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Abstract

Integrals of optimal values of random optimization problems depending on a �nite dimen-

sional parameter are approximated by using empirical distributions instead of the original

measure. Under fairly broad conditions, it is proved that uniform convergence of empirical

approximations of the right hand sides of the constraints implies uniform convergence of

the optimal values in the linear and convex case.
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Linear Recourse and Extensions

Georg Ch. P
ug

Andrzej Ruszczy�nski

R�udiger Schultz �

1 Introduction

Real-world decision problems are usually associated with high uncertainty due to un-

availability or inaccuracy of some data, forecasting errors, changing environment, etc.
There are many ways to deal with uncertainty; one that proved successful in practice is
to describe uncertain quantities by random variables.

Using the probabilistic description of uncertainty within optimization problems leads
to stochastic programming models. There is a large variety of such models, depending

on the nature of information about the random quantitites and on the form of objective
and constraints. One of the most popular models, which found numerous applications in
operations research practice, is the two-stage problem. In its simplest linear form, it can
be formulated as follows:

min
x2X

�
cTx+

Z
f(x; !)P (d!)

�
; (1:1)

where X � IRnx is the �rst stage feasible set and f : IRnx � 
 7! IR denotes the recourse
function dependent on x and on an elementary event in some probability space (
;�; P ).

The recourse function is de�ned as the optimal value of the second stage problem

f(x; !) = min
n
q(!)Ty j W (!)y = b(x; !); y � 0

o
: (1:2)

Here, the vector y 2 IRny is the second stage decision (which may, in general, depend on x

and !), q(!) is a random vector in IRny , W (!) is a random matrix of dimension my � ny
and b : IRnx � 
 7! IRmy is a measurable function.

There is a vast literature devoted to properties of the two-stage problem (1.1)-(1.2)

and to solution methods (see [7, 11] and the references therein). It is usually assumed
that W is a deterministic matrix and

b(x; !) = h(!)� T (!)x: (1:3)

�Konrad-Zuse-Zentrum f�ur Informationstechnik, Heilbronner Str. 10, 10711 Berlin, Germany
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For example, h(!) may be interpreted as a random demand/supply and T (!) as a cer-

tain "technology matrix" associated with the �rst stage decisions. Then b(x; !) is the

discrepancy between the technology input/output requirements and the demand/supply

observed, and some corrective action y has to be undertaken to account for this discrep-

ancy.

However, in some long-term planning problems in a highly uncertain environment, it

is the data referring to the future that are random. For example, in long-term investment

planning, where x denotes the investment decisions to be made now, while y represents

future actions, the costs q and the technological characteristics W of the future invest-

ments are usually uncertain. Moreover, new technologies may appear that may increase

our recourse capabilitites. Therefore we focus on the random recourse case in a general-

ized sense, i.e. a situation when besides W and q also the number of columns of W is

random.

Next, our model allows much more general relations between the �rst stage variables

and the second stage problem than the linear relation (1.3). In (1.2) we allow, for example,

nonlinear and random technologies T (x; !); moreover, the supply/demand vector may be

dependent on both x and !. Apart from a broader class of potential applications, such a

model appears to be interesting in its own right. In section 6, we shall show how to apply
results for (1.2) to some more general convex problems.

The fundamental question that will be analysed in this paper is the problem of ap-
proximation. Namely, given an i.i.d. sample s = fsig

1

i=1 2 
1 = 
IN, we consider for
n 2 IN the empirical measures

Pn(s) =
1

n

nX
i=1

�si; (1:4)

where �si denotes point mass at si. An empirical measure can be employed to approximate
the expected recourse function

F (x) =
Z
f(x; !)P (d!) (1:5)

by the empirical mean

Fn(x) =
Z
f(x; !)Pn(s)(d!) =

1

n

nX
i=1

f(x; si): (1:6)

The main question is the following: can uniform convergence of Fn to F take place for

almost all s (with respect to the product probability P1 on 
1)? We shall show that a
positive answer to this question can be given for a very broad class of functions b(x; !) in

(1.2). To this end we shall use some results on the Glivenko-Cantelli problem developed

in [9, 29, 30].
Compared with related contributions to the stability of two-stage stochastic programs,

the scope of the present paper is novel in two respects: we allow recourse matrices with
random entries and random size, and we are able to treat discontinuous and non-convex

integrands in the expected recourse function. The tools from probability theory that we

use here lead to uniform convergence. The approaches in [5, 10, 21] utilize milder types
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of convergence (such as epigraphical convergence), and hence they can handle extended-

real-valued functions. As in the present paper, the accent in [14] is on convergence of

expected recourse functions in the context of empirical measures. The authors obtain

consisitency results that cover convex stochastic programs with a �xed recourse matrixW .

Perturbations going beyond empirical measures are studied in [10, 21] for �xed-recourse

problems with continuous integrands. Further related work is contained in [32] and [33],

where random approximations to random optimization problems are considered. Among

others, the author derives su�cient conditions for almost sure continuous convergence of

expectation functions. The results require slightly stronger conditions than ours but are

applicable also to dependent samples. Stochastic programs with discontinuous integrands

are treated in [1, 25] and in [26], which contains a section on estimation via empirical

measures in problems with mixed integer recourse. Further related work concerns various

quantitative aspects for stochastic programs involving empirical measures, such as [5, 6,

12, 13, 22, 27, 28]. Because of that, the settings in these papers are more speci�c than

here.

Let us �nally mention that the probabilistic analysis of combinatorial optimization

problems is another �eld in mathematical programming, where results developed in the

context of the Glivenko-Cantelli problem can be utilized (see, e.g., [8, 16, 19]).

2 The Glivenko-Cantelli problem

Before passing to the main object of our study, we brie
y restate the main de�nitions
and results regarding the general Glivenko-Cantelli problem that will be used later. The

probability measure P is assumed to be �xed.

De�nition 2.1. A class of integrable functions 'x : 
 7! IR, x 2 X, is called a
P -uniformity class if

lim
n!1

sup
x2X

����
Z
'x(!)P (d!)�

Z
'x(!)Pn(s)(d!)

���� = 0

for P1-almost all s.

So, our problem of uniform convergence of (1.6) to (1.5) can be reformulated as the prob-

lem of determining whether the family of functions ! 7! f(x; !), x 2 X; is a P -uniformity
class.

Uniformity results may be based on two rather di�erent approaches. The �rst one uses

the result of [31] that the empirical measure Pn converges weakly a.s. to P , if and only
if the support of P is separable. Exploiting the uniformity theory for weak convergence,

uniform results have been given in [18, 24, 15].
The second approach is based on a closer look at the convergence of the empirical

measure itself. Vapnik and �Cervonenkis have introduced the VC dimension of the family
of sets in the following way.

We say that a �nite set t1; : : : ; tm is shattered by a family C of sets if for every subset

I � f1; : : : ;mg one can �nd a set C 2 C such that ti 2 C , i 2 I: The family C of sets is
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said to have VC dimension m if no set of cardinality m+ 1 is shattered by C, but there
exists a set of cardinality m which is shattered by C.

The notion of VC dimension for families of sets was extended in [17] to the notion of VC

dimension of classes of functions. The VC dimension of the familyF of functions is de�ned

as the VC dimension of the family C of graphs in F , where C = fgraph(f) : f 2 Fg; and
graph(f) = f(x; t) : 0 � f(x) � t or 0 � f(x) � tg: The uniformity result reads now as

follows: if the family F of functions has a �nite VC dimension, then it is a P -uniformity

class for all P .

Below we shall introduce the notion of P -stability. A family F of functions which has

a �nite VC dimension is P -stable for all P , but the converse does not hold. Since P -

stability is also a necessary condition for P -uniformity, it is the weakest possible concept

we can think of.

From now on, having in mind application to stochastic programming, we shall restrict

our attention to functions which are measurable with respect to both arguments (x; !).

This will allow us to avoid technical di�culties associated with non-measurability of sets

de�ned with the use of the existence quanti�er in De�nition 2.2.

Following [29], with the simpli�cation mentioned above, we introduce the following

de�nition.

De�nition 2.2. Let ' : X � 
 7! IR be measurable in both arguments. The class of

functions ! 7! '(x; !), x 2 X; is called P -stable if for each � < � and each set A 2 �
with P (A) > 0 there exists n > 0 such that

P 2n
n
(s1; : : : ; sn; t1; : : : ; tn) 2 A

2n : (9x 2 X)

'(x; si) < �; '(x; ti) > �; i = 1; : : : ; n g < (P (A))2n ;

where P 2n is the product probability on 
2n.

Note that the joint measurability of ' in both arguments implies the measurability

of the set appearing at the left hand side in the above de�nition (condition (M) of [29]).
Indeed, the set in question is a projection on A2n of a measurable set in X �A2n.

In terms of graphs, the inequality in De�nition 2.2 can be interpreted as follows:
there is a nonzero probability that the set of points f(s1; �); : : : ; (sn; �); (t1; �); : : : ; (tn; �)g
cannot be split into two subsets f(s1; �); : : : ; (sn; �)g and f(t1; �); : : : ; (tn; �)g by a graph

of a function '(x; �) in such a way that the `higher' points are in the graph and the `lower'

ones outside. In contrast to the concept of VC dimension it incorporates the probability
measure, restricts the form of �nite sets under consideration and the types of subsets to
be cut out of them.

The main result of [29] reads.
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Theorem 2.3. ([29], Theorem 2). Assume that the function '(x; !) : X � 
 7! IR is

measurable in both arguments. Then the following statements are equivalent:

(a) the class of functions ! 7! '(x; !), x 2 X; is a P -uniformity class and
R
'(x; !)P (d!),

x 2 X; is bounded;

(b) the class of functions ! 7! '(x; !), x 2 X; is P -stable and there exists v withR
v(!)P (d!) <1 such that, for all x 2 X, j'(x; !)j � v(!) a.s.

Since we shall use this result arguing by contradiction, it is convenient to restate the

de�nition of stability.

Remark 2.4. ([29], Proposition 4). Let ' : X�
 7! IR be measurable in both arguments.

The class of functions ! 7! '(x; !), x 2 X; fails to be P -stable if and only if there

exist � < � and A 2 � with P (A) > 0 such that for each n 2 IN and almost each

(s1; : : : ; sn) 2 A
n, for each subset I of f1; : : : ; ng there is x 2 X with

'(x; si) < � for i 2 I

and

'(x; si) > � for i 62 I:

Stability conditions turn out to be a rather powerful tool for proving various laws of large
numbers. As an example, we can consider one of the basic results in the theory of uniform
convergence (see, e.g., [23])

Theorem 2.5. Let b(x; !) be jointly measurable on X �
, where X is a compact metric

space and (
;B; P ) is a probability space. If x 7! b(x; !) is continuous for almost all !

and there is an integrable function g(!) such that

sup
x2X

jb(x; !)j � g(!) a: s:;

then

sup
x2X

����
Z
b(x; !)Pn(s)(d!)�

Z
b(x; !)P (d!)

����! 0 a: s:

For the direct proof of this result, see [23]. Alternatively, one may use the argument that

the family of functions ! 7! b(x; !), x 2 X; is P -stable. In fact, owing to the compactness

of X, for each � > 0 there is a �nite number of open sets Wi covering X, such that

Z "
sup
y2Wi

b(y; !)� inf
y2Wi

b(y; !)

#
P (d!) < �

for all i. This, however, implies the validity of the Blum-DeHardt conditions for unifor-

mity, which - in turn - entail the stability of the family ! 7! b(x; !), x 2 X (see [29], p.
839).

Let us use the stability condition to prove some technical lemmas, which will be useful

for further considerations.
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Lemma 2.6. Assume that f : X�
 7! IR is measurable in both arguments and the class

of functions ! 7! f(x; !), x 2 X; f(x; �), x 2 X; is P -stable. Then for every measurable

function g : 
 7! IR the class of functions ! 7! g(!)f(x; !), x 2 X; is P -stable.

Proof. Let us use Remark 2.4. Suppose that the set of functions h(x; �) = g(�)f(x; �),
x 2 X; is not P -stable. Then there exist � < � and A 2 � with P (A) > 0 such that for

each n and almost each (s1; : : : ; sn) 2 An, for each subset I of f1; : : : ; ng there is x 2 X
with

h(x; si) < � for i 2 I; (2:1)

h(x; si) > � for i 62 I: (2:2)

With no loss of generality we can assume that � > 0. De�ne q = (1+�=�)=2 and consider

the sets

B+
k = f! 2 A : qk < g(!) < qk+1g; k = : : : ;�2;�1; 0; 1; 2; : : :

B�k = f! 2 A : �qk < g(!) < �qk+1g; k = : : : ;�2;�1; 0; 1; 2; : : : :

At least one of them has a positive probability. Let it be B+
k for some k (the proof in the

case of B�k is similar). Since B+
k � A and P (B+

k ) > 0, for almost all (s1; : : : ; sn) 2 (B+
k )

n

and all possible I, inequalities (2.1) and (2.2) hold. If i 2 I then

f(x; si) <
�

qk
= �0:

If i 62 I then

f(x; si) >
�

qk+1
= �0:

Since �0��0 = (���)=(2qk+1) > 0, conditions of Remark 2.4 hold for the family f(x; �),
x 2 X. But then this family cannot be P -stable, a contradiction. 2

Lemma 2.7. Assume that the following conditions are satis�ed:

(i) the functions f : X�
 7! IR and g : X�
 7! IR are measurable in both arguments;

(ii) the families of functions ! 7! f(x; !), x 2 X; and ! 7! g(x; !), x 2 X; are

P -uniformity classes;

(iii) the expectations
R
f(x; !)P (d!) and

R
g(x; !)P (d!) are bounded for x 2 X.

Then the family of functions

! 7! max [f(x; !); g(x; !)] ; x 2 X;

is a P -uniformity class and there exists v 2 L1(
; P ) such that jmax [f(x; !); g(x; !)] j �
v(!) a.s..
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Proof. At �rst let us observe that by Theorem 2.3, in particular, there exists v 2 L1(
; P )

such that max [jf(x; !)j; jg(x; !)j] � v(!) a.s., so our second assertion is true. Let us now

pass to the P -uniformity assertion. Directly from De�nition 2.1 we see that the set of

functions

'(x; �) = g(x; �)� f(x; �); x 2 X;

is a P -uniformity class. By Theorem 2.3 it is P -stable. Suppose that the family of

functions

'+(x; �) = max [0; '(x; �)] ; x 2 X; (2:3)

is not P -stable. Then, by Remark 2.4, there exist � < � and A 2 � with P (A) > 0 such

that for each n and almost each (s1; : : : ; sn) 2 A
n, for each subset I of f1; : : : ; ng there is

x 2 X with

'+(x; si) < � for i 2 I

and

'+(x; si) > � for i 62 I:

Since '+(x; si) � 0, then � > 0, hence � > 0, too. Thus the above inequalities hold

with '+ replaced by '. Then, by virtue of Remark 2.4, the class '(x; �), x 2 X; cannot

be P -stable, a contradiction. Consequently, the family (2.3) is P -stable, and, in view of
Theorem 2.3, it is a P -uniformity class. Using the representation

max[f(x; �); g(x; �)] = f(x; �) + '+(x; �);

directly from De�nition 2.1 we obtain the desired result. 2

Lemma 2.8. The family of functions

! 7! '(x; !) = �(f(!) + g(x));

where f : 
 7! IR is measurable, g : X 7! IR and � : IR 7! IR is monotone, is P -stable.

Proof. Let us assume that the assertion is false. Then there exist � < � and A 2 � with
P (A) > 0 such that for each n and almost each (s1; : : : ; sn) 2 An, for each subset I of
f1; : : : ; ng there is x 2 X with

'(x; si) < � for i 2 I; (2:4)

'(x; si) > � for i 62 I: (2:5)

Replacing I with f1; : : : ; ng n I, we also have, for some y 2 X,

'(y; si) > � for i 2 I; (2:6)

'(y; si) < � for i 62 I: (2:7)

With no loss of generality we can assume that � is nondecreasing. De�ne ��1(u) =
supfv : �(v) � ug. From (2.4) we get

f(si) + g(x) � ��1(�((f(si) + g(x))) � ��1(�); i 2 I;

7



while (2.6) implies

f(si) + g(y) > ��1(�); i 2 I:

Thus,

g(y)� g(x) > ��1(�)� ��1(�) � 0:

Likewise, from (2.5) and (2.7) we obtain

g(x)� g(y) > ��1(�)� ��1(�) � 0;

a contradiction. 2

3 Approximating the recourse function

Let us now pass to function (1.5) and its approximation (1.6). We shall make the following

assumptions.

(A1) There exist a measurable function �u : 
 7! IRm and c 2 L2(
; P ) such that a.s.

�u(!) 2
n
u : W (!)Tu � q(!)

o
� fu : kuk � c(!)g :

(A2) The function b : X � 
 7! IRm is measurable in both arguments, there exists
v 2 L2(
; P ) such that, for all x 2 X, kb(x; !)k � v(!) a.s., and the family of
functions ! 7! b(x; !), x 2 X; is a P -uniformity class.

We are now ready to prove the P -uniformity of empirical approximations (1.6).

Theorem 3.1. Let f : X �
 7! IR be de�ned by (1.2) and let conditions (A1) and (A2)
hold. Then the family of functions ! 7! f(x; !), x 2 X; is a P -uniformity class and there

exists v 2 L1(
; P ) such that, for all x 2 X, kf(x; !)k � v(!) a.s..

Proof. By (A1) we can use duality in linear programming to get

f(x; !) = max
n
b(x; !)Tu j W (!)Tu � q(!)

o
: (3:1)

The feasible set of the dual program in (3.1) is a.s. a nonempty bounded polyhedron

having �nitely many vertices. Then every vertex of the dual feasible set can be expressed

as

u = B(!)�1qB(!); (3:2)

where B is a square nonsingular submatrix of W (!) of dimension my (a basis matrix),

and qB(!) is the subvector of q(!) that corresponds to the columns in the basis matrix.
Let us denote all possible square submatrices of W (!) having dimensionmy by Bk(!),

k = 1; : : : ;K =

 
ny
my

!
. A matrix Bk(!) is a feasible basis matrix if it is nonsingular and

8



(3.2) (with B(!) = Bk(!)) yields a feasible point. Now, for each 1 � k � K, we de�ne

the function

vk(!) =

(
Bk(!)

�T qBk
(!) if Bk(!) is a feasible basis matrix,

�u(!) otherwise.

By (A1), vk 2 L
2(
; P ) for all k = 1; : : : ;K. From (3.1) we obtain

f(x; !) = max
k=1;:::;K

b(x; !)Tvk(!): (3:3)

By (A2), for each j = 1; : : : ;my; the expectation
R
bj(x; !)P (d!) is bounded for x 2 X.

Hence, by Theorem 2.3 and (A2), the class bj(x; �) is P -stable, and, by Lemma 2.6, the

products bj(x; �)vkj(�) constitute a P -stable class.
Now, for all x 2 X,

jbj(x; !)vkj(!)j � v(!)vkj(!) a:s:;

and v � vkj 2 L1(
; P ). Therefore, by Theorem 2.3, the products bj(x; �)vkj(�) form a
P -uniformity class. Directly from De�nition 2.1, b(x; �)Tvk(�), x 2 X; is a P -uniformity
class, for every k = 1; : : : ;K. Using Lemma 2.7, we conclude that (3.3) is a P -uniformity
class and that

R
f(x; !)P (d!) is bounded for x 2 X. Using Theorem 2.3 again we

additionally conclude that an integrable bound on jf(x; !)j must exist. 2

Roughly speaking, the question whether the optimal value of a linear program is a
P -uniformity class has been reduced to the substantially simpler question whether the
right hand side is a P -uniformity class. The latter can still be analysed via the stability
conditions, as it has been done for the continuous case in Theorem 2.5, but our framework
can also handle discontinuous functions.

Example

Assume that in (1.2) the right hand side is de�ned by the operation of rounding to integers,

bi(x; !) =

(
j
�

bi(!) � Ti(x)
�

j if bi(!)� Ti(x) � 0
j bi(!)� Ti(x) j if bi(!)� Ti(x) � 0

; i = 1; : : : ;m;

where j
�

a
�

j = minfn 2 ZZ : n � ag, while j a j = maxfn 2 ZZ : n � ag. If T (x) and b(!)
are measurable, then, by Lemma 2.8, the family ! 7! b(x; !), x 2 X; is P -stable. Thus,
under mild integrability assumptions, b(x; !) satis�es condition (A2). Let us point out

that the functions bi(�; !) are not even lower semicontinuous here.

4 Problems with random size

Let us now consider the case when f(x; !) is the optimal value of the in�nite linear

programming problem:

9



min
1X
i=1

qi(!)yi

1X
i=1

wi(!)yi = b(x; !) (4:1)

yi � 0; i = 1; 2; : : :

We assume that the in�nite sequence �(!) = (�1(!); �2(!); : : :) with elements �i(!) =

(qi(!); wi(!)); i = 1; 2 : : : ; is a random variable in the space � of sequences of (my + 1)-

dimensional vectors; � is equipped with the �-algebra A generated by sets of the form

f� : (�1; : : : ; �k) 2 Bg for all Borel sets B 2 IR(my+1)k and all k. We shall denote the

optimal value of (4.1) by f(x; !) = '(x; �(!)).

Next, we de�ne in � the projection operators �k; k = 1; 2; : : : by

�k� = (�1; : : : ; �k; 0; 0; : : :):

They are, clearly, measurable. For any � 2 �, let

J(�) = inffk : �k� = �g

(we take the convention that inf ; = 1). We make the following assumptions about the
distribution of �.

(A3) PfJ(�(!)) <1g = 1;

(A4) for all k � j � 1

IL(�j� j J(�) � k) = IL(�j� j J(�) � j);

where IL(� j A) denotes the conditional probability law under A.

The following two lemmas provide more insight into the nature of our randomly-sized
problem.

Lemma 4.1. If � satis�es conditions (A3) and (A4) then there exists a random variable

z with values in � and such that Pfzj = 0g = 0; j = 1; 2; : : :, and an integer random

variable N , independent on z, such that � and �Nz have the same distribution.

Proof. Let �j be the conditional distribution of the �rst j components of �, given that

J(�) � j. By (A4), �j is the distribution of the �rst j components of � under the condition
J(�) � k, for every k � j. Therefore the sequence f�jg constitutes a projective family

and by Kolmogorov theorem (cf., e.g., [4], Proposition 62.3) there exists a probability

measure � with marginals �j.
Let � be the distribution of J(�). Consider the pair (z;N) such that z 2 � has

distribution �, the integer N has distribution �, and they are mutually independent.

De�ne �0 = �Nz. We shall show that �0 has the same distribution as �. It is su�cient

10



to show that, for each j, (�1; : : : ; �j) and (�01; : : : ; �
0
j) have the same distribution. Since

PfN = kg = PfJ(�) = kg, it su�ces to show that

ILf(�1; : : : ; �j) j J(�) = kg = ILf(�01; : : : ; �
0

j) j N = kg:

If k � j, both (�1; : : : ; �j) and (�01; : : : ; �
0
j) have distribution �j. If k < j, their �rst k

components have distribution �k, while the remaining components are zero. 2

Lemma 4.2. Assume (A1), (A2) and (A3). Then there exists v 2 L1(
; P ) such that,

for all x 2 X, jf(x; !)j � v(!) a.s..

Proof. By (A3), with probability 1, f(x; !) is de�ned by the �nite dimensional problem

f(x; !) = minf�q(!)Ty j �W (!)y = b(x; !); y � 0g;

where �q(!)T = [q1(!) : : : qJ(!)(!)] and �W (!)T = [w1(!) : : : wJ(!)(!)]. By duality in

linear programming,

f(x; !) = maxfb(x; !)Tu j �W (!)Tu � �q(!)g:

Our assertion follows from the square integrability of c(!) and of the uniform upper bound
on kb(x; !)k. 2

Let us observe that the above result implies that the expected value F (x) =
R
f(x; !)P (d!)

is well-de�ned and uniformly bounded for x 2 X.

Lemma 4.3. The sequence of functions

F j(x) = Ef'(x; �(!)) j J(�(!)) � jg; j = 1; 2; : : : ;

is monotonically decreasing.

Proof. Removing columns from a linear program may only increase its optimal value,
so, for every j and every � 2 �,

'(x;�j�) � '(x; �):

Therefore,

F j+1(x) = Ef'(x; �) j J(�) � j + 1g � Ef'(x;�j�) j J(�) � j + 1g:

Next, by (A4),

Ef'(x;�j�) j J(�) � j + 1g = Ef'(x; �) j J(�) � jg = F j(x):

Combining the last two relations we obtain the required result. 2

11



5 Approximating the randomly-sized recourse func-

tion

Let us now return to our main problem: uniform convergence of empirical approximations

(1.6) to the expected recourse function with the recourse problem (4.1).

Theorem 5.1. Let f : X�
 7! IR be de�ned by (4.1) and let conditions (A1)-(A4) hold.

Then the family of functions ! 7! f(x; !), x 2 X; is a P -uniformity class.

Proof. For the sample �1; : : : ; �n we de�ne

Ik = f1 � j � n : �k�
j = �jg

and denote by nk the number of elements in Ik. Then we can rewrite (1.6) as

Fn(x) =
1X
k=1

nk

n

0
@ 1

nk

X
i2Ik

'(x; �i)

1
A = S1;l

n (x) + Sl+1;1n (x); (5:1)

where

Sm;l
n (x) =

lX
k=m

nk

n

0
@ 1

nk

X
i2Ik

'(x; �i)

1
A : (5:2)

Let us consider S1;l
n . For every k the collection f�i; i 2 Ikg constitutes a sample of

independent observations drawn from the conditional distribution �k (under the condition

�k� = �). By the strong law of large numbers, for each k � l,

lim
n!1

nk

n
= Pf�k� = �g = pk; a: s:;

where pk = PfJ(�) = kg. If pk > 0 then nk !1 a. s. and by Theorem 3.1

1

nk

X
i2Ik

'(x; �i)! Fk(x); a:s:;

uniformly for x 2 X. So, with probability 1, for every � > 0 we can �nd N1(l; �) such that
for all n > N1(l; �)

sup
x2X

�����S1;l
n (x)�

lX
k=1

pkFk(x)

����� < �: (5:3)

We shall now estimate Sl;1n (x). Let us choose k0 � l and consider the random variables

�i = �k0�
i; i 2

[
k>l

Ik:

Removing columns may only increase the optimal value of (4.1), so '(x; �i) � '(x; �i).

Thus

Sl+1;1n (x) =
1

n

X
k>l

X
i2Ik

'(x; �i) �
1

n

X
k>l

X
i2Ik

'(x; �i) =
nl+1;1

n

1

nl+1;1

X
k>l

X
i2Ik

'(x; �i); (5:4)
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where

nl+1;1 =
X
k>l

nk:

Again, by the strong law of large numbers,

lim
n!1

nl+1;1

n
=
X
k>l

pk a:s:: (5:5)

Next, by (A4) the variables �i; i 2
S
k>l Ik, constitute a sample of i.i.d. observations

drawn from the conditional distribution �k0 . Thus, by Theorem 3.1,

lim
n!1

1

nl+1;1

X
k>l

X
i2Ik

'(x; �i) = Fk0(x); a:s:; (5:6)

uniformly for x 2 X. Putting together (5.4), (5.5) and (5.6) we can conclude that a.s. we

can �nd N2(l; �) such that for all n > N2(l; �) and all x 2 X

Sl+1;1n (x) �

0
@X
k>l

pk

1
A jFk0(x)j+ �: (5:7)

On the other hand, by (A1) and the duality in linear programming,

'(x; �(!)) � b(x; !)T �u(!):

Therefore,

Sl+1;1n (x) =
1

n

X
k>l

X
i2Ik

'(x; �i)

�
1

n

X
k>l

X
i2Ik

(bi(x))T �ui

=
nl+1;1

n

1

nl+1;1

X
k>l

X
i2Ik

(bi(x))T �ui

� �
nl+1;1

2n

1

nl+1;1

X
k>l

X
i2Ik

�
kbi(x)k2 + k�uik2

�
; (5.8)

where bi(x) and �ui are i.i.d. observations drawn from the distributions of b(x; !) and
�u(!). By (A2),for all x one has kbi(x)k2 � (vi)

2, where vi are i.i.d. observations from the
upper bound v. Consequently, by the law of large numbers,

1

nl+1;1

X
k>l

X
i2Ik

�
(vi)

2 + k�uik2
�
! E

n
v2 + k�uk2

o
:

Using this relation in (5.8), with a look at (5.5), we conclude that a.s. there is N3((l; �)
such that for all n > N3(l; �) and all x one has

Sl+1;1n (x) � �
1

2

0
@ X
k>l(�)

pk

1
AE nv2 + k�uk2

o
� �: (5:9)
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We can always choose l(�) so large that for all x 2 X,������
X
k>l(�)

pkFk(x)

������ �
0
@ X
k>l(�)

pk

1
A jFk0(x)j � � (5:10)

and
1

2

0
@ X
k>l(�)

pk

1
AE nv2 + k�uk2

o
� �: (5:11)

Then, by (5.1), (5.3), (5.7), (5.9), (5.10) and (5.11), for each � > 0, a.s. there exists N(�)

such that for all n > N(�),

sup
x2X

jF n(x)� F (x)j � sup
x2X

������S1;l(�)
n (x)�

l(�)X
k=1

pkFk(x)

������+ sup
x2X

���Sl(�)+1;1n (x)
���+ sup

x2X

������
X
k>l(�)

pkFk(x)

������
� 4�;

which completes the proof. 2

6 LP approximation of convex recourse problems

Let us now consider the family of functions given by a convex programming problem:

f(x; !) = minf 0(y) j  i(y) � b(x; !); i = 1; : : : ;my; y 2 Y g; (6:1)

in which the functions  i : IR
ny 7! IR, i = 0; : : : ;m, are convex, and the set Y � IRny is

convex and compact.
We shall show how to use the results of the previous sections to establish P -uniformity

of the class ! 7! f(x; !), x 2 X. To this end we need the following constraint quali�cation
condition.

(A5) There exist � > 0 and a function y0(x; !) such that with probability 1 for all x 2 X:

 i(y
0(x; !); !) � bi(x; !)� �; i = 1; : : : ;my;

and
y0(x; !) 2 Y:

Let us approximate the convex program in (6.1) by a linear programming problem.
Consider an � > 0 and an �-neighborghood Y � of Y . Let fy1; : : : ; yKg be an �-net of Y �.

Choose gik 2 @ i(yk), and de�ne the functions

 �
i (�) = maxf i(yk) + hgik; � � yki; k = 1; : : : ;Kg; i = 0; : : : ;my:

They are used to construct an approximate problem

min �
0(y) (6:2)

 �
i (y) � bi(x; !); i = 1; : : : ;my; (6:3)

y 2 convfy1; : : : ; yKg: (6:4)

We denote by f �(x; !) the optimal value of (6.2)-(6.4).
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Lemma 6.1. Assume (A5). Then there exists a constant C such that with probability 1

for all x 2 X and for all � > 0

f(x; !) �C� � f �(x; !) � f(x; !):

Proof. By convexity,  �
i �  i, i = 0; : : : ;m. Moreover, if L is the common Lipschitz

constant of  i, i = 0; : : : ;my, then

 i �  �
i + 2L�; i = 0; : : : ;m: (6:5)

By construction, Y � convfy1; : : : ; yKg. Indeed, if a point y+ 2 Y n convfy1; : : : ; yKg
existed, one could �nd a point y� of Y � by making a step of length � from y+ in the

direction negative to the direction of orthogonal projection of y+ onto convfy1; : : : ; yKg.
Then the distance from y� to convfy1; : : : ; yKg would be larger than �, a contradiction.

Consequently, (6.2)-(6.4) is a relaxation of the problem in (6.1) and f �(x; !) � f(x; !).

To prove the left inequality consider an optimal solution y�(x; !) of (6.2)-(6.4). By

(6.5),

 i(y
�(x; !)) � bi(x; !) + 2L�; i = 1; : : : ;my:

Let y4(x; !) be the orthogonal projection of y�(x; !) on Y . Since y�(x; !) 2 Y �, one has
ky4(x; !)� y�(x; !)k � �, so

 i(y
4(x; !)) � bi(x; !) + 3L�; i = 1; : : : ;my;

 0(y
4(x; !)) � f �(x; !) + L�:

De�ne

~y(x; !) =
3L�

3L�+ �
y0(x; !) +

�

3L�+ �
y4(x; !):

Clearly, ~y(x; !) 2 Y , as a convex combination of two points of Y . By the convexity of  i,

 i(~y(x; !)) �
h
3L� i(y

0(x; !)) + � i(y
4(x; !))

i
=(3L�+ �) � bi(x; !); i = 1; : : : ;my:

Consequently, ~y(x; !) is a feasible point of (6.1). Moreover, denoting by d the diameter
of Y , we have

k~y(x; !)� y4(x; !)k �
3L�

3L�+ �
ky0(x; !)� y4(x; !)k � 3L�d=�:

Therefore

 0(~y(x; !)) � f �(x; !) + 2L�+ 3L�d=�:

The optimal value of (6.1) cannot be larger, so our assertion holds with C = 2L+3Ld=�.

2

Theorem 6.2. Assume (A2) and (A5). Then the family of functions ! 7! f(x; !),
x 2 X, de�ned by (6.1), is a P -uniformity class.
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Proof. The approximate problem (6.2)-(6.4) can be rewritten as a linear programming

problem:

min�

 0(yk) + hg0k; y � yki � �; k = 1; : : : ;K;

 i(yk) + hgik; y � yki � bi(x; !); k = 1; : : : ;K; i = 0; : : : ;my;

y =
KX
k=1

�kyk;

KX
k=1

�k = 1;

�k � 0; k = 1; : : : ;K:

By (A5), this problem has a bounded solution. In a routine way, one can transform it to a

standard form. Then, by adding to each equation two arti�cial variables which appear in

the objective with a very high penalty, we can ensure that the dual problem has a bounded

feasible set, which is su�cient for satisfying (A1) (note that the feasible set of our dual

does not depend on x and !). By Theorem 3.1 the family of functions ! 7! f �(x; !),
x 2 X is for every � > 0 a P -uniformity class. This immediately implies that the family
of functions ! 7! f(x; !), x 2 X is a P -uniformity class. Indeed, by Lemma 6.1

sup
x2X

����
Z
f(x; !)P (d!) �

Z
f(x; !)Pn(s)(d!)

����
� sup

x2X

����
Z
f �(x; !)P (d!)�

Z
f �(x; !)Pn(s)(d!)

���� + 2C�:

When n!1, the right hand side of the above inequality converges to 2C�. Since � can
be an arbitrary positive number, the left hand side must converge to 0, as required. 2

7 Concluding remarks

From the stability theory of general optimization problems it is well-known that uniform
convergence of perturbed objective functions can be used as a key ingredient to establish
continuity properties of perturbed optimal values and optimal solutions.

Let us assume that F in (1.5) appears in the objective of an optimization problem and
that we are interested in asymptotic properties of optimal values and optimal solutions,

when F is replaced by the estimates Fn (cf. (1.6)). Assume further that F and Fn
(n 2 IN) are lower semicontinuous and that the optimization problem involving F has a
non-empty bounded complete local minimizing set in the sense of [20]. The latter means,

roughly speaking, that there is a bounded set of local minimizers which, in some sense,
contains all the nearby local minimizers. Both strict local and global minimizers can be

treated within this framework (see [20]). Using standard arguments from the stability of
optimization problems it is then possible to show that (with probability 1) the optimal

values and the optimal solutions are continuous and upper semicontinuous, respectively,

as n!1 (see, e.g., [26]).
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Let us also mention that one possibility to guarantee the boundedness of solution sets

is to impose some growth conditions on F . They can also be used to to re-scale the

functions, which may allow obtaining uniform convergence on unbounded sets.

Finally, it has to be stressed that in the context of stability of optimization problems

with F appearing in the objective, the framework of uniform convergence is not the only

one possible; epigraphical convergence (see [2, 3]) requires less from the sequence Fn and

may prove to be more 
exible. However, the counterpart to the theory of the Glivenko-

Cantelli problem has not yet been developed to such an extent as the uniform convergence

case.
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