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MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 22, No. 3, August 1997 
Printed in U.S.A. 

COLOURFUL LINEAR PROGRAMMING AND ITS RELATIVES 

IMRE BARANY AND SHMUEL ONN 

We consider the following Colourful generalization of Linear Programming: given sets of points 
S, ... , Sk C Rd, referred to as colours, and a point b E Rd, decide whether there is a colourful 
T = {s ..., Sk such that b E conv(T), and if there is one, find it. Linear Programming is 
obtained by taking k = d + 1 and S = = Sd,+. + If k = d + 1 and b E nf I+ conv(S) then a 
solution always exists: we describe an efficient iterative approximation algorithm for this problem, 
that finds a colourful T whose convex hull contains a point e-close to b, and analyze its real 
arithmetic and Turing time complexities. In contrast, we show that Colourful Linear Programming 
is strongly AT-complete. We consider a class of linear algebraic relatives of Colourful Linear 
Programming, and give a computational complexity classification of the related decision and 
counting problems that arise. We also introduce and discuss the complexity of a hierarchy of (w,, 
w2)-Matroid-Basis-Nonbasis problems, and give an application of Colourful Linear Programming 
to the algorithmic problems of Tverberg's theorem in combinatorial geometry. 

1. Introduction. The so-called Caratheodory's theorem says the following: if a set 
S C Rd of points in d-space contains a point b in its convex hull, then b E conv(T) for 
some subset T c S containing at most d + 1 points. This statement allows to pose the 
problem of linear programming in the following way. 

Linear programming problem. Given a finite set S C Qd and a point b E Ud, decide 
whether there is a subset T c S of size at most d + 1 such that b E conv (T), and if there 
is one, find it. 

Caratheodory's theorem admits a colourful generalization, due to Batrany (1982). To 
state it, we use the following terminology: given a family of sets SI ? , Sk C Rd, referred 
to as colours, a colourful set is a set T = { s, ... , Sk } where si E Si for all i. 

THEOREM 1.1. COLOURFUL CARATHIODORY'S THEOREM. If each of d + 1 given 
colours So, ..., Sd C Rd in d-space contains the point b in its convex hull, then b 
E conv(T)for some colourful set T = { S, .. ., s }. 

A proof of Theorem 1.1 will be given in the next section. The specialization of this 
theorem to Caratheodory's is obtained when S = So = . = Sd. The following algorithmic 
problem suggested by Theorem 1.1 is a natural generalization of the Linear Programming 
Problem. 

Colourful linear programming problem. Given colours S1,..., Sk C Qd and a point 
b E Qd, decide whether there is a colourful T = {sl, ...,sk such that b E conv(T), 
and if there is one, find it. 

The specialization of this problem to linear programming is obtained by taking S = SI 
-= . = Sd+1 

In this article we study the computational complexity of this problem and its relatives 
in linear algebra, matroid theory, and combinatorial geometry. Our motivation is twofold. 
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AMS 1991 subject classification. Primary: 90C05; secondary: 90C10, 90C60, 68Q25. 
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COLOURFUL LINEAR PROGRAMMING AND ITS RELATIVES 

First, the determination of the complexity of the problem (particularly in the case covered 

by Theorem 1.1) is a very important theoretical issue: our Theorems 4.4 and 6.1 described 
below provide a step in that direction by giving contrasting positive and negative results 
on the complexity of the problem. Second, colourful linear programming has various 
applications. We discuss one such application to combinatorial geometry in ?7 and briefly 
mention another in ?8. A broader account of other applications and consequences of 
colourful linear programming will appear elsewhere. Related colourful conjectures and 
determinantal identities can be found in a recent article by Onn (1997). 

An overview of the paper is as follows. In ??2 and 3 we provide a rather efficient 

approximation algorithm for colourful linear programming and analyze its real arithmetic 

complexity. In ?4 we analyze the Turing time complexity for rational data. We also show 
how to use the approximation algorithm to solve colourful linear programming exactly. 
In ?5 we give a computational complexity classification of a hierarchy of related decision 
and counting problems in linear algebra. We also introduce and discuss the complexity 
of a hierarchy of (wl, w2) -Matroid-Basis-Nonbasis problems. In ?6 we show that colourful 
linear programming is strongly XP-complete. In ?7 we give an application of colourful 
linear programming to the algorithmic problem of Tverberg's theorem in combinatorial 
geometry. We conclude with a brief discussion. 

Here is a more detailed description of the contents of the article and the main results. 
In ??2-4 we study an approximation algorithm for colourful linear programming. We 
concentrate on the case k = d + 1 and b = 0 E nfli+ conv(Si) where a solution is 
guaranteed to exist, but needs to be found. Given an e > 0, the algorithm finds a colourful 
T which is e-close to 0, that is, whose convex hull contains a point which is e-close to 0. 
Interestingly, our algorithm specializes, in the case SI = ... = Sd+l, to an algorithm of 
von Neumann for linear programming. Assuming that each Si contains at most n points, 
that the points are normalized, and that a ball B(0, p) is contained in nf /+l conv(Si), we 
obtain the following results on the real arithmetic complexity and, for rational data, on 
the running time on a Turing machine, respectively (see ??3-4 for the precise state- 
ments): 

* Theorem 3.1. The number of real arithmetic operations taken by the algorithm to 
find a colourful set containing a point e-close to 0 is O(((nd + d4)lp2) log(l/e)). 

* Theorem 4.3. For rational data, the algorithm finds a colourful set containing a point 
e-close to 0 in time which is polynomial in the bit size L of the input points and in log ( 1/ 
e) and 1/p. 

We also show that by suitably choosing e it is possible to convert the approximation 
algorithm to an algorithm for an exact solution of colourful linear programming on rational 
data. We are grateful to a referee for his question which prompted us to derive the fol- 
lowing result. 

* Theorem 4.4. For normalized rational data there is an algorithm that finds a colourful 
set T containing 0 in its convex hull in time polynomial in the bit size L of the input points 
and in 1/p. 

In ??5 and 6 we give a computational complexity classification of a hierarchy of related 
problems. Colourful linear programming is equivalent to deciding if Si, ...., Sk admit a 
colourful T which is positively dependent. Replacing "positively" by "linearly" and 
"dependent" by "independent," we get four decision and related counting problems. We 
have the following results, the hardness ones holding even if the number k of sets equals 
the dimension d. 

* Theorem 5.4. All four counting problems are #P-complete. 
* Theorems 5.1 and 5.3. The complexity of deciding the existence of a colourful set 

of each of the types above is given by the following table: 

551 

This content downloaded from 144.82.108.120 on Sat, 19 Oct 2013 05:24:41 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


I. BARANY AND S. ONN 

Linearly Positively 

Dependent NP-complete NP-complete 

Independent Polynomial Time 

* Theorem 6.1. Colourful linear programming is strongly SP-complete. 

We also discuss the complexity of the following hierarchy of Basis-Nonbasis matroid 

problems, one for each pair (wl, w2) of positive numbers: it is the problem of deciding, 
given wl + w2 matroids, whether there is a subset which is a basis in the first w, matroids 
but not in the others. Counting problems related to this hierarchy will be studied elsewhere, 
in an extension of Kleinschmidt and Onn (1996). 

In ?7 we turn to an application to a problem from combinatorial geometry motivated 

by Tverberg's theorem: given a set of points S C Qd and a positive integer k, a colouring 
(partition) S = W=I Si such that n=l conv(Si) # 0 is sought. Based on a recent result 

by Sarkaria (1992), the following statement is derived (see ?7 for the precise statement). 

* Theorem 7.2. The decision, counting, and search Tverberg colouring problems are 

polynomial time reducible to corresponding suitable problems of colourful linear pro- 
gramming. 

We conclude with a brief discussion of another application to computational geometry. 
Our Theorem 4.4, which guarantees an efficient algorithm for colourful linear program- 

ming when k = d + 1 and the convex hull of each colour contains a ball of positive 
volume, stands in contrast with our Theorem 6.1 which asserts that colourful linear pro- 
gramming is strongly P-complete. This makes us suggest the following question, which 
in the following form remains open, as an outstanding problem on the border line between 
tractable and intractable computational problems. 

QUESTION 1.2. Given colours So, ..., Sd C Qd such that 0 E n =o conv(Si), is it 
possible to find a colourful T = { So,..., sd } such that 0 E conv (T), which is guaranteed 
to exist, in polynomial time? 

2. Approximating a colourful point. As we shall see in following sections, colourful 
linear programming is computationally hard. Therefore we first study the problem of 

approximating the colourful point. This will also lead to an exact solution in ?4. So, we 
consider the problem of searching for a colourful set T such that conv(T) contains a point 
which is e-close to 0. In this section and the next two we describe and analyze a certain 
iterative pivoting algorithm for such an approximation. Interestingly, when So =. 
= Sd, our algorithms essentially specializes to an algorithm of von Neumann for linear 

programming (see Dantzig 1992). So our algorithm can be regarded as a "colourful" 
refinement of von Neumann's algorithm. 

If any of the input points is the origin then any colourful set containing it is a solution. 

So, without loss of generality we assume that no input point is 0 and that the input is 
normalized, that is, the norm of each point s E U =o Si satisfies 1 s Is s | 2. The reason 
we do not simply assume s l = 1 is that we want to deal with rational data as well. Note 
that normalizing an arbitrary input is easy to do: with real arithmetic computation simply 
divide s by its norm Is ; with a Turing machine on rational data, first scale s E Qd to 
have integer components, and then divide it by the largest integer n satisfying n2 I s 2. 
We shall extend the analysis to the situation where we know that a Euclidean ball B(0, 
p) of radius p about 0 is contained in the convex hull of each monochromatic set Si. For 
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positive p the convergence turns out to be much faster. So, we address the following 
problem. 

Colourful point approximation problem. Given e > 0, p > 0, and normalized sets 
So,.....Sd of points in Rd, each satisfying B(0, p) C conv(Si), find a colourful set whose 
convex hull contains a point x satisfying I x I E. 

In this section we describe an iterative algorithm for this problem and bound the number 
of iterations required. Each iteration involves a minimum norm computation over a poly- 
tope, which is a fairly heavy task. In the next section we describe a variant of the algorithm 
which avoids minimum norm computations, discuss the details of its efficient implemen- 
tation, and analyze its real arithmetic complexity. In ?4 we analyze the computational 
complexity on a Turing machine for rational data. 

The following algorithm maintains in each intermediate iteration a colourful set Tk 
= to, .. ., td } and approximating point xk E conv (Tk). 

Algorithm 1. 
* Initialization. Put k = 1. Pick an arbitrary colourful set T, = { to, ... , td }. Let xl be 

the point of minimum norm in conv( T1). 
* Iteration. If I xk I - e then stop and output Tk and Xk. Otherwise update the colourful 

set as follows: choose a colour i such that xk E conv(Tk\ { ti ); choose a point t E Si 
minimizing the inner product (Xk, t); update ti := t and let Tk+l = {to, . . ., td } be the 

resulting new colourful set. Let xk+l be the point of minimum norm in conv( Tk+ ). 
Increment k and proceed to the next iteration. 

Note that in the kth iteration either xk = 0 and the algorithm stops, or it is possible to 
choose a colour i to be exchanged: either conv(Tk) is full dimensional and xk lies on its 
boundary, or conv (Tk) has affine dimension less than d; in both cases xk can be expressed 
as a convex combination of at most d points from Tk by the usual Caratheodory theorem. 
We now derive an upper bound on the number of iterations (Lemma 2.2 below), which 
turns out to be no worse than for von Neumann's noncolourful algorithm (Dantzig 1992, 
Freund 1995). 

PROPOSITION 2.1. Let e > 0 and 0 - p - 1, and let So, ..., Sd C IRd be normalized 
sets of points, each satisfying B (0, p) C conv(Si). Then, when Algorithm 1 is applied, 
the following recursions hold while Xk + 0: 

(1 1-( 1 
Xk 

\ 2 
(1) Ifp = 0: >-+ ' P>O: I x,l2 < 1 - I xk12 

2~Ck+112 4 Ixkf2 (2 

PROOF. Consider the kth iteration. The point q = -pxk/lxk I lies in the ball B(0, p) 
hence in conv(Si), and satisfies (xk, q) = -plXk . Therefore, there must be a point in 
Si, in particular the new point ti chosen by the algorithm, which also satisfies (Xk, ti ) 
- -p xk l. Let p be the point closest to the origin on the line spanned by xk and ti. So p 
is the projection of 0 onto that line, hence 

(ti - Xk, ti)Xk + (Xk 
- t X)i , a k ) Xk2ti 2 - (Xk, t ) 

= 
(t - Xk, t - Xk) Xk2 + Iti 12 - 2(xk, ti) ' 

Since (Xk, ti ) -p xk I this gives 

(I ti 2 - p2) Xk 2 
p ti 2 + 2plxkI + IXk2' 

Since the input is normalized we have I ti, I 2, and so we get for p = 0: 
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1 1 1 1 1 
Ip12- t1 2 iXkl2 4 [Xk 2' 

and for p > 0: 

(ItI2-p2t)IX2 _/X p2 2 
It 1 t 2 1 - 4 xk i 

Now (Xk, ti) -< 0 and p is on the line spanned by xk and ti, so p in fact lies on the line 
segment [Xk, ti ] C conv(Tk+, ). Since xk+ is defined as the point in conv( Tk+ ) of smallest 
norm, we have I xk+, I - p and the proposition follows. a 

One consequence of the proposition is the following proof of the colourful Caratheodory 
theorem: 

PROOF OF THEOREM 1.1. Let So , Sd be sets of points in Rd\ {0} such that 0 
E n =o conv(Si). Normalize the points by scaling: for any subset T c U =o Si this does 
not affect whether or not 0 E conv (T). Now apply Algorithm 1. By Proposition 2.1 with 
p = 0, as long as xk * 0 we have I Xk+ < | xkl hence xk+l : Xk. Since xk is uniquely 
defined from Tk and there are only finitely many colourful sets, we will eventually have 
0 = Xk E conv(Tk) proving that the origin is in the convex hull of some colourful set. o 

Another consequence is the following estimate on the number of iterations of Algo- 
rithm 1. 

LEMMA 2.2. Let e > 0 and O -- p - 1, and let So,. ., Sd C Rd be normalized sets 
of points, each satisfying B(O, p) C conv(Si). Then we have the following upper bounds 
on the number of iterations performed by Algorithm 1 to find a colourful point which is 
within distance e from the origin: 

(2) Ifp=O: = ; If P>O: 1 + -log = log . 

PROOF. For p = 0, let I = r4/e2l. Summation of the expressions in (1) for k = 1, 
...,- 1 gives 

> 1 4 - + ___- 4 __ 

IX,I2-4 ( 1X 2 4rE2 E2 

which proves the claim in this case. 
For p > 0, let t = 4/(4 - p2) > 1 and let I = 1 + [(2/log t) log(2/e)1. Then (I 

- l)log t 2log(2/e), so 

t 2 ' 

and so by Proposition 2.1, 

Ix,I _ . lX1e22. 

Since p < 1 we have 
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4 P2p\l2 p2 
log t = log4 2) = log1 +4 

p2) 
) 4 >2 

4 - p2 4 - 2 2 4 - p 
2 8 

so 2/log t < 16/p2. This proves the claim in this case as well. o 

3. A variant of the algorithm and its arithmetic complexity. Finding a point xk+I 
of minimum norm in conv (Tk+ 1) in the kth iteration of Algorithm 1 is a heavy task which 
involves the minimization of a quadratic form, and can be solved only approximately. To 
avoid this, we present a variant of the algorithm in which only linear algebraic compu- 
tations (such as solutions of systems of linear equations and computations of determi- 
nants) will be required. Such computations can be easily carried out in strongly polynomial 
time (i.e., polynomial number of arithmetic operations and polynomial time in Turing 
computations on rational data) via Gaussian elimination. To arrive at such a variant of 
the algorithm, we reconsider the choice of the new point Xk+l in the kth iteration step of 
the algorithm. If xk+l is chosen to be any point of conv(Tk+1 ) which is expressible as a 
convex combination of at most d elements, then the next iteration can be carried out- 
namely a colour can be found in which a new point can replace the old one. If Xk+l is 
chosen to be any point of conv(Tk+ ) satisfying I xk+\ I -I | p i, where p is the projection 
of 0 to the line segment [Xk, ti ] as in the proof of Proposition 2.1, then the proposition 
remains true. So the bound on the number of iterations in Lemma 2.2 will hold for any 
variant of Algorithm 1 in which, at each iteration k, the point Xk+i is chosen so as to 
satisfy these two properties. This suggests the following variant of Algorithm 1. In the 
kth iteration, the set Tk+I is constructed as before. Then the point p is computed. If 
conv(Tk+ ) happens to contain p on its boundary or is not full dimensional, then p is 
expressible as a convex combination of d or fewer points from Tk+l, so p itself can be 
taken as the next point Xk+1. Otherwise, conv(Tk+l) is a d-simplex containing p in its 
interior. In this case it is easy to compute the at most d + 1 intersection points ajp of the 
line spanned by p and 0 with the hyperplanes aff(Tk+l \ tj } ) spanned by the facets of 
conv(Tk+,). It is then possible to either conclude that 0 E conv(Tk+ ) or to identify the 
boundary point ap of conv(Tk+ ) where the simplex is stabbed by the line from 0 to p. 
This boundary point can then be taken to be the next point xk+i. 

Here is a more formal description of this algorithm. In each intermediate iteration it 
maintains a colourful set Tk = { to, ..., td }, an approximating point xk E conv(Tk), and 
a coefficient vector Xk expressing xk as a convex combination xk = =o jktj of Tk with at 
least one Xk = 0. The precise implementation details of the various steps are included in 
the proof of Theorem 3.1 below. 

Algorithm 2. 
* Initialization. Put k = 1. Pick an arbitrary colourful set T, = { to, ..., td }. Let X' 

= (1, 0, ..., 0) and x1 = d=o X' ti = to. 
* Iteration. If I xk E then stop and output Tk, Xk, and Xk. Otherwise proceed as 

follows: 
( 1) Update the colourful set: choose i such that X\ = 0; choose a point t E Si minimizing 

the inner product (Xk, t); modify ti := t and let Tk+l = { to, ..., td be the resulting new 
colourful set. 

(2) Compute the projection point p of 0 onto the line segment [Xk, ti ] expressed as a 
convex combinationp = E2=o Xjtj of Tk+l. Ifp = 0 or some Xj = 0 then go to Step 5. 

(3) If Tk+ is affinely dependent then modify X so that some hj becomes zero while p 
= do Xjtj is maintained, and go to Step 5. 

(4) Determine the point ap where the line directed from 0 to p enters conv( Tk+ I). If 
a - 0 then letp := 0 E conv( Tk+ ), whereas if a > 0 letp := ap. Express p as a convex 
combination p = E =o Xjtj of Tk+1. 

(5) Put k+ 1 := X and Xk+l := p. 
Increment k and proceed to the next iteration. 

555 

This content downloaded from 144.82.108.120 on Sat, 19 Oct 2013 05:24:41 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


I. BARANY AND S. ONN 

The following theorem establishes the correctness and the real arithmetic complexity 
of this algorithm. The proof includes a description of the implementation details. The 
analysis is for the case of positive p, but can easily be adopted to the case p = 0 as well. 
The theorem gives a bound on the number of arithmetic operations performed on nor- 
malized data, which depends polynomially on the dimension, the number of points, and 
log(l/e). 

THEOREM 3.1. Given p > 0, e > 0, and normalized sets So ..., Sd C R d, each 

satisfying I Si I - n and B(O, p) C conv(Si), the number of real arithmetic operations 
taken by Algorithm 2 to find a colourful set containing a point c-close to 0 is 

( nd + d4 1g) 

PROOF. First we show that the algorithm is correct and maintains the bound on the 
number of iterations of Lemma 2.2. Consider the kth iteration loop. In Step 1, since at 
least one hk = 0, it is possible to construct the new colourful set Tk+ . Next, consider Step 
2: the point p and the vector X can be computed as follows. Let 

(Xk - ti Xk) (ti - Xk, ti) 

= ti - 
Xk- X2 

Then, since (Xk, ti) S 0, the point 

d (ti - Xk, ti )Xk + (Xk - ti, Xk)ti 
p = I Xjtj = 

j=o Iti- X 2 

is the projection of 0 onto the segment [Xk, ti ], expressed as a convex combination of 

Tk+l (see proof of Proposition 2.1 ). If now p = 0, or hj = 0 for some j, then Xk+ can be 
taken to be p and it is possible to proceed to the next iteration. Otherwise, in Step 3, using 
Gaussian elimination it is possible to check if Tk+ is affinely dependent, and if it is, find 
a nontrivial affine relation 2=o -tj = 0 with 2d=o j = 0. It is then possible to choose a 
suitable multiplier 6 so that X := X + 6bi remains nonnegative and some Xi becomes zero, 
and then proceed to the next iteration. If Step 4 is reached, then conv(Tk+l) is a full 
dimensional simplex containing p * 0 in its interior. To determine the point ap where the 
line lin(p) directed from 0 top enters conv ( Tk+, ), proceed as follows. Forj = 0,..., d, 
this line intersects the hyperplane aff( Tk+I \ tj }) if and only if the determinant 

-0 1 1 .. 1 1 
A = det 

_P to ''' tj_i tj+i ''' td 

is nonzero, in which case the intersection point is ajp where 

1 
aj = det[to * * 

tj - tj+l td]. 

For eachj, if A * 0 then compute aj by the expression above, whereas if A = 0 then set 

aj = oo. Let a = max { aj: 0 -- j d, aj < 1 . Then, since p = 1 -p is in the interior of 
conv(Tk, ), the desired point where lin(p) enters conv( Tk+ ) is ap. Now, if a - 0 then 
0 is in the line segment [ap, p] hence in conv(Tk+,), and p will be modified to p := 0. 
If a > 0, then ap is in [0, p] hence closer to 0 than p, and p will be modified to p 
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:= ap. Since conv( Tk+1) is a simplex in this situation, the unique vector X which expresses 
p as a convex combination of Tk+, is given by 

-1 ** 1 ---1- 
A= 

to '* td_ _p_ 

If p = 0 then the algorithm will terminate in the following iteration, whereas if p * 0 
then p is a boundary point of conv( Tk+l) so some Xi is zero and it is possible to proceed 
to the next iteration. 

The number of arithmetic operations in each iteration can be bounded as follows. In 
Step 1, the inner product (Xk, t) is computed and compared for I Si | - n points t, which 
involves O(nd) operations. Step 2 involves O(d2) arithmetic operations. The work in 
Step 3 is dominated by the Gaussian elimination, which takes O(d3) operations. Step 4 
involves 0(d) determinant computations and one matrix inversion, each done again by 
Gaussian elimination. So this step involves O(d4) operations. Thus, the total number of 
arithmetic operations per iteration is O(nd + d4). By Lemma 2.2, for positive p the 
number of iterations is O((1/p2) log(l/e)), which gives the bound stated in the 
theorem. O 

4. Computational complexity for rational data. In this section we discuss the time 
complexity on a Turing machine when the input consists of rational points, and the pos- 
sible conversion of the approximation algorithm to one that finds a genuine colourful set 
containing 0 in its convex hull. 

The bit size L of the input points U =o Si C Q d is the total number of binary bits needed 
to encode all coordinate values of all the points. Note that L 2 d * d=o I Si > d2. We 
start with the following two propositions. 

PROPOSITION 4.1. Let V = { Vi, ..., vm } be a set of points in Qd- of bit size L. IfO 
X conv(V) then the norm of any x E conv(V) is larger than 2-3dL. 

PROOF. Suppose 0 Q conv(V) and let x* be the point of minimum norm in conv(V). 
By Caratheodory's theorem there is a subset U = { u,..., uk } C V of affinely indepen- 
dent points such that x* is in the relative interior of conv(U). Thus, x* equals the or- 
thogonal projection of 0 onto aff( U). To express it let 1 be the vector of all 1 in Qk and 
let A be the full column rank matrix 

1 *-* 1 

U1 .. Uk. 

We claim that x* = p where p is defined by 

Po 1 
p= . TA A(ATA)-'1. 

P _ lT(ATA)-l` 

Indeed, po = 1, so p is an affine combination of the ui hence lies in aff( U), and 

Po _ 1 

p 1 T(A A)-1 

which shows that the value of (ui, p) is the same for all i, so p - 0 is orthogonal to 
aff(U). 

Now, the bit size of A (which is the total number of bits needed to encode all of its 
entries) is at most L, so the common denominator of the entries of A is a positive integer 
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q satisfying q - 2L, and qA is an integer matrix whose entries are of absolute value at 
most 2L. Let B be the adjoint matrix of q2(A TA). The entries of B are proper minors of 
q2(ATA), so by Hadamard's inequality they are integers of absolute value at most 
d(3/2)d 22dL, and so 1TBl d(3/2)d+2 22dL. Now (ATA)-' is a scalar multiple of B, and 
so 

x* qlBl(qA)B1. 

Therefore each coordinate of x* is of the form plD for some integer p, with 

D = q' ( 1TB) - d(3/2)d+2 .2(2d+ 1) L < 23dL 

By assumption x* 0 hence has a nonzero coordinate x*. Therefore, as claimed, 

x*l > 
* I- > 2-3dL 

~~D~~~~~ 

PROPOSTION 4.2. Let V = { V1, ... , V } be a set of points in Qd- of bit size L. If 
the interior of conv(V) contains the origin 0 then in fact it contains the ball B(0, 2-3dL). 

PROOF. Suppose to the contrary that 0 is in the interior of conv (V) but there is a point 
x on the boundary of conv(V) with I x <- 2 -3dL. Let U be a subset of V such that conv (U) 
is a face of conv(V) which contains x. Since 0 is interior it does not lie in conv(U). 
Since the bit size of U C V is at most L, Proposition 4.1 implies I x I > 2-3dL which is a 
contradiction. [ 

We now proceed to discuss the complexity of Algorithm 2 for rational data. We need 
to make sure that the bit size of the numbers involved in the computations throughout the 
algorithm remains polynomially bounded in the size of the input. This is achieved by 
replacing Step 5 in the iteration loop of Algorithm 2 by the following rounding step: 

Rounding step for rational data: let D = r32- d 26'(d+)L 1. Put xk+l := j_O j+l tj, 
where 

j~+1'Ed [DXr1 (j = ...,d). r=OFDXl 

We now show that with the rounding step, the running time of Algorithm 2 on a Turing 
machine when applied to normalized rational input, is pseudopolynomial in p and poly- 
nomial in the rest of the data. 

THEOREM 4.3. Given p > 0, rational e > 0 and rational normalized sets So, ..., Sd 
C Qd of bit size L, each satisfying B(0, p) C conv(Si ), the time taken by Algorithm 2 
with the rounding step to find a colourful set containing a point e-close to 0 is polynomial 
in L, log(l/c), and lip. 

PROOF. First, we show that the bound of Lemma 2.2 on the number of iterations 
remains valid. Consider the kth iteration of the algorithm, and let X and p = Zd=o Xjtj be 
as computed in this iteration before entering the rounding step. Now apply the rounding 
step and obtain xk+l and kk+l. Note that the rounded kk+l is nonnegative and satisfies 

d=o Xk+ = 1, so expresses Xk+l as an exact convex combination of the tj. Now, for each 
i the origin is in the interior of conv(Si) so by Proposition 4.2 we have B(0, 2-3(d+ 1)L) 

C conv(Si). Let p = max {p, 2-3(d+ )L}. Then 
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r32d d26(d+l)L1 32-d -2 2 
D= e - and 1- 1- 

so 

4d 
D - 

E(1-1_) 
Since B(O, p) C conv(Si) for all i, we obtain by Proposition 2.1 that 

1 l 
d d 

1 
xk+,l I 

- [DXjltj = it+ -Xt D jl - Drj tj 
D=o / =0 /=0 

- lpl + Itl- ( 
- 

)l+ d 
2 

IXI+II - 1-1 1 -0 

DI 
+ Itil VI( ) xkl + 

D 
d2 

-2 2 

( l- k Ixl+ 2 -2 Ixkl 

So I Xk+ I is a constant fraction of I xk . The recursion ( 1 ) deduced in Proposition 2.1 can 
be replaced by the recursion I Xk+ 1 j (1 + v1 - ~ 2/u )/21 Xk I, and an analysis similar 
to that of Lemma 2.2 shows that number of iterations is O((1/p2) log(l/e)) = 0((1/ 
p2) Xlog(l/e)). 

Next, we show that the running time per iteration is polynomially bounded in the data. 
Since the number of arithmetic operations per iteration can be bounded as in the proof of 
Theorem 3.1, it is enough to show that the bit size of the numbers appearing throughout 
the iteration remains polynomially bounded in the size of the input. The key point is that 
the rounding step makes sure that, at the end of the (k - 1 )th iteration, the numerator of 
each Xk is a positive integer not exceeding D, and its denominator is a positive integer 
not exceeding dD. Since log D = O(log d + log(l/e) + dL), this guarantees that the 
bit size of the vector hk and the point xk = 2jd_0 ktj used at the beginning of the kth 
iteration are O(d2L + d log (1 /e)). Therefore, the data manipulated within each iteration, 
which consists only of the original data and Xk and xk, has size polynomially bounded in 
the input size. So the growth in size of numbers is not accumulated from one iteration to 
the next. Now the work in the iteration consists of standard computations in Steps 1 and 
2, plus 0(d) Gaussian eliminations in Steps 3 and 4. Since Gaussian elimination is poly- 
nomial time implementable (see Schrijver 1986), we conclude that the running time per 
iteration is polynomial in L and log( 1/). o 

Finally, we show that if e is specified to be small enough then the colourful set found 
by Algorithm 2 contains 0 in its convex hull, and so provides an exact solution of the 
colourful linear programming problem. We are grateful to a referee for his question which 
prompted us to derive the following result. 

THEOREM 4.4. There is an algorithm that, given p > 0 and rational normalized sets 
So, ..., Sd in Qd of bit size L, each satisfying B(0, p) C conv(Si), finds in time poly- 
nomial in L and 1/p a colourful set T containing 0 in its convex hull. 
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PROOF. Let L be the bit size of the input Udo Si, and define e = 2-'3(d+L. Apply 
Algorithm 2 with the rounding step. By Theorem 4.3 the algorithm stops in time poly- 
nomial in L, log(l/E) = O(dL), and l/p, and outputs a colourful set T whose convex 
hull contains a point x of norm I x l e. By Proposition 4.1 above, conv(T) contains the 
origin as well, and so T is an exact solution of the colourful linear programming 
problem. o 

5. Colourful linear algebra and its complexity. A set S = { s, .., sn, of vectors 
in Rd is positively dependent if it has a nontrivial linear dependency i=li ,iS = 0 with 
all ,ui nonnegative. Since this is equivalent to 0 E conv(S), Caratheodory's theorem now 
says that if S C IRd is positively dependent then it has a subset of size at most d + 1 which 
also is. This is in analogy with the trivial statement for a linearly dependent set. Given 
now a family of colours So, ..., Sd C Rd, the colourful Caratheodory theorem says the 
following: if each member Si of the family is positively dependent, then the family admits 
a positively dependent colourful set T = { sO, ..., s }. Again, this is in analogy with the 
trivial statement for linear dependence. 

We now consider several algorithmic problems that arise, and that turn out to be hard 
for the linear-dependency case as well. For each problem, we shall distinguish a Decision 
problem, a Search problem, and a Counting problem. Here we shall restrict attention to 
the Turing machine computation model, and to the field Q of rational integers. However, 
these problems have obvious analogs over any field 9 and any type of P-dependency (i.e., 
when the coefficients in the linear relation are required to come from a fixed subset P 
C 3) and could be studied under other models of computation such as by Blum, Shub, 
and Smale (1989). 

Colourful set problem. Given are k, d, and a family of nonempty colours Si, ...,Sk 
C Qd 

* Decide if the family has a linearly (positively) dependent (independent) colour- 
ful set. 

* Find such a colourful set if one exists. 
* Count the number of such colourful sets. 

Note that the positive-dependence version is the same as the colourful linear program- 
ming problem. Also note that if k = d + 1 then any colourful set is linearly dependent, 
so the linear-dependence version of the problem becomes trivial. If k = d + 1 and each 
Si is positively dependent, the positive-dependence version of the decision problem also 
becomes trivial by Theorem 1.1. So the following statement is sharp. 

THEOREM 5.1. Deciding linearly (positively) dependent colourful sets is MP-com- 
plete, even if k = d and each Si is itself positively dependent. 

PROOF. We prove the statements for the linear and positive versions simultaneously. 
Clearly both problems are in the complexity class M. We reduce the MP-complete problem 
of Partition (see Garey and Johnson 1979) to each. Given positive integers a,, ..., ad, 
let for i = 2, ... d, 

d d 

ul = al el + ei, vU = -alel + I ei, 
i=2 i=2 

and ui = ai e - ei, vi = -aie, - ei, 

where el,..., ed denote the standard unit vectors in Qd, and let Si = { ui, vi } for all i. 
It is now easy to verify that there is a linearly dependent colourful set if and only if there 
is a positively dependent one if and only if there is a partition I W J of [d] = 1, ..., 

d} such that S,ie ai = Ej E aj: first, if I W J is such a partition then , cI ui + -EjJ vj 
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= 0, so { Ui: i E I U vj: j E J} is a linearly and positively dependent colourful set. 
Conversely, let T = { sl, ..., S } be a colourful set admitting a nontrivial linear relation 

_d=l hjsj = 0. For i = 2, ., d, by considering the ith coordinate of the equation 0 
= X jsj we find that 0 = i - Xi. Therefore X = = Xdand so E = si = 0 as well. 

So Tis also positively dependent, and the sets I = {i: si = ui } and J = j: sj = vj form 
a partition of [d] with the desired property. To prove that the problem remains VP-com- 
plete if each Si is itself positively dependent, simply take Si = { ui, vi, -ui, -vi }. Now, 
if sI, ..., Sd } is a linearly dependent colourful set with Y4=li si, = 0 then, flipping the 

sign of both si and Xi if necessary, we find another linearly dependent colourful set with 
si E { ui, vi } for all i, and proceed as above to show that it is also positively dependent 
and to construct a suitable partition of [d]. ] 

It would be interesting to determine the complexity of deciding the existence of a 
positively dependent colourful set when k = d + 1 but the Si are not necessarily positively 
dependent. 

Related is the following hardness statement. 

THEOREM 5.2. Given two sets S1, S2 E Qd, it is M-complete to decide whether there 
is a positively dependent set T of size d with I T n S I = I T n S2 . 

PROOF. By reduction from exact partition (Garey and Johnson 1979). Given positive 
integers al, ..., ad, let ui and vi be as in the proof of Theorem 5.1, and let S, = {ul, 
... , d } and S2 = {V, ... , Vd }. Then it is easy to verify that there is a set T as desired 
if and only there is a partition I W J of [d] such that Il = I JI and 2iEl ai = Ej ej aj. E 

Note that by taking d/2 copies of each of SI and S2 above, this implies again the hardness 
of deciding positively dependent colourful sets. 

In contrast with Theorem 5.1 we have the following statement observed together with 
M. Loebl. 

THEOREM 5.3. Deciding linearly independent colourful sets can be done in poly- 
nomial time. 

PROOF. Let V be the disjoint union of the Si (so a point of Qd appearing in several 
Si will have several copies in V). Define two matroids M,, M2 on V as follows: Ml will 
be the matroid of linear dependencies on V, while M2 will be the matroid whose bases 
are all colourful sets. Then a k-subset of V is a linearly independent colourful set if and 
only if it is independent in both M, and M2, and so the decision (and search) problem 
reduce to 2-matroid intersection, which can be done in polytime. n 

This proof raises some questions about matroids, which we discuss later on. But before 
that, we show that counting is hard for all four variants of the problem. 

THEOREM 5.4. Counting linearly (respectively, positively) dependent (respectively, 
independent) colourful sets is #P-complete. 

PROOF. All problems are clearly in #P. We now reduce the #P-complete problem of 
computing the permanent of a 0, 1) -matrix (see Valiant 1979) to each. Let A = (Aij) 
be such a matrix of size d x d, and for i = 1, .. ., d define Si = {ej: Aij = 1. Then 

perm(A) := I A l r( Tc permutation on [d] 
1i=1 

= 1 {1: 7r permutation, e(l) E SI ,..., e7(d) E Sd} 

= #{ linearly independent colourful sets of SI, ..., Sd} 

d 

= II I S I - #{ linearly dependent colourful sets of S5, .., Sd }. 
i=l 
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This proves the hardness of counting linearly independent and linearly dependent trans- 
versals. For the positive analogs, define sets To, ..., Td in Qd+ 1 by 

f 
~~~~~~~d. To= {- ej}, Ti ={ej:Aij,= 1} U {ed+}, =1 ,...,. 

j= 
1 

It is easy to see that a d-tuple of vectors vl ,..., vd forms a linearly independent transversal 
of S,,... , Sd if and only if v, ..., d together with -_= ej forms a positively dependent 
transversal of To, T1,..., Td, so 

perm(A) = #{ positively dependent transversals of To,..., Td } 

d 

= H I T I - #{ positively independent transversals of To ..., T }. 
i=O 

The linear variants of the colourful set problem form a special case of a general hier- 
archy of Matroid Basis-Nonbasis problems which we now introduce. Given are a pair w 
= (w,, w2) of nonnegative integers and matroids M1, ..., Mw,+w, of the same rank d, 
defined on the same set. A d-subset of the elements is a w-set if it is a basis in each of 
the first w, matroids and is not a basis in each of the last w2 matroids. Note that, for 
complexity considerations, one has to specify the way in which the matroids are pre- 
sented-e.g., by an independent set oracle, or by a matrix when the matroids are linear. 

Matroid basis-nonbasis problem. Given are a pair w = (wl, W2) of nonnegative inte- 
gers, positive integers d and n, and wl + w2 matroids of rank d defined on the same set 
of n elements. 

* Decide if there exists a w-set. 
* Find a w-set if one exists. 
* Count the number of w-sets. 

The decision and search problems are polynomial time solvable for w = (1, 0) by the so- 
called greedy algorithm and for w = (2, 0) by the 2-matroid intersection algorithm mentioned 
before, even if the matroids are given by oracles. For w = (3, 0) the decision problem is 
known to be p?-complete. The complexity for w = (0, 1), which includes as a special case 
the problem of checking if n given points in d-space are in general position, is unknown. 
Theorem 5.1 shows that for w = (1, 1) the decision problem is SGP-complete. It would be 
interesting to settle the complexity of these problems restricted to special classes of matroids. 

Another interesting problem related to the colourful set problem concerns common 
zeros of systems of quadratic forms. Identify Qd with the vector subspace of linear forms 
in the algebra of polynomials Q[x,, ..., Xd] in the obvious way. Let 1 be any field 
extension of Q (possibly - = cQ). A quadratic form is simple (of rank 1) if it is the 
product u v of two linear forms u, v E Qd. 

THEOREM 5.5. Deciding if a system of rational quadratic forms have a common non- 
trivial zero over 9 is NP-complete, even if the number of forms equals the number of 
indeterminates and each form is simple. 

PROOF. By reduction from Partition: construct d sets Si = { ui, vi , where ui, vi 
E Qd, as in the proof of Theorem 5.1. Now, the system ul,v,, ..., ud vd of simple 
quadratic forms in Q[x,, . .., Xd] admit a common nontrivial zero X E fd if and only if 
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X is in the orthogonal complement in Qd of some colourful set of the Si, i.e., if and only 
if the Si admit a linearly dependent colourful set. O 

6. Strong hardness of colourful linear programming. Here we show that the col- 
ourful linear programming problem is strongly &P-complete (see Garey and Johnson 
1979). Thus, even a pseudo-polynomial time algorithm (of running time polynomial in 
the unary representation of the data-see Garey and Johnson 1979 for the exact definition) 
does not exist unless P = (P. 

THEOREM 6.1. Given colours Si, ..., Sd C Qd such that 0 E nf=, conv(Si), it is 
strongly P/-complete to decide whether there is a colourful T = { sl, . Sd I such that 
0 E conv(T). 

PROOF. The proof is by reduction from 3-satisfiability. Let f = cl\ A ... cm be a 
given Boolean function in 3-conjunctive normal form on variables xl,... , xn, where each 
ci is a clause of the form ci = li, + l2 + li,, with each lr E {Xr, r } being a literal. 

Let k = d = n + m, and let {ec, ..., ecm, ex, ..., ex } denote the standard basis of 
Qd, where the first m unit vectors correspond to clauses and the last n to variables, so 
that a typical point in Qd is denoted by v = (vc, ..., vc, v,, .. ., V). 

We now construct sets of points T, ... . Tm and SI,..., Sn in Qd, corresponding again 
to clauses and variables, respectively, so that 

m n 

0 E f conv(T,) n conv(Sj), 
i=l j=l 

and such that there is a colourful T with 0 E conv(T) if and only if f is satisfiable (here 
a colourful set is one that contains one point from each Ti and one from each Sj). 

For each j = 1, ..., n we construct below three vectors vj, v', and ui, and we let Si 
= {,vj j, uj}. For each i = 1, ..., m we construct below five vectors w', w'5, w9 
yi, and zi, and we let Ti = {wi ', wi'5, wi'9, y', zi}. 

Let A (respectively, A) be the m by n incidence matrix of clauses and variables (re- 
spectively, negated variables), namely 

(1 if xj E ci, _ 1 if xj E ci, 
Aij = A iJ = 

0 otherwise, 0 otherwise. 

Now let 

m n m n 

v = (3Ai,, - A,,)ec + ex, v' = S (-A,,, + 3A,l)ec + ex, 
1i= j=i i=l j=l 

and forj = 2, ..., n, 

m m 

vj = E (3A,i - A,i)ec, - ex, v = E (-A,j + 3Aij)ei - ej. 
i=l i=1 

Fori= 1,..., m and r = 1,5, 9 let 

ir = _rec - ex,, y'= 15ec + 50e 
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Finally let uj = -(v + vi) and z' = -(w'1 + w' 5 + Wi'9 + y1) so that Sj and Ti are 
positively dependent for all i and j. 

Now, any satisfying assignment for f gives a positively dependent colourful set as 
follows. Forj = 1, ..., n let 

fvj ifxj= 1, 

TS if J = 0. 

Since the assignment is satisfying, we have ri := 2j=, s i E {1, 5, 9}, and we let t' 
= wi' for i = 1, . . m. It is then easy to verify that iml t' + lj=i sj = 0, so that T 

{t', ... t. , s', . ... s } is positively dependent. 
For the converse, suppose T = {t, ..., tm, s , ..., s" } is a colourful set and /i and Xi 

are nonnegative numbers, not all zero, such that a = 0 where a := /i + i= hXjsi. By 
considering the various equations ac = 0 and ax = 0 for the various coordinates of a = 0, 
we will be able to exhibit a satisfying assignment for f. First, note that some hj must be 
nonzero: if not, then 0 = aci = -it i, so whenever ti * 0 there must hold t4, = 0 so t' = zi. 
But then 0 = ax, = S1 pizi, which would imply ti = 0 for all i. Next, note that moreover 
A, = k2 = ... kn 0, and s' = u either for allj or for noj: this follows by the claim 

just proved and by considering the equations ax = 0 forj = 2, ..., n. 
We now proceed to show that s E { vj, ij } for all j. Suppose, indirectly, that this is 

not the case. Then, by the statement above, we have sj = u for allj. Write k = h = 
= h,. Then, for all i, 

0 = aO = C = u + iti, = 3X.(-2) + wit, 
ljE ci 

so we must have t' > 0, so ti = y' and i = = 6 X//y, = 6k/15 = 2X/5. Thus, 

m ^ in 2 
0 = a, = Xul + iyix, = -2) + m - X 50 = (20m - 2)X > 0, 

i=1 5 

which is impossible. Therefore indeed sj E { v, J I}, and we can define a variable as- 

signment 

1 if sj vj, 
Xj = 

0 ifsJ = v. 

It remains to show that this assignment is satisfying forf, namely that each clause ci has 
at least one literal lj = 1. Observe first that for all i we have 0 = ac, = SIjEci ks, 
+ pit. Now I,s Jc E { -3X, X, 5X, 9X} so is nonzero. Therefore, we must have ti 
* 0, and so t' * z'. The claim will be established once we prove that t' * yi either, which 
will imply that ti < 0 so that we get SIjEci s j, E { X, 5X, 9k} which implies that clause 
ci is satisfied. 

Let I, 12 be the partition of { , .., m } given by 

Ii = {i: ti * y}, I2 = {iti =yi}, 

so we need to show that I2 = 0. Now, for any i we have Eij^ i s , < 9X. If i E I, so 
that t' = wr, we have tc = -r, so 0 = ac, = Xlseci is + itit' implies that /ir s 9X so 

pi <- 9X/r c 9X/1 = 9X. Thus, 
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m / 1\ 9K 
0 = ax, = Xsl, + ,Y = + i, --+ i5 - I+ I i50 -+50 i, 

= iEll m iE2 m iE2 

SO 

i 91 9II 8K 1< 
i2 50 m 50 50 

Thus, for all i E I2 we have -,i ' YiEl2 pi < (1/5)X, and since piti = yiY = y i * 15, we 
obtain 0 -< it'i < 3K. But then, for i E 12, 

0 = aci = Xssi + it 
liE ci 

implies that EljEci Ks J 0 so we must have SIieci s Ji = -3h, so 

0 = ac = -3X + piti < -3X + 3X = 0, 

impossible. We conclude that indeed I2 = 0 and we are done. m 

7. Tverberg colourings. A Tverberg k-colouring of a set S of points in Rd is a k- 
colouring of S such that the convex hulls of the monochromatic subsets have a point in 
common, i.e., a partition S = W= Si such that the intersection n =I conv(Si) is nonempty. 
Tverberg (1966) proved the following, so-called Tverberg's theorem. 

THEOREM 7.1. Any set of more than (k - 1 )(d + 1) points in Rd has a Tverberg k- 
colouring. 

This theorem will follow from the proof of Theorem 7.2 below. Note that for k = 2, it 
reduces to the fact that any set of more than d + 1 points in Rd is affinely dependent (Radon's 
theorem): a 2-partition is given by the signs of the coefficients forming an affine dependency. 

A remark in place here is that this theorem has an analogue over the integers. It says 
that for every k and d there is a finite number t(k, d) such that any set of more than t(k, 
d) points in Zd C Rd has an integer k-colouring, namely a k-colouring such that 
nik= conv(Si) contains an integer point. The determination of the numbers t(k, d) is an 
outstanding open problem, even for k = 2. See Onn (1991) for the bounds 2d < t(2, d) 
< d2d and for related results. 

Tverberg's theorem raises the following algorithmic problems. 

Tverberg colouring problem. Given are k, d, and a set S of points in Qd. 
* Decide if the set admits a Tverberg k-colouring. 
* Find a Tverberg k-colouring if one exists. 
* Count the number of Tverberg k-colourings. 

Recently, Sarkaria (1992) discovered that the colourful Caratheodory Theorem 1.1 
implies Tverberg's Theorem 7.1. Here we give a simplified variant of Sarkaria's argument, 
and use it to reduce the algorithmic Tverberg colouring problem to the colourful linear 
programming problem. 

THEOREM 7.2. The decision (respectively, search, counting) variant of the Tverberg 
colouring problem is polynomial time reducible to the decision (respectively, search, 
counting) variant of the colourful linear programming problem. 

PROOF. Let k and S = {v,,...,v, } C Qdbegiven. Fori = 1, ..., k - 1, letf 
= ei be the ith unit vector in k- , and letfk = -k- f. Embed S in an open halfspace 
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in Qd+ l, say replace each vi by iU = [Vi] E Qd+ I. For i = 1, ..., n construct the following 
set Ti of k matrices in Q(d+ )x(k- ), regarded as points in (k - l)(d + )-space: 

Ti = {fVif ..., -f} C Q(d+ )X(k- 1) i = 1,..., n. 

Now there is a natural bijection between colourful sets { tl,...t, t} of T, ..., , Tn and k- 
colourings Si, ..., Sk of S: given a colourful set {tl, ..., t,n , let 

j=l,...,k. 

We now show that a colourful set is positively dependent if and only if the corresponding 
colouring is Tverberg. Assume first that { tl,... , t} has a nontrivial positive dependency 
Sn ,iti /= 0. We have 

k k-I 

o = 
i I iuiIfj 

= 
E 

i=1 uiESj j= 

I Ii~i = I Alvi, 
v eSj vE Sk 

iE- Sj -VIE Sk 
T 

j=l,...,.k-1, 

and in particular, by considering the (d + 1 )th coordinate of the vi, we have 

M:= S l-' = .E ]i = -" E I 'i, 
v/l Sk viE Si viE Sk- 

We conclude that S, ..., Sk is Tverberg, since 

1 k 

- 
Z /i, E n conv(Sj). 

Mn S . is j= 

Conversely, if S1, ..., Sk is Tverberg with 

E C'iVi .= . = E AiUi, 

ui;SI viE Sk 

n 

M=k k pi > 0. 
i=l 

i 2 O, E HJ.i = *... = E Hi = 1, 
vie Si viE Sk 

then (4) hence (3) hold, so (tl, ..., t } is positively dependent. Thus, the Decision, 
Search, and Counting variants of the Tverberg colouring problem for S reduce to the 
corresponding variants of the colourful linear programming problem for Ti, ..., T,. 

In particular, since the Ti lie in (k - 1 ) (d + 1 )-space and each is positively dependent 
by construction, the colourful Caratheodory Theorem 1.1 implies that if n > (k - 1 )(d 
+ 1) then TI, ..., T, have a positively dependent colourful set, hence S has a Tverberg 
k-colouring, which proves Tverberg's Theorem 7.1. o 

8. Discussion. Tverberg's Theorem 7.1 and the related algorithmic problems reduce 
to the Colourful Theorem 1.1 and to colourful linear programming. Similar reductions are 
possible for other theorems and related algorithmic problems. One example is that of 
finding a weak e-net, a notion which has various applications in computational geometry: 
a set T C RId is called a weak e-net for a given set S C Rd if T intersects the convex hull 
of every e-fraction of points of S. Alon, Barany, Fiiredi, and Kleitman (1992) have shown 
that for every finite set S C IRd and e > 0, there exists a weak e-net T of size at most (d 

(3) 

Therefore, 

(4) 
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+ 1)-(d + )e-(d+ ) (see Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, and Welzl 1995 
for improved bounds). This theorem was crucial in the solution of the Hadwiger-De- 
brunner (p, q)-problem by Alon and Kleitman (1992). It is possible to reduce this the- 
orem and the algorithmic problem of finding a small e-net to the colourful Caratheodory 
theorem and to colourful linear programming. A broader account of other applications of 
colourful linear programming will appear elsewhere. Related colourful conjectures and 
determinantal identities can be found in a recent article by Onn (1997). 
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