ASYMPTOTICALLY EFFICIENT ADAPTIVE STRATEGIES IN
REPEATED GAMES, PART II: ASYMPTOTIC OPTIMALITY

By

Nahum Shimkin
and

Adam Shwartz

IMA Preprint Series # 1121
March 1993



Asymptotically Efficient Adaptive Strategies in
Repeated Games,
Part II: Asymptotic Optimality

NAHUM SHIMKIN* and ADAM SHWARTZ!

March 1993

Abstract

This paper continues the analysis of a repeated game model with incomplete information
on one side, in which rewards are random, perfect observations are assumed, and the emphasis
is on strategies of DM1 (the uninformed decision maker) which maximize his worst-case total
reward in a non-Bayesian sense, namely.for all possible states of nature. An asymptotic bound
on performance is first established, followed by the construction of strategies which achieve this
bound. The analysis highlights the efficient acquisition of (statistical) information under conflict
conditions, and especially the relations between information and payoff which are inherent in this
problem.
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1 Introduction

This paper continues the study of asymptotically efficient strategies for the model considered in
[7]. For completeness we summarize briefly the model and relevant notation. Further details and
background may be found in [7].

The game model involves two decision makers, DM1 (the maximizer) and DM2, which repeatedly
play a matrix game G(6o), known to be a member of a finite set {G(6), § € @}. Each G(8) is a zero-
sum matrix game with random rewards, and with finite action sets Z for for DM1 and 7 for DM2.
The reward structure is thus specified by the probability distributions {pg;;(+) : 1 € Z, 7 € J}
on a finite reward set \A. Perfect monitoring is assumed, namely, at the end of each stage n both
decision makers observe and remember the actions (7,, j,) and the reward a,. Rewards accumulate
to form the total n-stage reward ) i, a;.

We denote by ¥ and 7 the sets of (behavioral) strategies for DM1 and DMZ2, respectively. Thus,
decisions at stage n may depend on the history h,—1 = {3, jt,at}fz_ll, and randomized actions may
be used. DM1 does not know the value of the true parameter 6 (except that it belongs in @), so
that his strategies cannot depend on 6. Such dependence is allowed for DM2 (although it does not
appear explicitly in the problem formulation below). For each triplet (6p,0,7)in © x £ x T, let Py
and Ego’T denote the induced probability measure and expectation on the actions-rewards process.
Further notations include z, and y, — the randomized actions of DM1 and DM2 at stage n, v(8) —
the minimax value of the matrix game G(6), and Ag(,5) = Y ,c4 @ - Po,ij(a) — the expected reward
in G(0) given actions (i, 7).

The performance measure for DM1 will be defined in terms of the relative loss. For fixed o, 1,6
and n > 1 define the relative loss L7 (6p) and the worst-case relative loss L%(6) (WCRL) by

n
L3(60) £ maxL37(8y) S max g (no(fo) ~ 3 ar). (1.1)

t=1
For each strategy o, the WCRL represents the deficiency in the worst-case (over all strategies of
DM2) expected total reward as compared with the complete-information minimax value of the n-
stage game. It is important to note that L? depends on the (unknown) parameter 6y. It therefore
supplies, for each fixed n and o, a vector of performance measures, which contains one entry for each
possible parameter, and which DM1 would ideally like to minimize (reduce to zero) simultaneously.

While the previous paper [7] focused on performance of strategies of relatively simple structure,
the present paper is concerned with asymptotic (long-term) optimality. In defining a meaningful
sense of optimality, we shall follow the asymptotic theory introduced by Lai and Robbins [5] in
relation with the statistical multiarmed bandit problem, and its extension in [1] to controlled i.i.d.
processes. The idea is that the rate of increase of L%(6y) may be simultaneously minimized for all
fp. First, a lower bound on the rate of increase of LZ(6p) will be established, which is logarithmic
in n. More precisely, the bound holds for any strategy o which is uniformly good, i.e., achieves a
“satisfactory” (and achievable) rate of increase for every possible value of the true parameter 6 (cf.
Definition 3.1). It establishes that the rate of increase of LZ(6y) is at least b(6p)logn, with b(6p) a



non-negative constant which is explicitly specified. We then proceed to construct strategies which
are asymptotically optimal, in the sense that they satisfy the lower bound. These strategies are based
on the value-biased Certainty Equivalence strategies which were analyzed in [7], but with various
modifications which will be required to achieve asymptotic optimality.

In the adaptive control problem [1], which corresponds to the present model without DM2, it was
possible to achieve asymptotic optimality by using a standard parameter estimation scheme, modified
by adding a special “probing” phase. Probing is performed whenever it seems that insufficient
statistical information was obtained, and is done by choosing actions which are solely dedicated
to the efficient acquisition of information. In the present game model, such clear separation of an
information acquisition phase is no longer possible. Indeed, DM2 may be able to deny all information
regarding the true parameter by using, e.g., “non-revealing” actions, so that information acquisition
may not be guaranteed by any action of DM1. Instead, a delicate balance must be maintained
between information acquisition and immediate rewards. Certain (sub-) strategies which are related
to Blackwell’s approachability theory [2] will be constructed for that purpose.

The remainder of the paper is organized as follows. In Section 2 we introduce some simplifying
assumptions on the model, as well as additional notation. Section 3 contains the asymptotic bound
on the WCRL, and the definition of an asymptotically optimal strategy. Construction of such a
strategy commences in Section 4, where two classes of sub-strategies are developed. These form the
basis for the overall strategy, which is presented in Section 5.

2 Assumptions and Further Notation

In this paper we shall introduce some additional technical assumptions on the model.

Assumption Al: For each ¢ € I and j € J, the distributions {pg; ;(-)}sco are mutually absolutely
continuous. That is, for every 6, §' and a, py; ;j(a) = 0 if and only if pg ; ;(a) = 0.

Assumption A2: In each matrix game G(#), the optimal strategies of DM1 and DM2, denoted z}
and yj, are unique.

Assumption A3: The values of the matrix games {G(6)} are distinct, namely v(8) # v(¢') for
6#£6.

These assumptions simplify the presentation of the results and the construction of optimal strate-
gies. The basic methodology of this paper should be applicable without these assumptions; however,
the extension is technically not trivial and involves additional technical effort which might obscure
the main ideas.

Some additional definitions and basic relations from [7] are next recalled. P(Z) denotes the set
of probability vectors over the (finite) set Z. For any matrix M = {M(%,7)}, the following notation
denotes averaging over rows or columns: M|z, j) = S eiM(i, ), Mlz,y] = > @iy M(4,7), and
similarly for M(¢,y].

The one-stage relative loss is defined by dg(i,j) = v() — Ap(4,5). In this notation the (total)



relative loss may be written as

L;'LwT(oO) = Eaa(;TZdQO(ita jt)a (21)
t=1
where dg, (i1, j:) may be replaced (by appropriate conditioning) by dg, [+, j:), g, (41, 1] or dg, [+, y1).
The log-likelihood ratio equals

(0 0/) — Zlog De it»]t( ) (2.2)

t=1 by Jmt(at)

The corresponding information divergence (or Kullback Leibler information) is defined by

Iog(i,5) = ) poij(a)log ==t Poij(a) (2.3)
vy Pe',i,j(a)

It is always true that Iy o > 0, and under assumption Al Iy ¢ is finite. Thus we need not introduce
a truncated version, as done in [7].

The parameters in © are assumed ordered according to the values v(6), so that # > ¢’ stands for
v(0) > v(¢'), and 6 > ¢ for v(8) > v(6'). Finally, || - || denotes the Euclidean norm, and || - || the
sup-norm.

3 A Lower Bound on the Loss

In this section we derive an asymptotic lower bound on the WCRL. This will be used to define a
meaningful non-Bayesian sense of optimal performance for DM1.

The stated objective of DM1 is to minimize (the rate of increase of) the WCRL. However, in
general the WCRL cannot be minimized simultaneously for every possible 6. For example, if DM1
plays at every stage his optimal (maximin) strategy in G(8) for some fixed 6 € O, then he guarantees
zero loss if 6 happens to be the true parameter. But if the true parameter is different, his WCRL
may grow linearly in n.

To exclude such non-adaptive strategies, we shall restrict attention to strategies which perform
“reasonably well” for every parameter, as specified in the following definition (compare [5], [1]).

Definition 3.1 A strategy o of DM1 is said to be uniformly good if for every 6y € ©:
L%(6o) = o(n®) forevery a > 0. (3.1)
From (7] we know that the set of uniformly good strategies is non-empty, and in fact there exist

strategies which guarantee that the WCRL is O(logn). Thus, strategies outside this set need not be
considered.



For each parameter 6, define an associated set of “bad” parameters (see the end of the section
for interpretation of this set and discussion of the lower bound; note that 6 is not included in B(6)):

B(6) = {0 € ©: v(6') > v(8), Ig[z},yi] = 0. (3.2)

Since Ip g is non-negative, the requirement Iy g [z, y3] = 0 in the last definition is equivalent to:
Iy (i,5) = 0 for every pair of relevant actions in G(6), namely i € Z; 2 {i : (23):} > 0} and
. NP

j€ Ty =17+ (y5)it >0}

Theorem 3.1 Let 6 € © be such that B(0) # 0. Then, for every uniformly good strategy o of DM,

lim inf Ln(6) > b(0), (3.3)

n—00 Qg n -

where (defining 0/0 2 )

d *
b(6) = min —BYl (3.4)
*€P(T) mingep(g) Lo, [T, Y]

Proof: Consider a fixed § € © such that B(8) # 0. Let 7% = {y}} denote the stationary strategy of
DM2, in which y, = yj at each stage (note that this strategy does not depend on the true parameter
of the game). It will be proved below that for any uniformly good strategy o
U,Ts
lim inf L7 (9) > b(6), (3.5)

n—00 log n
which clearly establishes the required bound.

Given that DM2 uses 7%, DM1 in effect is facing a “controlled i.i.d. process” of the type considered
in [1] with “state” X,, = (ay, jn). However, the lower bound from [1] does not apply here. The reason
is that our definition of the loss, which is appropriate for the game situation, does not coincide with
the one used in [1]. Indeed, in the single-controller problem treated there the relative loss is naturally
defined with respect to the maximal one-stage reward (i.e. max; dg,(¢,y;] ), whereas our definition
uses v(fp) in that role. Still, it will be possible to follow the proof of [1] after establishing the next
two lemmas. We note that the following one relies on ¢ being uniformly good against any strategy
of DM2 (and not just against 7).

Lemma 3.1 (compare [1, Lemma 3.2]) Assume that o is a uniformly good strategy of DM1. Then,
for any 0’ € B(9),

P(;’,'Te {Z do(is, yp) < K'log n} =o(n*" ') for every a >0 and K > 0. (3.6)
t=1

Proof: Fix 6’ € B(6). It is first shown that a small loss under ¢’ implies a large loss under 6 (see
(3.10) below). Let Z; = {i € T : (xj); > 0} be the set of relevant actions of DM1 in G(6). It is



well known that this is exactly the set of actions which maximize the (expected) reward against Yp
([6], Theorems 3.1.2 and 3.1.16); that is, Ag(i, y;] = v(6) for i € I}, and Ay(i, Yl < v(8) for i & T}.
Consequently,

do(i, y5) = v(0) — Ag(i,y3] =0 for i€ Ij, (3.7)

and, since the action set is finite, there exists a positive constant §; such that
do(i, y3] > 61 >0 for ¢ 7. (3.8)

Consider now the game G(6'). By definition, 8’ € B(6) implies Iy g/[z},y;] = 0 and v(8') > v(6).
Noting (3.7),

do(i, 53] = v(8) = A (i, 5] = v(0) — Aoli,g3] = v(8) —v(8) £ 6, >0, icI;. (3.9)

Denoting D = max; dg/(%, yj] , it follows from (3.7)—(3.9) that for any m > 1,

> doin ) > bom—(D+6)Y i g 7}
t=1 t=1

vV

dom — 83 dg(is, y5)] (3.10)
t=1

where 6, 2 (D +6,)/61 > 0. Thus, using again the fact that dg(4,y3] > 0 by optimality of y; (cf.
(3.7) and (3.8)),

Il

OTB = . %* e
Py {Z do(it,y5) < Klog n}

t=1

P(;’,,r" {Z do(it,yp] < Klogn, Ym < n}

t=1

IN

m
P(;’,’Te {Z dg(is,yp] > 6om — 63K logn, VYm < n}

t=1

1>

0.,’.9
P {4}, (3.11)

where A,, denotes the corresponding event. To establish the lemma, it remains to show that the last
probabilities decay as o(n®~!). (Note that application of Chebycheff’s inequality, as in the proof of
Lemma 3.2 in [1], is impossible here since the loss Y7 dg (44, y;] may be negative.) Fix n > 1, and
consider a the following strategy 7’ of DM2. First define a stopping time T by

T=min{l<m<mn: Z dgi(it,y5) < om — 83K logn },
t=1

and T' = n if the minimized set is empty. Define 7’ as the strategy which chooses y; = y; for t < T,
and y; = yp, thereafter. Since 7% and 7/ coincide on the event A,

Py {An} = P37 {An} (3.12)



Also, noting that dg(7,yz] > 0 (by optimality of 5, in G(6')) and by definitions of T and A, (note
in particular that 7' = n on A,), we obtain under 7’:

n T n
S do(iny] = > de(in,ys]l + D> do(isyp]
t=1 t=1

t=T+1
T-1
> Y dplis,y5] + do(ir, y5]
t=1
> —6,K logn— D' +6,n1{A}, P -as., (3.13)

where D' = max; |dg (4, y;]|. Now, since o is uniformly good, it follows by (3.1), (1.1), (2.1) and
(3.13) that for every a > 0:

o(n®) = LE(0) > Ly™(#) = Ey” (Zn: dg: (11, yt])
t=1
> —6,Klogn— D' +6,n Py {A}, (3.14)
so that:
po {4,y < AnH 626]210%" D0 ooy, (3.15)
The lemma follows from (3.11), (3.12) and (3.15). O

Lemma 3.2 Assume B(0) # 0. Then
(1) 0 < b(8) < 0.

(i1) The minimization in the definition (3.4) of b(8) can alternatively be taken over the set
X(0)={z e P(): z; =0 if (z}); > 0}.

Proof: The inequalities 5(f) > 0 and b(f) < oo follow from the following facts (a) and (b), respec-
tively:

(a) For every z € P(I), dglz,y;] = 0 implies Iy g /(z,y;] = 0 for every 6’ € B(6). Indeed, fixing
z, take any ¢ for which z; > 0. Recall that dg[z,y5] = 3°; z:de(%,y;], and dg(i,y;5] > 0 by
optimality of y; in G(). Thus dg[z,y;] = 0 implies that dg(i,y;] = 0. By (3.8) it follows that
i € I;, i.e. (z}); > 0. But, by definition of B(#), this implies that Iy ¢ (%,y;] = 0 for every
o' € B(H).

(b) mingep(g) lo,6'[z,y;] > 0 for some z € P(Z). To show that, note that for every 6’ € B(9),
Ag [z, yz] 2 0(0") > v(0) > Aglzy, y3],

i.e. rewards under 6 are different from those under ¢, which implies Iy o[z}, y5] # 0. Thus
fact (b) is satisfied by choosing = as a convex combination of {z}, : ' € B(6)}.



Item (4¢) of the lemma follows since ¢ € Z; implies that dy(7,y;5] = 0 (see (3.7)), and that I ¢/ (4, y}] =
0 for all ¢ € B(6) (by definition of B(#)). O

Based on these lemmas, the proof of Theorem 3.1 may be concluded exactly as the proof of
the lower bound in [1]. For the reader’s convenience the main steps will be outlined here using the
present notations. Fixing a uniformly good strategy o, our objective is to establish (3.5). Fix p > 0,
and for each n > 1 define the event

o _0(0)
An = {Zd@(it,yg] < 1 +2p logn .

t=1

Recalling that dg(z,y3] > 0, we obtain

o,7° - . o,7° b(0
L77(0) = ES™ S d(in ) > (1— P07 {4,))2)

logn.
t=1 1 + 2p

Thus, since p > 0 is arbitrary, to establish (3.5) it is sufficient to prove that Pg’Te{An} — 0, to which
we proceed.

Let B denote the number of elements in B(6). Denote Py = Pg,’To, and Pp = B~ Ypcp(s) Por-
Consider the following change of measure, for any event D, measurable on the sigma algebra H,
generated by {i¢, je, ar}i—y :

dPo . dP9 .
[ %%yp.< [ B 215 4P :B/ A0, 8
Fo{Dn} /Dn dPg 2= b, 0'2%1(10) dp, B Dy o'glél(lo) exp{An(6,6)}dPs

where A, is the log-likelihood ratio (2.2). Note that A,(6,8’) is the sum of the (controlled i.i.d.) ran-
dom variables X; 2 log(pe i,.5./Pe ic,j: )» With conditional expectation Eg’Te(thit =1) = (3, y5].
It follows from, e.g., Lemma 3.1 in [1] that for every € > 0 and p > 0 there exist a constant K(e, p)
and an event A(e, p) with Pp{A(€,p)} > 1 — ¢, such that on this event

An(8,6) < (L4 p)nloplin, Y5l + K(e,p), Vn>1,6" € B(0),

where &,(i) = n~! 37, 1{i; = i} denotes the empirical distribution of the actions {i;}; note that
Iy gr[En, y5) = 3; En(i)1g,0:(7, y3). Since &, € P(I), it follows from the definition of b(6) in (3.4) that

. . . o mingepe) Loo[En, Y5 . a0 1S, . .
Lolin vl = dolén, ) < dolin, w2 b)Y = =S dp(is, uZ] b(8)" .
i, o[, 35) = dolén, v5)—— £ ol&n, y5] b(6) n; o(it, y7] b(8)

Thus, noting the definitions of 4,, and A(p, €),

logn

s (6 )} Pa{An) = BeX(+P)ni¥s Py {A,}

Py{An 0\ A(p,€)} < Bexp{(1+ p)

which converges to 0 as a consequence of Lemma 3.1. Finally, letting € — 0 establishes Ps{A,} — 0.
The proof of Theorem 3.1 is thus complete. O



Theorem 3.1 provides a lower bound on the asymptotic WCRL for those parameters which satisfy
B(6) # 0. Therefore, the best performance that DM1 can hope for (in terms of the asymptotic
increase rate of the WCRL) is to achieve the lower bound for those parameters for which it applies,
while keeping the WCRL finite for the rest. This leads to the following definition of asymptotic
optimality.

Definition 3.2: A strategy o of DM1 is said to be asymptotically optimal if
(¢) limsup L7(6p) < co for every 6y € O s.t. B(6y) = 0,
n—oo

(i) lim sup Ln(%) = b(fy) for every 6y € O s.t. B(6p) # 0.
n—+00 log n

Discussion: The lower bound of Theorem 3.1 can be rendered a simplified but useful heuristic
interpretation, in accordance with [5]. Suppose that DM2 uses the strategy % = {y}} for some 6
with B(#) # . Suppose that DM1 has (statistical) indications that 6 is the true parameter. If
this is indeed the case, to achieve zero relative loss he must choose his actions in the relevant set
Z;. Unfortunately, this may lead to undesired consequences if in fact some 6’ € B(6) is the true
parameter. Since I g (3,2} = 0 for every ¢ € I; and 6 € B(#) (by definition of the latter), these
actions do not yield any statistical information for discriminating é from 6’. Furthermore, under ¢’
positive relative loss will be incurred at each stage (cf. (3.9)), leading to O(n) WCRL.

Therefore, in a uniformly good strategy (against 7¢), DM1 must “probe” the system by playing
outside Z;. To minimize the associated relative loss, he should choose a probing strategy which gives
the best “loss to information ratio”. This is the essence of the constant b(6), where information is
quantified by the Kullback-Leibler information.

The lower bound (3.3) may now be interpreted as follows. For a strategy of DM1 to be uniformly
good (against 7%), if 6 is the true parameter he must maintain his total information (i.e., a measure
of statistical value of the data for discriminating 6 and B(#), related to the Kullback-Leibler infor-
mation) at a level of log n at least. By performing the required probing optimally, he can keep the
probing loss down to b(6)logn.

4 Optimal Strategies: Preliminary Results

4.1 Discussion and Results

This section is an intermediate step in the construction of an asymptotically optimal strategy. This
strategy will essentially be based on the Certainty Fquivalence strategy with biased MLE which was
introduced in [7]. To indicate the required modifications in this basic strategy, we start by recalling its
definition and performance. This will expose its deficiencies as compared with the required optimal
performance. Two families of (sub-) strategies will be introduced to overcome these deficiencies.
These strategies are not in themselves adaptive, i.e., each is designed with a specific parameter 4 in
mind. They will however be used as building blocks for the overall (adaptive) optimal strategy, to
be presented in the next section.



Recall the following definitions from [7]. The maximum likelihood estimator (MLE) 6, is the

maximizer of the likelihood function A\p_1(8) = [T/Zy po.;,.j.(a:). For some fixed Q > 1, define the
sequence

K, =n(logn)? + 1. (4.1)
(this is the “smallest” sequence which satisfies requirements (5.1) in [7]). Further define the likely
parameters set:

O, ={0€0:A,_1(6,,0) <logK,}, (4.2)
and the value-biased MLE:
0, = argmax{v(d):6 € 0,}. (4.3)
The Certainty Equivalence strategy with biased MLE, denoted 02, is simply specified by z,, = 2*(6,,) .
The following results have been established for this strategy ([7], Theorems 5.1 and 5.2):

Theorem 4.1 For every 6y € O,
(1) L22(6) < O(logn).

(i7) Assume that B2(6p) = 0, where By(6o) = {0/ € © : Ip, p[25,5) = 0 for some j € Jg}.
Then L%%(8p) is bounded.

Note that the requirement Bz(6) = 0 is equivalent, under Assumption A3, to condition Cy of [7]. Tt
may be readily verifies that By(6) O B(6), hence B;(6y) = 0 implies B(6) = 0, so that the last result
is compatible with the lower bound of Section 3.

Compared with the definition of asymptotic optimality, the performance guaranteed by o, falls
short in the following two cases:

I. B(6p) = 0, but Ba(6y) # 0. Asymptotic optimality demands that the WCRL be bounded.
However, 02 guarantees only O(logn) WCRL in this case.

II. B(6p) # 0. Then By(6y) # 0, and again 02 guarantees an O(logn) WCRL. However, it does
not guarantee that the optimal coefficient b(6y) of the lower bound is achieved.

Consider case I. We shall identify the key properties which enabled to bound the WCRL for the
strategy 02 when By(fy) = 0, and then attempt to guarantee similar properties (by appropriate
strategies) under the weaker condition B(fy) = 0. For any parameter 6, consider those times when
the estimator 6, = §. According to 02, z} is played at these times. Now the key properties which
were used in the proof of Theorem 4.1(i7) are the following relations between loss (or reward) and
information:

(a) dg[z},7) <0 for all 5.
(b) 32(0) =0 implies da[wz,]) < -6+ M ming5g Ig'et [IIJZ,])
(¢c) dolz},7) < =64 M Iy gz}, j) for every 8" < 6.

(The first property is of course a consequence of optimality of z} in G(6), and the other two were
established in [7], Lemma 6.1.) The interpretation in the context of 02 is as follows. Assume that

10



zj is played (which occurs at the times when 8, = ). If 6 happens to be the true parameter, then
(a) guarantees non-positive loss, and moreover, by (b), if no information is attained with respect to
some 6 > 0 (i.e. Ig g is low), this will be compensated by strictly negative loss. Also, if some 8’ < 6
happens to be the true parameter, then (c) low Iy p-information is compensated by strictly negative
loss.

Unfortunately, property (b) does not hold if B3(6) # 0, which may be easily seen from the
definition. Nonetheless, as long as the (smaller) set B(fp) is empty, a generalized version of these
properties may still be achieved. This requires to deviate from playing zj whenever 6 is the estimated
parameter, and instead use a modified (non-stationary, history-dependent) strategy over these times.
The precise formulation is the content of the following proposition.

Proposition 4.1 There ezist strategies {o*(6) € £ : 6 € O} and positive constants My and §; such
that, for every strategy T of DM2 and every n > 1, the following hold:

(3) Y dolas, ji) < My, V1<m<n.

t=m

(i) Zd@[wt,jt) < =6in+ My + M, 9/énain(o)zj‘9’el[$t’ Jt), where G,(8) ={0': ¢ > 0} — B(0).
t=1 =1

(ii2) dgi[zs, j1) < —61 + MyIg gy, §i) for every 6’ < 6.

Remark 4.1: The relations in Proposition 4.1, as well as in the rest of this section, hold in a
sample-path sense, and are independent of the true parameter 6y. Indeed, all quantities (dg etc.)
are deterministic functions of the actions, and 6y does not appear. Note, moreover, that explicit
dependence on DM1’s actions is only through z, (and not i,). Accordingly, all (non-stationary)
strategies of DM1 which appear in this section may be expressed as functions of DM2’s actions only;
that is, 0, = 0p(J1,. -y Jn-1)-

Remark 4.2: Properties (7)—(7i¢) are a generalization of properties (a)—(c¢) which were pointed out
above. In fact, when By(6) = @ then 0*(f) may simply be taken as the stationary strategy {z}}n>1 .

Remark 4.3: Note that (i) bounds the relative loss over any time interval [m, n], and not just [1, n].
This will be essential for the results of the next section (cf. the proof of Lemma 5.1).

The proof, as well as definition of the strategy ¢*(6), are presented in the second part of this
section. The main idea in constructing this strategy is as follows. The negation of property (%)
above (or of By(6) = ) may be written as:

Ipglzg,y) =0 and dg[zj,y] =0 for some 6’ >0 and y € P(J). (4.4)

However, when B(6y) = 0, (4.4) cannot hold for y = y;. In other words, (4.4) is then satisfied only if
DM2 plays a strategy y which not his optimal in the matrix game G(6). Thus, if that y was known
in advance to DM1, he could achieve an expected reward greater than v(6) (i.e., strictly negative
relative loss) in the matrix game G(0). When the game is repeated, a similar effect can be achieved
(in the long run) by DM1 even if the y,’s are unknown in advance; see Proposition 4.3 below.
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Let us turn to the second deficiency noted above, namely case II. As discussed at the end of
the last section, to achieve the optimal coefficient 5(6y), DM1’s strategy should include an “optimal
probing” phase. This phase is intended to accumulate statistical information (quantified by Igy 0
for 6 € B(#) ) at a minimal loss-per-information ratio. Also, some safeguards should be activated if
(due to DM2’s actions) insufficient information is revealed.

If DM2 is playing y, = yj, at every stage, then such “optimal probing” may be achieved on a
single-stage basis by any z° € P(Z) which is a minimizer in (3.4). (This is trivially satisfied in the
single-controller case; cf. [1].) However, since DM2 may play differently, then a stationary strategy
Tpn = z° might not yield the desired result: The loss-per-information ratio may then be larger than
b(6p), or possibly no information will be obtained.

Again, the problem will be resolved by “punishing” DM2 for playing off Yp,- Lhis can in principle
be accomplished by superimposing the one-stage probing strategy z° on a strategy similar to o*(6p)
of Proposition 4.1. The following result may be thus obtained:

Proposition 4.2 Let § € © be such that B(0) # 0. Then there ezists a strategy 0°(8) of DM1 and
positive constants Mo, 6y such that, for every 7 € T and n > 1,

(i) For every € >0 and 1 < m < n,

N . o
Y dolee, 5ie) < (1+€) b(6) g,rgg(la); Toor[zs,3s) + M(e),

t=m

where b(0) is defined in (3.4), and M(€) > 0 is a constant which depends only on .

n n
(i) D do[ze, i) < —ban+ My + My gp;%ZIe,o/[zt,jt)-
t=1 t=1

(iii)  dg[ze, ji) < =62 + Mol g[ze,5i)  for every 6’ < 6.

The bounds in Proposition 4.2 may be roughly interpreted as follows. (¢) implies that the
information-per-loss ratio (with respect to B(6)) is close to optimal, provided that information is in-
deed accumulated (say, at an O(n) rate). Item (¢7) implies that if the information rate (with respect
to any @’ > 6, and in particular for 8 € B(#)) is smaller than some critical linear rate, then a strictly
negative loss results; compare with (7¢) of Proposition 4.1. Finally, (i¢) is analogous to Proposition
4.1(iii) or property (c) above.

4.2 Proofs

The proofs of Propositions 4.1 and 4.2 depend on a basic result for repeated matrix games, established
by different methods in [4] and [3], which essentially states the following. In a (complete information)
repeated matrix game, each player can asymptotically guarantee for himself an average reward which
is no less than what he could guarantee if he knew in advance the empirical frequencies of his
opponent’s actions. The following (somewhat non-standard) version of this result will be required
here:
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Proposition 4.3
(i) For every 0 € O, there exists a strategy o(0) of DM1 such that

1 O~ — B
— 3 Aglzs,jt) > max Aglz,y,| - —=, VreT,n>1,
n ; [ ta]t) = oeP(1) 0[ >yn] \/ﬁ’ y 2
where B is a positive constant, and 7, is the empirical distribution of DM2’s actions, namely
Un =01 Y01 €, with ej the unit vector with 1 in the j’s entry.

(ii) The strategy @(0) may be defined as follows. Let
= Y ER X P ta> Ag[z, 9]},
Q@ = {(a,9) (7): a2 max Aole,y]}

and consider a point (a,y) € R X P(J) such that (a,y) ¢ Q. Let ¢ denote the closest point in
Q to (a,y), and (0,&) = ¢ — (a,y). Finally, let z*(a,y) be an optimal (mazimin) strategy of
DM in the matriz game with augmented payoff matriz: A€ 2 A, + 1€ = (Ae(3,5) + &) -
Then

_ t*(@n-1,Yp_1) fn>2and (ap-1,7,_

o(o)n(hn—l) :{ ( 1,Y l) f ( 1,Y l) gQ

arbitrary otherwise

where @, = n~' 1, Ag[xy,]i), and Y, as defined in (1).

Proof: As observed in [3], the proof follows by applying general approachability results ([2]) to
the set . Although the approachability result required here is not standard (in that the one-stage
payoff depends directly on z; instead of ¢;, and a.s. relations are required), it may be easily inferred
from the version which appears, e.g., in [8]. A direct proof is supplied in the Appendix. O

We note that the strategy () as defined in (i¢) depends on the history only through DM2’s
actions, since Ay is deterministic, and z; may be recursively eliminated from the equations. That is,

E(o)n(h"—l) = f'n.(jh v '7jn—1)-

The following lemma will also be required:

Lemma 4.1 Let A be an |Z| X |J| zero-sum game matriz with value v(A). Assume that y* is a
unique optimal (minimaz) strategy for DM2. Then for some é > 0 and every y € P(J):

> -y .
rrer%m()é)A[m,y] > v(A)+ d|ly — v (4.5)

Proof: Consider f(y) 2 max, A[z,y] ,y € P(J). Since y* is a unique optimal strategy, it follows
that f(y*) = v(A) and f(y) > v(A) for y # y*, so that y* is the unique minimizer of f. Note
further that f(y) = max; A(¢,y], so that f is the maximum of a finite number of linear functions.
The inequality (4.5) is an easy consequence of these facts. O

The next lemma will be useful in establishing property (iii) in Propositions 4.1 and 4.2:
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Lemma 4.2 There exist a (small enough) constant 0 < p < 1/2 and positive constants 83, M5 such
that ||z — z}||cc < p implies

d9’[x7j)g —(53+M3I9I10[C17,j), Vj’070,<0~

Proof: By Lemma 6.1(i) in [7], there exist positive § and M such that for every j and ¢’ < 6:
de[zg, j) < —6 + MlIyg[zy, j). (This is exactly property (a) discussed at the beginning of this
section.) The lemma follows by continuity of dgr and Iy g in z. O

We proceed now to the proof of Proposition 4.1. It will convenient to use in the remainder of
this section the abbreviated notation:

A : A& .
do{m :n} = dylz1,50), Ipg{m:n} =Y Ipele,ji).
t=m t=m

Also recall that G,(0) = {6’ > 8} — B(6). As an intermediate step, the following type of strategies
is required:

Lemma 4.3 For each f € ©, there exists a strategy o*(8) for DM1 and positive constants My, 64, €4
such that the following hold for every 7 € T and n > 1.

(i) dg{l:n} < M.
(22) minQ,GGo(g) Igyg/{l : n} S €4 zmplzes de{l H n} < —64\4/;7,_4- M4 .

(111) |2 — T)||lco < pt, where p is as in Lemma 4.2.

Remark: The strategy o!(8) will be based on the strategy () of Proposition 4.3. However, an
essential improvement is property (i), i.e. bounded WCRL. In contrast, in Proposition 4.3(¢) the
total relative loss may be as high as By/n if 7, = y;.

Proof: Let 8 be fixed, and let 5(#) be the strategy of Proposition 4.3. For each 0 < £ < 1, define
the strategy:

o(€): 0(§)n = £0(0)n + (1 - )25 (4.6)
The required strategy o!(8) will be defined by restarting o(£) at prespecified times, with £ diminishing
to zero. This scheme makes it possible to guarantee property (¢), namely bounded loss.

Let 0 < g < 1/2 be as defined in Lemma 4.2. Choose a real sequence {{x}r>0 and a sequence of
integers 0 = T, < Ty < - -+, such that: 0 < & < p, & | 0, and for some finite constants Cy, Cy,:

> &e/Trpr =T < Ch, (4.7)
k=0

& T > Co/Tes1 Yk >1. (4.8)

Two specific examples are (with 0 < € < $): (a) T = 28 -1, & = p2=+G +o), (b) Tx = k3,
& = p(1 4 k)=t
Finally, define o1(6) as follows:

14



Strategy o' () : At stages n = 1,2, -+, Ty, play according to a(&,).
At stage Tk, k > 1, reset the history counter to 0, and then play for n = T + 1, -+, T4 according
to o(&x). More precisely, for Tx < n < Try1, Tn = €k0(0)n-1, (G715 s Jn-1) + (1 — k).

We proceed to upper-bound the loss and lower-bound the information under o!(#). Both bounds will
be in terms of ||7, — y;||, DM2’s average deviation from his optimal strategy in G(8). It is assumed
in the following that DM2 is using any strategy 7 € 7.

Consider first the strategy o(€) defined above, with £ fixed. Suppose for the moment that this
strategy is used throughout by DM1. Then z, = £z, + (1 — §)z}, where &, = 5(0)n(J1,* Jn-1)-
Therefore, by optimality of 2}, Proposition 4.3 and Lemma 4.1:

lZZO[xtajt) 12{52‘9[5%,]!)_'_(1_g)ze[x;7]t)}
iz nia

> €LY a0 + (- (o)
t=1

¢(max Ag[z,J,] = B/v/n) + (1= £)v(6)
& (0(8) + 6ol[9 — w5l — B/v/n) + (1 - E)v(6)
v(0) + £60l19, — w3l - EB/Vn (4.9)

where B and 6y are positive constants. This can be written equivalently as:

v

v

de{1:n} = nv(0) — ZZg[xt,jt) < —&6onl|y, — y5ll + EBVn . (4.10)
t=1

Returning to the strategy o!(6), assume henceforth that this strategy is used by DM1. Let Ty <
m < Ty41 for some k > 0. Observe that o(&) is started at ¢t = Ty, + 1. Therefore, (4.10) implies:

do{Tp + 1: m} < —&bp(m — Ti)|Ay(m, Ty)|| + &BvVm - Ty,

where m
1
Ay(m,Ty) = Z e, — Ys -
m —Ti t=Th+1 t

Therefore, for any Ty < n < Tk41, K > 0:

K-1

do{1:n} < 3 (~ExboATH|AY(Thsr, Te)| + & BVATy )
k=0

+ (—€xbo(n — Ti) | Ay(n, Tio)l| + éx BV = Tic )

where ATy = Try1 — Tx. Now, using the fact that {{x} is decreasing, the triangle inequality, and
(4.7):

K-1 0
de{l:n} < —€kbs (Z ATkl AY(Tht1, Ti)|| + (n - TK)||Ay(n,TK)H) + BY  &\VATy

k=0 k=0
—€x6on||7, — y5ll + BC1 .

IN
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Moreover, since T < n < Tk41, it follows by (4.8) that:
Exn > kT > Co¥/Tr1 > Cav/n,
so that, finally, we obtain the upper bound
de{l:n} < —Ca6pv/n||¥, — vi|| + BC; . (4.11)

Next, the information will be bounded. Let 6’ € G,(8). Since z; = (1 — &)z} + (...) with 1 — & >
1 — p > 1/2, and noting that Is ¢ > 0,

n ) 1 n . . 1 .
S Ipglas, ji) > B Y Ihelzs, ji) = 2™ Iy gr[25,7,]
t=1 t=1
1 * ok 1 * o *
= 9 n g o[zg, yg] + 5 n lo o (25, Un — 3]
1 1 _ ¥
> 2 Brn — 2 Ban||7, — vall, ' € G,(6) (4.12)

where

= min Igglz,y;] >0 = max maxIpelz}, 7).
B o 6.0(z5,951 >0, B2 3 T 6,0'(2,7)

Note that £, is positive by the definition of G,(6) and B(6) in Proposition 4.1 and (3.2).
We may now proceed to establish (¢)—(4i¢) of the lemma.
(7) Follows immediately from (4.11) (since Cqég > 0), for any My > BCj.

(i1) Assume that for some 6 € G,(0), Y7y Ig g (s, ji) < en where € > 0 will be specified shortly.
Then, from (4.12), ||7, — 51| > (81 — 2¢)/B2. Therefore, for € = 81 /4, (4.11) gives:

3 dafe o) < ~Cabo 2 i+ BCy
t=1 P2

which clearly implies (i¢) for any 64 < C26961/2 B2 and M4 > BC;.

(i27) Recall that, for Tx < n < Try1, Tn = €xZn + (1 — €k )z} for some &, € P(T), and {x < p.
Therefore, ||z, — j||c0 < p||Zn — Tjllc0 < 1. O

Proof of Proposition 4.1:

To motivate the definition of ¢*(#) below, note that property (i) in the proposition requires the
relative loss to be bounded on any time interval [m,n]. However, the strategy o'(6) of the previous
lemma guarantees that only on [1,n]. Thus, if the loss is negative on [0, m — 1], say, it might be large
on [m, n].

To rectify this problem, we define 0*(8) as the strategy which follows o!(6) as long as the loss is
above a certain (negative) threshold. However, as soon as it goes below this threshold, the clock is
reset and o1(#) is restarted with a new history. The precise definition follows.
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Strategy o*(0) : Let Cy be a positive constant. Let {m;}r>0 be the sequence of stopping times

(possibly infinite) defined recursively by: m, = 0, mgq1 = inf{m > mp+1: dg{mp+1:m} < —C1}.
. A N .

Then, for mg+1 < n < mity, 0*(0)n(hn-1) = 01(0)n_mk(hg€_)1) , Where h,(j“_)l = (Jmgtls- -y dn—1)-
Assume that DM1 uses this strategy o*(6). Let 7 € 7 and n > 1 be fixed, and let K > 0 be such
that mg < n < mg41. Define:

Vi={mkg+1,---,mpq1}, 0<k <K —1: the k’th (terminated) interval.

Vk ={mg +1,---,n}: thelast (K’th) interval.

By definition of {my}, it follows that on each interval:

d¢{mr+1:m}>-Cy—-D Vme Vi, 0<k<K, (4.13)
where D = max; ; |dg(4,7)|. On the other hand, on each terminated interval:
do{Vi} 2 S doles, ji) < ~Ci, 0<k<K—1. (4.14)
teVy

Finally, since o!(#) is used on each interval, and in particular on the last interval, it follows from
Lemma 4.3(7) that:

da{VK} < M, . (4.15)

We proceed now to prove assertions (i)—(¢i¢) of the proposition. Note that it is enough to prove each
assertion with different constants (M, é;), since then the maximal M; and minimal é; satisfy the
assertions simultaneously.

() Fix 1 < m < n. Then m — 1 € Vj, for some 0 < k < K, so that by (4.13),
de{mp+1:m-1}>-C, - D. (4.16)

Also, by (4.14) and (4.15) it follows that dg{my +1: n} < My . Subtracting the last two inequalities
gives dg{m :n} < My + Cy + D, so that (i) holds for My = K4+ C, + D.

(1) Since o'(6) is used on each interval, it follows by Lemma 4.3(i¢) that, for some positive
constants €4, 64 and every 0 < k < K, dp{Vi} > —64/|Vk| + M4 implies

G’énGi?(G) I@ﬂ/{Vk}[(Et, .]t) Z €4|Vk| . (4.17)

Let L > 0 be some large enough constant so that — 8,V + My < -Cy — D. Tt follows then from
(4.14) that on each interval Vj, 0 < k < K, for which |Vi| > L:
do{Vk} > —C1 =D > —64VL + My > 84/ |Vi| + My,

so that (4.17) holds on the that interval. Therefore,

K
Ipo{l:n} > e Vil L{|Vi| > L}

k=0
"
= ea(n-— Z Vil 1{|Vk| < L})
k=0
> e4fn— L(K + 1)), Vo' € G,(0). (4.18)
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On the other hand, by (4.14) and (4.15) it follows that dg{1 : n} < —C1K + M, . Using (4.18) to
eliminate K from this equation, we finally obtain

C C
dg{l:n} < _'fln+(M4+Cl)+L_€1‘I€,«9’{1 in} Vo' € Go(9),
4

which implies (i¢) with My = max{M4 + C1,C1/(Les)} and 6, = Cy/L.

(14) Recall from Lemma 4.3(7) that, under o!(6), ||z, — 2}||co < g for every n > 1. By definition
of 0*(8), this is valid under 0*(#) as well. Therefore, by Lemma 4.2,

dﬁ’[mnajn) < =63+ MBIG’,G[xnajn)v Vo' <9,
which implies (¢i¢) for any 6, < 83, My > M3. Thus, the proof of Proposition 4.1 is complete. O

We turn now to the proof of Proposition 4.2, which proceeds through the following lemmas.

Lemma 4.4 Let § € © be such that B(8) # 0. Then there ezists a strategy 0*(8) for DM1 and
positive constants By, Ms, 85 such that, for every 7 € T and n > 1, the following hold:

) tn} < i {1 .
(¢) de{l:n} <b(8) 0'?1131(10) Ipg{1:n}+ Bsyv/n
(1) dop{l:n} < —bsn+ M5+ Ms grllir(} Igg{l:n}.

(1i1) ||y — 2hll0 < @, with p as in Lemma 4.2.

Proof: Consider some fixed 8 such that B(8) # 0. Let z° = 2°(8) € P(Z) be a minimizer in (3.4),
and let 7(6) be the strategy of Proposition 4.3. For any 0 < € < 1, define a strategy o¢ by:

o1 of = (1- p)as + ulea® + (1 - 5(0)]

It will be proved that, for € small enough, o¢ satisfies the lemma.

Denote d, = dg[z°, y3]. Note that, by definition of z°:

= b(0) min Ipg[z°,y}] > 0. _
do = b(6) pin, Lo [2°, 93] > 0 (4.19)

Assume now that DM1 uses the strategy o€, and DM2 any strategy 7 € 7. Proceeding similarly to
(4.9),(4.10), the loss may then be bounded by:

do{1:n} < pendola®,Tpn] — u(1 - €) [65 n||7, — y3ll — BV/n] ,
where B and dy are positive constants. Furthermore, note that
do[2°, Y] < dolz°, y5] + BT — w5l 5
where (3, = max; |dg[2°, j)|. Therefore,

do{1:n} < pedon — pldo — (8 + B n 17, — vill + 1BV . (4.20)
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Next, the information will be lower-bounded. Consider first any 6’ € B(6). Then, by definition of ¢
and (4.19):
n n
Ipg{l:n} = Y Ipelze, ji) > D pelgpa®, ji) = penlypz®, 7,
t=1 t=1
= pen(lopf2® y5] + loo[2°Yn — y5])
> pen(b(0)"'do — Ballgn — w5ll), 0" € B(6), (4.21)
A .
where (8, = max; g/5¢ Ig o [2°, 7).

Consider now ¢’ € G,(8) = {¢' > 8} — B(6). Then, similarly,

Igygl{l : TL} (]. — H) nI(),é)’[x;ayn]

>
2 (1= p)n(loplzs, y5) — Bally, — vall)
> (1= mwn(Bs = Bsllgn —w3ll), 0 € Go(0), (4.22)

where [3 2 max; gieg,(6) 1o,60'(25,7)» B4 2 ming e, (0) Io,0[¢5, y5] - Note that S5 > 0 by definition
of G,(0) and B(8).

Choose € > 0 small enough so that:

1 1
€(bo + Pr+b(6)B2) < 5 89, (b + B1 + dofis/Bs) < 5 b (4.23)
Assertions (i)—(i%¢) of the lemma now follow from the bounds derived above by simple algebra:
(7) Multiplying (4.21) by b(8), subtracting from (4.20) and rearranging yields:
do{1:n} < b(0)Ipe {1 :n} - BsnllT, — yjll + uBv/n, ¢ € B(6)

where 35 = pu[bs — €(8p + B1 + b(0)B2)]. Since B5 > 0 by the choice (4.23) of €, (¢) follows with
B5 = /.LB

(it) Using (4.21) to eliminate |7, — y;|| from (4.20) gives:
dg{1:n} < =P+ Beloo{l:n} +uBvn, ¢ € B(9), (4.24)

where B = 8/(€B2), Br = [69 — €(6g + 1 + b(0)B2)]/(b(0)F2). Note that 87 > 0 by the choice (4.23)
of €. Now, a similar calculation with (4.22) used instead of (4.21) gives:

de{l:n} < —Bon+ Belpp{l:n} +puByvn, 6 € G,(6), (4.25)

where fg = 65/(1 — p)B3, Bo = pPaBs'[66 — €(8s + B1 + doB3/B4)]; note that By > 0 by choice
of €. Combining (4.24) and (4.25) establishes (i) with, e.g., 65 = 1 min{B7,89} and Ms =

2
max{ﬂs, ﬁQa maanl(#B\/_ - 5571)}
(i17) Follows directly from the definition of o¢. 0

Lemma 4.5 For the strategy 02(0) of the previous lemma, and under the same conditions,
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(i) For every € > 0 there exists M'(¢) > 0 such that:
de{l:n} < b(O)(1+€e)lgp{l:n}+ M'(e), Vn>1,6 € B(9).

(73) Let €5 = 65/(2Ms), 66 = 65/2. Then mingsglpe{l : n} < esn implies dg{l : n} <
—56n+M5.

Proof: Since (ii) follows directly from Lemma 4.4(i¢), it remains to prove (7). Assume first that

Sh = mingcp(g) fo,01{1 : n} < esn. Noting that B(f) C {¢' : 6 > 6}, it follows by item (iz) of the
present lemma that
dg{1:n} < M;. (4.26)

Assume now that S, > esn. Then, by Lemma 4.4(1):
de{1:n} < b(0)Sn + Bsyv/n < b(0)(1+ €)Sn + (Bsv/n — €b(8) esn). (4.27)

Let M'(e) = max{Ms, max,>1(Bsy/n — €b(f)esn) } ; assertion (7) follows now from (4.26) and (4.27).
d

Proof of Proposition 4.2:

Similarly to the proof of Proposition 4.1, it is required to modify the strategy o%(6) so that (4) will
hold on any interval [m,n|. Thus, define

Strategy 0°(0) : Defined similarly to o*(6) in the proof of Proposition 4.1, except that o!(6) in
that definition is replaced by 0?(6) of Lemma 4.4.

Let 7 € 7 and n > 1 be fixed. Retain the notations in the proof of Proposition 4.1 (i.e. Cy, mg, Vi
and K). We proceed to prove (i)—(¢i¢) of Proposition 4.2.

(i) Consider a fixed 1 < m < n. Let 0 < k < K be such that m — 1 € Vi, and note that (4.14)
and (4.16) hold true. Moreover, since 02(0) is restarted at t = mg + 1, it follows by Lemma 4.5(31)
that for every € > 0.

dg{mr+1:n}

.
> de{Vi} < do{Vi}
K=k
. A /
(14 €)b(0) 0'?151(19) I {Vk}+ M'(¢)
. . ’
(14 b(6) min, Top {1t 0} + M'(0). (4.28)

IN

IN

Then (i) follows by subtracting (4.16) from (4.28), with M(¢) = M'(¢) + Cy + D.
(i7) By Lemma 4.5(7%), it follows that for every 0 < k < K, dg{Vi} > —86|Vk| + M5 implies

IQI/I;IQI Igygr{Vk} > 65|Vk| . (4.29)
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Let L > 0 be a large enough constant so that —ésL + Ms < —Cy — D. Then on each interval Vj such
that |Vi| > L,
de{Vk} > -C1 =D > —é6¢L+ Ms > —b6|Vi| + Ms,

so that (4.29) holds on that interval. Therefore, for every 6’ > 6,

K-1 K-1
S I (Vi) > s 3 Gl 1{IVil > I} > ex(n— LK — [Vic]). (4:30)
k=0 k=0

On the other hand, by (4.14) and Lemma 4.4(i7) (applied to the last interval),

n
> dglzy, ji) < —C1K — 85|Vk| + Ms + Ms g};% Ipo{Vk}. (4.31)
t=1

Using (4.30) to eliminate K from (4.31) and noting that C;/L < 65 by choice of L, it follows that
for every 6’ > 40,

C 1 K
de{l:n} < —-L—l (—g > Io{Vit+n - |VK|) — 65|Vi| + MsIg g {Vk}
k=0
Cy
S —Tn + MQIgyg/{l . n} + M2 )

where M, 2 max{Ms, C1/(Les)}. Thus, defining 6, 2 Ci/Lqy > 0, (1) is established.

(it) Follows by Lemma 4.4(7i¢) and Lemma 4.2, exactly as in the proof of Proposition 4.1(iiz).
g

5 The Optimal Strategy

We are now in a position to present a strategy ¢* which is asymptotically optimal. The following
definitions will be required.

Definition 5.1 Let {my}r>1 be a strictly increasing sequence of stopping times with respect to the
history o-algebras {H,}n>0. Let o be a given (behavioral) strategy of DM1. By the strategy o

restricted to the times {my} we refer to the following selection rule at the times my, k > 1: Zp, =

7 7 A . . —
Uk(hk—l) ) where hk—l = {zmujmuam(}?:ll .
Let 6, ©,, 0, be defined as in Section 4.1. For every § € © and n > 1, define the following
conditions Cj(0), C3(6):
Cx(8): 0, =0, and either B(8) = 0 or else
n—1

' I or[2¢, 7¢) 1{0; = 0} > log K, . 5.1
0'?51(19); 0,0'[t, ji) 1{60; = 6} > log K (5.1)
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Co(6): 6, =0,B(8) #0, and
n—1

i Ip gz, 1) 1{0; = 8} < o
S0 ; 0.00[21, j1) 1{0; = 6} < log K, (5.2)
Note that exactly one of C}(8) and C2(f) is satisfied when 8, = 0. To introduce the following
strategy, observe that for each fixed 6, the times ¢t at which condition C7(8) [or C?(0)] is satisfied
form a sequence of increasing stopping times. We shall consider each such sequence separately, and
apply on it a restricted version (according to Definition 5.1) of an appropriate sub-strategy.

Strategy o*. Forn=1,2,.... Denote =29,.
If Cx(9) is satisfied, then play according to the strategy o*(6) of Proposition 4.1, restricted to the
times when C;(0) is satisfied.
If C2(8) is satisfied, then play according to the strategy 0°(8) of Proposition 4.2, restricted to the
times when C{(0) is satisfied.

The strategy o* just defined may be interpreted as follows. At each stage n, the value-biased
MLE § £ 0, is computed. Then the level of information for discriminating 6 from B(f) (quantified
as in (5.1) or (5.2)) is evaluated, and compared with the critical level log K, (which is slightly larger
than logn). If below that level, then the probing strategy o°(f) is followed. This strategy ensures
that, if indeed @ = 6y, additional information will be obtained at a loss-to-information ratio close to
b(0o), or else negative relative loss is guaranteed to accumulate.

If the information level is below the critical level (or if B(#) is empty), then the strategy o*(8) is
used. As discussed in Section 4.1, this strategy replaces the stationary strategy {z7}, and its stronger
properties guarantee that the loss associated with the parameters in (B2(6y) — B(fp)) is finite.

Observe that the “information level” in (5.1) and (5.2) is evaluated only over the times when
the estimator was identical to the current one. This turns out to be important for the proof of the
following theorem, which is the main result of this paper.

Theorem 5.1 The strategy o* defined above is asymptotically optimal, in the sense of Definition
3.2.

The remainder of this section will be devoted to the proof of this theorem. This proof extends
the proof of Theorem 5.2 in [7], and some of the results established there will be used here.

Assume henceforth that DM1 uses the strategy o*, and let 8 € ©, 7 € 7, n > 1 be fixed. In
what follows, all relations between random variables hold Pgo ""—a.s. Also, all constants (M, §,Q,n,
etc.) are independent of 7 and n, unless otherwise stated.

It will be convenient to use the abbreviated notation: d; = dg,[z1, ji), (d:)T = max{d;,0},
D = max; ; dg,(i,7), 1gy,6(t) = Loy 0[ts Ji), E = Ego 7 and finally £, = S5, d;1{6; > 6o} .

By (2.1),

Lg*ﬂ'(ao) — EZ dt = EZdt l{pt < 00} + EZ dtl{yt 2 00}

t=1 t=1 t=1
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< DEY 1{8, < o} + Et,, < DQ: + Et,, (5.3)

t=1

where the last inequality is a basic property of the value-biased estimator 6,,, as established (for some
@1 < 00) in [7, Lemma 5.1(¢%)]. We proceed then to bound E¥,.

Lemma 5.1 For every € > 0, there ezists a constant M,(€) such that,

fn < (1 + €)b(00) log I(n + MO(E) + En:(dt)-i_l{ft > 0, gt > 00} y (54)

t=1

where b(8o) is defined by (3.4) if B(6o) # 0, and b(8g) 2 0 otherwise.

Proof: Noting Assumption A3, one has £, = £ + £, where
n _ n _
[Z:Zdtl{etzeo}, ﬂ%:Zdt1{0t>90}.
t=1 t=1

Define the stopping time m = max{0 <t < n: {; <0}, where £, = 0. Then
by <y =4y = (fi—f?n)-i-(f%—ffn) (55)

Now,

n

S0 < N (d)T {8 >0} = > (d)T 1{¢; >0, 6, > 6}

t=m+1 t=m+1
< D (do)t 1{6 >0, 6, > 6,}, (5.6)
t=1

where the last equality follows by definition of m.

It remains to upper-bound the term:

K;"L - Zgn - Z dt l{at = 00}
t=m+1
= 2 &G0} + 3 di{CP(6o)}, (5.7)
t=m+1 t=m+1

where C} (o) stands for “Cf(6) is satisfied”, and similarly for C?(6p). Note that, by definition of o*,
DM1’s strategy on the times in which C}(fp) is satisfied is the restriction of 0*(6p) to these times.
Therefore, by Proposition 4.1(z),

> 4 1{Ci(60)} < My (5.5)
t=m+1
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To bound the term involving {C7(fy)}, note first that if C7(6p) is not satisfied for any m+1 <t < n,
then that term vanishes (this is trivially the case if B(6y) = 0). Otherwise, note that DM1’s strategy
on the times when C7(6p) is satisfied is the restriction of 0°(6p) to these times. Thus, by Proposition
4.2(1) it follows that for every € > 0,

Z di 1{C7(00)} < (1+€)b(bo) eer%m Z Ig, 0(t) 1{C(60)} + M(e).

t=m+1 m+1

Define m' = max{m + 1 <t <n: C{(f) is satisfied}. Then,

IN

min ZI«% o(t) 1{C{(60)}

9€B(6o)

min 37 Ty ot) 1{CE(00)}

6€B(fo) , =
< T+logK, < I+logk,,

where I = max; ;g lg,,6(7,7), and the next to last inequality follows by definition of condition C¢(6o)
(which is satisfied at ¢ = m’). Thus,

Zn: d; 1{C}(60)} < (14 €)b(6p)log K, + [(1+ €)b(60)I + M(e)], (5.9)
t=m+1

(which holds trivially if B(6y) = 0, with b(6y) = 0).
The lemma now follows from (5.5)~(5.9), with M,(€) = My + (1 4 €)b(6o)] + M(e). O

To upper-bound the (expected value of) the last term in (5.4), the following lemmas will be
required.

Lemma 5.2 There ezist positive constants ) and n, such that, for any n > n,, £, > 0 implies that
at least one of the following conditions Qy(n) — Q4(n) is satisfied:

Q(n): YF,1{6; <6} > nn.

Qa(n): 0 Ipy 6(1)1{0; = 8} > nn  for some 6 > 6, .

Q3(n): mingsg, Y req Loy,6(t) > 10 .

Qu(n):  both Qsa(n) and Qup(n) below are satisfied;
Q4a(n) : mingeg,(gy) 2ot=1 10o,6(t) > Mn, where Go(6) = {6 > 6o} — B(bo).
Qu(n): Ni(0o) € Ty H{CT(B0)} 2 § .

Proof: Let us first translate the relevant relations in Propositions 4.1 and 4.2 to the setting of the
present strategy o*. For that purpose, define for each 6 € O:

= i 1{C; ()}, N8 = ij 1{C(0)},

Nu(8) = N3(0) + N2(0) = 3° 1{7; = 0}
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Let My, My, 61,62 be the constants for which Propositions 4.1 and 4.2 hold, and define M =
max{M;, My}, § = min{8;,62} > 0. It then follows from items (i) and (i¢) of Proposition 4.1
(upon substituting 8 — 6y and ' — 6) that

znjdt 1{C(8o)} < M, (5.10)

Zdt1{ct(00)}< —6N:(80)+ M + M rgm 2190 ) 1{C;(60)} . (5.11)

oOtl

Similarly, by Proposition 4.2(it),

Z d; 1{C?(80)} < —6N2(6o)+ M + M mln 2 I, 0() 1{C?(80)} . (5.12)

t=1

Finally, combining Propositions 4.1(7i7) and 4.2(7i7) (with 8’ — 6,) gives

Zdtl{()t_é)}< —6N, (9)+M2100 )1{6; = 6}, V8> 6,. (5.13)

t=1 t=1

Assume now, in contradiction, that ;(n)— Q4(n) are false. It is required to show that £, < 0. Write
Q;(n) for ‘Q;(n) is false’. Then by Q3(n) and (5.12):

> " dy 1{C{(80)} < —6NZ2(60) + M + Mnn. (5.14)
t=1
By (5.13) and Qy(n),
> di1{0 = 6} < —6N,(6) + Mnn, V8> 6. (5.15)
t=1

Note also that Q4(n) implies that at least one of the following holds:
(a) Qap(n), i.e. N3(6o) < 3 n.
(b) Q4p(n) (i.e. Nx(6o) > 3 n), and Quq(n).
We consider these two cases separately:
(a) By (5.10), (5.14) and (5.15),

{, = Zdtl{Ct (60)} + Zdtl{C’t (6o)} + Z Zdtl{Ht =6}
0>60 t=1
< —6[N2(Bo) + > Nu(6)] +2M + M|O|nn.
>0
However 1
NZ(60)+ D Nu(8) = n—Ni(60) — > Na(8) > = n—nn,
>0¢ 6<6o 2
which is implied by Q43(n) and Qq(n), so that in case (a):
1
L, < -3 on +n(6+ M|O|)n + 2M . (5.16)

25



(b) Since Q4,(n) is assumed, it follows from (5.11) that

> di1{C}(60)} < —8N;:(60) + M + Mnn. (5.17)
t=1

Proceeding as in case (a), with (5.17) used in place of (5.10), we get:

£, < —8[Nn(f0) + > No(60)] +2M + (M|O] + M)nn. (5.18)
6>60

Noting that Q;(n) implies

Nu(6o)+ > Nu(6) = n— ) Nu(8) < n—nn,
>0 <69

it follows that in case (b):

by < —bn+n(é6+ M|O|+ M)n+2M. (5.19)

It is readily seen that for some 7 small enough and n large enough, both (5.16) and (5.19) imply
that £, < 0. O

Lemma 5.3 Let Q4(n) be as defined in the previous lemma. Then

[eo}

E Y (dn)t 1{Q4(n), 0, > 6} < Q3 < o0. (5.20)

Proof: By definition of Q4(n) and G,(6o),

1{Q4(n), 8, > 80} = 1{Q4(n),0, € Go(6o)} + 1{Qu(n),0, € B(6o)}
< 1{Q4a(n), 0, € Go(60)} + 1{Q4(n),8, € B(6y)}.

We first claim that, for some Q' < oo,

E i(dnﬁ‘ 1{Q44(n),8, € Go(60)} < D i P{Q4q(n), 0, € Go(60)} < Q'.

n=1

The proof of the last bound is the same as that of Lemma 6.4(ii) in [7]. Namely, by the union bound

P{Quqa(n), O0n € Go(60)} < Y. P{D_Igp(t) > nn, 6, =6},
0€Go(60)  t=1

and the rest is identical to the above-mentioned proof.

Thus, it remains to bound the term

(o]

Z ) 1{Qu(n), 8, € B(6o)} .

Ill>

J3 = J3(1
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As established in [7, Lemma 5.2], there exists a constant M < oo such that dg,[z},1) < M Iy, o[z}, 5)

for every j and 6 > 6y (hence, in particular, for § € B(6y)). Replacing Qg by its definition, it follows
that

n )
J3< > E ZMIGO (n) 1{N}(8o) > 2000 =0}
6€B(8y) n=1
Now, N3(6o) > 1n implies that C}, (o) is satisfied for some 2 n < m < n, which in turn implies that

n—1

Un(8) = ZIgO 6(t)1{0; = 0.} > log K[/ > log K, — «,
t=1

where the last inequality follows from the definition of {K,} in (4.1) for some finite constant «
(independent of n). Noting further that 0, = 6 > 6, implies An—1(6,,0) < log K, we finally get

[ee]
Js < M Y. E Ine(t) 1{Un(8) > log K, — @, Ap_1(6o,6) < log K}
0€B(90) n=1

M Y Q) 2 Q"< o,

6€B(6o)

IN

where the last bound follows by applying Lemma 3.3(v) of [7] (and the standard translation procedure
as described there below equation (4.12)) to each 6 € B(6p) separately. Thus, letting Q3 = Q' + Q"
(5.20) is established. ([
Lemma 5.4 The following bound holds:

Jo=Ji(r) 2 B S (dn)T1{ts > 0,8, > 60} < Q4 < 0.

n=1
Proof: By Lemma 5.2,
4 00
Jy < Z Z +1{Qi(n), 0, >0} + Dn,

(o)

23:2 P{:(n), 0. > b0} + E E(d VF1{Q4(n), B, > 0} + Do .

IN

The three terms corresponding to Q1 (n)-$3(n) have been bounded in [7, Lemma 6.4] (for any strategy
o of DM1). Therefore, the assertion follows by Lemma 5.3. O

The proof of Theorem 5.1 may now be concluded. By (5.3), Lemma 5.1 and Lemma 5.4, it follows
that for every ¢ > 0,

L7 (80) < DQu + (1 -+ €)b(8o) log K + Mo(€) + Qu

where b(6p) = 0 if B(6p) = 0. Thus:
If B(6o) = 0, then

L2 (80) = sup L7 (o) < DQu+ Mo(1)+ Q4 < 00, ¥n>1.
T
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If B(6y) # 0, then
, L3 (80)
lim sup log 7 < (14 €)b(6o),

n—o0

and the required result follows by letting € — 0. O

Appendix

Proof of Proposition 4.3

Let (-, -) denote the standard Euclidean inner product, and let d(-,), || - || denote the corresponding
distance and norm. Let

My, = (Ag[Tn, jn), €j,) € R x RII,

_ 1& _
My = _Zmn :(amyn)'
nt:l

Let ¢, be the closest point in () to m,, and denote 7, = ¢, — My, d, = d(T,, Q).
We proceed to prove, by induction, that d, < B;/4/n for some constant B; > 0 (under the
strategy () specified in the proposition). It is easily seen that this implies the assertion (i).

Assume first that m,, € @, i.e. d, = 0. Note that

Mp41 — mn

n+1

Tn—n+1 =My +

(A1)

Th
en 9B,

_n+17

Mp41 — My
n+1

dn+1 = d(mn+laQ) < ”mn+1 - mn” = ’ (A2)

where Bj is a constant which uniformly upper-bounds ||m,||.

Assume now that m, ¢ @, i.e. d, > 0. Note that for every n = (o, ¢) € R x RV with a > 0,

WA = p, g Al
yE EAS
= minI(Ot m:?axzﬁ[m) y] + (€’y>) (A.3)
= myin(?], (mﬁxze[z‘» y]7 y))
> .
> min(n, g)

where we have used the definition of the payoff matrix A and the fact that (max, Ag[z,y], v) € Q
for every y € P(J).
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Denote (a,§) = Nn. Recalling that z,4q is optimal in A™) noting that & > 0 by the form of
the set @, and using equation (A.3), it follows that

(en — M, Mpg1) = (NnsMny1) = aZ@[mn+17 Jnt1) + (g)jn-i-l
= A("")[mn,jn) > val(A(""))

> min(n,, = min(c, — My,
- q€Q<nn %) qEQ( )
= (cn - m’na Cn)
where the last equality holds since ¢, is the closest point in ) to m,. It follows that
(cn — My, Cp — mn+1> S 0.

Now, by (A.1) and the definition of ¢,,

d721+1 = [|[Mny1 — cn+1||2 < Mg — cn”2
2

l

! (N, + Mpt1) — ¢
n+1 n n+1 n

L

(ny1p
n? _ 1

< e el + gy e — el

n? 2 (33)2

CESANCERE

n(My — ¢n) + (Mnt1 — ¢n)|]

(A4)

where B3 is a constant which uniformly upper-bounds ||mp41 — ¢n-

Letting B; = max(2B3, Bs), it follows from (A.2) and (A.4) by simple calculation that d, <
By /+/n implies dp41 < B1/v/n + 1. O
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