

instance, the convex quadratic programming problem is *

1
minimize Lr+ §$THJ}
) Ax = b

subject to : > 0,

where c € IR*, b€ IR™, A€ IR™*", and H € IR™*" is a positive semi-definite matrix.

The necessary and sufficient optimality conditions for this problem are

s = 0
—He+ATw+s = ¢
Az = b
z,s > 0

?

*The notation in the example is local, and shall not be used in the remainder of the paper.

INRIA
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Let B be a matrix whose rows span the null space of A. Multiplying the second equation
by B, one obtains the equivalent relation —BHax + Bs = B, so that (z,w,s) satisfies the
first-order optimality system iff

[ 4 Bué[ e

T > 0

Il
o

?

Now let u,v € IR* be such that Au = 0 and —Hu + ATw + v = 0. Multiplying this

Ty = wTHu > 0, and conclude that the optimality conditions

equation by u!, we obtain u
constitute a monotone linear complementarity problem. This is also trivially true for the

linear programming problem, where H = 0.

The optimal face. We shall use several properties of problem (P), proved by Monteiro and
Tsuchiya in (1992). The set of optimal solutions of (P) is a face of the polyhedron F', denoted
F.

The face is characterized by a partition {B, N, T} of the index set, called optimal par-
tition, such that ¢ € T if z; = 0 and s; = 0 for all optimal solutions; : € B or ¢t € N
respectively if there exists an optimal solution (z,s) such that z; > 0 or s; > 0.

In this paper we shall study separately the behavior of the so-called large variables x5, sy
and small variables zx, sg. A great simplification is obtained by the following assumptions.
Assumption 1 is necessary for the construction of feasible interior algorithms. Assumption
2 is the strict complementarity hypothesis. Under assumptions 1 and 2, the optimal face is
bounded and has a relative interior F° # (). Assumption 3 may look peculiar, but we explain

below how it can be made without loss of generality.
Assumption 1. F° # ().

Assumption 2. T' = {).

Assumption 3. N = (.

Ensuring assumption 3 by a reordering of the variables. Assuming that 7" = 0,
Assumption 3 means that x is the vector of large variables, s is the vector of small variables,
so that for any optimal solution * > 0 and s = 0. This situation is easily obtained by a
reordering of the variables, as we show now. The constraint () + Rs = b can be rewritten

as

[QBRN][;E]@]HRBQN]Hﬂ:b.

RR n"2074



8 J. Frédéric Bonnans , Clovis C. Gonzaga

We can now rename the variables in the following sequence:
Q(_[QBRNL R(_[RBQNL I<_|‘IB‘|53(_ [ o8 ‘|3N(_®7 B(_{157n}
SN N
With this reordering, the optimal face is characterized simply by
F={(z,8) € R*" |s=0,Qz = b,z > 0}.

We note that monotonicity is not affected by reordering. In addition, the Newton direc-
tions as well as the neighbourhood of the central path (defined below) are invariant with
respect to this transformation.

This means that all algorithms based on the Newton step and the proximity of the central
path are invariant with respect to permutation of variables. Of course the algorithms never

use the knowledge of the optimal partition, which is unknown.

The standard form. Our treatment will be done for the horizontal form of LCP, i.e.
problem (P). This form is obviously at least as general as the standard form. However, it
is instructive to observe that a simple transformation reduces the horizontal form to the
standard form, so that the two classes of problems are indeed equivalent. This has been
recently shown Giiler (1992), and we give here an elementary proof.

The standard form of linear complementarity problems is

minimize slx

(SP) Mz +q,

s =
z,s > 0.

haly]

subject to

If the matrix R is n X n and invertible, then reduction of (P) to the standard form is trivial,
simply take M := —R™'(Q) and ¢ := R™'q. We now prove that a reordering of variables can
always be done that reduces to the case of an invertible R.

Let r be the rank of ). By a convenient ordering of the rows and colums of (), we can
factorize it as a product () = LU , with L invertible, the last n —r lines of U being identically

zero, and with an invertible block U; as follows :

QZL(Iél %2)

Denote D := L™ 'R. By u', u* we denote the components of u in the first r and n — r indices,

respectively, and similarly for v. The homogeneous relation Qu 4+ Rv = 0 is equivalent to :

Uiu' + Uu? + Dot + Digv? = 0,
Dgl‘l}l + D22‘02 = 0.

INRIA



Convergence of interior point algorithms for the monotone linear complementarity problem 9

We now prove that Dy, is invertible. Choose v! = 0, v? arbitrarily in N'(Dy;), and u* = —v.

Since U is invertible, the above linear system has a solution, with u?, v, v*

as specified, and
by monotonicity 0 < ufv = —||v?||%. It follows that v? = 0, i.e. the square matrix D is

invertible, as was to be shown, so that the linear system can be written as

<u1) _ <U1 Dlg)_l <U2u2—|—D11vl)
’02 - 0 D22 D21’Ul '

This shows in passing that the rank of [) R] is n. Defining the new s as (x!,s?), we
obtain the desired result.

Later in this paper, we use this idea of reordering in order to identify = and s with the
set of large and small variables, respectively. Then of course, the LC P is in general not in

standard form.

Notation. Here we introduce the notation that will be used in the paper. This notation is
quite standard, with exception of d(x,s), which usually does not include the multiplication

by p. Given an interior solution (x,s), we define:

w(z,s) = sTz/n,
w(e,s) = se/p(e,s),
§(e,s) = Jules) - el
d(z,s) = \Ju(z,s)z/s.

When no confusion can arise, we drop the reference to the variables, and continue to use
other symbols in a consistent manner. For example w = w(z,3) or py = p(z*, s*).

The scalar g and the vector w are the parameter and weight associated with the w-
weighted trajectory that passes through (z,s) (see below). ¢ is the proximity measure of
(z,s) in relation to the central path (see below), and d will be used as a scaling vector when
solving Newton equations.

Using these definitions, we define two sets of interior points which are bounded away

from the non-optimal faces of F'. Given € > 0 and po > 0,
Fe={(x,s) € F'| p(x,s) < po, w(z,s) > ee}. (1)

Given a € (0,1),
No={(z,s) € F'| u(x,s) < po, 6(x,5) < o} (2)
F, is the set in which all published convergent feasible primal-dual algorithms operate

(to our knowledge). The set N, is the Euclidean norm a-neighborhood of the central path,
in which the path following algorithms to be studied in this paper operate.

RR n"2074



10 J. Frédéric Bonnans , Clovis C. Gonzaga

Trajectories. Here we summarize some properties of the central path and the w-weighted
trajectories for the problem (P). These trajectories and their properties are described in
Monteiro and Tsuchiya (1992).

The solution (z,s) is called central if zs = pe for ¢ > 0. For the problem with the
hypotheses above, there is a unique central point (x(p),s(¢)) associated with each g > 0,
and the map g > 0 +— (2(p), s(p)) defines a smooth curve, known as the central trajectory,
ending in an optimal solution. Note that z(u)?s(y) = nu, and thus g = p(z,s).

In the same vein, given a vector w > 0 such that w’e = n, we can define a w-weighted
trajectory g > 0 — (2,(p), $w(p)) composed by the solutions (z, s) such that xs = pw. Note
that again p = u(x,s), showing the consistency of our notational conventions.

Given w > 0 as above, the w-weighted barrier penalized function is defined as

p>0,(x,8) € Fo— fu(a,s,pu)= als — ,uZ'wi log x;s;.

i=1
The following facts are known.

o (7,5) = (xyu(p),sw(p)) if and only if

(2,5) = argmin{ fu (2,5, ) | (2,5) € F°}.
e The w-weighted trajectory ends at the optimal solution

(57,0) = lim(wu (), 50 (1))

n—

z;, = argmin{—» wilogz; |Qz = b,z > 0}.

=1

In words, (2%,0) is the w-weighted analytic center of the optimal set. In particular,

the central path ends at (z*,0), the analytic center of the optimal face.

e Given € > 0, the solutions (z,s) € F, satisfy @ ~ 1, s & p(z,s). In particular, this is

satisfied for all points in N, for a fixed a € (0, 1).

3 Main results

This section describes a general model of primal-dual Newton methods and lists the main

results to be shown in the subsequent sections.

INRIA



Convergence of interior point algorithms for the monotone linear complementarity problem 11

The Newton step. Interior primal-dual algorithms take at each iteration a Newton step
for solving the problem below, which corresponds to the search for a point in the central

trajectory:

zs = qpe, .
Qr+ Rs = b, (3)

where v € (0,1) and, as usual, g = p(z,s). The Newton step for this problem is obtained

by solving the system
su+xv = —T8+ yue, (4)
Qu+ Rv = 0.

Under our hypotheses the Newton step always has a unique solution (u,v). The general

algorithmic model below starts from a given initial point (2%, s°) € F, and generates a

sequence in F,. The generality is given by the choice of the aimed gap reduction v and the

steplength € in each iteration.

Algorithm 3.1 General Newton method. Data: ¢ > 0, (2%, s°) € F..
k:=0
REPEAT
z:=zk s:=s p:=als/n.
Choose v = ~;, € [0, 1] and solve the Newton equations (3).
Choose 0 = 0, € (0, 1] such that (z + u,s + 6v) € F..
zhtl = ¢ + Ou, skl .= s + fv.

k:=Fk+1.

We shall study the iterate convergence of a general class of algorithms based on this
model. We shall not prove convergence of the objective values. Rather, we assume that the
sequence (uy) converges R-linearly to zero, i.e, there exists a sequence (fi) such that for
ke N, pr < pr and pippy < vpg, with v < 1.

The values of 4, and 6} at each iteration are chosen among the following three possibilities
(of which the second and third are obviously special cases of the first):

(i) Basic Newton step: v, € [0,1],60; € (0, 1].
(ii) Affine-scaling step: v, = 0,60, € (0,1).

(iii) Centering step: 7 = 1,0, € (0,1] and (z*,s*) € N, for a < 0.25.

RR n"2074



12 J. Frédéric Bonnans , Clovis C. Gonzaga

Convergence. Our main result is summarized in the following theorem, whose proof occu-

pies the remainder of the paper.

Theorem 3.2 Consider the General Newton Method described above, and assume that (py)
converges R-linearly to zero. Choose a € (0,0.25]. Then there exists A > 0 such that
If 0y, < X\ for all k such that (z*,s*) € N, then

(i) The sequence of iterates (z*,s*) converges to a point (z,35) € F°.

(it)

If 3020 Okye = o0 then (z,8) = (a*,s%), the analytic center of F.

If 3020 Okye < 400 then possibly (z,s) # (¥, s%).

This theorem allows us to describe the convergence properties of several algorithms re-
ferenced in the introduction, according to the behaviour of the sequences (6;) and (px). In
these comments when we refer to speed of convergence we mean the speed with which the
sequence pj, converges to zero. Actually there is a close connection between the speed of

convergence of p; and the parameters 0 and -, as we prove in lemma 5.8 below that
fher = (1= Ok + Opyr) pix + 07O ().
We deduce from Theorem 3.2 that :

(i) Algorithms for which (z*,s*) € N, and 6y7v; is bounded away from zero in some sub-
sequence: these algorithms generate sequences such that ¥ — z*, because the series in the
lemma is unbounded. This case includes the following methods:

— The predictor-corrector algorithm in A,: this algorithm alternates affine-scaling steps and
centering steps with 7 = 1 and 6; = 1. The algorithm is 2-step quadratically convergent.
— Short steps algorithms: these methods use v, > 0 fixed, and 6; bounded away from zero

(either 8, = 1 or ) results from a line search). The algorithms are linearly convergent.

(ii) Algorithms for which (2*,s*) € F., 6, — 1, v — 0: this includes all Q-superlinearly
convergent algorithms based on Newton steps and line searches. The sequences are conver-
gent, but the limit point may not be the central optimum, depending on whether 3725 v, =

+00 or not.

(iii) The longest step path following algorithm: (z*,s*) € V,, @ < 0.25, 0, = 1, and 7, < 1
such that §(z**1, s**1) = a. From the theorem, the iterates converge. Using this fact and
the results of McShane(1991),meu:McShane, we conclude that the algorithm is superlinearly

convergent. This means that 74 — 0 and we fall in case (ii) above.

(iv) Large steps path following algorithms: from (iii), it is clear that taking v; < 1 fixed,
0, = 1 and (2, s%) € NV, sufficiently near the optimal face, the whole sequence will be in V.

INRIA
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Then 2* — z* as for short step algorithms. For an arbitrary initial point in V,, each iteration
can be constructed as in the primal large steps algorithm for linear programming developed
by Gonzaga (1991) and by Roos and Vial (1989): use a sequence of damped Newton steps

to obtain (z**!, s**1) such that ||z**1s**! /v ur — €] < a@. The argument above shows that

for large values of k only one Newton step will be needed.

4 Descent algorithms for non linear programming

Let ' C IR"™ be an open set, and f : I' — IR a differentiable function with locally Lipschitz
continuous gradient z € I' — V f(z).

We consider the unconstrained nonlinear programming problem

minimize f(a).

We shall study general properties of descent algorithms for this problem. The format for the

algorithms is the following, for a given 2° € IR":
Algorithm 4.1 Model algorithm.
k:=0

WHILE V f(z) # 0 do
:L,k-i—l = :L’k + )\khk
k:=k+1,

END WHILE

where for each k, h* € IR™ and \* € (0,+00) are such that z**! € I'. An algorithm will be
called a “descent algorithm” if there exists A > 0 such that for all £ € IV,

@) [R5 = IV £,
(ii) f(a® + MR*) < f(ab) — AN|RF[V ()]

A sequence (z*) in T’ will be said compact if it is contained in some compact set 'y C T,
and a point @ € I is stationary if V f(z) = 0.

The next lemma shows that there are two alternatives for a descent algorithm: either the
steps are sufficiently large to reach the optimal set, and then all accumulation points are
stationary, or the steps are short and the sequence converges to a non-stationary point. We

are unaware of the existence of this result in the literature.

RR n"2074



14 J. Frédéric Bonnans , Clovis C. Gonzaga

Lemma 4.2 Assume that a descent algorithm as above generates an infinite compact se-

quence (z*) in T'. Then

(i) Either Y52, AF < +oc and (z*) converges to a non-stationary point or

(i) 3523 AF = +oc and all accumulation points of (z*) are stationary.

Proof. Consider sequences (z*), (h*), (\¥) generated by the algorithm, and assume that

(z*) is contained in a compact I'y C T.

(1) If 220 A < +oc, then 32525 A¥|[R*|| < 400, because ||h*|| = ||V f(x*)| is bounded in T.
Then (z¥) is a Cauchy sequence and thus z* — z, with z € I'y. We must prove that z is not
stationary.

Let ' = {z € To | Vf(z) =0} be the set of stationary points in T'g. If ['= 0, then there
is nothing to be proved. Otherwise, let L be a global Lipschitz constant for V f in I'g. Since
IRE|| = |V F(@R), |RF|| < K[|V f(2F)||, where K > 0 is a constant. It follows that

l25* = 2F | < N IRE) < ARV ()]
After an iteration,

IVFEEI > IV A = Llla** = o]
> (1 - KLV ("],

Since \* — 0, for ko sufficiently large 1 — K LA* > 0 and log(1 — K L\*) > —2K L\*. Thus
for k > kg

k-1

IV f(5))] > IV f(eR)|| TT (1 = KLM),
J7=ko
and
k-1 . k=1
log |V f(2*)]| > log [V f(&®)|| + 3 log(1 — KLN) > log |V f(«®)|| —2KL S M.
g=ko J7=ko

It follows that log ||V f(z*)|| has a lower bound, and thus |V f(z*)| is bounded away from

zero, establishing (i).
(ii) Assume now that 372, A¥ = +o0. For an arbitrary ¢ > 0, define

Lo = {e € Lo | IV/(@)] > c}.

INRIA
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By definition of descent algorithm,
f@ﬂgf@%—A§¥WVﬂﬁmmw
Since f is bounded in I'y and Hth ~~ HVf(?:k)H, we conclude that
SNV () < oo (5)
k=0

Now assume by contradiction that (z*) has an accumulation point z € I'.. Then the set
K ={ke IN|z* €.} is infinite.
From (5), with |V f(z*)|| > € for k € K,

YA < oo, (6)
kek
and we conclude that the set of indices K = IN — K is also infinite. For each k € K, let k' > k
be the first index in K. Then

k-1 k=1

o 2t < T vl =0 [ £ v). )
7=k 1=k

Using (6), we see that as k € K grows, ||z — z*|| 5 0, and thus the subsequences (z*)ex

and (z")gex have the same accumulation points. But all accumulation points of (z*')rex

satisfy ||V f(2)|| < e. This implies & ¢ I'., contradicting the hypothesis and completing the

proof.

Perturbed descent algorithms. Consider the model algorithm 4.1 and a sequence of
“perturbations” (n*) in IR". A perturbed algorithm is an algorithm that follows the model,
but has the step given by

D= gF g ARRE 4 pE,

The next lemma shows that if the perturbations are summable in the sense that

- k
Dl < oo,
k=0

then the capacity of a descent algorithm to find stationary points is not affected. But now
the first part of the lemma above is not guaranteed, since “clever” perturbations might drive

the sequence to a stationary point.

Lemma 4.3 Consider a descent algorithm with perturbed steps, with perturbations (n*) such

that 322 [In*|| < oo, and assume that it generates a compact sequence of iterates. Then
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(i) Either 72, AF < +o0c and (z%) converges to a possibly non-stationary point or

(i) 3320 M = +oo and all accumulation points of (z*) are stationary.

Proof. The proof follows that of lemma 4.2 step by step. We shall only indicate the
changes in the proof. Part (i) is trivial, because the resulting sequence is a Cauchy sequence.
To prove (ii), define T'. as before and note that using the Lipschitz condition for V f in the

compact I'g, there exists a global Lipschitz constant Ly for f in Iy and hence
f@) = 2"+ MR 40t

Fa + N + Ll

F(&®) = ANV F IR+ Lyl

IN

IN

Since f is bounded in Ty,

o0

D (AN IR+ Lol ™) < +oe.

k=0

As ||R¥|| = ||V f(2F)||, we conclude that 352, M|V f(2F)]|? < +oc.
The rest of the proof follows directly the proof of lemma 4.2, with expression (7) replaced
by

k-1 k=1 k=1

1= = ¥ < Yo (VIR + ) = O (Z A]) + 2 Il
1=k 1=k 1=k

An interesting situation is the one in which A* — 0. In this case, the set of accumulation

points form a continuum, and if the series of (\*) is infinite all these points are stationary.

Algorithmic maps. A descent direction for a differentiable function at a point is a vector
that makes an angle of less than 90 degrees with the negative gradient direction. Descent
algorithms can be obtained by means of maps that associate with each point a set of uniform
descent directions, as follows.

Let € I' — H(x) C IR" be a point to set map. We say that H(-) is a map of descent
directions in a set I'y C I' if there exists a constant A > 0 such that for any € I'y and
h € H(x):

) 18]l ~ IV (@),

(i) V#(2)"h < —AIV £ IIAl]

Given a map of descent directions defined in a set 'y C I'; algorithms can be constructed

as in the model 4.1. A complete algorithm with perturbations (*) will be:

Algorithm 4.4 Perturbed algorithm based on a map of descent directions: given z° € T'g

INRIA



Convergence of interior point algorithms for the monotone linear complementarity problem 17

k:=0

WHILE V f(z) # 0 do
choose h* € H(l’k)
k:=k+1,

END WHILE

In each iteration k, \* € (0, +oc) must be such that z¥*! € I'. The lemma below will show
that if the \* are small and I'y is compact, the resulting algorithm will be a descent algorithm,
hence with the convergence properties described above. Two situations in which T’y is easily
constructed are the following: in the first case, which is frequent in the literature, the level
set {z € T'| f(z) < f(2%)} is compact, and A\* is given by a line search that guarantees
f(zF+1) < f(2F). The second case is our direct interest, where the primal-dual algorithms

are responsible for generating iterates in the set F, defined in section 2.

Lemma 4.5 Let H(-) be a descent map defined as above in a compact I'y C I'. There exists
A > 0 such that for any x € Ty, h € H(z) and X € (0, )] :

fle+AR) < (&) = SAIVF@ ]

Proof. We begin by using the Lipschitz condition to show that there exists A! > 0 such
that for any « € I'g, h € H(z) and

A€ (0,Ah):

IVf(z+ k) = V()| <AL|A]. (8)

Since I'g is compact and I' is open, there exists € > 0 such that I'y = I'g + B. C I', where
B. ={y € R" | |lyl| < €}. So V[ is locally Lipschitz continuous in the compact I'1, and
consequently satisfies a global Lipschitz condition in I'y, with a constant L. This means that
for |[Ah]| < €, & € Ty we have &+ Ah € 'y and (8) is satisfied. We must still specify the value
of A!: since ||h|| & ||V f(z)]| and V f(x) is bounded in Ty, there exists K; > 0 such that for
z € Ty, ||| < K;. Choosing A!' = ¢/ K7, the result is complete.

Now we prove the lemma. Consider a point € I'g, A € (0,\!), and h € H(z). Then

Fle M) = flz)+ A /01 KTV f(x + o Ah)do,
= () + ATV () VIV fx 4 oAR) — V f(2)])de,

)\2
(@) = AV F @RI+ 5 LR

IN
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18 J. Frédéric Bonnans , Clovis C. Gonzaga

As H(.) is a map of descent direction, there exists K3 > 0 such that ||| < K|V f(z)]],
for all € I'y, h € H(x). Choosing A = min{\', A/K,L},

)\2

A
LI < ASIV A,

for A € (0, )). The substitution of this into the expression above leads to the desired result,
completing the proof.

5 Study of the Newton step

In this section we study general aspects of the Newton step associated with the problem (P).

We begin by studying properties of feasible directions.

Properties of feasible directions.
Consider the equality constraint in (P). A pair (u,v) € IR*" is a feasible direction if and

only if Qu+ Rv = 0. Feasible directions can also be defined separately for x and s, as follows:

U = {uveR"|Qu+ Rv=0 for some v € IR"},
V = {ve R"| Qu+ Rv=0 for some u € IR"}.

The next lemma resumes the nice geometrical properties of feasible directions under the
monotonicity hypothesis, and is a particular case of (Monteiro and Tsuchiya (1992), Lemma

3.3). We give the proof in order to make the paper self-contained.
Lemma 5.1 U C R(RT) and V C R(QT).

Proof. Consider u € U. By definition, for some v € V, Qu + Rv = 0. Given v’ € N(R),
and A € IR,
Qu + R(v+ ') =0,

and from the monotonicity assumption,
uT(v + A') > 0.

This implies in u?v’ = 0. Since v’ is arbitrary in N(R), u € N(R)* = R(RT). The second

inclusion in the lemma is shown similarly, completing the proof.

INRIA
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Orthogonal projections. Now we summarize some properties of orthogonal projections
into an affine space.
Given the affine space defined by Ax = ¢, where A € IR"™*",q € IR™, we define the

projection operators Py, and P4 by
v > Payo = argmin{ o - 2| | Aw = g},

and P4 = Pj4. Since Py is a linear operator in IR", the same notation will be used for its

matrix representation.
Lemma 5.2 For any v € IR" and q € IR™, Py x = Pyx + P4 ,0.

Proof. This follows directly from the linearity of the mapping (z, ¢) — P4 ,x. The linearity

of this map is proven by examining the optimality conditions that characterize the projection,
as follows:
Consider w! = P4 pz' and w? = P4 22% The optimality conditions for the projections are
Aw' = ¢, o' —w' L N(A), 1= 1,2. It follows that for A € IR, A(w! + A\w?) = ¢* + A\¢* and
'+ Aa? — (w' + Mw?) L N(A). This means that w! + Aw? = Py g _qu(xl + Az?), completing
the proof.

The next lemma describes properties of the orders of magnitude of projections.

Lemma 5.3 Let D C IR" be such that d ~ 1 whenever d € D. '. Then for y € IR",
qgeR(A),deD

Psp,0 = O(|lq])
Papgy = O(llql) + O(lyll)
|DPsp Dyl = || Payl.

Proof. Let AT be a right inverse of A, i.e, AT is an (n X m) matrix such that AATq =g¢
for all ¢ € R(A). Then 2 = D™ Atq is feasible for the problem

minimize{||z — y|| | ADz = ¢}.

It follows that
1Pan.gy —yll < 112 =yl < IDT"A%q|| +|lyll.
The first two results follow from this inequality.

As a consequence of these results, for any z € IR", DPspDz = O(]|z||). Taking z =
Pyy =y — ATw for some w € IR™,

PADDZ = PADDy — PADDAT’LU = PADD‘y.

tie., there are constants Ky > K; > 0, such that any d € D satisfies K1 < d; < Ko,i=1,...,n.
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20 J. Frédéric Bonnans , Clovis C. Gonzaga

It follows that DPspDy = O(||Pay||). By the same process, with a change of variables
= Dy, we get Pay = O(||DPapDyl|), completing the proof.

R~

Shifted scalings. The following lemma, shown in Gonzaga and Tapia (1992), will be useful

ahead. We reproduce the proof here for completeness.

Lemma 5.4 Let g € IR" be such that ||g — €| < a, where o € (0,1). Set G = diag(g), and
consider the projections h = Pap, h = gPacgp. Then

¢

Ik =kl < a(l + )

o~
L1

In particular, if a € (0,0.25) :
[ = R < 3a[R]].

Proof. Since p = h+ ATw for some w € R™,
g9p = gh + (AG)"w

and thus
Pacgp = Pacgh.
It follows that
g7'h = Paggh

On the other hand, by definition of projection,
gh = Paggh + v,
where y € R(GAT). Merging the last expressions,
gh=g""h+y,

where g7'h € N(AG) and y € R(GAT). Subtracting ¢='h € N(AG) from both sides,

(7' —gh=g"" (h—h)+y,
and from the orthogonality of the right-hand side terms,

(g™ = )kl > llg™*(h — R)||.

Now use the following facts: |[(h — A)|| < ||glleo]lg™(h — k)| and ||(g7* — ¢)&|| < ||(¢~* —

g)HOOWALH Combining these three expressions leads to

1B =Rl < llgllsollg™ = glloall 2l

Finally, ||g]lco|l¢™" — 9llee < (1 + @) (ﬁ - (1= a)). The inequality for o € (0,0.25) follows
trivially, completing the proof.
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The scaled equations. The right-hand side of the first equation in (4) will vary according
to the algorithm. At this point we shall study general results for the Newton step with a

generic right-hand side, namely
su+axv = f, ()
Qu+ Rv = 0,
where f € IR". Our scope now is to characterize the direction u in relation to v. We begin by

scaling the equations, to obtain a simpler situation. The scaling will use the scaling vector
d = y/px/s defined above.
The scaled equations are obtained from (9) by multiplying the first equation by d/ux,
which results in
diu + iv — ﬁ’
pr g pa
and then using the definition of d,

. df
dtutds = S
p z (10)
Qu+ Rv = 0,
Defining now the scaled variables
u=d'v , v=dv/u, (11)
we obtain the scaled equations
L df
YT e (12)
QDu = —uRD™'v,

and u?v > 0 whenever u, v satisfy the second relation in (12).

The least squares problem. Lemma 5.1 will be used to relate large and small variables
by means of a least squares problem. We start by a simple situation, to which we will reduce

after a scaling of the problem :
u+v = c¢

Qu+Rv = 0, (13)

where ¢ € IR" is a given vector.

Lemma 5.5 Consider the system (13) and assume that v is known. Let © € V be chosen

arbitrarily. Then u solves the problem

minimize, ¢ gn |Im—c+ 7
subject to Qr = —Rv.
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Proof. The optimality conditions for the least squares problem above are QQu = —Rv and
u—c—10v € R(QT). The first one is trivially satisfied. To check the second one, substitute
¢ —u = v to obtain the condition v + v € R(QT). This follows from lemma 5.1, completing
the proof.

We are ready to apply lemma 5.5 to (12). Let © € V be an arbitrary feasible direction
for the small variables, and let dv/u be the corresponding direction for the scaled problem.
Assume that v is given. Then u solves the problem

minimize, ¢ gn |lm— —+ —||

pr (14)
subject to QDr = —Rv.

Using orthogonal projections and lemma 5.2, we obtain from (14) :
- df dv

i = Pop(— — —)+ Pop .0,
TR (15)

u = du.

Orders of magnitude for the general Newton step.

Lemma 5.6 Consider the general Newton step as above, starting at a point (x,s) € F..
Then:

Proof. The magnitudes of z, s, d and w follow immediately from the discussion in section

From the scaled equations (12), taking norms,

d
Jall + o)1 + 20”0 = | L),
1%

By the monotonicity hypothesis, u?v > 0, and if follows that
_ df _ df
lall < [I=I, llo]l < |—II

QU pnx

Since d &~ 1 and = & 1, this implies in the desired magnitudes for u and v. Finally, u = du =
O(u), and v = d~'pv = O(uv), because d ~ 1. This shows the two last equalities, completing
the proof.
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Algorithms using the exact Newton step. The exact Newton step from a given interior
solution (z,s), v € (0,1) is the solution of the system (4). We shall begin by specializing
(15) for this system.

Lemma 5.7 Let § be an arbitrary feasible vector of small variables, and assume that v is

known. Then u s given by

s
U = PQDd(_; + ’737_1) + Pop,ro0,

u = du.

(16)

In particular, taking 5§ =0,

u = ’yPQDd$_1+PQD7RUO,
U

— da. (17)

Proof. Let § be an arbitrary feasible vector of small variables (note that by definition
§ = 0 is feasible). The direction © = § — s is feasible. Substituting f = —zs + ype from (4),
the first equality in (15) becomes

d . _
‘ﬁ:PQD;(—S—I-’U—I-’}//LCE 1)‘|‘PQD,RUO-
The desired expressions are obtained by substituting § = s + v.

Orders of magnitude for the exact Newton step.

Lemma 5.8 Consider an exact Newton step from a point (x,s) € I'.. Then
u=0()+0(n) , u=0()+ O(p);
O(1) , v=0(u);

w4+ Ou,s + 0v) = (1 — 0+ 0v)p + 620(p?).

Proof. For the exact Newton step, f = —xs 4+ ypue = O(p) by lemma 5.6. From the same
lemma it follows that v = O(1) and v = O(p). To prove the results for the large variables,
we shall use the lemma 5.3 and expression (17) to obtain u = yO(dz™') + O(Rv). This
immediately implies the desired results, since dz=! &~ 1 and Rv = O(v) = O(u). Let us now

turn to the analysis of u?v. From (11) and lemma 5.7 we get
ulv = pu’v = p(yPopdz™ + O(u))"v.

By lemma 5.1 adapted to the scaled problem (12) we find that v € R(DQT) = N (QD)* so
that o1 Popdz= = 0. As v = O(1), the relation u?v = O(u?) follows. We now prove the last
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relation. By (4)

(x 4+ 0u)(s+0v) = zs+0(xv+ su)+ 0*uv,
= (1 —0)xs+ Oyue+ 0*uv,

so that
ple+0u,s+60v)=(1—040v)u+ GQ'UT'v/n.
Using uTv = O(p?), the result follows.

6 Reduction to the optimal face

Consider a sequence (z*, s*) such that pz — 0. As k grows, (z*, s*) approaches the optimal

face and s* — 0. Let the optimal face for the large variables be defined by
X ={zeR"|Qx=0b; x>0}
Denote its relative interior by A(i’; ie.,
X={z e R"|Qx=10b x> 0}.
To x € IR™ we associate its projection onto A
y(z) = argmin{||z —y|| | y € X'}.

The next lemma shows, in particular, that the sequences (z*) and (y*) have the same

limit points. The rest of this section is devoted to the analysis of the asymptotic behaviour
of {y*}.
Lemma 6.1 Consider the map (z,s) € F — y(x) € X defined above. Assuming po (in the

definition of F.) small enough, for all (x,s) € F,, one has y(x) ~ 1 and v — y(x) = O(u).

Proof. Given (z,s) € F,, let y = Py px. Since Qz = b — Rs, we can use the linearity of
the map (z,q) — Pg .z to deduce

T = PQ,b—RS':E = PQJ).I' - PQ7R30 - !) —I_ PQ,RSO

Using lemma 5.3 and the fact that s = O(y), we conclude that « = § 4+ O(). Finally, since
z = 1in F,, for p sufficiently small, § > x/2 and thus y ~ 1.

In this case, § > 0 and thus y € A&'. If follows from the definition of projection that
y(x) = g, completing the proof.
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Without loss of generality, we shall assume for the remaining of the paper that the set
F, is defined with o = fi, given by the lemma above. So the corresponding projections in X
will be in the set

Xo:={y(z) | (z,8) € P} CX . (18)

Since y ~ 1 in A, this set is bounded away from the boundary of ;’2’, and thus its closure
satisfies

clX, C/'% . (19)

We observe that, by (17) and lemma 5.8 , the increment on {z*} satisfies
o = gF 4 Hk’ykdkPQDkdk(ajk)_l + O(p). (20)

We now derive a similar relation for {y*}.

Lemma 6.2 Consider a sequence (z¥,s*) in F. constructed by an algorithm as described

above, and let y* = y(z*). Then z* — y* = O(ux), the sequences z* and y* have the same

accumulation points and
y* =yt 4 Oeped Poprd® (y") ™t + Oun). (21)

Proof. By lemma 6.1, ¥ — y* = O(us) and consequently the sequences (z*) and (yF)
have the same accumulation points. Since z¥ =~ 1, (z*)™' — (y*)~! = O(us), and thus
dF Pyprd®(2%)™r = d* Py prd®(y*) ™+ O (). It follows from (20), Lemma 5.3 and the linearity

of projections that

y =2+ O(uign) = y* + Oun) + Oxd" Poprd® (y*) ™" + O(pk) + O(ptis)-
By lemma 5.8 we know that px+1 = O(pk). This completes the proof.

At this point we may clarify our strategy: the scope is studying the convergence of
(2%, s%). Since s* — 0, it is enough to study (z*), but this sequence has the same asymptotic
properties as (y*), which is apparent from a comparison of the expressions (20) and (21).

We will show now that (21) can be interpreted as a perturbed descent algorithm for the

logarithmic barrier function defined in X'.
The barrier function in &'. The logarithmic barrier function is defined by
ze R x>0 p(x)=-> logz.
=1

The properties of this function are well known, see for instance Gonzaga (1992). The analytic

center of X is

z* = argmin{p(y) | y €X'}

RR n"2074



26 J. Frédéric Bonnans , Clovis C. Gonzaga

The gradient of the barrier function restricted to ;’(é’ is
9ly) = PoVply) = —Poy™".

The Newton direction for minimizing the barrier function in X" is given by
i(y) = yPoyyy™" = yPlove.

The primal proximity of a point y E.Aof to z* is measured by the norm of the primal scaled

Newton centering step in &',
(y) == || Pavell-

Using an orthonormal basis of V' (Q)), we may reduce the minimization of the barrier function
over N(Q)) to an unconstrained problem. The gradient of the latter is precisely ¢(y), and
the Newton direction is invariant. This allows us to apply the analysis of section 4. After a
Newton step, the barrier function decreases if the point is sufficiently close to x*. It appears
that we can control the (primal) proximity of y(z) in the optimal face, since it is related to

the (primal-dual) proximity §(z, s) by the following lemma:
Lemma 6.3 Given (z,s) € F. and y = y(z), 6(y) < 6(z,s)+ O(p).
Proof
(1) 6(y) = [ Povel = [ Poxell + O(p).
(i) | Poxel < [le = w]| = 6(z, ). By definition of projection,
[Povell = min{[le + YQ || | = € R™} = min{[le — 2| | = € R(YQ")}.

But s € R(QT) by lemma 5.1, and thus ys/pu € R(YQT). Hence, from the relation

above,

IN

le —ys/ull
le —@s/ull + |[(z — y)s/pll.

| Povell

IN

But (z —y) = O(p) by lemma 6.2, and s = O(g) by lemma 5.6. Hence the last term is
bounded by O(p), completing the proof.

We are now ready to state conditions allowing to apply lemma 4.3.
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Lemma 6.4 Consider the algorithmic map L(-) that associates with each y € X, the set
L(y) = {Z = dPQDdy_l | d= d(x75)7 (‘7773) € FE}
Then L is a map of descent directions, i.e. for any y € X, l € L(y),

17l =~ llg(y)l (22)

and there exists Ay > 0 such that

g(y)" 1< =Ml (23)

In addition, there exists X such that, if one of the two following conditions holds at each step
k of algorithm 3.1:

(i) Opyr < A

(i) (2%, %) € N, with a <0.25, and O,y € (0,1]
then (21) is a descent algorithm with perturbation, i.e. there exists A > 0 such that

p(y**) < p(y") — Oy Al (y*)I,
where IF = d*Pyped*(y*) ™.

Proof. a) We first check that L is a map of descent directions. In F,, we have d ~ 1.
(From lemma 5.3, |[dPandy™"|| & || Pay™| = || - g(y)ll, proving (22).
Given d, by definition of projection,

d'l—dy™' € R(DQM).
Hence d=21 — y~' € R(QT). Similarly, g(y) + ™' € R(QT), and it follows that
d1+g(y) € R(Q).
But [ € V(Q), and multiplying the expression above by I7,
—I'D7% = g(y)'L.

Since d ~ 1 and ||I|| = ||g(y)||, there exists A; > 0 such that " D=2 > Ay||l||||g(v)]|- This
fact and the expression above establish (23).
b) The condition of decrease is, in case (i), an immediate consequence of lemma 4.5. It

remains to study case (ii). We may drop the indices k. As p(y) is a convex mapping it suffices
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to establish 6.4 when 8, = 1. The method of proof consists in comparing [ and the Newton

direction { for the minimization of p(+) in X.. We have
I=yPovyy™ , 1= dPopdy™
To use lemma 5.4 on shifted scalings, let us define

h = y_llA = Pyye, h= y_ll = dy_IPQDdy_1

and analyze the values of ||dy™" — ¢||s. Since d = /px/s = z/y/w and ||z~ —y~ || = O(p),

+ O(p).

o0

o = = e =+ 000 = | o= -

But (z,s) € N, means that ||w — e]| < 0.25 and consequently w; > 0.75, and |1/,/w; — 1] <
0.1548. It follows that for p sufficiently small, ||dy~" — ||, < 0.155. FFrom lemma 5.4, we
conclude that h = h + p, with ||p|| < 039”/%” We can now compute the variation of p(-)
along [.

ply+1) —ply) =ple +y ') —ple) = ple +y~'1) = p(e + h).
The quadratic approximation of the barrier function gives us the following property,

shown for instance in (1989): if h € N (Q) and ||| < 1 then

A, LA
2 31—

ple+h) < —eTh 4+

We know that HiALH = 6(y) < 6(x,s)+ O(p) < 0.25 + O(p), so that [|R]] < [|&] + ||p]] <
14”%” < 0.35 + O(p). In particular, for k large enough ||k]| < 1 and the formula above
applies.

Setting h = h + p, eZh = el Poye = ||iALH2,

thl2 + ol +207p 1 |l
2 31— ||

ple+h) < —[|]J* —

Let us check that p € N(QY). As he N(QY') we have
QYp=QY(h—h)=QYh=QYdy™ Popdy™ = QD Popdy™" =0.
Using h = Poye, it follows that iALTp = el'p. We deduce

I lel® 1 JIR)P

ple+h) < — - .
pleth) s =5+ 31— |7
2
< (_; O'.16 } A][ |1l

2 2 31— ||A] | |2

IR
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Using again Hil” < 0.25 + O(p) and ||h]| < 14”?@” < 0.35 + O(p), we obtain for u
sufficiently small,

ple + h) < —0.06]|A|>.

From (22) and y ~ 1 we deduce that ||h| > Allg| for some positive A. With the above

relation we get the conclusion.

Proof of main result. We now prove Theorem 3.2.

Proof. Let {(z*,s*)} be a sequence generated by Algorithm 3.1. Under our hypotheses,
ttr — 0, and consequently s* — 0. It remains to study the convergence of (z*).

For k sufficiently large, we have p; < fi as in lemma 6.1, and then y* = y(2*) € &. C/%
as in (18). It also follows that (y*) and (z*) have the same limit points.

By lemma 6.4, there exists A > 0 such that under the conditions of the main theorem,
(21) defines a descent algorithm with perturbations for the barrier function in the optimal
face. The perturbations are 5y := O(puy), which satisfy 3232, ||7*|| < oo as a consequence of
the R-linear convergence of (y;). The sequence (y*) is compact because it is in clX. CX by
(19).

Hence we can apply lemma 4.3. The analytic center of the primal optimal face z* is the
unique stationary point of the barrier function p(-). We conclude that under the hypotheses
of the main theorem, either 3-3°, 0yvi = +oo and y* — z*, or 332,07, < +oc and (y*)
converges to a point x E/{’, possibly # # z*. Since (y*) and (z*) have the same limit points,

this completes the proof.

Concluding remarks.

We essentially proved that algorithms that either operate in the neighborhood N, or use
moderate centering, generate convergent sequences of iterates.

In all cases, centering results in directions of descent for the barrier function in the optimal
face. Note that the primal-dual direction results in a centering direction in A" that generally
differs from the Newton centering direction by an amount determined by the vector w. As
a result, one can only expect linear convergence of the iterates, even when they converge to
the central optimum.

If the convergence is fast, i.e, the series of centering steplengths is bounded, then it is
expected that z* — z # z*, due to lemma 4.2. Even if the series is unbounded but f;v;
becomes very small, one should expect a slow convergence of the iterates to the central

optimum, while the gap converges to zero very fast.
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Algorithms that generate non-convergent sequences of iterates must be methods that ope-
rate in large neighborhoods of the central path, and take medium sized steps (xy bounded
away from zero in some subsequence). This includes algorithms that may be very efficient in
practice (see (1991)), such as predictor-corrector algorithms based on other neighborhoods

of the central path.
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