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Abstract

This paper presents two new combinatorial algorithms for the generalized circulation prob-
lem. After an initial step in which all flow-generating cycles are canceled and excesses are
created, both algorithms bring these excesses to the sink via highest-gain augmenting paths.
Scaling is applied to the fixed amount of flow that the algorithms attempt to send to the
sink, and both node and arc excesses are used. The algorithms have worst-case complexities
of O(m?(m + nlogn)log B), where n is the number of nodes, m is the number of arcs, and
B is the largest integer used to represent the gain factors and capacities in the network. This
bound is better than the previous best bound for a combinatorial algorithm for the generalized
circulation problem, and if m = O(n%/3-¢), it is better than the previous best bound for any
algorithm for this problem.
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1 Introduction

The generalized circulation problem is a generalization of the maximum flow problem in which each
arc (v, w) in the underlying network has a gain factor y(v,w) associated with it. If g(v,w) units
of flow are sent from node v to node w along arc (v,w), then y(v,w)g(v,w) units arrive at w.
Specifically, let G = (V, E, u, 7, s) be a directed network of n nodes and m arcs, where V is the set
of nodes, F is the set of directed arcs, u: E — Rt U{+0c0} is a capacity function, v: E — Rt is a
gain function, and s € V' is the sink. The objective of the generalized circulation problem is to find
a flow in G that maximizes the net amount of flow into s while satisfying flow conservation at each
node and capacity constraints on each arc. Many applications of this problem are described and
referenced in the books of Ahuja, Magnanti, and Orlin [1] and Lawler [15] and the survey papers
of Glover, Hultz, and Klingman [6] and Glover, Klingman, and Phillips [5].

Since the generalized circulation problem can be formulated as a linear programming problem,
it can be solved by general purpose linear programming algorithms, including simplex, ellipsoid
[13] and interior point methods [12], which can be adapted to take advantage of network structure.
Combinatorial algorithms based upon flow augmentations specifically designed to solve the gener-
alized circulation problem have also been developed. These include the algorithms of Onaga [16]
and Truemper [19], and the recently proposed polynomial-time algorithms of Goldberg, Plotkin
and Tardos [8]. One of the latter algorithms, Algorithm MCF, is based on the repeated application
of a minimum cost flow subroutine and has a complexity of O(n?m(m + nlogn)lognlog B). For
this bound, and throughout this paper, we assume that all capacities are integers, each gain is a
ratio of two integers, and B is the largest of these integers. Improved version of Algorithm MCF
have been proposed by Goldfarb and Jin [10], [11]. The algorithm given in [11] is a simplex version
of the algorithm given in [10] and both algorithms have a complexity of O(n?m(m +nlogn)log B).

Goldberg, Plotkin and Tardos [8] proposed a second algorithm, called the Fat-Path algorithm.
That algorithm repeatedly cancels all flow-generating cycles and sends the excesses created by
this process to the sink along fat (big improvement) paths. A modified version of the Fat-
Path algorithm, proposed by Radzik [18], improves its complexity from O(n?m?lognlog?® B), to
O(m?(m + nlognlog(nlog B)) log B), by only cancelling flow-generating cycles with relatively big
gains.

In this paper, we propose two new simple combinatorial algorithms based on highest-gain gen-

eralized flow augmentations. Our algorithms cancel all flow-generating cycles only on the first



iteration. On each subsequent iteration, our algorithms bring all excesses created at the first it-
eration to the sink without creating flow-generating cycles or more excess. They accomplish this
by augmenting flow along highest-gain paths, and hence can be viewed as versions of Onaga’s [16]
algorithm. They can also be viewed as analogs of Orlin [17] excess scaling algorithm for the mini-
mum cost network flow problem. By using both node and arc excesses and scaling, our algorithms
achieve a complexity of O(m?(m + nlogn)log B). This complexity is the best complexity known
for any combinatorial algorithm for the generalized circulation problem.

Two other polynomial time algorithms for the generalized circulation problem should be men-
tioned. The first is a strongly polynomial approximation algorithm proposed by Cohen and Megiddo
[2]. This algorithm runs in at most O(n2m? log e~ (log m+log® n)) time for a (1—¢) approximation
to an optimal solution and at most O(n?m?(log m+1log? n) log B) time for an optimal solution. The
second is an interior point algorithm due to Vaidya [20]. Using the techniques of Kapoor and Vaidya
[14] for speeding up such algorithms on network flow problems, it solves the more general general-
ized minimum cost network flow problem in at most O(n?m!S log B) time. While this is the fastest
known polynomial-time algorithm for the generalized circulation problem when m = O(n?%/3+€),
€ > 0, our new algorithms are fastest when m = O(n%/3-¢).

Our paper is organized as follows. In Section 2, we present some notation and definitions. In
Section 3, we briefly describe Goldberg, Plotkin and Tardos’ Fat-Path algorithm, and give some
of its properties. Our first algorithm and an analysis of its complexity is presented in Section 4.
Our second algorithm and its complexity analysis are given in Section 5. Some conclusions are

presented in Section 6.

2 Preliminaries

For convenience, we assume that G has no multiple arcs; if there is an arc from node v to node w,
this arc is unique and is denoted by (v, w). Without loss of generality, we assume that for each arc
(v,w) € E, arc (w,v) is also in E and has a gain factor y(w,v) = 1/y(v,w). A generalized pseud-
oflow is a function g : E — R that satisfies the capacity constraints: g(v, w) < u(v,w),V(v,w) € E
and the generalized antisymmetry constraints: g(v,w) = —y(w,v)g(w,v),V(v,w) € E. Given a
generalized pseudoflow g, the residual capacity is a function uy : E — R defined by ug(v,w) =
u(v,w) — g(v,w). The residual network with respect to a generalized pseudoflow g is the network

Gy = (V,Eg,uq,7, s), where E; = {(v,w) € E | ug(v,w) > 0}. Without loss of generality, we



assume that there is a directed path from each node v € V to node s in the residual network
corresponding to the zero pseudoflow, since any node for which this is not the case, together with
all arcs incident to it, can be deleted from the problem. For a given generalized pseudoflow g the
imbalance at node v is defined as eg(v) = — Y2, y)eg 9(v; w)- Node v is said to have ezcess if e4(v)
is positive and deficit if eq(v) is negative.

A generalized circulation is a generalized pseudoflow that satisfies e4(v) = 0 at all nodes v other
than node s. An optimal solution of the generalized circulation problem is a generalized circulation
that gives the maximum excess ej(s).

A flow-generating (absorbing) cycle is a cycle for which the product of the gains of the arcs on
the cycle is greater (less) than 1. Goldberg, Plotkin, and Tardos [8] call a generalized circulation
problem restricted if, in the residual network with respect to zero flow, all flow-generating cycles
pass through the sink, and prove that a generalized circulation problem is polynomially (O(nm)-
time) reducible to a restricted problem. The polynomial-time algorithms proposed in [8], [10], and
[11] and the new algorithms presented in this paper are all designed to solve restricted problems.
Therefore, in the following, all generalized circulation problems that are referred to are assumed to
be restricted. At the end of Section 4, we describe how to modify our algorithms so that they can
be applied to problems that are not restricted.

The above-mentioned polynomial-time algorithms use a relabeling technique originally intro-
duced by Glover and Klingman [7]. Given a function p : V — R* and a network G = (V, E, v, u, s),
the relabeled network is G, = (V, E, vy, uy, s), where p(v) is referred as the label of node v, the
relabeled gains are defined as y,(v,w) = y(v,w)u(v)/pw(w) and the relabeled capacities are de-
fined as uu(v,w) = u(v,w)/pu(v). Given a generalized pseudoflow g and a labeling u, the re-
labeled residual capacity is defined as ug,(v,w) = (u(v,w) — g(v,w))/p(v). It can be shown
that g, (v, w) = g(v,w)/p(v) is a generalized pseudoflow in the relabeled network G, and that
gu(v,w) = —yu(w, v)gu(w,v) and the residual graphs of g and g,, are the same. The imbalance at
node v with respect to g, in the relabeled network is ey, (v) = eg(v)/p(v). The relabeled residual
network is Gg,u = (V, Eg,u, Ug,uy Yu, 8), Where Eg = {(v,w) : ug (v, w) > 0}.

Our algorithm, like the Fat-Path algorithm, uses what Goldberg, Plotkin and Tardos call canon-
ical relabeling to the sink. For each node v € V, the canonical label u(v) is defined as the inverse
of the gain of the highest-gain simple v — s path in the residual graph. The gain of a path is a
product of the gains of the arcs on the path. Note that p(s) = 1. The canonical labels p can be

found by solving a shortest path problem, where arc lengths are defined as ¢(v, w) = — log(y(v,w))



for all (v, w) € E, because whenever y is computed in our algorithms the residual network contains

no flow-generating cycles.

3 The Fat-Path Algorithm

It is instructive to consider the Fat-Path algorithm since our algorithm is closely related to it and
was, in fact, motivated by it. The Fat-Path algorithm first cancels all low-generating cycles. This
creates excesses at some nodes in the network. The algorithm then looks for augmenting paths from
nodes with excess to the sink. If a flow augmentation is performed along a highest-gain residual
path, then the resulting residual network will not contain any flow generating cycles. Therefore, if
such flow augmentations are carried out until there is no excess at any node v € V — s, an optimal
flow will be obtained. This is essentially Onaga’s [16] algorithm.

Unfortunately, if flow augmentations are done only along highest-gain paths, exponentially
many augmentations may be necessary. Therefore the Fat-Path algorithm only augments flow
along highest-gain paths that can bring to the sink at least A units of flow, i.e., the A-fat paths.
Such paths can be found by solving a shortest path problem. The Fat-Path algorithm maintains a
factor A, which is divided by 2 each time it is adjusted. In each A-phase, A is unchanged. By not
using some highest-gain paths from the residual network because they are not A-fat, the Fat-Path
algorithm may create flow-generating cycles during a A-phase. Therefore the Fat-Path algorithm
cancels flow-generating cycles at the beginning of the next phase before again pushing flow from
nodes with excess to the sink s along fat paths. It can be shown that the number of phases required
by the Fat-Path algorithm is at most O(mlog B) and each phase, the cost of which is dominated
by cancelling flow-generating cycles, can be done in O(mn? lognlog B). This gives a complexity of
O(m?n?lognlog? B) for the Fat-Path algorithm.

Radzik [18] modified the Fat-Path algorithm so that it only cancels flow generating cycles with
“big” gains, resulting in an algorithm with an improved complexity. Radzik’s algorithm and the

proof of its complexity are quite complicated.

4 A Highest-Gain Augmenting Path Algorithm

In this section we present the first of two new algorithms for the generalized circulation problem.
Both of our algorithms start with a zero generalized pseudoflow. First, all flow-generating cycles

are cancelled as in the Fat-Path algorithm, but this is done only once. In subsequent iterations, all




of the excesses that were created during the initial step are brought to the sink along highest-gain
augmenting paths. This is carried out in phases characterized by a scaling parameter A, which is
reduced, as we shall show later, by at least a factor of two between phases. During a A-phase, if a
chosen highest-gain path P is not A-fat (i.e., there is at least one arc in it whose relabeled residual
capacity is less than A), it may not be possible to push A units of flow to s through P. To ensure
that at most O(m) pseudoflow augmentations are required in each phase, both of our algorithms
make use of arc excesses ey, (v, w) for all (v,w) € E, as in [10]. Our two algorithms differ only
in the way that the pseudoflow augmentations are done and how arc excesses are treated. When
the total relabeled excess at nodes other than node s is less than 27™X  where K is the smallest
integer such that B < 2%, (i.e., K = [log B]), our algorithms bring this remaining excess to s
by computing a maximum flow in the relabeled residual network Gy, using only arcs (v, w) with

vu(v, w) = 1. This is justified by the following:

Lemma 1. Suppose that the residual network G, has no flow-generating cycles and all arc
excesses are zero. If Exg, = 3 ,cy_s€qu(v) < B™™ and eg,(v) > 0 for all v € V — s, then all
of the total relabeled excess Exy, can be brought to s by computing a maximum flow from nodes

v € V — s with eg,(v) > 0 to s in Gy, using only arcs with v, (v, w) = 1.

Proof. Let § be the pseudoflow when the maximum flow computation ends. Let R be the set
of nodes from which s is not reachable using only arcs (v, w) with vy,(v,w) = 1 in Gy, and let
L = {(v,w) € E|v€ R, and g(v,w) # 0}. Clearly Ezg, =3 ,cr€5.u(v) = — X(vweL Gu(v, ).

Now L = L UL* U L™, where L! = {(v,w) € L | w € R and y,(v,w) = 1}, Lt = {(v,w) €
I\L' | §(v,w) > 0}, and L™ = {(v,w) € L\L' | g(v,w) < 0}. If (v,w) € L' then so is
(w,v) and gu(w,v) = —gu(v,w); hence 3, yyerr Ju(v, w) = 0. Moreover, if (v,w) € L*, then
gu(v,w) = uu(v,w) = u(v,w)/pu(v), and if (v,w) € L7, then gu(v,w) = —yu(w,v)gu(w,v) =
—Yu(w, v)uy(w, v) = —y(w, v)u(w,v)/pu(v). Therefore,

Ezgu=— Y, u(ww)/p@)+ Y v(wv)u(w,v)/u).
(v,w)eL+ (v,w)eL~
For each node v € V — s, 1/u(v) is the product of a subset of the gain factors corresponding to
a tree T' of highest-gain paths in Gy, from nodes in V — s to s and no arc (v,w) € L™ can be
in such a tree since 7y, (v,w) < 1. Since the capacities u(v,w) are integral and the gain factors

y(v,w) = p(v,w)/q(v,w), where p(v,w) and g(v,w) are integers less than or equal to B, it follows
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that if Fzg, > 0, then

Exg, >1/ H g(v,w) > 1/B™.
(v,w)eTUL~

Consequently, Ezj, = 0 and the lemma is proved. O

The above lemma is a slightly tightened version of Lemma 7.1 in [8].

Main Algorithm

Step 0.

Step 1.

Step 2.

The input to Procedure Phase(A) is a scaling parameter A, a generalized pseudoflow g, and
node labels p, such that the relabeled gain of every arc in Gy, is at most 1. Procedure Push-
Flow(v) pushes pseudoflow from a node v with relabeled excess at least A along a highest-gain

path from v to s. The procedure’s output is a generalized pseudoflow ¢’, together with updated

Cancel all flow-generating cycles in G (This yields a pseudoflow g).
Compute the gain Gain(v) of a highest-gain path from v to s in G,
and set u(v) «— 1/Gain(v), Yv € V —s.
Relabel the network with p.
Set eg,u(v,w) « 0 for all (v,w) € E.
By, =3 pev—sequ(v) <2 ™K, then
begin
compute a maximum flow f from nodes with excess to the sink node s in Gy,
using only arcs with v, (v, w) = 1;
set g(v, w) « g(v,w) + f(v,w)u(v), ¥(v,w) € E and STOP;
end.
Set A — Y cv_s€q,u(v)/(2(m + n)) and call Phase(A);
Go to Step 1.

labels 4/, such that the relabeled gain of every arc in Gy s is at most 1.

In Procedure Phase(A), each arc (v, w) has associated with it an arc imbalance at its tail node
v, denoted by e4(v, w). The relabeled imbalance e4(v,w)/u(v) is denoted by ey (v, w). These arc
imbalances are used to limit the number flow augmentations that can occur in a A-phase. In our
algorithms, all arc imbalances are nonnegative; hence we will refer to them as arc ezcesses. Initially,

all arc excesses are zero, and all arc excesses are transferred to node excesses at the end of each

phase.




Procedure Phase(A)
begin
set D—{veV—s:eu(v)> A}
while D # ( do
begin
choose a node v € D;
call Push-Flow(v);
using the relabeled gains -, compute the gain Gain(v) of a highest-gain path from v to s in Gy,
and set u(v) «— p(v)/Gain(v), Vv € V — s;
relabel the network with the new labels p (all arcs on highest-gain paths have unit relabeled gains);
reconstruct D;
end;
set eg,u(v) < egu(V) + 2 (v,w) Eg,u(v; w) for each v € V —s;
set eg (v, w) « 0 for all (v,w) € E;

end.

After cancelling all flow-generating cycles in Step 0 of the main algorithm, the residual network
does not contain any flow-generating cycles. Since each flow augmentation computed by Procedure
Push-Flow is along a highest-gain path in G ,, no flow-generating cycles are created (as first

observed by Onaga [16]), and we have the following:

Lemma 2. After Step 0 of the main algorithm G, does not contain flow-generating cycles

and 7, (v, w) < 1 for each arc (v,w) € Gy, after each relabeling of the network.

An immediate consequence of Lemma 2 is:

old

Lemma 3. Let u®?% and u be the labels just before and after a relabeling of the network. Then

p(v) > p(v)? and e, (v) < eguota(v) for all v € V and eg (v, w) < ey o1a(v, w) for all (v,w) € E.

Proof. By Lemma 2, since 7,u¢(v,w) < 1 for all (v,w) € E, Gain(v) < 1forallv € V.
Therefore pu(v)/u(v) = egu(v)/ey yo1a(v) = €gu(v,w)/ey yota(v,w) = Gain(v) < 1. O




(From Lemma 3, the total relabeled excess never increases due to relabeling. In fact, the total
relabeled excess can decrease due to flow shrinking (label increase) and/or a flow augmentation to
the sink s. Note that a A-phase can end even though no flow has been pushed into s. We now give
our first algorithm for pushing flow in Procedure Phase(A). The pseudoflow augmentations that

are computed by the following procedure do not necessarily terminate in the sink node s.

Procedure Push-Flow(v)
begin
while v # s and eg ,(v) > A do
begin
let (v, w) be the first arc on the highest-gain path from v to s;
set €g,u(v) — €g,u(v) = A, €gu(v, W) — egu(v,w) + A,
set @ — min{eq (v, W), tgu (0, W)}, 9.0, W) — (0, w) + 0,
egu(v, ) — egu(v,w) — @, egu(w,v) — egu(w,v) + @, gu(w,v) — —gu(v,w);
compute 3 = min{ey ,(w,v), A};
set eg,u(w,v) — egu(w,v) — B, egu(w) « egu(w) + B
set v «— w;
end;

end;

Procedure Push-Flow terminates when the condition v = s or ey, (v) < A is detected (i.e., the
A-augmentation of flow is blocked). Note that this procedure is somewhat different ;From the one
that is used in the algorithm developed in [10]. The following lemma shows that arc excesses stay

bounded by A during each A-phase.

Lemma 4. In each A-phase, both immediately before and after calling Procedure Push-Flow
in Procedure Phase(A), eg ,(v,w) > 0, eg,(w,v) > 0 and ey, (v, w) + g, u(w,v) < A for all pairs

of arcs (v,w) and (w,v) € E. Furthermore, ey (v, w) < ug,(v, w) for all (v,w) € Gg .

Proof. Since ey, (v, w) = 0 for all (v,w) € E at the start of a A-phase, the lemma holds at
this point. Moreover, it is easily verified from Procedure Push-Flow that eg ,(v,w) > 0 for all
(v,w) € E throughout each A-phase.

Now suppose that the statements of the lemma hold at the beginning of a step of the inner




loop of Procedure Push-Flow in which flow is pushed from node v to node w along arc (v, w). This
affects only eg (v, w), egu(w,v), ug (v, w) and ug,(w,v). Let us distinguish quantities at the end
of the step from those at the beginning by an overbar.

(From Procedure Push-Flow we have the following results.

(i) If B < A, then &g ,(w,v) = 0.

(i) If B = A, then &g ,(v,w) + Egu(w,v) = egu(v,w) + A —a+eg,u(w,v) + @ — B = eg (v, w) +
egu(w,v) < A. Moreover, since e ,(w,v) < A and ug,(w,v) = ug,(w,v) + & > @, we have
Egu(w,v) = egpu(w,v) +a—F<A+a—A <L ugu(w,v).

(iif) If & < ug,u(v, w), then &g, (v,w) = 0.

(iv) If & = ugy, then & ,(v,w) = egu(v,w) + A — ug (v, w) < A since ey (v, w) < ugu(v,w).
Moreover, (v,w) € Gy, since ug, (v, w) = 0.

It is easy to see from the above that for each of the four possible combinations of a and g,
the statements of the lemma hold for the quantities with overbars. Hence, if the statements of
the lemma hold immediately before Procedure Push-Flow is called, they hold immediately after as
well. Since, by Lemma 3, arc excesses do not increase when the network is relabeled in Procedure

Phase(A), the proof is complete. O

(From Lemma 4, we have the following:

Lemma 5. At the end of each A-phase, the total excess at nodes except node s is at most

(n+m)A.

The next lemma gives a bound on the number of flow augmentations that can occur in each

phase.

Lemma 6. In each phase, the number of flow augmentations (i.e., calls of Procedure Push-

Flow) is at most 2(m + n).

Proof. Consider the potenial function F = Y cy_c|egu(v)/A]. At the beginning of a A-
phase, F' < 2(m + n) by Lemma 5. During Procedure Push-Flow when flow is pushed from node
v with ey, (v) > A to node w, F' does not increase since 8 < A. On the last push along an arc

(v,w) in the Procedure Push-Flow, F is reduced by at least 1 since ey ,(v) is reduced by A and

10




with either w = s or w # s and &y ,(w) < A after the push. Therefore F' decreases by at least 1

on every call of Procedure Push-Flow. The lemma follows. |

Let A’ and A be two consecutive scaling factors with A’ < A and Ez’ and Ex be total
relabeled excess at all nodes except node s at the start of A’-phase and A-phase, respectively.
Then from the definitions of A’ and A and Lemma 5, which states that Ex’ < (n + m)A, it
follows that A’ = E«//(2(m 4+ n)) < (n 4+ m)A/(2(n + m)) = A/2, and Ex’ < (n +m)A =
(n+m)Ex/(2(n +m)) = Ez/2. Thus, we have:

Lemma 7. Both the scaling factor and total relabeled excess excluding ey(s) are reduced by

at least a factor 2 in each phase.

Since the initial relabeled excess is at most mB™, we have from the stopping criterion in the

main algorithm and from Lemma 7:

Lemma 8. The total number of phases is at most O(mlog B).

There are at most 2(m+n) flow augmentations in each of the O(m log B) phases, and each flow
augmentation and network relabeling is dominated by a shortest path computation, which can be
accomplished in O(m+nlogn) time by using Fredman and Tarjan’s [4] implementation of Dijkstra’s
algorithm [3]. In Step 0 cancelling all flow-generating cycles can be done in O(mn?log n log B) time
as described in [8], and the maximum flow computation in Step 1 can be done in O(nm log(n2/m))

time [9]. Consequently, we have:

Theorem 1. The complexity of our algorithm is bounded by O(m?(m + nlogn)log B).

If in the main algorithm, the maximum flow computation in Step 1 is done on every iteration
before calling Procedure Phase(A), and the algorithm is terminated when the relabeled excess Eg
is zero, the worst-case complexity of the algorithm is unaffected. If either this algorithm or the
original algorithm is applied to problems that are not restricted, there may be nodes that have
excesses from which there is no path in the residual graph to s. In this case, the set V; = {v €

V| there is a directed path from v to s in Gy} and the subgraph of Gy, restricted to V; should

11




be used in place of V and Gy, respectively, throughout these algorithms. At termination, the
optimal pseudoflow that is obtained can be converted into an optimal flow by pushing any excesses

that remain backwards around the flow-generating cycles that created them.

5 An Alternative Algorithm

We now describe an alternative and conceptually simpler way to use arc excesses to limit the
number of flow augmentations in each phase to O(m). In contrast with the approach presented
in the last section, in this alternative approach, flow augmentations always terminate at node s
and once node excess is transferred into arc excess it is never transferred back until the end of a
A-phase.

To prevent arc excesses from becoming too large, in this alternative algorithm, all arcs (v, w)
with eg (v, w) > ug u(v, w) are deleted from G, before computing highest-gain paths. Such arcs,
will be called self-saturating arcs, since they can be saturated using only their own arc excesses.
When the network is relabeled, the relabeled gains of self-saturating arcs can be greater than 1
since these arcs are ignored when computing the new labels. Consequently at the end of each phase
our algorithm saturates all self-saturating arcs that have relabeled gains greater than 1. This is
done by calling Procedure Saturate-Arcs given below just before transferring arc excesses to node

excesses at the end of a A-phase.

Procedure Saturate-Arcs
begin
for each arc (v,w) € Gg,,, with v,(v,w) > 1 do
begin
set eg,u(v, W) — €g,u(v, W) — Ugu(v, W), egu(w,v) — egu(w, v) +Yu(v, W)ug,u(v, w),
90, 0) = 9u(v,) + g (v, W), G, V) — —7, (v, W)gu (v, W);
end;

end.

Since all self-saturating arcs with relabeled gains greater than 1 are saturated at the end of each
phase, v, (v, w) < 1 for each arc in the relabeled residual network at the end of each phase. Thus,
the relabeled residual network at the end of each phase does not contain flow-generating cycles.

The following version of Procedure Push-Flow pushes pseudoflow jFrom a node whose excess

is greater than A along a highest-gain path to node s. In contrast with the version of Procedure

12




Push-Flow in Section 4, the augmentation always terminates in node s. We use ég,u to denote the
subgraph of the relabeled residual graph Gy, that is obtained by deleting all self-saturating arcs

from Gg .

Procedure Push-Flow(v)
begin
while v # s do
begin
let (v, w) be the first arc on the highest-gain path from v to s in Gy y;
compute o = min{eg ,(v), A} and § = min{ugy , (v, w), a};
set eg,u(v) — egu(v) — o, gu(v,w) — gu(v,w) + 6, gu(w,v) — —gu(v,w);
set eg,u(v, w) — eg (v, w) + o — b, egpu(w) «— eg u(w) + 6;
set v «— w;
end;

end;

The pseudoflow augmentation terminates when the condition v = s is detected. Note that
if § = o then arc excess eq (v, w) remains unchanged. Also, when flow is pushed from v to w
arc excess eg,(w,v) does not change. The pseudoflow augmentation starts from a node v with
eg,(v) > A and pushes flow all of the way to node s whether or not ey, (w) > A for those nodes
w on the path from v to s. Thus, each flow augmentation always sends a positive amount of flow
into s and reduces the total node excess excluding eg ,(s) by at least A. These A units of flow are
either sent to s or distributed as arc excesses along the path from v to s. The following lemma
gives the bounds on the arc excess and the total excess created after saturating arcs at the end of

each phase.

Lemma 9. In each A-phase, both immediately before and after calling Procedure Push-Flow
in Procedure Phase(A),
(i) 0 < egu(v,w) < A, for all (v,w) € E;

(ii) eg,u(v, w) — ug (v, w) + Yu(v, w)ug,u(v,w) < A for all self-saturating arcs (v, w).

Proof. At the start of a A-phase, all arc excesses are zero and there are no self-saturating arcs;

hence the statements of the lemma hold at this point. Now suppose that the statements of the
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lemma hold prior to flow being pushed from v to w along arc (v, w). Since &, ,(v,w) = eg (v, w) +
a—§and 6 < a; the arc excess &y, (v, w) is nonnegative. If § = o, then &y ,(v,w) = ey, (v, w) < A.
If § < o, then &g (v, w) = egu(v,w) + o — ugu(v,w) < egu(v,w) + A — ugu(v,w) < A, since
egu(V,w) < ugu(v,w) (flow is only pushed through nonsaturating arcs). If as a result of this
push arc (v,w) becomes self-saturating (i.e., &, (v, w) > ug,(v,w)), then since v,(v,w) = 1 and
Eu(v,w) < A, it follows that &g (v, w) — ug (v, w) + yu(v,w)ugu(v,w) < A. Pushing flow
in arc (v,w) increases ug,(w,v). Hence, if (w,v) was self-saturating it may become non-self-
saturating. If it remains self-saturating (ii) will still hold after the push because ~,(w,v) = 1.
Hence, statement (ii) in the lemma holds for all self-saturating arcs immediately after the push.
Now eg,,(v,w) = (v, w)/p(v) = 0 and (v, w)g (v, w) = (v, w)(u(v, w) - g(v,w))/pw) > 0,
and, if (v, w) is self-saturating, ey, (v, w) — ug (v, w) = (eg(v, w) — ug(v,w))/p(v) > 0. Therefore,

since by Lemma 3 the node labels never decrease, (ii) continues to hold after relabelling. O

(From Lemma 9, we have that the total relabeled excess excluding ey ,(s) is at most (n+m)A
at the end of each A-phase; so Lemma 5 holds for this variant of our main algorithm. Since
each flow augmentation reduces the relabeled node excess (excluding ey ,(s)) by at least A, the
total number of flow augmentations in each A-phase is at most 2(n + m); i.e., Lemma 6 applies.
Consequently, Lemmas 7 and 8 and Theorem 1 also apply to this variant. We note that the bound
on the total amount of arc excess created by our first algorithm in each phase is half of what it is
for the alternative algorithm. Specifically, in Lemma 4 it is proved that ey, (v, w) +eg . (w,v) < A,
while in Lemma 9 ey, (v, w) < A is proved. In fact m in the statements of Lemmas 5 and 6 can
be replaced by m/2 when these lemmas refer to the algorithm given in Section 4 (i.e., our first

algorithm).

6 Conclusions

We have developed new combinatorial algorithms for solving the generalized circulation problem
that are based on excess scaling and highest-gain path augmentations. These algorithms are sim-
ple and have a better complexity than any previously proposed combinatorial algorithm for this
problem. We believe that our algorithms will also be fast in practice. It will be interesting to see
if our algorithms can be extended to solve the generalized minimum cost network flow problem.

Whether there exists a strongly polynomial time algorithm for the generalized circulation problem
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remains an open question.
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