
ARGONNE NATIONAL LABORATORY 
9700 South Cass Avenue 
Argonne, Illinois 60439 

GLOBAL METHODS FOR NONLINEAR COMPLEMENTARITY 
PROBLEMS 

Jorge J. Mor6 

Mathematics and Computer Science Division 

Preprint MCS-P429-0494 

April 1994 

Work supported by the Office of Scientific Computing, U.S. Department of Energy, under 
Contract W-31- 109-Eng-38. 

The submitted manuxrtpt has been authored 
bv a ContraCtor of the U. S. Government 
under contract No. W-31-104ENG-38. 
Accordingly, the U. S. Government retains a 
~OII~XSIUIIM. royalt~-fre~ license to publlrh 
or reproduce the published form of thlr 
contribution. OT allow othen to do Y), for .- - . .  
U. S. Gourrnment wrpom. I 



ABSTRACT 

Global methods for nonlinear complementarity problems formulate the problem as a systenl 
of nonsmooth nonlinear equations approach, or use continuation to trace a path defined by 
a smooth system of nonlinear equations. We formulate the nonlinear complementarity 
problem as a bound-constrained nonlinear least squares problem. Algorithms based on this 
formulation are applicable to general nonlinear complementarity problems, can be started 
froni any nonnegative starting point, and each iteration only requires the solution of systems 
of linear equations. Convergence to a solution of the nonlinear complementarity problem 
is guaranteed under reasonable regularity assumptions. The converge rate is Q-linear, Q- 
superlinear, or Q-quadratic, depending on the tolerances used to solve the subproblems. 
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Global Met hods for Nonlinear Complementarity Problems 

Jorge J. Mor6 

1 Introduction 

The solution of economic equilibria has been an important motivation for the develop- 
ment of algorithms for nonlinear complementarity problems. The work of Ahn [I] on the 
PIES (Project Independence Evaluation System) project, in particular, created much inter- 
est in the formulation and solution of economic equilibrium problems as complementarity 
problems. In this paper we are concerned only with the complementarity formulation. For 
additional information on economic equilibrium problems see the collection of papers edited 
by Manne 1301 and Nagurney [37]; Dirkse and Ferris [lo] provide an interesting collection 
of nonlinear complementarity problems. 

The aim of current research on the numerical solution of nonlinear complementarity 
problems has been to obtain algorithms with global convergence properties. This goal has 
proved to be elusive. Global met hods for the nonlinear complementarity problem 

specified by a mapping f : R" I- R", either transform (1.1) into a system of nonsmooth 
nonlinear equations or use continuation to  trace a path that leads, under suitable conditions, 
to a solution of the nonlinear coiiiplementarity problem. 

In the nonsriiooth nonlinear equations approach, the nonlinear Complementarity problem 
is transfortiied into a system of nonlinear equations h ( z )  = 0 with a mapping h : R" k R" 
that is continuous. but not differentiable everywhere. For exaitiple, in the approach studied 
hy Robinson f-ll]. the nonlinear cortipleriientarity problem is formulated as the nonsmooth 
systetii of nonlinear equations 

f(.+) + 2- = 0, (1.2) 

where .c+ = max(z, 0) and .r- = min(z, 0) .  A computation shows that a solution 5% of (1.2) 
yields a solution x: of the nonlinear complementarity problem ( 1.1). (:onvPrsely, a solution 
L- of ( 1 . 1 )  yields a solution xu - j ( x * )  of the nonsmooth systeiri ( 1.2). This approach has 
1)ee.n piirbued. i n  particular, hy Ralph [40], Dirkse and Ferris 191, and Xiao and Harker 
[-ti, 4x1. 

Pang [:3X] has also followecl a nonsrtiooth approach. In Pang's approach the nonlinear 
coniI'lenientarity problem is forinulatetl as the constrained system of nonlinear equations 

min(z,f(z))  = 0 ,  2 2 0. (1.3) 

Work supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract 
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Clearly, c* solves (t .3) if and only if c* is a solution of the nonlinear complementarity 
problem. This approach has been developed by Harker and Xiao [19], Pang and Gabriel [39], 
Gabriel and Pang [l-k. 151, and Monteiro, Pang, and Wang [32]. 

The nonlinear corripleinentarity problem (1.1) can also be formdated as the constrained 
system of nonlinear equations 

Z > O ,  YLO, 

where h : RZ’I * IRz’L is defined by 

(1.5) 

and Y is the diagonal matrix diag(y;). The nonlinear complementarity problem (1.1) is 
equivalent to  the system (1.4) because if the vector Z* solves problem ( l . l ) ,  then h(z*, y*) = 
0 for y* = f(z*) 2 0. and conversely, if the pair (z*,Y*) solves (1.4), then Z* solves (1.1) 
and y= = f(s=). 

In the continuation approach proposed by McLinden [31] and Kojima, Mizuno, and 
Norna [%I]. the nonlinear coniplenientarity problem is transformed into the constrained 
systerri of nonlinear equations 

(:onvergence results for this approach show that under suitable conditions there is a so- 
lution (.(.), y(r)) that converges to a solution of the nonlinear complementarity problem. 
The properties of the path (L(T), y(r)) have been explored in a series of papers by Kojima, 
Minino, a n d  Yonla [%I, Kojima. Megidtlo, and Yoma [ S I ,  antl Kojima, Megiddo, and 
Mizuno [22]. The continuation approach has received considerable attention in the niono- 
tone case since it covers linear programming and convex quadratic programming. Indeed, 
interior-point methods for linear complementarity problems can be viewed as modified New- 
ton methods that follow the continuation path defined by ( . c ( T ) ,  y(r)). See, for example, 
the discussions in Wright [46] and Kojima, Megiddo, antl Mizuno 1221. Recent work on 
nonlinear monotone niappings includes (-’hen and Harker [4], Kojima, Xoma. and Yoshise 
[%I, a n d  Wright [45]. 

Disadvantages of the continuation approach are that the inethod breaks down i f f  does 
not satisfy global assimiptions that guarantee, in particular. that the solution (Z(T), y ( r ) )  
of the system (1.4) exists for all T > 0 and that a starting point 20 with 20 > 0 and 
f ( -cg)  > 0 is required. The constrained nonsinooth equations approach, on the other hand,  
is defined for a11 mapping5 f, b u t  is guaranteed to converge to a sohition of (1.1) only if the  
iterates haw a liiiiit point that satisfies certain regularity assuinptions. X disadvantage of 
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the nonsmooth equations approach is that the lack of differentiability invalidates ciassical 
Newton and quasi-Newton methods, and thus it is necessary to device special purpose 
tiiethods for solving these systems. 

Other approaches to the solution of (1.1) include transformation into a sinooth system 
of nonlinear equations (Mangasarian [28], Watson [44], Subramanian [43], Kanzow [‘21]), 
and into an optimization problem (Fukushima [13], Mangasarian and Solodov [29], Kanzow 
[20], Geiger and Kanzow [17]). For additional approaches, see the paper of Harker and 
Pang [18]. Some of these approaches are related to the constrained nonsmooth equations 
approach. For example, Fukushima [ 131 shows that z* solves the nonlinear compleiiientarity 
problem (1.1) if and only if t* is a global solution of 

niin { llf(.c,llf - 112 - f ( 1 : )  - [z - f(z)]+llf : z 2 0 }  . 

Fukushima also shows that a stationary point for this problem is a solution of (1.1) if the 
Jacobian matrix is positive definite at the stationary point. Global convergence results for 
these approaches are generally weaker than those for the nonsmooth equations approach, 
and thus we do not emphasize these results. 

We forriiulate the nonlinear complementarity problem (1.1) as the bound-constrained 
nonlinear least squares probleni 

niin { +l//A(z, y ) l / i  : 1: 2 0, y 2 o } .  t 1.6) 

We show that this approach is valid because, under reasonable conditions, stationary points 
of { 1.6) are solutions to the nonlinear complementarity problem (1.1). Moreover, we show 
that our approach is valid under weaker conditions than the nonsmooth equations approach. 

We also propose the use of a trust region method for the solution of (1.1). The trust 
region niethotl is defined for all differentiable mappings f. Moreover, global and superlinear 
convergence to  a solution of (1.1) takes place under reasonable conditions. We also point 
oiit that inipleiiientation of the trust region method only requires the solution of systems 
of linear equations: there is no need to solve either a linear programming problem or a 
qiiatlratic prograiiiniing prol)lem. 

We begin t h e  study of the systeiii of equations defined by (1.4) a n d  ( l . , ? )  by introduc- 
ing the SI- and  the P-functions. These two classes of function were introduced by Mor6 
a r i d  Rheinboltlt [35]  as nonlinear generalizations of the P- and Po-matrices of Fietller and 
Pt5k [ l l ] ,  a n d  were first used for the study of nonlinear complerIientarity problems by 
Mor6 [3S, 341. The material in Section 2 relates our work to that of Kojima, Megiddo, and 
Xoma [24. 251 ant i  Kojima, Minino, and Noma [23] since their convergence results require 
that f be a fb-function in Et;. As  we shall see, the convergence results for the nonsriiooth 
systenis approach. nntl t h e  approach based on (1.6) are also related to the Po- and tho 
1’- f‘u 11 c t ions. 



In Section 3 we introduce a regularity assumption, and show that if t* is regular, then 
a n y  stationary point (.E*, y”) of (1.6) produces a solution z* of the nonlinear coinpleiiientarity 
problem (1.1). Our objective is to provide conditions that guarantee that any limit point 
of a sequence generated by an algorithm for (1.6) is a solution of (1.1). Conditions that 
guarantee regularity are explored in Section 4. Our results are similar to those obtained 
by Pang and Gabriel [39], Gabriel and Pang [14, 151, Monteiro, Pang, and Wang [32], and 
Xiao and Harker [47, 481, but we do not require any explicit assumptions of nonsingularity. 

The global convergence of the trust region method is presented in Section 5 ,  with the rate 
of convergence analysis in Section 6. We show that under reasonable regularity assumptions. 
the trust region method converges to a solution of the nonlinear complementarity problem 
(1.1). The rate of convergence is Q-linear or Q-superlinear, depending on the choice of tol- 
erances for the approximate solution of the subproblems. This analysis is of interest because 
the nonlinear least squares problem ( 1.6) is degenerate from an optimization viewpoint. 

In this paper 11 - 11 is the Euclidean norm. Vector inequalities apply to each component, 
and thus z 2 0 if a l l  the components of z are nonnegative. The  set IR,? consists of all 
.r E R” with 5 2 0, and Et:+ is the set of all 2 > 0. Given an index set C, the vector zc 
consists of all components t, of 2 with i E C. For a matrix A E Et”’”, we use the notation 
r tc  for the principal submatrix of A with elements u ~ , ~  and i , j  E C. 

2 Global properties 

The P- and Po-matrices of Fiedler and P t ik  [I11 play a central role in the study of the 
linear compleiiientarity problem since A E R’z is a P-matrix if and only if the linear com- 
plementarity problern 

.I: 2 0. T x (-4z+q) = 0 

has a uniqiie solution for any  4 E R.”. The nonlinear generalization of the P- and Po-matrices 
are the P- and  Po-functions. In this section we show. in particular, that f : RTL t RTz is 
a Po-function on R: if and only if the function h : Et2“ + RZT1 defined by (1.5) is a 
I’o-function on R:~. 

A fiinction f : RTL +, R” is a P-function in a set R if for each t and y in R with z # y, 
there i s  a n  index i such that 

Similarly, f : R’L k RTL is a I’o-function in R if for each 2 and y in R with z f y, there is 
a n  index i snch that 

-c, # ~ t ,  (xz - yz)[fi(xc) - f t ( y ) ]  L 0- 

The f’ ant l  &functions share many of the properties of P antl Po-rnatrices. For exartiple, 
every P-function is also a Po-function. Moreover, f is a f’o-function if antl only if the 
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function fe : R'l c R" defined by f c ( z )  = f ( z )  + €5 is a P-function for all e > 0. For 
additional properties of these functions. see More and Rheinboldt [35]. 

Theorem 2.1 The function f : R'& t+ R" is a Po-function on 
function h : R"' I- 

Proof. If h is a &-function, then given 2 # 2, there is an  index i such that  5; # z; and 

i f  and only i f  the 
zs . a Po-function on R?. 

( 2 ;  - zi)[hj(?,O) - h;(z,O)] 2 0. 

Since f;(z) = hi(z.0) for 1 5 i 5 TL,  we obtain that 

(2j - T i ) [  f j ( 2 )  - f i ( z ) ]  = (2i - zi)[hi(Z, 0 )  - hi(z,  0 ) ]  2 0, 

and thus f is a Po-function. 
Assume now that f is a Pi-function, and consider two pairs ( 2 ,  ij) # (2, y). First consider 

the case where 2 # 2. In this case the definition of a Po-function implies that  there is an 
index i with Z i  # x i  and 

( 2 ;  - z i ) [ f i ( 2 >  - f i ( x ) ]  2 0. 

If ( 2 ;  - z;)( pi - y;) 5 0, then 

( 2 ;  - . C I ) [ / l i ( E ,  & )  - h;(z ,  y)] = ( 2 ;  - z ; ) [ f ; (Z )  - f ; ( z ) ]  - (& - z;)(p; - 2;) 2 0. 

if, on the other hand, (2 ;  - xi)(& - y ; )  > 0 ,  then 

( j ;  - y;)[$;Z:; - y;z;] = [j; - &)[(jji - 7&)22 + (22 - z;)y;] 2 0. 

This yields the desired result if 2 # z. If 2 = z, then 

(j; - y;)[?j;2; - ycz;] = ( g ;  - y;)"z; 2 0 

for all indices. This proves that h is a Po-function. W 

For tliffermtiable mappings, Mor6 and Rheinboldt [35] proved that f is a Po-function in 
a rectangle fz if anti only if f ' ( x )  is a Po-matrix for each ;c E fl. We can combine this result 
with Theorem 2.1 to obtain that if f is differentiable on Wi, then h is a Po-function on 
fft?' if and  only if f ' ( z )  is a P~-rnatrix for each z E RF. Stronger results can be obtained 
if we  restrict attention to RT+. 

Theorem 2.2 I f f  : R'l +. R'l i s  diflweiztiuble ut z E R; u i d  j ' ( z )  is u Po-rnatrix, then 
h ' ( x , y )  is n Po-matrix for uny y E RT. :tloreover, i f  y > 0, then h ' (z ,y)  is nonsingular. 



Proof. The proof is along the same lines as that of Theorem 2.1. We need to show that for 
any nonzero vector tu E R27a, there is an index i such that 

where w = ( u , v ) .  Assume that u # 0. Since f’(z) is a &matrix there is an index i with 
u; # 0 such that ui[f’(z)u]i 2 0. If ‘uivi 5 0, then 

If, on the other hand, ‘uiq > 0, then 

This yields the desired result if u # 0. If u = 0, then 

for all indices. This proves that h’(z,y) is a Po-matrix. 
Assume now that y > 0 and that h’(z,y)w = 0. This implies that 

If u # 0, then there is an index i with ui # 0 such that ui[f’(z)u]; 2 0. Hence, uivi 2 0. 
This is not possible because y iu;  + z;o; = 0, yj > 0, and uj # 0. Hence, we must have u = 0, 
and thus ‘u = f ‘ ( z ) u  = 0. This proves that h‘(z,y) is nonsingular. 

Theorem 2.2 is closely related to Lemma 5.4 in the paper of Kojima, Megiddo, and 
Xoma [23]. However. they assume that z > 0 and do  not show that h’(z,y) is a Po-matrix. 

In our situation Theorem 2.2 shows that if f is a Po-function on R3, then (1.6) has no 
statioanry points in the interior of Ry. Indeed, if (z,y) is a stationary point with z > 0 
and y > 0, then 

I+, y)=h(z, y) = 0, 

and since Theorem 2.2 shows that h’(z ,y)  is nonsingular, we must have h(z ,y)  = 0. In 
particular, xiyi = 0. This contradicts our assuiiiption that (2, y) is in the interior of Ry. 

Theorem 2.3 Thc function f : RTL I-- R’l is a P-function on lR:+ i f  and only if the 
junction I C  : R,”~ c IK“~ is a P-function on R:;. 

Proof. The proof is very sixiiilar to that of Theorem 2.1. 

Mor6 and Rheinboltlt [35] proved that if f is differentiable on a rectangle 52 and f ’ ( x )  
is a P-matrix for each t E 52, then f is a P-function in fl; the converse is clearly false. 
(‘orribining this result with Theorem 2.3 we obtain that if f is differentiable on R$ and 
!’(.I.) is a P-riiatrix for each L E Et?, then It is a P-function on Rp+. 



3 Regularity 

We want to show that if z* satisfies a regularity assumption, then any stationary point 
(x*, y') of (1.6) yields a solution x* to the nonlinear complementarity problem (1.1). The 
regularity assumption requires the introduction of index sets associated with a vector x in 
R3. The first index set 

' 

is the set of indices that are complementary (C for complementary). Other indices can be 
classified according to the sign of z;f;(z); we have the negative and positive indices 

N = {i : ~i > 0, f ; ( ~ )  < 0 } ,  P = {i  : Zj  > 0, f ; ( ~ )  > O } ,  

and the residual indices 
= {i : 5; = 0, f j (Z)  < O }  . 

Note that these sets depend on a given z E Et:, but that the notation does not reflect this 
dependence. This should not cause any confusion because the given x E R$ will always be 
clear from the context. 

Definition 3.1 The vector x E R: is regular with respect to problem (1.6) i f  for any 
nonzero J E R" such that 

PP 2 01 

with 
.Tf ' (x)p  > 0. 

(3.1) 

(3.2) 

(3.3) 

Our objective is to provide conditions that guarantee that any limit point of a sequence 
generated by a n  algorithni for (1.6) is a solution of (1.1). Thus we are only interested in 
the regularity of points of attraction for a minimization algorithrn for (1.6) 

A solution of the nonlinear coiripleinentarity probleni (1.1) is regular according to this 
definition. This is clear because at a solution of (1.1) the sets P ,  dV, and R are empty. and 
thus t h e  only vector z that Satisfies (3.1) is the zero vector. 

Also note that the regularity condition imposes a restriction on the rows of the Jacobian 
matrix f'( x )  with indices in 

2, = JV u P u 72. 

7 



The set D is the set of defective indices; indices in the set C are not relevant because zc = 0. 
We usually choose pc  = 0 and guarantee regularity by iinposing conditions on [f'(z)lz, . 
For exainple, note that if we assume that [f'(s)].o is positive definite, then x is regular 
because we can choose p = z .  In particular, z is regular if f'(z) is positive definite. 

Theorem 3.2 Assume that f : R" H R" is differentiable on  Et;. If (x*, y*)  is a stationary 
point of (1.6), then x* is regular if and only if x* solves the nonlinear complementarity 
problem ( 1.1). 

Proof. We have already noted that if Z* is a solution to the nonlinear complementarity 
problem ( l .l),  then s* is regular, so we only need to prove the converse. 

If (z,y) is a stationary point of the nonlinear least squares problem (:3.2), then the 
Kuhn-Tucker conditions imply that there are niultipliers u and v such that 

where u and v satisfy the complementarity conditions 

T 
'U 2 0, v 2 0, u x = o ,  vTy=O. 

We express these conditions in tertiis of vectors t = f (z)  - y, and w = Y 2 x  as 

f'(z)Tz + w = 11, .x2y - 2 = v. (3.4) 

The first relation will not be needed until the end of the proof. However, in the proof below 
we make heavy use of the relationships z:y; - z; = v; and z; = f;(z) - y;. 

and since u;y; = 0. we riiust have z;y; = 0. Hence, x solves (1.1 j. In the remainder of the 
proof we show that the regularity assumption implies that t = 0. 

2 . -  . First consider the case where z = 0. If z = 0, then f ( x )  = y 3 0. Moreover, z;y 2 - vz, 

The first step in the proof is to show that 

We first show that zc = 0. If i E C ,  then z:y; - z; = vi shows that if xi = 0, then 
-z - -'vi 5 0. while z; = f ; ( x )  - yi shows that if f;(z) = 0, then z; = -y; 5 0. Hence: 
2; 5 0. If we assuiiie that zi < 0, then u; = z!y; - 2; > 0, and thus y; = 0 by the 
cornplementarity conditions. This leads to the contradiction 3; = f ; ( z )  - y; >_ 0. Hence. 
zi = 0 in this case. 

We prove that z p  > 0 by considering two cases. If i E P and 'vi = 0, then z; = xpy;. We 
cannot have yyi = 0 because then ~ ' i  = 0, but on the other hand, zi = f ; ( x )  > 0 for i E P .  
This contradiction shows that y; > 0. and thus t; > 0. If i E P ant l  u; > 0, then Yi = 0 by 
complententarity, ant l  thus zi = f i ( x )  > 0. Hence, we have shown that z p  > 0. 
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The proof that z , ~  < 0 and that ZR < 0 follows directly by noting that f;(x) < 0 for 
i E NU R, that  y; >_ 0, and that 3; = f;(z) - y;. 

The next step in the proof is to show that 

We first prove that wc = 0. Assume that i E C. If z; = 0, then w ;  = 0 is immediate. If 
5; > 0, then fi(z) = 0, and since we have already shown that zi = 0, we obtain that yi = 0. 
Hence, w; = 0 as desired. 

We prove that W N  = 0 by first recalling that z:y; = zi + v; and that z; < 0 for i E N .  
Hence, z:y; < v; ,  and since y;v; = 0, we must have y; = 0. Hence, W N  = 0. The proof that 
U ~ Y ,  = 0 is immediate since z; = 0 for i E R. 

We also need to note that since 2; > 0 for i E NU P ,  the complementarity conditions 
show that 

U N =  0, UT = o .  (3.7) 

For the final step in the proof, let p be the vector guaranteed by the regularity assump- 
tion, and assume that z # 0. The results (3.6) and (3.7), together with (3.2), clearly show 
that 

w T p 2  0 ,  u T p < O .  

The Kuhn-Tucker conditions (3.3) imply that f ’ ( ~ ) ~ :  + w = u, and thus these inequalities 
show that zTf ‘ ( z )p  5 0. This contradicts (3.3) and proves our result. 

Pang and Gabriel [39] proved a result siinilar to Theorem 3 2  They considered the 
problem 

iiiin { + I I H ( ~ ) I I ’  : x 2 o } ,  (3.8) 

where 
H ( x )  = min(x,f(z)) ,  

and showed that z E RT is a stationary point for this problem if and only if z E R; is 
.+regular, in the sense that there is a p E R7L such that 

and 
pi  2 -2; if f;(x) < xi, x; = 0 
p i  < -2; if f;(z) = x;, xi > 0 

pi  = -z; if  f;(x) > 2;  or fi(-c) = z;, 2; = 0. 
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A difference between our regularity assumption ancl .+regularity is that .+regularity requires 
that the vector p satisfy the equations 

This can be satisfied for arbitrary f only if we assume that [f'(z)]z is nonsingular. 
Also note that the notion of s-regularity depends on the scaling of f; that  is, if we 

consider the scaled function fs(z) = a f ( s )  where CY > 0, then f may be s-regular at a given 
.E, but fs can fail to  be s-regular a t  z. The dependence of s-regularity on the scaling can 
be explained by noting that problem (3.8) depends on the scaling o f f .  On the other hand. 
a computation shows that the stationary points of (1.6) are unchanged under this change 
of scale. 

We should also consider more general scalings since the nonlinear complementarity prob- 
lem (1.1) is invariant under the change of scale defined by fs(z) = DTf(D,,z), where D, 
and D, are diagonal matrices with positive diagonal entries. Note, however, that  stationary 
points of (1.6) are not invariant under this change of scale unless we replace the Euclidean 
norm by a scaled norm that reflects the scaling in the problem. 

An advantage of our approach is that most algorithms for solving the minimization 
problem (1.6) can be shown to generate sequences { (z~JJ~)}  such that any limit point 
(x*,y*) of { ( . c k , g k ) }  is a stationary point of (1.6). Hence, Theorem 3.2 shows that if 
c* is regular. then z* is a solution of the nonlinear complementarity problem (1.1). The 
assumptions needed to obtain this result are usually that f is continuously differentiable on 
R; and that the level set 

is bounded. Pang and (;ahriel [S9], ancl Gabriel and Pang El41 can show that limit points 
are solutions of the nonlinear coinpleinentarity problem (1.1) only if they assuine that z* is 
s-regiilar and [ f ' ( t " ) ] 1  is nonsingular for any index set Z such that 

In their terminology, they need to assume that the limit L* is 6-regular. 
The regularity assumption needed by the algorithm of Xiao and Harker 147,481 is siniilar 

i n  the sense that limit points of the sequence generated by their algorithm are guaranteed 
to be solutions of (1.1) only if [f'(.c*)]r is nonsingular for any index set Z such that 

{ i  : I C ;  > 0) c z c {i :Z; 2 O}. 

WP provide a precise definition of this regularity assumption at the end of the next section. 
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4 Regularity Conditions 

In this section we explore conditions that guarantee regularity of z in terms of the Jacobian 
matrix f'(z). This requires the introduction of two classes of matrices that have played an 
important role in the study of complementarity problems. 

A matrix A E RnXtL is a P-matrix if for each x # 0 there is an index i such that 
zc;[Az)]i > 0. Similarly, a matrix A E R'"n is a &matrix if for each z # 0 there is an 
index i such that zi # 0 and x;[Az]; 2 0. 

The P-matrices were introduced by Fiedler and Pt6k 1111 as generalizations of the pos- 
itive definite matrices, the M-matrices, and the irreducibly diagonally dominant matrices. 
One of the main reasons for the importance of the P-matrices in the study of linear comple- 
mentarity problems is that A E EttL is a P-matrix if and only if the linear complementarity 
problem 

x 1 0, A x  + q 2 0, z * ( A z  + q )  = 0 

has a unique solution for any q E R". 
Fiedler and PtSk [12] also defined the S-matrices: A matrix A E R"x'L is an S-matrix 

if there is an z # 0 such that 2 2 0 and A z  > 0, while A E RnX" is an So-matrix if there 
is an z # 0 such that z 2 0 and A z  2 0. Clearly, A is an S-matrix if and only if the above 
linear compleiiientarity is feasible for all q E R". 

The P-matrices and S-matrices are related. Indeed, a P-matrix must be an S-matrix, 
and any Po-matrix must be an  ,So-matrix. This result of Fiedler and P t ik  [12] is a direct 
consequence of the following classical theorem of the alternative. 

Theorem 4.1 Let A E R"Lx7L. 

.-t is mi .~-rnutr'il: ij and ou/y ij { y : y 2 0,  AT^ 5 0, y # 0) is empty. 

A is uii .5"-iiiatriz ij arid on/y ij { y : y 2 0,  AT^ < 0} is empty. 

For additional information on P- and S-matrices and their connection to Linear comple- 
mentarity problems, see the book of Cottle, Pang, and Stone [8]. 

a transformation. Let z E 
nonsingular diagonal rnatrix defined by 

The regularity requirements can be expressed i n  terms of nonnegative vectors by making 
a nonzero vector that satisfies (3 .1) ,  and let T be the 

Define the transforzried z by Z = T z ,  and note that 5~ = 0 and that Z p  > 0. We carry out  
the same transforrriation on f'(z) and define a transfornied .Jacobian matrix 

J ( z )  = T- ' f ' ( z )T- ' .  (4.2) 
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With this transformation, 2 is regular if there is a vector p f R’2 such that @ =  T p  satisfies 

q . > p  > 0) pi  2 0) i Af. (4.3) 

The following result is a direct consequence of this observation. 

Theorem 4.2 Assume that f : Rn ++ R“ is diflerentiable at x E and let the matrix 
J(z) be defined by (4.1) and (4.2). If [ J ( z ) ] E  is an S-matrix for  some index set t: with 
Z, c I ,  then x is regular. 

Proof. If [ J ( Z ) ] C .  is an S-matrix, then a computation shows that there is a vector jj E R’& 
such that j > 0 and [J(z)j]j l~ > 0. Since Zc = 0, Zz, > 0, and 2, C I ,  it is clear that jj 
satisfies (4.3). Hence, z is regular. H 

Theorem 4.2 is easy to apply is specific cases. For example, if z > 0 and f(z) > 0, then 
J(z) = f’(z), and thus Theorem 4.2 shows that x is regular if f’(z) is an S-matrix. We 
illustrate this remark with a nonlinear complementarity problem proposed by Kojima (see, 
for example, Dirkse and Ferris [lo]) where f is defined by 

1 3 2 ;  + 251x2 + 22: + 23 + 3x4 - 6 ) 
25; + 51 + z; + 3 2 3  + 2x4 - 2 

32; + 2 1 2 2  + 22; + 2x3 + 3x4 - 1 
f ( 4  = . (4.4) 

\ x ;  + 32; + 2x3 + 3 2 4  - 3 ) 
Xiao and Harker [47] noted that their damped Newton method converges to  x*, with 

x* = (1.05, 1.33,1.26,0.0), f (z*)  = (4.98,6.86,9.84,5.99), 

if started froiii = ( 1 , l .  1 .1) .  The damped Newton method fails a t  x* because the (linear 
coniplwientarity) subproblem required by this method is infeasible. On the other hand, xx 
cannot he a limit point for the trust region Newton method that we propose in Section 5 
(or any reasonable algorithrii based on the forniulation (1.6)) because zx is regular. -4 full 
justification of this remark is provided by the results in Section 5 ,  but for now note that 
f’(s”) is a n  .C-tnatrix, and  thus Theorem 4.2 shows tha t  .E- is regular. 

Theorem 4.2 is also easy to apply if 2 > 0 and f(x) < 0. In this case .I(.} = f ’ ( x ) ,  and 
thus Theorem 3.2 shows that L is regular if f ’ ( 2 )  is an  S-matrix. This remark applies to 
the problem defined by (4.4), because for this problem f ’ ( x )  is an S-matrix. 

Two special cases of Theorem 3.2 are of interest. For the following result note that the 
definition of a P-matrix implies that if D is any  nonsingular diagonal matrix, then A is a 
P-matrix (Po-riiatrix) if a n d  only if D A D  is a P-matrix (Po-matrix). 

Corollary 4.3 Iff  : R’& h R7L is diflerentiable a t  2 E R; arid [ f ’ ( ~ ) ] n  is a P-matrix, 
tttert L is rrgvlur.. 



Proof. The result follows from Theorem 4.2 because if [ f ’ (z ) ]~  is a P-matrix. then [ J ( t ) ] D  

is also a P-matrix, and thus an  ”?-matrix. 

Corollary -1.3 shows, in particular, that if f’(z) is a positive definite matrix, an 11.1- 
matrix, or an H-matrix with positive diagonal entries (f’(x) is an H-matrix if f ’ ( x ) D  is 
strictly diagonally dominant for some diagonal matrix D with positive diagonal entries), 
then x is regular. 

We now consider the positive semidefinite case in more detail. As mentioned in the 
introduction, this case is of special interest because it covers the linear programming and 
convex quadratic programming problems. 

Corollary 4.4 Assume that f : R” +-+ R“ is differentiable at x E lR: and that (x,y) 
i s  a stationary point of (1.6) for some y E R3. If [f’(z)]z, is positive semidefinite, then 
J(z) = f’(x). Ift in addition, [f’(z)]e is a n  S-matriz for some indez set & with 27 C &, 
then x is regular. 

Proof. We first show that if [f’(z)]z, is positive semidefinite, then P is empty. The proof 
uses results and notation established during the proof of Theorem 3.2. In particular, recall 
that we have already shown that if P is not empty, then z p  > 0. 

We prove that w p  > 0 by noting that wi = y:z; and xi > 0 for i E P and that 
y, = zi + f;(t) > 0 for i E P. Now recall (3.5)) (3.6), (3.7), and that the Kuhn-Tucker 
conditions (:3.4) ixriply that f ’ ( . ~ ) ~ z  + w = ZL with u 2 0. Hence, 

2 f’(z)z = z; f‘(.c)zz, = U R J R  T - w p z p  T _< - w p z p  T < 0. 

This rontratlicts the assumption that [f’(.c)]o is positive semidefinite. Hence, P is empty, 
and thus ./(x) = f’(x). 

If we also assume that [f’(z)]c. is an S-matrix, then [ J ( x ) ] c .  is an  S-matrix, and the 
result foUows from Theorem 4.2. W 

In this result we assumed that (z,y)  is a stationary point of (1.6) for some 9 E IR:. 
There is no loss of generality in assuming this because we arp only interested in the regularity 
of points of attraction for a n  algorithm for (1.6). 

(‘orollary 4.4 shows that we can guarantee the regularity of c without inposing any 
rionsingiilarity assuniptions on f‘(.c). For example, if f ’ ( z )  = ~ ( s ) u ( t ) ~  for a n y  U ( L )  > 0. 
then f‘( .c) is a positive seiriitlefinite .5‘-1natrix. On the other hand, f’(x) is clearly singular. 

Theorem 4.5 Iff : R’l + R’l is dijfwentiablc at z E RF and [f’(z)]z, is a nonsi~zgular 
€{:,-matrix, t h ~ n  x i s  regular. 

Proof. Since [f’(.c)].r, is a Po-rxiatrix, [J( .x)]z ,  is also a Po-matrix, and thus a n  .So-matrix. 
Hence. there is a vector f i  # 0, with PL. = 0 and jjz, 2 0 such that [J(.cc)]0jj~, 2 0. Since 
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2~ = 0 and 2~ > 0 ,  we can fail to satisfy (4.3) only if [ J ( z ) ] D @ D  = 0. However, this is not 
possible because [J(.c)]z, is nonsingular and @v # 0. Hence, x is regular. H 

The main assumption used in the continuation approach of Kojima, Megiddo, and Noma 
[‘23] is that f is a Po-function. Under this assumption Mor6 and Rheinboldt [35] proved that 
f’(x) is a Po-matrix. Thus, Theorem 4.5 shows that if we restrict ourselves to Po-functions, 
then we need to assume that [f’(x)].o is nonsingular to guarantee that an algorithm based 
on the formulation (1.6) converges to a solution of ( 1 . 1 ) .  

We now present a variation on the previous results that is closely related to the results 
of Pang and Gabriel [39], Gabriel and Pang 1141, and Xiao and Harker [47, 481. Recall that  
if A E is partitioned in the form 

and the matrix Al.1 is nonsingular, then A s  = A Z , ~  - A ~ , ~ A < ; A I , ~  is the Schur complement 
of AI,, in A .  

Theorem 4.6 Let f : R” w 

and the Schur co~riplenient of [f’(x)]n/ in [J(x)]z, is an S-matrix, then x is regular. 
be differentiable at x E R:. If [f’(z)]~ is nonsingular 

Proof. Partition [J(x)].o into 

where A I . ,  = [f’(z)],v . We want to show that there are vectors p l  and p p  such that 

Since  AI,^ is nonsingular, this system is equivalent to 

where A s  = ‘42,~ - A2,1A;,iA1,2 is the Schur complement of [f‘(x)],v in [ J ( z ) ] p .  Since A,- 
is a n  .S-matrix. we can  find a vector pz > 0 such that Aspa > 0, and since i l l ,* = [ . f ’ (x )] ,~  
is nonsingular. we can solve A l , l p l  + A1,2p2 = 0 for p l .  Hence, 



satisfies (4.3) because 5c = 0 and Z.D > 0. Hence, z is regular. 

Corollary 4.6 is similar to a result of Pang and Gabriel [39] that guarantees s-regularity. 
In their Proposition 3, they assume that [f’(z)]n/ is nonsingular and that the Schur cotn- 
pletnent of [f’(z)],v in [f‘(z)]z, is an S-matrix, but the definitions of the index sets N and 
il, are different. For example, in their result 

For additional details, see Pang and Gabriel [39]. 
Corollary 4.6 is also related to the definition of regularity used by Ralph [40], Dirkse 

and Ferris [9], and Xiao and Harker [47, 481. They require that [f’(z)]x be nonsingular, 
where 

Ic‘={i: x; > O ) ,  

and that the Schur complement of [f’(z)]n in [f‘(z)]~: be a P-matrix, where 

.E= { i :  xi 20). 

These conditions imply that [f’(z)]r is nonsingular for any index set Z with K: c Z. In 
particular, f’(zr) must be nonsingular. 

We cannot compare their results with ours because the assumptions are made on different 
submatrices of the .Jacobian matrix. The major difference s e e m  to be that results based 
on our regularity condition do not require explicit nonsingularity assumptions. 

5 Global Convergence 

LVP now show that a trust region method for the solution of (1.6), where h : RZn t is 
defined by ( l . .j),  can be used to generate a sequence {(zr;, yk)} such that if {zk} has a limit 
point I* that is regular, then L* is a solution to the nonlinear coniplenientarity problem 
(1.1). We use the trust region method of Burke, Mort?, and Toraldo [:I] for the general 
iiiiniiiiization problem 

rnin { f o ( z )  : z E Q } ,  (5.1) 

where 12 is a general closed convex set, but specialized to the case where 

(5.2) 

Other algorithriis could have been used, for example. those of Bertsekas 121, G a y  [16], 
Soares and Jfiidice [42], and Coleman and Li [ 5 ] ,  but the rate of convergence theory of 
these algorithms does not cover degenerate minimization problems. For problem (5.1 ) with 
JZ = Et:‘, nondegeneracy means that 

( 5 . 3 )  
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However, in our case fo is given by (5.2), and h ( Y )  = 0 because z* is a solution of the 
nonlinear complementarity problem. Hence, 

VfO(Z*j = h’(z*)%(z*) = 0, 

so that the solution is degenerate. The rate of convergence theory for the algorithm of 
Conn, Gould, and Toint [6, 71 has been extended to  the degenerate case by Lescrenier [‘27], 
but these results do not cover the projected searches that we are proposing. We discuss this 
point further in the next section. 

The trust region method generates a sequence { z k } ,  where zk  = ( z k , y k )  and Zk E Rp. 
At each iteration we have a bound Ak: and a model ‘$k : R7& -+ R of the possible reduction 
f o ( z k  + tu) - f ~ ( z k )  for llwl} 5 Ak. We use 

The iterate z k  and the bound Ak are updated according to rules that are standard in trust 
region methods for unconstrained minimization. Given a step sk such that z k  + Sk E 
and T / J ~ ( s ~ )  < 0, these rules depend on the ratio 

(5.3 j 

of the actual reduction in the function to the predicted reduction in the model. Since the 
step s k  is chosen so that rLk(sk) < 0, a step with pk > 0 yields a reduction in the function. 
Given 771 > 0. the iterate z/; is updated by setting 

The updating rules for ilk depend on a constant q 2  such that 

while the rate at which .lk is either increased or decreased depend on constants at ,  02, a n d  
u7 such that 

0 < 61 < 6 2  < 1 < U?. 

The trust region bound nk is updated by setting 
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We choose a step s k  that gives as much reduction in the model y!~k as the Cauchy step sf' 

generated by the gradient projection method applied to the subproblem 

nun ( $ k ( w )  : zit + w E a, 1 1 ~ 1 1  5 ak} . 
The Cauchy step sf is of the form s k ( a k ) ,  where the function S k ( * )  is defined by 

S k ( a )  = [Zk - avfo(Zk)]+  - .Zk 

and the scalar ak is chosen so that s k ( a r k )  produces a sufficient reduction. We require that 

7 J l k ( S k t Q k ) )  2 PO (VfO(lk)Tsk(ak))  7 11sk(ak) l l  <_ P z A ~ ,  , (5 .5 )  

for constants po and such that 

and that there are positive constants y1 and 72 such that 

where 6 k  > 0 satisfies 

d'k( .%(6 .k) )  2 ( 1  - p o )  ( C f o ( : k ) T s k ( 6 k ) )  or I l S k ( W 1  2 p1&. 
The function defined by sk(-) defines a piecewise linear path on the feasible set. and the 
coiiiposite function + k ( s k ( - ) )  is a piecewise quadratic that is convex on each piece. The above 
requireinents on a k  require that $k( s k (  a k ) )  achieve a sufficient reduction as coinpared with 
the linear model and that the step Sk(cYk) not be too small. For more information on the 
above requirertients on ak, see Burke, Mor&, and Toraldo [3]. 

trial values such that 

These requirenients can be satisfied by generating a decreasing sequence {ak ( 1 )  } of positive 

with af) bounded away from zero, and setting cyk to the first trial value that satisfies the 
snfficient decrease condition ( 5 . 5 ) .  A n  advantage of this procedure is that it produces a n  
acceptable  CY^ with a finite nuinber of evaluations of 7/lk.  For more details on this type of 
search. see Section 4 of Mor6 a n d  Toraldo [XI. 

(iiven the Cauchy step s f ,  we require that the step sk satisfy 

1.5.6) 

This requirement is quite natural and can always be satisfied by choosing .ck = s f .  However. 
this choice is likely to lead to slow convergence, since the method would then reduce to 
a version of steepest descent. In  the next section we explore other choices that lead to 
s i i  p e r li near an (1 q 11 at1 ra t i c con vergen c e.  



Theorem 5.1 Let f : w be continuously diflerentiable on RT, and let { ( x k , y k ) )  
be the sequence generated by  the trust region Newton method. Assume that (xk} is bounded, 
and let x* be a limit point of {xk}. If x* is regular, then x* is a solution to the nonlinear 
compfementan'ty problem ( 1.1) and 

Proof. The trust region method generates a sequence {zk}  such that {(lh(zk)ll}  is decreas- 
ing. Since {zk} is bounded, and 

the sequence {yk} is bounded. Hence, { z k }  is bounded. Theorem 5.4 of Burke, Mor&, and 
Toraldo [a] now implies that every firnit point of { Z k )  is a stationary point of (1.6). Since x* 
is regular, Theorem 3.2 shows that x* solves the nonlinear complementarity problem (1.1). 

6 Superlinear Convergence 

The analysis of the rate of convergence for the trust region method is delicate because, 
as mentioned in the preceding section, the minimization problem (1.6) is degenerate at a 
solution of the nonlinear complementarity problem. In this section we show that we can 
stili obtain superlinear convergence if h'(z*) is nonsingular at  a solution of (1.1). 

We have already explored in Section 5 conditions that guarantee that a limit point of 
the sequence generated by the trust region Newton method is a solution of the nonlinear 
complementarity problem ( 1.1). In this section we assume that z* is a solution of (1.1) with 
.E* + f ( c " )  > 0 ant i  that 

L? = {i : xf > 0, f ; ( z * )  = O } ,  

is nonsingular. These assumptions are reasonable because if we knew B,  we would need to 
solve the systeni of nonlinear eqiiations 

~ i i ( 5 ; 7 , 0 )  = 0, i E B ,  

to (leterrnine J;?. The following result provides additional motivation for our assumptions. 

Theorem 6.1 iff : +. R'l be continuously diflerentiuble on R;, arid zT is a solution of 
the rtonlinear contplernentarity problem (1.1), then h'(x*, y * )  is nortsingular for 2/* = f (x=) 
i f  and only if ( 6 . 1 )  is non.singular and x* + f ( x * )  > 0. 
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Proof. If h'(z*, y") is nonsingular, then we must have zf + yz* > 0 for all i; otherwise a row 
of h'(z*,y*) would be zero. Hence, z* + f(z*) > 0 when y* = f(z*). Also note that if 2~ is 
any vector with U j  = 0 for i 4 B,  then 

and since we have assumed that h'(z*, y*) is nonsingular, we must have [f'(z*)]gua # 0 for 
U B  # 0. Hence, (6.1) is nonsingular. 

We now assume that (6.1) is nonsingular and that z* + f(z*) > 0, and we prove that 
h'(x*,y*) is nonsingular for y* = f(x*). If 

for some vectors u and v, then the definition of h' implies that 

If i E B, then yf = 0 and x7 > 0, and thus v; = 0. Moreover, if i 4 B, then y; > 0 and 
zf = 0, so that uj = 0. Hence, f'(z*)v = u implies that [ f ' ( z * ) ] 8 u ~  = 0, a n d  since we 
assumctl nonsingularity of this submatrix. ut7 = 0. We have shown that u = 0, and thus 
u = f ' (zR)u = 0. This proves that h'(z*,y*) is nonsingular. I 

We want to use Theorem 6.1 to  prove that if {(xk, yk)} is the sequence generated by the 
trust region Newton method, and if zx is a limit point of {zk} that satisfies the assumptions 
of Theorein 6.1, then the whole sequence converges to zx. 

Theorem 6.2 Let f : R" + be continuously diflerentiable on Rf,  a n d  let {(xk,yk)} 
be the sequence generated by the trust region iVewtori method. Assume that {xk} is bounded, 
a n d  let X I  bc a limit point of {xk}. I f  X- is a solution to the nonkirieui. coriipleriie7ital.ity 
pinblern ( 1.1 ) such that x* + f(x*) > 0 and  (6.1) is raonsingular, then {(xk, yk)} converges 
to (s*. y') with y- = f (x*) .  

Proof. The first step in the  proof is to show that z' is a limit point of {sk}. This result 
r a n  he established by noting t h a t  since Theorem 5.1 guarantees that { h ( z k ) )  converges to 
zero, { f (xk)  - y k )  converges to zero. Thus, f (x* )  is a limit point of {yk). This shows that 
2- is a limit point of { z k } .  

For the rest of the proof we need to estimate the lxhavior of It near z*. Theorem 6.1 
guarantees that h'[z*) is nonsingular, and thus WP can choose S > 0 so that It'( 2) is nonsin- 
gular for 11; - ;"I1 5 S. Let E > 0 be such that 
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for (13 - z*ll 5 6. Moreover, since h ( z * )  = 0, we can also require that 

whenever 112 - z*ll 5 S. Finally, choose an index ko such that ( lzko - z*ll <_ S and 

(6.3) 

This is possible because ( h ( z k ) }  converges to zero. We use an induction argument to show 
that these estimates imply that 

The first step in the induction argument is satisfied by the choice of the index ICo. Assume 
that IIzk - z-11 5 6 for some k 2 k.0, and note that (6.3) and (6.4) imply that 

- z'll 2 6 for all k 2 k.0. 

Hence, l lzk - z'll 5 a b .  We bound the size of SI; by noting that since ?,!jk(sk) 5 0, 

and t hiis 
11 It'( zk )sk 11 5 211 h( zk) 11 

This inequality, together with (6.2) and (6.4), implies that 

Hence, llSkll 5 $6, and thus /Izk+l - z"ll 5 6. This completes the induction argument 
and shows that l lzk - 2'11 5 6 for all IC 2 ko. Convergence of { z k }  to z* is then a direct 
consequence of (6 .3)  and the convergence of { h ( z k ) }  to zero. 

The rate of convergence of the sequence generated by the trust region method depends 
on the choice of sk .  We base the computation of the step s k  on the subproblem 

(6.5) 

where zk.1 = + s f .  the quadratic q k  : R'& +- R is defined by 

2 
q k ( 7 )  = 4 p z ( z k )  + h ' ( Z k ) ( Z  - , 

a n d  A(zk , l )  is the active set at z k . 1 ,  that is, the constraints i such that [ ~ k , l ] i  = 0. 
We can always choose .t;k = s f ,  but it is usually desirable to reduce qk further. The 

subproblem (6 .5)  is an  unconstrained linear least squares problem, so it is not difficult to 
compute a descent direction pk,l  with [pk,l]i = 0 for i E A ( z ~ , ~ ) .  We can then examine qk 
in the ray z k , l  + j j p k , , ,  with /' 2 0, and choose ,Llk,1 so that qk is minimized; if q k  does not 
have a rnininiurn, choose /3k,1 = fm. The ininor iterate zk,2 = zk , l  + j j k , l p k , 1  may not be 
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acceptable either because z k , ~  is not feasible or because zk,2 does not satisfy the trust region 
constraint 11zk,a - zkll 5 ilk. Thus, if necessary, we modify f3k,l so that both constraints are 
satisfied. 

The descent direction p k , ~  can be generated by either direct or iterative methods. The 
use of iterative methods is usually advised for large problems, while direct methods tend to 
be more reliable for sinall and medium-sized problems. 

Instead of using a line search to determine t k , 2  we could use a projected search along 
the path defined by [ t k , ~  + j ; l p k , l ] + .  The advantage of this approach is that we would be able 
to add several constraints at  once. In thjs case we would not insist on strict decrease of qk 

from ~ k , ~  to zk,2 because this would require the determination of the first local minimizer. 
Instead we would require that the sufficient decrease condition 

Q k ( Z k , 2 )  I Q k ( Z k , l )  + P O V Q k ( Z k , l  )*(Zk;Z - -zk, l )  

be satisfied. This is precisely the same condition that we require for the computation of 
the Cauchy point. For additional details on projected searches, see Section 4 of Mor6 and 
Toraldo [36] .  

The process that we have outlined above can be repeated to generate a sequence of Ininor 
iterates :k ,1,  z k , ~ , .  . . , Z ~ J .  Global convergence is obtained as long as the quadratic decreases 
at  each stage, but a superlinear rate of convergence requires a stronger requirement which 
is discussed later. 

Calculation of step. Let zk,O = sk, and compute 1 minor iterates z k , ~ ,  zk ,2 , .  . . , z k , ~  with 

C 
ZkJ E Ry, lI=k,J - t k l l  5 P l A k ,  z k . 1  = zk + s k  , 

and such that the sufficient decrease condition 

is satisfied. The step is then defined by sk  = zk,l - z k .  

We have assumed that we always compute a fixed number 1 of minor iterates z k J .  This 
only iriiposes an upper bound on the number of minor iterates because we can always set 
X J + 1  = 4.J. 

The conditions on the minor iterates are similar to those used by Lescieniei p27]. How- 
ever. Lescrenier assunietl that 

Qk('k,J+l 5 Qk(Cw,'k,J+l + ( - c r ) z k , J ) ?  a E [o, l]. (6.7) 

This rquirement can be satisfied if a line search is used to choose the minor iterates, but 
it rilles out the projected searches that we have proposed. Also note that our convergence 
analysis does not require Lescrenier's [W] assumption that 

A(=k + ~ f )  C d(zk + ~ k ) .  



This condition rules out, for example, choosing zk  + SI, in the interior of RI;. 
An important observation is that assumption (6.7) on the minor iterates is stronger than 

(6.6) when q k  is a quadratic. This observation can be verified by proving that if 4 : R CI R 
is a convex quadratic on [0 ,  13, and 

then 
d(1) I 4(0) + 44’(0). 

Indeed, since $I( 1) 5 d(cy.) for cy. E [0,1], we must have #(1) 5 0, and since +.is a quadratic, 

The result is now a direct consequence of these remarks. 
The rate of convergence results depend on showing that eventually the trust region 

bound is not active. This result requires an estimate of the decrease of the quadratic q k .  
The estiniates needed for this result are valid for a general strictly convex function. 

Lemma 6.3 Assume that 0 : R k R is twice diflerentiable on  [O, 11 and that there is a 
E > 0 such that #’(a) 2 E on [O, 11. lf 

Proof. The mean value theorem shows that 

for some 8 E (0, l ) ,  and thus (6.8) implies that 

Hence, 

as desired. 

This result has irnniediate application to the analysis of the trust region method. If we 
define 

4(a) = Q~C. ( ~ z l ~ . , j + ~  + (1 - a)zk , j )  
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and assume that the sequence { z k }  converges to J* = (x*, y*) with h'(x*, y*) nonsingdar, 
then there is an E > 0 such that 

for all k 2 0 sufficiently large. Hence, Lemma 6.3 implies that 

We will need this estimate for our next result. 

Theorem 6.4 Let f : R" +, R" be continuously differentiable on with f' Lipschitz 
continuous in a neighborhood of x*, and  let { ( x k , y k ) }  be the sequence generated by the 
trust region Newton method. Assume that { x k }  converges to a solution x* of the nonlinear 
co7nplenrentarity problem (1.1) such that x* + f(x*) > 0 and (6.1) is nonsingular. If the 
step SI; is calculated as specified aboue, then the trust region bound Ak is bounded away front 
zero. 

Proof. In the proof we bound Ipk - 11, where p k  is defined by (5.4), and show that the 
bounds converge to zero; the rules for updating Ak then show that A k  is bounded away 
from zero. We begin by noting that 

1112(Zk + Sk)ll '  - lI lZ(Zk) + I L ' ( Z k ) S k ( 1 2  
P k -  1 = 

l / ' k ( s k )  

The denominator of this expression is estimated by proving that there is an EO > 0 such 
that 

- ? b k ( s k )  2 sOllsk112+ (6.10) 

Since we have already established (6.9), we obtain that the decrease generated by s k  satisfies 

On the other hand,  

I 

where 
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llh(zk f S k )  - h ( = k )  - h ’ ( z k ) s k l (  5 sup { llh’(zk f o s k )  - h’(2k)ll) llSkll 5 6c/ISk1)2, 
o < e g  

where K, is the Lipschitz constant for h‘. For this last estimate we made use of the fact that 
the Lipschitz continuity o f f ’  implies that h’ is also Lipschitz continuous near z*. 

These estimates show that Ipk - 11 I ( K / E O ) ~ ~ ,  so that the our result will be established 
if we show that { p k }  converges to zero. Since { Z k }  converges to t* with h(t*) = 0, we 
obtain that {pk}  converges to zero if { s k }  converges to zero. Note that $ k ( s k )  5 0, and 
t hiis 

I l l i ( Z k >  -k h ’ ( Z k ) s k ( l  5 ( l h ( Z k ) ( l .  

Hence, the nonsingularity of h’(z*, y’) implies that 

This estimate clearly shows that { s k }  converges to zero. I 

Theorein 6.4 requires that Zk,J satisfy (6.6), and thus the Cauchy step sf is acceptable. 
1-\ superhear  rate of convergence requires that we impose further conditions on S k .  

When the iterate z k  is far away from the solution, the step s k  is usually determined 
because the trust region bound I)Zk,J - zkll 5 p 1 A k  is encountered during the computation 
of z k J + 1 .  However, as we converge, Theorem 6.4 shows that the trust region does not 
interfere with the computation of the step, so that we are free to reduce Qk further by 
searching the feasible set. We propose to continue computing minor iterates until Zk,l is an 
approxiniate ininiinizer of qk on the current active set A ( Z k , [ ) .  If Pk is the projection into 
the subspace 

{ z E EtLTL : =* = 0, i E A(2k.l)) 7 

(6.11) 

where Q k  is the Jacobian matrix with respect to the free variables, that is, 

W e  can iriotivate this requireinent by noting that if q k ( w )  = q k  ( 2 k . l  + Pkw) . then 

In particular, if  we choose [ k  = 0, then zk,l is a minimizer with respect to d ( s k , i ) -  

We have already noted that the step s k  is usually determined because the trust region 
bound J I Z ~ , ~  - zkll 5 p1Ak is encountered during the computation of Z ~ , ~ + I .  Thus, we only 
need to assume that the step s k  satisfies (6.11) if l l sk l l  5 prAk for some p, < PI. 

24 



Theorem 6.5 Let f : RrL H RrL be continuously differentiable on R'$ with f' Lipschit2 
continuous in a neighborhood of z*, and let {(zk,yk)} be the sequence generated by the 
trust region Newton method. Assume that {zk) converges to a solution x* of the nonlinear 
conzplententarity problem (1.1) such that x"+ f(x") > 0 and (6.1) is nonsingular. If the step 
S k  is calculated b y  the algorithm outlined above, and (6.11) holds whenever IlSkll 5 p*Ak for 
some p,, < pi ,  then { Z k }  converges Q-linearly to Z" when is suicient ly  small, where 

6" = lim sup &. 
k-++co 

The rate of convergence is Q-superlinear when E* = 0 ,  and &-quadratic when 

for some constant o > 0. 

Proof. The inain estimate that we need for this result is that 

for some E > 0 and some sequence { ~ k }  converging to zero. Note that 

and thus standard estimates of the last term show that 

where { ~ k }  converges to zero. We now note that 

since d(zk+l)  c d(z*) ,  and thus 

where E is a lower bound on the eigenvalues of h ' ( z k ) * h ' ( z k ) .  Hence, (6.12) holds. 
The result follows from (6.12) by standard arguments. Since 
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The first inequality was established at the end of the proof of Theorem 6.4, while the second 
inequality follows from the existence of h'(z') with h(t*)  = 0. Hence, (6.12) shows that 

(6.13) 

This inequality shows that {zk} converges Q-linearly to Z* if p2t* < E .  inequality (6.13) 
also shows that the rate of convergence is Q-superlinear when E" = 0, and Q-quadratic 
when [k 5 ~~1lh(zk)ll for some constant a > 0. H 

A weakness in our convergence analysis is that we are not able to prove Q-linear con- 
vergence for any <* < 1. This may not be possible since for degenerate problems the active 
set A ( q )  may not settle down; R-linear convergence seems to be possible. 

The convergence results of Pang and Gabriel [39], and Gabriel and Pang [14], require 
that the limit point z* be s-regular and b-regular. These regularity assumptions imply that 
(6.1) is nonsingular, but do not require our assumption that x* + f(z*) > 0. 

The algorithms proposed by Pang and Gabriel [39], Gabriel and Pang 114, 151, and 
Monteiro, Pang, and Wang [32] are quite different from the trust region method. From a 
computational viewpoint, an important difference is that each iteration of these algorithms 
requires the solution of a linear programming problem or a quadratic programming problem, 
while the trust region method requires the solution of systems of linear equations. 
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