Discussion Paper No. 1152

DECOMPOSITION AND REPRESENTATION
OF COALITIONAL GAMES

by

Massimo Marinacci’
Revised: December 1995

" Department of Economics. Northwestern University, Evanston. IL 60208.



Decomposition and Representation

of Coalitional Games®

Massimo Marinacci’
Department of Economics

Northwestern University

Evanston. IL 60208 (USA)

Draft of December 1995°

Abstract

A coalitional game is a real-valued set function v defined on an algebra F
of subsets of a space X such that »{2) = 0. We prove the existence of a one-
to-one correspondence between coalitional games bounded with respect to the
composition norm and countably additive measures defined on an appropriate

space.

1 Introduction

Let F be an algebra of subsets of a given space X. and V' the set of all set functions v
on F such that v (@) = 0. These set functions are called transferable utility coalitional
games {games, for short). In Gilboa and Schmeidler (1995) it is proved the existence

of a one-to-one correspondence between the games in 1 that have finite composition
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norm (sec next scction) and the bounded finitely additive measures defined on an
appropriate algebra ¥ of subsets of 27 The algebra ¥ is constructed as follows: for
TeFodefineT* CFhw T ={SecF:2#SCT} Denote @ ={T": @ #T € F}.
Then U is defined as the algebra of subsets of 27 generated by ©. On the basis of
this representation. Gilboa and Schmeidler (1995) show that every game with finite
composition norm can be decomposed in the difference of two totally monotone games
{i.e. belief functions). Their work is related to Choquet (1953-54) and Revuz (1955-56).
as discussed on p. 211 of their article.

In this paper we first give a direct proof of the mentioned decomposition theorcm.
a proof based on the well-known Dempster-Shafer-Shapely Representation Theorem
for finite games (sce e.g. Shapley [1953] and Shafer {1976]). On the basis of such a
decomposition we obtain a one-to-one correspondence between the games in 17 that
have finite composition norm and the bounded regular countably additive measures
defined on an appropriate Borel a-algebra. To construct this o-algebra we proceed as
follows. Let U7 be the set of all {0. 1}-valued convex games {(a game v is convex 1f
(A +v(B) < v{AUDB)+v(ANB) for all A. B € F). The set U, can be endowed with
a natural topology 7. as defined in next section. Let B(U}) be the Borel a-algebra on
(Uy. 7). This is the o-algebra we use to get the mentioned one-to-one correspondence.

A main advantage of this novel representation theorem is that the space of bounded
regular countably additive measures on B(U;) has much more stricture than the space
of finitely additive measures on the algebra ¥. Besides. unlike finitely additive mea-
sures. regular countably additive measures are widely studied in measure theory. and
technically more convenient.

For finite algebras. both the Gilboa-Schmeidler representation and the one proved
here reduce to the Dempster-Shafer-Shapley Representation Theorem.

Finally. in this work we nse a topological approach. while in Gilboa and Schineidler
(1995) an algebraic one is used. This is a secondary contribution of the paper. In
particular. with our topological approach it is possible to reobtain also their finitely
additive representation.

In sum. the approach taken in this paper leads to novel results. withont losing any
of the results already proved with the different algebraic approach taken in Gilboa and
Schmeidler (1995). This gives a unified perspective on this topic.

The paper is organized as follows. The next section contains some preliminary
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material. In section 3 some properties of a locally convex topological vector space on
V are proved. In section 4 a direct proof of the decomposition theorem is provided. In
section 5. which is the heart of the paper. the main result is proved. As a consequence of
this result. in section 6 it is proved that every Choquet integral on F can be represented
by a standard additive integral on B(U,}. In section 7 it s showed how the finitely
additive representation resnlt of Gilboa and Schmeidler {1995) can be reobtained in

our set-up. Finally. in section 8 some dual spaces of V" are studied.

2 Preliminaries

A set function v on the algebra F is said to be a game if v(2)=0. The symbol 1°
denotes the set of all games defined on F. The space 17 becomes a vector space if we

define addition and multiplication elementwise:
(11 + ) (A) = v1{A) + 1(A) and (av)(A) = av(A) forall A € Fand a € R.

A game v is monotone if v(A) < v(B) whenever A € B. A game v Is convex
if v(A) +v(B) € (AN BY+v(AUB) for all A.BEF. A game v s normalized if
v(X) =1. A game v is totally monotone if it is nonnegative and if for every n = 2 and

Ao 4,, € F we have:

U(U:L)> 3 (-1)““1/((];4,)
=1 [Lz#1T{1 n}} el

For TeF. the {0.1}-valued game uy € V such that up(A4) =1 if and only if T C A
is called unanjmity game. We can now present the Dempster-Shafer-Shapley Repre-
sentation Theorem. which will play a central role in the sequel. Given a finite algchra
F={Ty....T,}. the atoms of F are the sets of the form T N T - 0T where
1;€{0.1} and TJQ =-T,. le = T, (~T denotes the complement of 7). We denote by
(} the set of all atoms of F. It holds n < |Q < 2",

Theorem 1 Suppose F is finite. Then {uy : @ # T € F} is a lincar buses for 17
Given v € V. the unique cocfficients {a4:@ # T€F} satisfying

v(A) = Z ajur(dy  forallAeF

z#TeF



are given by

=N =) S =) - Y (=t (ﬂ T)
)

scr (Lz#1C{1.. k}}

where T, = T\w;. T = Ub | w;. Morcover. v is totally monotone on F af and only if
a4 = 0 for all nonempty T € F.

For a finite algebra F. Gilboa and Schmeidler (1995) define the composition norm

of v € V to be v = ¥ ja¥|. On infinite algebras. Gilboa and Schmeidler (1995)
TeF
define the composition norm ||-|| of v € V' in the following way. Given a subalgebra

Fo C F. let vz, denote the restriction of v to Fq. Then define:

)} = sup {HV!;FO :Fo 1s a finite subalgebra of .7-_} :
The function ||| is a norm. and in what follows ||-|| will always denote the composition
norm. V' will denote the set {v € V' : ||v|| is finite}. The pair (V. ||-||) is a Banach

space (see Gilboa and Schmeidler [1995] p.204).
Another important norm in transferable utility cooperative game theory is the

variation norm |-}, . introduced in Aumann and Shapley (1974). This norm 15 defined

bv
n
i, = sup {Z‘V(Az#l) — (A @ =ACA T C A, = X} :
i=0
BV? will denote the set {v € V' |y, is finite}. If v is additive. then [|-|| coincides
with [|-]},. and both norms coincide with the standard variation norm for additive ser

functions (c¢f. Gilboa and Schmeidler [1995] p.201).
A filter p of F is a collection of subsets of F such that

—_

. X € p.

[

if Aep. BeF. and AC B. then B € p.

3.if Aepand B € p, then ANDB € p.

Let p be a filter of F. Then



1. pis a proper filter if @ ¢ p. ic. p# F.

N

. pis a principal filter if p = {Be F: AC B} for some 4 € F: pis then the

principal filter generated hy A
3. pis a free filter if it is not a principal filter.
1. pis an ultrafilter if it is a filter and for every A € F either 4 € For A ¢ F.

In a finite algebra all filters are principal. This is no longer true in infinite algebras.
For example. let X be an infinite space. A simple example of a free filter iu the power
set of X is the collection of all cofinite sets {A C X : —A is finite}.

Every filter p can be directed hy the binary relation > defined by
A> B« ACDB where A.B € p.
Let f: X — R be a real-valued function on X. Set
fa= ;gﬂf(i) for each A € p.

The pair (f4.>) is a monotone increasing net. Using it we can define liminf, f as
follows

liminf f = lim f4.
p Acp

If p is a principal filter generated by a set A € F. then liminf, f = inf.cq f(2).
This shows that liminf, f is the appropriate generalization of inf,cy f () needed to
take care of free filters.

We denote by F the set of all bounded functions f : X — R such that for every
t € R the scts {@: f(x) >t} and {x: f(x) = ¢t} belong to F. For a monotone set
function v € V and a function f € F, the Choquet integral is defined as

b
0

0
/ fdv = / v({x: flx) > th)dt + /ﬁx w{z: fla) > t}) —v(X)]dt

where the r.his. is a Riemann integral.



3 A locally convex topological vector space on V
A natural topology on V" has as a local base at 1 € V' the sets of the form
Blrg: Ay Agiz) = {v e Vi w(A) —v(A)| <= for 1 <i<n}

where A, € Ffor 1 <i < n. and = > 0. We call this topology the V-topology of . In
the next proposition we claim that under this topology the vector space 1 becomes a
locally convex and Hausdorff topological vector space. The proof is standard. and it is

therefore omitted.

Proposition 1 Under the V-topology the vector space Vois a locally convex an d Haus-

dorfl topological vector space.

The next proposition is rather important for the rest of the paper and it is a simple

extension of Alaoglu Theorem to this set-up.

Proposition 2 The set {v € V : ||v||, < 1} s V-compact in V.

Proof. Let MO be the set of all monotone set functions on F. Set K = {v € MO :
v(X) < 1}. Let I= [] [0.1],. By Tychonoff Theorem. I is compact w.r.t. the product
topology. We can (.1é1§1]1re amap 7: K — by 7(v) = ] v(4). It is easy to check that
7 is a homeomorphism between A endowed with ‘rlitk-:rpelativc V-topology. and 7(R')
endowed with the relative produet topology. Therefore. to prove that K is V-compact
it suffices to show that K is V-closed. Let v, be a net in K that V-converges to a
game v. Since li(lkn Vo(A) = v(A) for all A € F. it is casy to check that v € MO and
v{X) < 1. We conclude that A is V-closed. and. therefore. V-compact. Let v € B .
On p. 28 of Aumann and Shapley (1974} it is proved that there exists a decomposition

v s of v such that vy, vy € MO and ||v||, = |[in], + [[v2ll,- Therefore.
fveV: v <1} CRK-K

Since V is a locally convex and Hausdorff topological vector space. the set K — K is V-
compact (sce e.g. Schaefer [1966]. 1.5.2). Therefore. to prove that {v € V7 llwfl, < 1}is

V-compact it suffices to show that it is V-closed. Let v, beanet in {v € V' [[v]), < 1}



that V-converges to a game v. For each a there exists a decomposition vy . V2, such
that both 1y, and vy, are in K and [|v,]], = [[Y1all, + 1724, Since K is V-compact
and v, V-converges to v. there exist two subnets v ; and v, 4 that V-converge. respec-

tively. to two games vy and vy such that vy vy € K and v=v; — 1n. We can write:

vl =l — vl < [l 4 llell, =20 (X)) + 1 (X))
= ligll {3 (X)) + vy (X)) = lig] {livrsll + lvasily = h}j“ s -

Therefore. ||v||, < 1. as wanted. [

4 Decomposition

I this section we prove the decomposition result mentioned in the introduction. The
proof is rather different than that in Gilboa and Schmeidler (1995). and it is essentially
hased on the properties of the V-topology. Ir is worth noting that this result is an
extension o set functions in V* of the well-known Jordan Decomposition Theorem for

INCASIres.

Theorem 2 (i} Let v € VP Then there exist two totally monotone games v™ and v
such that v(A) = v (A) — v (A) for al A € F and ||v|| = llv"[| + |[v7|| . Moreover.
this is the unique decomposition that saetisfies the norm cquation.

(ii) The set U(X) = {v e V : |lv|| £ 1} is V-compact.

Proof. Lot 70 = {v ¢ V : v is totally monotone}. Let vy € VP Let
B (1/[]1 .41. rl”: f)

be a neighborhood of v5. Let F(A;. ... A,) be the algebra generated by {A;. ... 4, }
Since F(A;. ... 4,) is finite. Theorem 1 holds. Let 7. = {@#Ae Fld..... A, af 20}
and F'={4de FlA,. .. A): AF# @} Set

vo =Y opur and v = Y (—ap)ur.
TeF, T

As observed in Gilboa and Schmeidler (1994, p. 56), we have 1(A) = v7(A) — v~ (A)

l = |iw*l| + [|[p7[]. Moreover. cach unammity

T



game u is totally monotone on the entire algebra F. Set v = v7 —v . Clearly.
v=(w"—v7) & By 4. .A2).

|| = {X). Thercfore.

Since v~ is totally monotone,

lj‘f" H - Hui}(:h -171}”' Sim-

ilarly. 71 =,
for all A € F(A,..... Ay}, we have

i | § . -

H“ﬂm ...... | :HVU J:l'.-h.....-ln)H:“’}ft.-11 ...... A\m‘+ H[/_f{;h,d.,;lnw :
Hence. |jv]] > HV}(M ______ -L.)H + HV:F(--M _____ ) ’ = [[v=|| + |lv"|]. On the other hand. since
1] is & norn. ||vll < |lo~ ]|+ lv~ ||. We conclude Jlv]| = ([~ ||+ [[v~[]. as claimed. Using

this equality we can write:

=+l @

ool > [Jorcn. an] =250, am

By what has just heen proved. if we consider the family of all V-neighborhoods of
vy as directed by the inclusion C. there exists a net v, that V-converges to vg. and

such that for all & we have:
) ve=vy = va
Gy vl = lleg || + el
(ili) flval < fuoll-
Set M =[] and UY(X) = {v € V :|jv]| £ M} Tf v € T M. then
vl = liwll, =¢(X).

Therefore, using Proposition 2. it is easy to check that the set T N UM(X) is V-
compact. Since v is anet in TM MU M{X). there exists a subnet v} that V-converges
to a game vy € TM N UY(X). Since the net v, V-vonverges. this implies that also
the subnet v7 {which is equal to v —vy) V-converges to a game vy € TAM N UY(X).

Clearlv. vy= lil)tn(z/_jr — v, )= — 14 . Moreover:

|
—

ol 2 hﬁll g1 = li}jn {Hu;” + Hz/;H} :liyl {u‘; (X)) + 1/;(_3{)} (

=5 (X) + 5 (X) = o | + |
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where the first inequality follows from expression (1). On the other hand. vo=vy — vy
+“1/[] . This

proves the existence of the decomposition. As to uniqueness. 1o prove it we need the

‘. Together with (2). this implies [l = Hbﬁ ” + Hud’

implies ||ppli < HV(T‘

techniques used in the proof of Theorem 3. Consequently. uniqueness is proved in the
proof of Theorem 3.

As to part {ii). we first show that U(X) is V-closed. Let v, be a net in U(X)
that V-comverges to an element v € VP By part (i), there exists a decomposition
ve = v — vy with v7.ovy € U(X)NTM and |lva|| = [lvT [+ vl Proceeding as
before. we can there exists two subnets v and v that V-converge. respectively. to v~
and v, where v- v € TM NU{X). We have:

||| = HU_‘ — U*H < HU—H + HIFH = {(X)+v (X)
= li‘IiIl {1/}()() + V_}(X)} = lign {Hu;H + Hy; H} = h.xin sl -

Since ||vs]] < 1 for all 4. we can conclude |[p|] < 1. so that v € U{X). This proves
that U(X) is V-closed. On the other hand. from part (i) it follows that U(X) C
[TM NU(X)] — [TMNU(X)]. Since the set TM N U{X) is V-compact. also the sct
[TA MU (X))~ [TMNU(X)) is V-compact. and this implies that U(X) is V-compact.

as desired. O

5 Countably additive representation of games in A%

We first introduce a class of simple games that will play a key role in the sequel. As

observed in Shafer {1979). these games can already be found in Choquet (1953-54).

Definition 1 Let p be a proper filter of F. A normalized game w,(-) on F is called a
filter game if uy(A) = 1 whenever A € p. and up(A) = 0 whenever A ¢ p. We denote
by Uy the set of all filter games on F.

Unanimity games are a stibclass of filter games. In particular, a filter gamne u, 1s a
3 g ; 2 I

unanimity game if and only if p is a principal filter. For. if p is a principal filter. 1.c.
p={B € F:AC B} forsome A € F. then u, coincides with the nnanimity game u 4.
[n finite algebras all filters are principal. so that all filter games are unanimity games.

This is no longer true in infinite algebras. where there are free filters to consider. For

9



. [ . . . . a0 v
example. if P(X) is the power set of an infinite space. it is known that there are 2°
filters (see e.g. Balcar and Franck (1982)). and just 2% of them are principal.

In sum. filter games are the natural generalization of nnanimity games to intinite

algebras. We now list some very simple properties of filter games.

Proposition 3
(i) A game is {0.1}-valued and conver if and only of it 1s a filter game.
(i) Fvery filter game is totally monotone.

(i1z) The set U, 1s V-compact wn V.

Remark. Of course. (i) and (ii) together imply that a game is {0. 1}-valned and

totally monotone if and only if it is a filter game.

Proof. (i) “only if” part: let v be a {0.1}-valued and convex game. Then v s
monotone. Let p = {A: v(A) = 1}. By monotonicity. if A € p. then B € p whenever
AC B, Now. let A.B € p. Then v(A) = v(B) =v{AU B) =1 By convexity.

1 =v{A)+v(B)—vAUB)<v(ANB)

and so (AN B) = 1. We conclude that pis a filter, and v a filter game.

"I part: tedious. but obvious.

(ii) Let u, be a filter game. and A;..... A, e F. Let I, = {i: A, € p}. i is
empty. the claim is obvious. Let I, # @, with I.=k. Let C; be a binomial coefficient.

Then:

Z (—1) ! *1111, (ﬂ A;) = Z-:Ck_l(—l)iﬂ =1.

{Inz#IC{1...n}} il
Since w, (' A,) = 1. it follows that u, is fotally monotone.
(iii} Let v, be a net in L, that V-converges to an element v € V. By hypothesis.
vo(A) € {01} for all A € F. Then v(A) € {0.1} for all A € F. Hence v is {0.1}-
valied. It is casy to check that v is also convex. Therefore. by part {i). v 1s a filter

game, as wanted. [

Let B{l%;) be the Borel s-algebra on the space Uy w.r.t. the V-topology. and let

rea(l) be the set of all regular and bounded Borel measures on B(LU}). Moreover. set

10



rea” (Uy)={u € rea(Uy) : u(A) > 0 for all A € B(l,)} and rea ) (Uy)={u € rea™ (L)
() = 1}, When the space rca(Uy) is endowed with the weak™-topology. we write
(rea(U). 7). Similarly. (V*. 7.) denotes the space V¥ endowed with the V-topology.
We remind that an isometric isomorphism between two normed spaces 1s a one-to-
one continuous lincar map which preserves the norm. As in the previous section.

U(X) = {ve Vvl <1}

)

Theorem 3 There is an isometric isomorphism J* between (VO |-||) and (rea(ly). |-

determined by the wdentity
V(A) = / u (Al forall A€ F. (3)
JUy

The correspondence J* is linear and isometric, v.e. ||p]| = [[77(2)|| = fvll. Moreover.
v is totally monotone if and only if the corresponding p s nonnegative. inally. the
map J* 1s @ homeomorphism between (VPN U(X). 1) and (rea(U;) NU(X). 7).

In other words. we claim that for each v € V¥ there is a unique p € rea(l) such
that (3) holds: and. conversely. for cach g € rea(Uy) there is a unique v such that (3)

holds.

Remark. The following proof is based on Theorem 2. The hard part is uniqueness.
[nstead. the proof of existence of the measure g when v is totally monotone is based on
the well-known Dempster-Shafer-Shapley Representation Theorem for games defined
on finite algebras (theorem 2.1). and on a simple compactness argiment (similar to
those used in Choquet Representation Theory (see Phelps {1965])). Other remarks on

the cxistence part can be found after corollary (1) below.

Remark. Let Fil{F) be the set of all filters of the algebra F. and Ult{F) the
set of all ultrafilters. Up to a natural isomorphism. equation (3) can be written
as v(A) = p{pc Fil(F): Aep}. If we replace Fil(F) with UIt(F). ie. v(d) =
p{p € UIHF) : A € p}. we have a version of the celebrated Stone Representation The-
orem (see e.g. Sikorski (1969)). Note that in this case v is additive. All this suggests
that Theorem 3 may be thought as an extension of the Stone Theorem to non-additive

set functions.
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Proof. Let TA = {v € V' : v is totally monotone and |[v[| =1}. Let
Una={up: T € F and T # &}

be the set of all unanimity games on F. Let » € T, and let B{v: Ay Ay =) be
a neighborhood of v. Let F(A;..... 4,) be the algebra gencrated by {A. ... 4.} By

Theorem (1) there exist af > 0 such that

r(A) = > afur(A)
(ZTEF (A A}
forall A € F(A,. . A)). ay > 0forall @ #T € F(A. ... A,) and 32y af = 1. Henee
S aireria,.. A, 05ur(-) belongs both to Bw: Ap. ... Ay ¢} and to co(Una). This im-
plies TAL, = cl{co(Una)}. Clearly. Una C Uy. Moreover. we kuow by Proposition
3(i1) that U, € TM;. Therefore. T, = cl{co{l3)}. Hence. there exists a nef A
contained in co(L) that V-converges to v, For A € F. let fy : Up— R be defined by

Faluy) = up{A). The map f4is V-continuous on . By defimtion.

As(d) = Z oy, (A)
Jjely
for all A € F and some finite index set [;. Since Y. 0; = L and a; 2 (. we can
write

Az(A)= /( Fadye;

where ps(u,,) = a;if j € Iz and py(uy;) = 0 otherwise, Since. by Proposition 1{ii1).
Uy is V-compact. it is known that rea(U3) is weak -compact. Then there exists a
subnet . of py that weak -converges to some g € reay (L), Since fy 1s V-continuos.
Ji fadp- converges to fi- fadpg for all A € F. Set v.(A)= [, fadp, for all A € F.
The net 1., (A) converges to v(A4) for all A € F because Ay V-converges to v. Thercfore.
it follows that

V(A)= / (A
U

for all A € F. and we conclude that g is the measure we were looking for.

We have thercfore proved the existence of a correspondence .J; between T3, and
reay (U, ). where J; is determined by v(A)= Ji- up(A)dp for all A € F. Clearly.
v(X)= [, dp = p(Uy) because X € p for every filter p in F. Hence. if p € Ji(v).
then o] = [l



Lot TAI = {v € V* : v is totally monotone}. A simple argument now shows that

there exists a correspondence .J between TM and rea™ (Uy). where .J 1s determined by
v(A)= [ wp{ A)dp
S

for all A € F. Morcover. if € J(v). then || = ||z

Let v ¢ VP By Theorem 2 (existence part). there exist v7.v° € T M such that
v =" —v and ||v]|={lvT|[+|lv . Let gm € Jw)and p~ € J{v7). Set p = p~—p.
Since {u, : A € p} € B(U4). we have:

V(A) = [ u (A)dp™ — /( up(A)dp~ = [ (A

R b

for all A € F. We claim that ||| = {jull. On one hand. since [fr=[|=||p7[| and

il | = || 1. we have:
lll < |+ el = )+ v =

On the other hand. let p, and py be the Jordan decomposition of the signed measure
(. We have

el = e[+ [zl = Nl + el = (V]
where v {A)= [, up(A)dpy; for all 4 € F and ¢+ = 1.2, The mmequality holds because
p=u, — v by construction. We conclude that |[v|| = ||| as wanted. We now prove that

this ¢ is unique. Indeed. suppose to the contrary that there exist two signed regular

Borel measures u. g’ such that ||l = |||t = ||v]| and
V(A) = / u (A)dy = [ up(A)dy (1)
. Iv;, - ('h
for all A € F. We first obscrve that [|u]j = [|¢/[| = vl < > implies sup [¢(B)] < x

and sup [ (B)] < >. i.e. g and pf are bounded. Next. define a map s from F into
the power set of Uy by s(A) = {u, : A € p}. Let T = {s{4) : A € F}. Every set s(A)
is V-closed. so that ' C B(U,). From (4) it follows that g and p’ coincide on I'. The
sor T is a w-class (ie. it is closed under intersection) because. as it Is easy to check. 1t
holds s(A) N s(B) = s{(AN B). Then p and ¢ coincide on A(T). the algebra generated
by . For. let L={B C U : p(B) = /(B)}. We check that £ 1s a A-system (see 0.g.
Billingsley {1985] pp.36-38). Since X € p for every filter p m F.(1) implies Uy € L.

13



Morcover. if B € L. then B¢ € £ because pu and g’ are additive. Finally. suppose
{B,}=, is an infinite sequence of pairwise disjoint subsets of Uy. If B; € L for all i = 1.
rhen |J%, B; € £ because both g and ¢ are countably additive. We conclude that £ is
a A-system. By the 7 — A theorem (see ¢.g. Billingsley [1983] p.37). this implies that j
and p' coincide on A(T'). as wanted. The algebra A(T) is a hase for a topology on L.
Let us denote by 7, such a topology. Next we prove that 7, coincide with the relative
V-topology . on L. Let Bluy,: Ay, ... 4,:2) be a neighborhood of u,,. Set
L={ic{l...n}:uy(A)=1} and I, = {i € {1....n} s, () = O}
and
G=|[]sd)| (s(A;))°
e Y= B
Of course. G € A(T). Morcover. u,, € G. If p € G. then wy(4,) = u,,(4;) for all
1 <i<n.sothat u, € Blug: Ay ... Ay:2). Therefore. we conclude

tp, € G C Blug,: Ar. AL

and this implies 7. € 7, because the sets of the form B(u,: A, ... 4,:2) are a local bhase
for V. As to the converse. let G € A(I') he a neighborhood of up,,. W.log. the set G
has the form [Nie;, (AN [Micy, (s(A:))7]. This follows from the usual procednre used
for the construction of A(I') from T and from the fact that u,, € G. Let us consider
Blup: Ay Ayie). Clearty. uy, € Bluy,s A Apig). Let u, € Blup,t Ao A9).
Then u,{A;) = u,,(4;) for all 1 < i < n. This implies A epifti el and .~L ¢ p
if 1 € I, Then u, € s{(A4) if i € I, and u, & s{A,) if i € Lo Consequently. u, € G.
Therefore.

Up, € Blup,: Ay Apz) © G

and this implies 7, C 7,.. We can conclude 7, = 7,.. as desired. Propositions 1 and 3
imply that 7. is a compact Hausdorff space. From 7, = 7. 1t follows that also 7, Is
a compact Hausdorff space. Since p and g are regular Borel measures o1 a compact
Hausdorff space. they are T-additive. For. let u;. sy be the Jordan decomposition of p.
and let {G,} be a net of open sets such that G, C G5 for o < 3. Both p and p, are
regular (sec Dunford and Schwartz [1957] p.137). Therefore. they are r-additive {sce
Gardner [1981] p.47). ie.

liclll'lru,(Gn) = ,u,(U Go) fori=1.2
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On the other hand. it holds

/—"(UGQ) = o”l(U Go) — JUQ(UGH)
= lim(Ga) = limp(Ga) = lim 0 (Ga) = p2(G )] = lim p(Ga)

and this proves that g is 7-additive. A similar argument holds for ;. Now. let &G be
an open ot in 7. Since A(I') is a base for 7. we have G = U,g; Gi where G € A(T)
for all i € I. Let |I| be the cardinal number of 1. If || < [N| set G, = UL, G;. Since
A(T) is an algebra. G% € A(I'), so that conntable additivity implics

u(G) =limp(G}) = lim (G = (' (G).

If |7] is any infinite cardinal, we can again order {G;}icr so that {Gilics ={Ga:a <

1} (greek letrers denote ordinal mimbers). Define G7, as follows:

(ii) if o is not a limit ordinal. then set G}, = G;_, U Ga:

Ta—

(i) if @ is a limit ordinal. then set G, = U, ., GZ. To prove that w(G) = p'(G) we
can then use a transfinite induction argument on the increasing net of open sefs

G?. an argument based on 7 additivity and on the fact that o < [1].

Of course. u(F) = p/(F) for all closed subsets F € Uj,. The class of all closed
subsets is a m-class. and B(U,) is the a-algebra generated by the closed sets. We have
already proved that L={B C U} : u(B) = (/(B)} is a A-system. Therefore. by the
7 — A theorem. B(U},) C L. as wanted.

This completes the proof that j¢ = /. This implies that there exists a nnique
decomposition of v that satisfies the norm equation. For. suppose there exist two pairs

vy.ve and vy such that
v(A) = v (A) — 1y(A) = v {A4) — v(A) for all A € F

and
el = ]+ [Jwell = el + sl -



Let j. p; and 1) be the unique measires on B(L)) associated to v. v, and v] for 7 = 1.2.

[t is casv to check that
w(s(A)) = m(s(A)) — pals(A)) = uls(A)) — uls{A)) forall A € F

and
el = el 4 L pe2ll = {51+ Nl

It is then casy to check that
p(A) = 1 (A) — pa(A) = plA) — p(A) for all A € A(T').

Using transfinite induction as we did before. this equality can be extended to all open

sets in (. and it is then easy to see that
p(A) = g (A) — p(A) = p(A) — p(A) for all A € B(L,).

But. there is only a unique decomposition of y on B(U}) that satisfies the norm equa-
tion. i.c. the Jordan decomposition. Therefore. pi; = p! for i = 1.2 and so v, = V] for
i = 1.2 as desired.

We have already defined a correspondence J between TM and rea™(L3). By wha
has been proved. this correspondence is indeed a function. Le. J{v) is a singleton
for every v € T . Define a function .J* on VO lw J(v) = J(v) — J{v ). where
v™. v is the unigue decomposition of v that satisfies the norm equation. Clearly
J*w) € rea(ly). and J* is onto. By now we know that g € J*{(r) implies el = || -
Therefore. we conclude that /= is an isometric isomorphism.

Finallv. we show that .J* is an homeomorphism between (VPN U(X).7.) and
(rea(Uy) N U{X).7.). Since V¥ N U{X) is V-compact and J* is a bijection. it suf-
fices to show that J* is continous on VP NU(X). Let v, be a net in VPN U(X) that
V-converges to an clement v € VN U(X). Since rea(l,) NU(X) is weak™compact. to
show that J*{v,) weak*-converges to J*(v) it suffices to prove that every convergent
subnet J*(v3) of J*{r) V-converges to J*(v). Supposc liny J*(ry) = J"(+/'). Then

v(A) = hﬁ“ /L{g(fl) = h_IjTl /H u(A)dJ (vy) = /{_} w,(A)d I (V)

Since J* is bijective. this iplies v = ¢/, as wanted. U
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As a simple corollary of Theorem 3. we can obtain the following interesting result.
proved in a completely different way in Choqguet (1953-54). Let TM be the set of all

totally monotone games on F.

Corollary 1 A game is an extreme point of the conver set {v € TM ] = 1} of and

only if it 1s a filler game.

Proof. It is well-known that the Dirac measures are the extreme points of the set of
all regular probability measures defined on the Borel a-algebra of a compact Hausdorff
space. Since B(L7,) satisfies this condition. a simple application of Theorem 3 proves
the result. U

As observed in Shafer (1979). using this result of Choquet. the existence part
Theorem 3 for totally monotone set functions can be obtained as a consequence of the
celobrated Krein-Milman Theorem. However. we think that the simple proof of exis-
tence we have given. based on the well-know Dempster-Shafer-Shapley Representarion
Theorem for finite algebras. is more attractive in the context of this paper. Indecd. m
section 7 it will proved that this technique leads to a new proof of the finitely additive

representation of Revuz (1955-56) and Gilboa and Schmeidler (1995).

6 Integral representation

As a consequence of Theoren 3. we have the following representation result for the

Choquet integral.

Theorem 4 Let v be a monotone set function in V* and f € F. Then

/ fdv :/ {liminff] dp
Jx Juy, P

where jo = J* (7).

Proof. If f &€ F is a simple function. it is to check that

[\, fdv = /{} (/Y fdup) du.
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If f ¢ F is not a simple function, then there exists a sequence of simple functions
that converges uniformly to f. Since the standard convergence theorems hold for the
Choquet integral under uniform convergence. we conclude that the above equahity 1s
(J fduy)dy =

Ji- liminf, fidp. The pair (u4. 2) is a net. where > is the binary relation that directs

true for any f € F. To complete the proof we now show that [,

)

p. We want to show that lim e, uq = u,. Let Bluy Ap. Ay =) be a neighborhood
of u,. Set [ = {i € {l..n}: A €p}. Suppose first thar [ = . Then u4(1;) =
w,(A;) = 0forall 1 <7 < nandall 4 €p This implies vy € Blu,r A oAy g
Suppose I # @. Set T = Ne; Ao Let A € p such that A > T. Then us(d;) =
upiA;) = 0 whenever i ¢ 1. and ua(A) = uw(A) = 1 whenever ¢ € 1 Again. this

implies vy € Blu,: Ay, ... Ay ). All this proves that lim.e,us = u,. Then

lim[ fduy = / fdu,,.

Aep

But fy fduy = inf.cy f(x). Therefore

/ (/ fdu,;) dy = [ (11111/ fdu, 1) dp = / [liln (mf f{ua )” d
s X {5 \AEp i LAgp \rea
= / [liminf j] dp
Jry, p

as wanted, O

This result suggests a simple. bit useful observation. Let f: A7 — X be a bounded

infinite sequence in X. For convenience. set
Ty — f(n) for all n > 1.

Let us consider the power set P(N). Let p. be the free filter of all cofinite subsets of

A and 8, the Dirac measure concentrated on p.. Then
/\_ fdu, = / lim i}ljlf fdé, =lim ilr}f Ty (5}
. JUy c

This shows that the liminf of an infinite bounded sequence may be seen as a
Chocuet integral. This is interesting becanse Choquet integrals have been axiomatized
as a decision criterion in the so-called Choquet subjective expected utility (CSEU. for

short: see Schmeidler (1989)). As equation (5) shows. the ranking of two infinite payoft

18



streams through their lim inf can then be naturally embedded in CSEU. Of course. here
we interpret games as weighting functions over periods and not as beliefs. In repeated
games choice criteria based on liminf have played an important role (sec e.g. Myerson
(1991) ¢h.7). One might hope that claborating ou cquation (5) a better understanding
of the decision-theoretic bascs of these criteria may be obtained. This is the subject of

future research.

7 Finitely additive representation of games in &

In this section we give a proof of the finitely additive representation already proved.
with an algebraic approach. in Revuz (1955-56) and in Gilboa and Schmeidler (1993).
The proof we give is a modification of the proof we used to prove the countably additive
representation of the previous section.

Let Una= {up: T € F and T # @} be the set of all unanimity games on F. Unlike
L,. the set U'na is not V-compact. Consequently. the set of all bounded regular Borel
measures on Una is not as well-behaved as it was on {3 To get a representarion
theorem based on U'na it is therefore natural to look directly at ba(Una.X). the sct
of all hounded finitelv additive measures on an appropriate algebra ¥ C QU nal Xz,
Indeed. the unit ball in ba(L'na.X) is weak*-compact. whatever topological structure
on X we have. The problem is now to find out an appropriate algebra ¥, For any
A e Flet fi: Una— R be defined by fi{ur) = up{A). Morecover. let ¥7 be the
algebra generated by the sets {uy 1 T C Aand @ # T € F} for A € F. I turns ot
that the appropriate algebra ¥ is just ¥*. which is also the smallest algebra w.r.t. the
functions fi belong to B(L'na,¥*). where B{L na.¥*) denotes the closure wor.t. the
supnorm of the set of all simple functions on ¥*. Since. as it is casy to check. there
is a one-to-one correspondence between W* and ¥, where W is the algebra generated
by the sets of the form {T: T C Aand @ £ T € F} for A € F. we finally have the

following result.

Theorem 5 There is an isometric isomorphism T* between (VP |||} and (ba (U'na. ¥} . [|-])

determined by the identity

v(A) = up(A)du forall A cF. {6)

.[{Y'EJ—”:']‘;&Z}
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Thus. for each v € V' there is a unique p € ba(Una W) such that (6) helds: conversely.
for each yt € ba(Una. W) there is a unique v such that (6) holds. The correspondence
T* is lincar and isometric. i.e. ||\u|| = ||T*(w)|| = ||v||. Moreover. v 1s totally monotone

if and only if the corresponding p is nonnegative.

In other words. we claim that for each » € V* there is a nnique g € ba(Una. W)
such that (6) holds: conversely, for each p € ba(Una. W) there is a nmque v such that
(6) holds.

Proof. Let ¥ be the algebra on U'na generated by {uptrey and ¥ Let T/, =
{v € V' : v is totally monotone and jjv| = L}. From the proof of Theorem 3 we alrcady
know that TAf, = cl{co(Una)}. Since the wnit ball in ba(Una. ¥**) is weak™-compact.
an existence argument similar to that used in the proof of theorem 3 proves that there
exists a finitely additive probability measure p** € ba(Una. ¥7") such that:

v(A) = up(Aydy™ for all A € F. (7)

\/{TE}':T#Z}
At this stage we have to consider the whole ¥** because measures on Una with finite
support might not be in ba(Una.¥*), while they always are in ba(lna. U**). We can
rewrite (7) as v(A)= [, fr(A)dp* for all A € F. Let p* be the restriction of 4™ on
¥*. Since fr € B(X.¥*), by lemma I1L.8.1 in Dunford and Schwartz (1957) we have:

v(A) = up(A)dp” for all A ¢ F. (8)

./{‘J‘ef?‘,iz}
As to uniqueness. suppose there exists a probability measure p €ba{Una. ¥7) such
that

(A)= up{ A)dp = ] ur (A forall A€ F.

{rerT+z}

/{'I'Ef:'[‘;éz}

This implics that p* and p' coincide on {uy : T C Aand @ # 7T € F}. Since the sets
of the form {uy T C Aand @ # T € F} are a 7-class and ¥* is gencrated by them.
it is casy to check that p"=p'. as wanted.

There is a one-to-one correspondence g between ¥* and W such that for 4 € F we
have

g({uT:TQAand@%Tef}):{TZTQA‘&Hd@?éTEF}-
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Setting p(g(A)) =y (A) for all A € T*. we finally get

v(A) = up{A)dy for all A € F. {9)

./{'f‘ef:’l‘;ﬁz}
We have therefore proved the existence of a bijection T; between T M, and the set of all
probability measures in ba(Una. ¥). and T is determined by v{A)= [ire sz v (A)dp
for all A € F. Clearly. v(X)= [, du = p(Una) becanse T € X for all T € 7. Hence
vl ={|T1(v)||. This shows that T} is isometric.

The rest of the proof. i.e. the coustruction of the isometric isomorphismn 1™ that
extends Ty from 7°M, to V. can be done through a simple application of the decom-

position obtained in theorem 2. This observation completes the proof. U

As a corollary we can obtain also Theorem E in Gilboa and Schmeidler (1995). It is
interesting to compare this result with corollary 1. In the next corollary the argnment
of the Choquet integral is inf oy f(2) because only unanimity games are considered.
while in theorem 4 we nsed the more general liminf, f because we integrated over all

filter games. included those defined by free filters.

Corollary 2 Let v be a monotone set function in V' and f € F. Then

[ fav= [ finf s

Una o€l

where 1 = T (v).

Remark. This corollary is a bit sharper than Theorem E in Gilboa and Schmeidler

(1995). In fact. instead of V* they nse its subset

- ol . " .
Vo= {i’/ c V" :p=T"(r)is a g-additive signed mea&surc} .

Proof. If f € . we can apply the same argument (based only on finite additivity)

used in the first part of the proof of corollary 4 to prove that

[‘( Jdv = /l'rm (/X fdli'r) dy.

Since [y fdup = inf.eq f(x). we get the desired result. O
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8 Dual spaces

On the basis of the representation results proved in sections 5 and 6. in this section we
give two different Banach spaces that have duals congruent to VP, ile. there exists an

isometric isomorphism between V" and these dnal space.

Proposition 4 The following Banach spaces have their duals congruent with the space
AL

(i) Let C(L7) be the space of all continuous functions on the space Uy endowed with
the V-topology. and let .||, be the supnorm. Then the dual space of the Banach space
(C(T). M) is congruent to (VP [|-]]).

(i) Set H={T T ¢ F and T # @}. Let B{H. V) be the closure w.rt. the
supnorm of the sct of all simple functions on ¥. Then the dual space of the Banach
space (B(H.W).||-[|,) 15 congruent to (Vh. HH)

In Ruckle (1982) it is proved that BVP([0.1].B) is congment with a dual space.
We can obtain his result as a consequence of propositions 1 and 2. together with the
following result from Functional Analysis (sec e.g. theorem 23.A p.211 in Holmes
11975]).

Proposition 5 Suppose that there is a Hausdorff locally conver topological space T ot
a Banach space X such that the unit ball U(X) is T-compact. Then X 1s congruent {o

a dual space.

I
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