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Abstract

This paper studies parallel processing as a device for increasing fault tolerance. In thefirst of
two basic models, a single job with a given running time isto be run on a finite set of processors;
each processor is subject to failure but only while running ajob. If ajob is running on only one
processor, and that processor fails, then thejob must berestarted on another processor, assuming not
all processors have aready failed. To avoid such losses in accrued running time when at least two
processorsare available, it can bedecided at any timeto runthejob synchronously ontwo processors
in parallel, a replication technique we call shadowing. Clearly, shadowing has its own downside;
whiletwo processors are running, the failurerate isdoubled. We show how to resol ve thistrade-off
optimally; wedeviseapolicy that schedules shadowing in such away as to maximizethe probability
that the job finishes before al processors fail. We prove that the policy is of threshold type. That
is, depending on the number of processors and the duration of the job, there is an optimal timeto
begin shadowing; once started, shadowing continues so long as neither processor failsand the job
doesnot complete. We al so show that the threshol dsare monotonein the number of processors, i.e.,
if more processors are initialy available, then shadowing should be started sooner.

In the second of our two models, we have the same set-up except that we have an unbounded
number of jobs, each having the same running time, and the objectiveis to maximize the expected
number of jobs completed before all processors fail. We show that the optimal policy is again of
threshold type, but that the thresholds are, surprisingly, not monotonein the number of processors.
The optimal thresholds have a curious oscillatory behavior that we study in detail.

Variants of the above problems are a so analyzed using the same methods; several other variants
are |eft as interesting open problems.

Key words: fault tolerant scheduling, stochastic scheduling, reliable computation, stochastic optimiza-

tion

1. Introduction

Assume we are given asinglejob with aknown running time 7 > 0 which isto be run on a system
of m > 1 faulty processors. The processor times-to-failure are independent random variables with the

common exponentid law F(t) = 1 —e~", ¢ > 0. A processor can fail only whileitisrunning ajob. If
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ajobisbeing run by only one processor and that processor fails, then thejob must be restarted from the
beginning. In order not to risk the loss of running time accumulated on a single processor, the running
of the job can be replicated (donein parallel) on two processors, atechnique we call shadowing, which
we assume can be stopped and started with negligibledelay; the processorswork synchronously, always
in the same state. The problem isto schedule shadowing so as to maximize the probability that the job
finishes before al processorsfail.

In practice, when aprocessor isrunning ajob, the state of the computation is composed of two parts,
one volatile and located in the processor, and one nonvolatile and stored in system memory; only the
volatile part islost when afailure occurs. If we are shadowing and one of the processors fails at time
t < 7, thenon-failed processor continues uninterrupted from time¢ onward. If ajobisbeing run by one
processor and at time ¢, to commence shadowing the vol atil e state of the running processor isinstaledin
the new processor and both continue from time ¢ onward. We assume that thetimeto install the volatile
part of a statein a new processor is negligible.

Thedownsideof processor shadowingisthat thefailurerateisdoubled, but the downsideof running
thejob on only one processor isthat the job must be restarted from the beginning when afailure occurs.
In Section 2, we show that this trade-off is resolved optimally (in the sense of completion probability)
by athreshold policy. For each = and m there exists an optimal threshold 7,,, such that a single proces-
sor runsthejob in [0, 7,,,), and if no failure has occurred, then shadowing is done throughout [7,.,, 7].
Notethat thereisnolossin our restriction to two-processor shadowing; running thejob using 3 or more
processors does not enhance the reliability (we just need two processors to avoid starting the job from
the beginning if one processor fails) and increases the probability of processor failure.

In adirect generalization of the above problem, therearen > 1 jobsto be completed (in any order),
and each requires T time units. This more difficult problem is open for general »n, but there is much
that we can say about the large-n behavior of policiesthat attempt to complete as many jobs as possible
before all processorsfail. More precisely, Section 3 has the same set-up as Section 2 except that there
are infinitely many jobs, each of duration r, and the optimal policy must now maximize the expected
number of jobs completed before al processorsfail. We give such apolicy in Section 3 and prove that
it alsois of threshold type.

Throughout the paper, the symbol = denotes a shadowing policy. A policy decision, 7(m,t) =
m(m,t,7), s determined by the number m of processors, the accumulated processing time ¢ of a job,
and the job’s original processing time 7; the decision valueis 1 or 2, the number of processorsthat are
to run the job. Thus, fixing 7, ashadowing policyisamap = : N x [0, 7] — {1, 2} that determinesthe
number of processorsthat areto runthejobinthestatedefined by ¢ € [0, 7], theaccumulated processing

time, and m € N the number of processorsavailable. Trivialy, 7(1,7) =1, 0 <t < 7.



Thekey resultson optimal policiesare proofsof monotonicity properties, since such propertiesyield
simplifications in computing the parameters of optimal policies. For example, the optimal threshold
policies of Sections 2 and 3 are based on the fact that = (m, ¢) is nondecreasing in the time parameter .
For thesingle-job problem of Section 2, wea so provethat = (m, t) innondecreasingin m (thethresholds
are decreasing functions of m). Thisordering ... < 7, < Tr—1 < ... < T May Seem unsurprising; it
simply says that shadowing should begin earlier in systems with more avail able processors. However,
we find that this monotonicity does not apply to the optimum threshold policy for the problem with
infinitely many jobs. Indeed, 7,,, exhibitsan oscillatory behavior; Section 3 describes the asymptotics
of this behavior in some detail. We show that, if 7 > In 2, then ,,, convergestoIn 2 asm — oo and
we derive the asymptotic form of the expected number of complete jobs under an optimal policy. This
asymptoticformis, roughly speaking, afixed point of therecursion (inm) satisfied by optimal solutions.
To obtain more refined estimates we consider perturbing away from the fixed point and then continuing
the recursion satisfied by the asymptotic solution. It turns out that oscillatory behavior isintrinsic to
the recursion satisfied by the perturbations. To establish this we first show that a simplified recursion
exhibits the same first order response to a perturbation. Then, in the appendix, for a particular 7, we
prove the oscillatory behavior of solutionsto this simplified recursion by showing that they are well
approximated (asymptotically) by sinusoids.

Problems like our shadowing problem (e.g., checkpointing and rollback/recovery problems) make
up the mathematical foundations of fault-tolerant scheduling. Many references to the literature can be
foundin[2 — 12]. Implicitly, our problem models situationswhere (i) the reliability of job completions
must be significantly higher than the reliability of an individual processor, (ii) the time to repair a pro-
cessor exceeds the time that can be devoted to the completion of a job (processor repair and re-use is
not considered), and (iii) the failure rate of idling processorsis negligible, at least by comparison to the
failurerate of processorsrunningjobs. In Section 4, thefinal section, wemention several open problems

in which our model is extended to make it more practical.

2. The Single-Job Problem

For the single-job problem, welet ()7 (¢) denote the conditional probability of successfully completing
the job given that the job has already accumulated ¢ units of running time, a total of m processorsis
available, and the processors are assigned according to policy =. Observe the boundary conditionsfor
al

D QT() = e o<t <, Qr(ry=1,m>1.



Define
Q3(1) = sup QL (1)
and call apolicy 7 optimal if Q7 (t) = QF,(1).

Remark In defining the optimality of a policy we might have required only that Q7. (0) = @7, (0).
Thisis, however, equivalent to the definition above. .

Below, we first develop the equations underlying the analysis of an optimal policy, =*. We then
provethat 7*(m,t) isnondecreasing in ¢ (i.e., 7* is athreshold policy), and nondecreasing in m (the
thresholdisdecreasing in m). Computational issuesare covered in Section 2.4, and the analysisin Sec-

tion 2.5 of a useful variant concludes the section.

2.1. Optimality equations

Given continuousfunctions f(¢) and ¢(¢) on [0, 7], define

e1(f,9)(1) == f(1) = g(0), and o f,9)(1) = 2(f(1) — g(1))-

For agiven policy 7, we can compute )7 (t) for each m > 2, by recursively solving

@ LR = o (@ Q5 D), QLT = 1,

where Q7 (1) = e~("=%) . To see this, suppose (m, s) = 1 for s € [t,t + At]. We can write
Qn(t) = (1= e 2)Q7 1 (0) + e QT (t + At).

Thefirst term isthe probability that the processor failsin theinterval [¢, ¢ + At] and thereafter thejob,
starting with zero accumulated processing time and m — 1 processors, is successfully completed. The
second term is the probability that the processor does not fail in theinterval [t,¢ + At] and thereafter
thejob, starting with ¢ + At accumulated processing time and m processors, is successfully compl eted.
Solving for [QT,(t + At) — QT.(t)]/(1 — e~2") and taking the limit as A¢ goes to zero, we get (2)
with w(m,t) = 1. A similar analysis assuming 7(m, s) = 2 fors € [t,t + At] resultsin (2) with
m(m,t) = 2. We can generalize to arbitrary measurable 7 either by approximating and taking limitsor
by refining the argument above to L ebesgue points of .

Equation (2) suggeststhat, for each m > 2, we should have Q7 (1) = ¢,,,(¢) for 0 < ¢ < 7, where

the ¢,., m > 2, solve the following recursive system of differential equations:

(3) _QM(t) = min{@l(vaQm—l)(t)v @Z(va%n—l)(t)}v
(4) Gm(T) = 1



with¢, (1) = e~("—*). Toseethis, wenotefirst, from standard resultson o.d.e.’s[1], that ¢,,, isauniquely

defined C'' function. Next, if we define a policy 7* according to

1 991(Qm Qm—l) < @Q(Qm Qm—l)
5 ﬂ-* m7t = ’ ? 9 )
(5) ( ) { 2, 01(qmy @m-1) > ©2(@ms Gm-1) ,

it followsinductively that Q7" () = ¢,,(t) solves (2), as verified below.

Lemma 1. For each m, wehave ¢.,(t) = @7, (t) and hence, 7* isoptimal.

Proof: The proof is by induction. We have ¢;(t) = Q7(t) trivialy, so assume ¢,,(t) = Q5 (t) for
n < m — 1,andlet = bean arbitrary policy. For amost al ¢ € [0, 7] we have

d

77 (@m = @5)(t) = min{@1(Gm, Grn-1)(1), ©2(Gm > Gm-1)()} = Pr(m,1)(Qs Qm1)(1) -

By theinductive hypothesis, Q7. _(t) < ¢n—1(1), we have

d

%(Qm - Qn)(t)

IN

min{@1 (G, Qpm1)()s 2(Gms Qre1)(1)} = @,y (Q s Qe ) (1)
@r(m,t)(%m Q:n—l)(t) - @r(m,t)( ;Tm ;Tn—l)(t)
m(m, 1) (gm(t) — Q7. (1))

IN

amost everywhere. It is now easy to seethat 4 (g, — Q7,)(t) < 0 amost everywhere on the set {t :
qm(t) < Q7.(1)}. It followsthat if ¢, () — Q7. (t) < 0 forsomet < 7then0 = ¢, (1) — QJ.(17) <
qm(t) — Q7. (1), whichisacontradiction. This completes the proof. n

Remark. If 7 isan optimal policy then 7 = 7*, up to sets of measure 0. Thus, from a practical point

of view, there isa unique optimal policy. .

Examplel1: Form = 2 we can computedirectly thepolicy 7*. Itisgivenby 7*(2,7) = 1if 0 < ¢t <
r/2and 7*(2,t) = 2if r/2 <t < 7,i.e, 7* calsfor shadowing if both processors are available and
t € [r/2,7]. Solving (2) we obtain

" e T _ 6—7’/2 et -
(6) Q3 (t):{ [1+2(1 e, 0<t< /2,

1—(1—e(=t)2 T/2<t< T
It can be verified directly that Q3" solves(3),i.e., that Q] = ¢s.
2.2. 7*(m,t)ismonotonein ¢

We prove below that, whenever an optimal policy beginsshadowing, it remains committed to shadowing

so long as neither processor fails and the job does not complete. This meansthat optimal policiesare of
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threshold type: for each m > 2, thereexistsathreshold ,,,, 0 < 7,,, < 7, suchthat 7*(m,t) =1, 0 <

1< T, and *(m,t) = 2, 7, <t < 7. We begin with two preliminary results.

Lemma2. For every m > 2, thereexist 7/, 7" with0 < 7 < 7" < 7 suchthat 7*(m,?) = 1, t €
[0,7"),and 7*(m,t) =2, t € (7", 7].

Proof: From the definition of Q7" (0) (a completion probability) we have ¢,,(0) > ¢,,_1(0) and
¢m(0) < 1 for al m > 2. Now consider (3). Since
©2(¢m s 4m—1)(0) = 201(¢m 4m—-1)(0) > 21(¢m s ¢n-1)(0),

we concludeby thecontinuity of ¢ and ¢, int that 7*(m, t) = 1 in someneighborhood of 0. Similarly,
since ©1(Gms Gm-1)(T) > ©2(Gm, ¢m-1)(7) = 0, we have 7*(m, t) = 2 in some neighborhood of 7. m

Thefollowing technical lemmaisakey ingredient in our analysis of (3). Hereafter, we often adopt

the more compact notation 2(t) := £ z(t).

Lemma3. Let f(¢), t > 0, beagiven nondecreasing C'! functionon [to, 1], and let ¢(¢) satisfy
) g(t) = a(t)g(t) - f(1)]

ontheinterval [to, t1), wherea(t) isareal continuouspositivefunction. If ¢(¢) < 0 for somet € (to,1)
then g(t') < 0 forall ¢/ € [t,11).

Proof: Assume ¢(t) < 0 and assume contrary to the lemma that there existst’ € [¢, ;) such that
¢(t") > 0. By the continuity of ¢ we can assume that ¢’ is the minimal such value. However, we have
g(t')y > f(t") > f(t) > g(t), which contradicts the minimality of ¢'. .

Remark If thegiven function f(¢) isstrictly increasing on [#o, ¢1 ) then we can replace the hypothesis
g(t) < 0with g(t) < 0,sinceg(t) = 0 thenimplies§(t') < 0 for al t' > ¢ sufficiently closeto¢. =
By (5), wehave ™ (m,t) = 2if ¢,,(t) — ¢—1(0) > 2¢,, (1) — 2¢,,,—1(1), Or equivalently, if

2Gm—1(1) = gm(t) = gm-1(0) = 0.
Now ¢,,,—1(0) isjust aconstant, so if we can show that
(®) hin (1) 1= 25 -1(1) — gm (1)
isstrictly increasing on [0, 7] for each m > 2, then by Lemma 2, =* will be a threshold policy.

Lemma4. Lettheq,,, m > 2, solve (3) with ¢;(¢) € [0, 7] and let the boundary conditions ¢; ()
and ¢,,, (7) bechosensothat hy(t) isincreasingand A, (7) > h,,,—1(7). Then h,,, isincreasing for each

m.



Proof: Theproof isby inductionon m. Assumethat £, (¢) isincreasingfor n < m—1, wherem > 2.
We know that h.,,, satisfiesthe following equation,
() = {max{hmu) =t () + G100, 20() = b (D)}, Bn (1) > -2 (0),
Max{hp (1) = hy—1(0), 2(hm(t) = 4m—2(0))}, him—1(t) < gm—2(0).
From (9) and the inductive hypothesiswe can easily concludethat if hm(t) < 0thenh, (1) < hpm—1(1)
for any ¢ < 7. Wewill show how to apply Lemma3 to concludethat, if /2,,, (') < 0, then f,,, () < 0 for
t € (t',7)and hence, h,, (1) < h,,_1(7). Since we have assumed that thisis not the case, we conclude
that h,,, () > 0 foral t < .

The application of Lemma 3 is piecewise. Assume that 4, (') < 0. By the inductive hypothesis
there can be at most onet = 77 < 7 where h,,,_1(t) = ¢,,—2(0). We claim that there can be at most
onet = Ty € [t', 7] where the two choices under the operative max in (9) are equal. This being the
case, we see that theinterval [t’, 7] can be subdivided into at most three subinterval's such that on each
subinterval we have ., (1) = a[h.,(t) — f(t)], wherea = 1 ora = 2 and f isC"' and increasing. We
can apply Lemma 3 on each subinterval and use the fact that /., is C'' to observethat 4, < 0 at the
left endpoint of each subinterval. We then conclude that ., is decreasing on [¢', 7.

To seethat theclaim holds, observethat if /,,, isdecreasingon [t’, 7] thenindeed there can beat most
onet = T, € [t', 7] where the two choices under the operative max in (9) are equal. This consistency
of the claim enables us to conclude that it holds, since #.,,, is uniquely determined by (9). n

Toillustrate Lemma 4, consider m = 2. The boundary conditions ¢ (¢) = ¢'~7 and h,,(7) = 1,
and substitutioninto (8) of ¢4 (#) and ¢2(?) gives

b= { G e
One sees by inspection that () isstrictly increasing on [0, 7].

In view of Lemma 2 and Lemma 4, we have now proved the desired result:
Theorem 1. The optimal policy 7* is of threshold type.

2.3. 7*(m,t) ismonotonein m

Wewant to provethat if for somea, 0 < a < 7,andsomem > 2,wehaver*(m—1,t)=2,a <t < T,
then 7*(m,t) = 2, a < t < 7. Coupled with Theorem 1, this result is equivalent to the threshold

ordering... < 7, < Tmo1 < ... < T,

Theorem 2. For all m > 2wehaver,, < 7,_1.



Example2. Weillustratethe hand calculation of 75. We gave ¢x(¢) in (6). Solving 4s(t) = 2(qs(t) —

q2(t)) over [7/2, 7], we obtain
as(t) = 4”070 34 2r — )Y, rj2<i <

We verify hs(7/2) = 2q2(7/2) — ¢3(7/2) > ¢2(0), so 75 < 72 = 7/2. Extending ¢5(¢) down from

T/2 and solving hs(73) = ¢2(0) for 75 gives

o1 /21
10 =—4+ -1 .
(10) eIty T
Continuing the calculation of ¢3(t) on [0, 5], one obtains the full solution
4e==t) —[3 4 2(1 — t)]e—20—1), <t
(11) g3(t) = €7 — 41 - e T2e= (71 _ pem200-t) 3 <t < T,

e[+ 20 =126t (1— )| 0<t <

Our proof of Theorem 2 will be based on a careful anaysis of the function

(1) = qu(z) —

which we noteiscontinuousand piecewise C'' on[0, ), theonly exceptional pointsbeing r,,, and 7, _1 .

We begin the proof of Theorem 2 once we have proved the properties of r,,(¢) given in the next two

lemmas.

Lemmab. limyy, 7, (1) =0, m > 2.

Proof: First we show that in aneighborhood of 7, the difference d,,,(t) := ¢, (t) — ¢n-1(t), m > 2
decreases monotonically ast increasesto . Fort > 7, wehavedy(t) = e(=7)(1—el*=7)). Form > 3
and ¢ in the neighborhood of =, we have

(12) A1) = 2don(1) — dyy—a (1))

Noting that d,,,(7) = d,,,—1(7) = 0, we apply Lemma 3 inductively over m to —d,,, to conclude that
d,, isstrictly decreasing in a neighborhood of .
To complete the proof of thelemma, observe that (12) and the monotonicity of d,,,—1(¢) imply that,

in aneighborhood of T,
dult) = [ 26 a(s)ds < [ 26y (1)ds = da (1)1 = 20)),
¢ t

from which we get
P(1) < (1= 27 m > 3,

For m = 2, we havedirectly lim;, 72(t) = 0. "

Lemma6. For all m > 2 wehaver,,(0) < 2.



Proof: We have 24,,_1(0) — 4, (0) = /., (0) > 0 whichis equivalenttor,,,(0) < 2. .

Proof of Theorem 2:  We prove the theorem by induction on two monotonicity properties:

1) Tme1 < Tme2 < ...< Ty
i1) ry(t)isdecreasingon[r,,7)and constanton [0,7,], 2<n <m — 1.

The proof isdivided into two steps. Thefirst step provesthat ) and ¢7) imply 7,,, < 7,,—1, and the
second step provesthat ), ¢i), and 7,,, < 7,,,—1 imply that r,,,(¢) isconstant on [0, 7,,,) and decreasing
oN [Ty, 7).

Basis (m = 2) We have dready seenthat , = 7/2 < 7y = . Direct calculation using (6) shows that
7 = 00n[0,7) and 7y = —2¢'~7 < 0 on[ry, 7).
Induction Step (m > 3)

We first verify, as follows, that the monotonicity of 7,,, isequivaent to the monotonicity of r,,,(0).
It iseasy to seethat
(13) 4n(1) = (¢2(0) = g-1(0))e’ + g,—1(0)
satisfies

Qn(t) = 991((]717 Qn—l)(t)
forn > 1andt € [0,7,], wherery = 7 and ¢o(0) = 0 . We solve the equation h,,(7,) = ¢,-1(0)
using (13) for ¢, (¢) and ¢,,—1(t) to obtain

14 ra(0)=2(1—e"™)

for n > 2. We can concludethat, for m > 3, 7,,, < 7,,—1 if and only if 7,,,(0) < r,,—1(0).
The remainder of the proof relies on the behavior of 7, ().
Step 1. We prove r,,(0) < r,-1(0), and hence 7, < 7,,_1, by contradiction. Assume r,,(0) >
rm—1(0). We show that r,,, () increases over [0, 7), thus contradicting Lemma5, since r,,,(0) > 0.
Consider first theinterval [0, 7,,,—1]. Using (13), we have directly 7., () = 0 inthisinterval. Next,

consider theinterval [7,,,—1, 7|, where we have

Fon (1) = 7o (1) (Tm%(t) N 1) '

Since r,,,—1(t) < 2 by the inductive hypothesis and Lemma 6, we have that r,,(¢) isincreasing in
[Tm—lv Tm]-

Finaly, intheintervd [r,,,, 7) we have




But 7, (7im) > rm(0) > rm—1(0) > 7pm_1(7n) SO by Lemma 3 we conclude r,,(t) isincreasing
in [T, 7], and we arrive at our contradiction. We have now proved r,,(0) < 7,,-1(0), and hence,
Tm < Tm—1-

Step 2. Ontheinterva [0, 7,,,) we have 7,,,(t) = 0, and on theinterval (7, T:n—1), We have 7, () =
Tm — 2. SiNCe T, (T ) = 7,(0) < 2, weconcludethat r,,, is strictly decreasing on [7,,,, Tin—1].

Finaly, on theinterval (7,,—1,7), we have

. 2
1) = Tl (1) = Froa (8]

Since r,,,—1(t) isstrictly decreasing on (7,,,—1, 7), we can apply Lemma 3 to conclude that 7, (7) < 0

on thisinterval, for otherwise, we would again obtain a contradiction to Lemma5. "

2.4. Computations

The formulas for ¢,,,(¢) and the thresholds r,,, of 7* become progressively more awkward as m in-
creases. However, arelatively simpleformulaappliesto ¢,, () intheinterval [7/2, 7] where shadowing
isrequired by 7* when two or more processors are available. According to (3), we derive thisformula
by s0IVing ¢, (1) = 2[qm(t) — gm_1(t)] With g, (7) = 1, m > 1,and ¢ (t) = e~ "D, 0 < t < 7.

Rewriting in terms of v,,, () = ¢,,(t)e~2! and then integrating gives the simple expression

(1) = —/2vm_1(t)dt—|—c,

where ¢ isaconstantto bedetermined andwherev,,,(7) = e=2" foralm > 1,and v (t) = e+, 0 <
t < . A simpleinduction provesthat v,, () is given by e~ times the right-hand side of

2m—1 _ 22
7!

(15) qm(t) — 2m—16—(7—t) _ 6—2(7—25) Z

0<i<n—2

(r—1t)

fort € [7/2,7].

In the remainder of this subsection we give numerical methods for computing the functions ¢,,,(t)
and n,,(t) and their corresponding thresholds 7,,,. Let ¢;,,,(¢) denote the expression for the optimal
completion probability in7; <t < 7;_4, 1 < 7 < m. Using (3), it not difficult to show that ¢, () is
of theform
(16) Gim(t) = ao + are’ + (bo + byt + -+ + bm—l—jtm_l_j)€2t ;

withall coefficientsa;, b; beingfunctionsonly of 7. For the computationto foll ow, define the coefficient
vectors a;,,, = (ag,aq) adb;, = (bo,...bym—1-;), 1 < j < m, where b,,,,, = () isempty (the

coefficient of e2! is0).
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Thebasis of the calculationis m = 1, namely,

mn o= T,
arg = (0,e77),
bip = ()
aa(t) = e7Te, 0<t< .
Now let m > 2 and assume that we have calculated @ 1, b;j_,,,—1, and 7; for j = 1,...,m — 1. We

apply G;m (1) = 2(qjm(t) — ¢;m—1(t)) tocalculatea;,, andb;,, forj = 1,...,m—1. With ¢,,,_1 ,,,(?)

and ¢,,,—1,m—1(t) in hand, we obtain 7,,, asthe solution to

2Qm—l,m—l(Tm) - Qm—l,m(Tm) = Qm—l,m—l(o) .

_ L ( a_l)
Tm—2n b R

Wheream_Lm_l = (ao,al) and bm—l,m = (bo)

We get

Oncewe have T, wecan COMpPULe @, , bym, AN ¢ (1) USING G (1) = G (1) — @r—1,m—1(0).
Figure ?? gives the formulas for computing a;,,, and b;,,, for j = 1, ..., m and 7, assuming we have
previously computed @; 1, b; o1, @nd; forj=1,...,m—1.

The method was implemented using Mathematica. Figures ?? and ?? show the values of ¢,,,,,,(0)

and 7., respectively, versus m with r = 5.

25. A Variant

Suppose the number of available processorsis unlimited; the job-completion probability is 1, but it is
of interest to determine the expected number of processors lost prior to job completion under a policy
that minimizesthis objective function.

Let M (¢) denote the expected number of processorswhich will fail prior to completing the current
job given that ¢ units of processing time have elapsed and an optimal policy is used. By an argument
similar to that used in Section 2 we find that A/ (¢) solves

d
%M(t) =max{M(t) - M(0)—1,-2}

where M(7) = 0. The solutionisfound to be M (¢) = ™ — ¢" if 7 < In 2 (no shadowing occurs);
otherwise, we have

M(1) = 24+ 2(r—In2)— €, 0<t<In2,
]l 2(r=mn2)—-2(t—1n2), m2<t< T

(shadowing beginsat ¢ = In 2). Aswewill see, these resultsal so help describe the asymptotic behavior

of the solution to the problem of the next section.
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3. TheProblem with Infinitely Many Jobs

Recall that, in this problem, we have m processors and infinitely many jobs, each of duration r. The
problem is to find a policy that maximizes the expected number of jobs that are completed before al
processors fail. Below, we first develop an optimal policy and then prove that it is of threshold type.
In Section 3.3, we note that, in a surprising contrast with the single-job problem, the policy function
7*(m, t) is not monotone in m; an asymptotic analysisis given aong with an accounting for the non-
monotone behavior of 7,,,. The section is rounded out by the analysis of an interesting, perhaps more

realistic variant.

3.1. Optimality equations

Let N (¢) denote the expected number of jobs completed given that the current job has accumul ated ¢
units of running time, atotal of m processors are available, and the processors are assigned according
to policy =. Thefinishingtimeisnot part of the objective, so thereis no need to process more than one
job at atime.

Sincer(1,t) = 1,weseethat N7 (¢) isequal top(t)(1+ NT(0)) where p(t) = €'~ isthe proba
bility that the current job will be completed. Solving for N{(0), we obtain the complete solution

(17) NT(t)=¢"/(eT —1).

By an argument similar to that given in Section 2.1, we find that N (¢), m > 2, can be obtained by

recursively solving
d

(18) %N;;L(t) = S‘Qﬂ(m,t)(N;;L? N;;L—l)(t) ”

with the boundary conditions (17) and
(19) NI (r)=14 N](0).
Note particularly that our problem differs from the single-job problem only in the (more challenging)
boundary conditions; (18) has precisely the same form as (2).
Define N, (t) = sup, N/ (¢) and consider the optimality equations
(20) anL(t) = min{@l(nmv nm—l)(t)v 992(nm7 nm—l)(t)}v anL(T) =1+ nm(O),
withnq(t) = e'/(e™ — 1),
We define the policy =* according to

1 S‘Ql(nm nm—l) < @Q(nm nm—l)
21 > m,t — 9 9 ) )
( ) ( ) { 27 S‘Ql(nmv nm—l) Z @Q(Rma nm—l) .

We have thefollowing result analogousto Lemma 1 in Section 2.1.

Lemma7. For each m we haven,,(t) = N (t) and hence, 7* isoptimal.

12



Proof: Theproof isby induction. Wehaven,(t) = Ny (t) trivialy. Let = bean arbitrary policy. Asin
theproof of Lemmalwehave £ (n,, — N7 )(t) < 0 imost everywhereontheset {t : n,,, (1) < N7 (1)}
It followsthat if n,,(t) < N (t) for somet < 7 thenn,,(7) — n,,(0) < N (1) — N7 (0) =1, a

contradiction. -

3.2. 7*(m,t)ismonotonein ¢

In analogy with itsusein Section 2.2, redefine the function £, () as
hon (1) := 2nm—1 () — np (1)

Thissection showsthat 4., (¢) isincreasingint for each m, so there can be at most onetime r,,, a which

shadowing begins. In other words, we have

Theorem 3. Thepolicy 7* is of threshold type.

Proof: The proof uses Lemma 4. We need only show that ho(?) isincreasing and that h.,(7) >
hm—1(7). To seethat hy(t) isincreasing note that

d
%hg(t) = max{hg(t) + nl(o)v 2h2(t)}7

and since ha(7) — hy(0) = 1 we concludethat £hy(t) > 0fort € (0,7). Now assume that, for
n < m —1, h,(t) isincreasing and that, contrary to our claim, /., (7) < h,,—1(7). Notethat h,,(7) —
h—1(7) = hp(0) = hy—1(0) SO hyy, (0) < hyy—1(0). The proof of Lemma 4 shows that £, (t) is
decreasing on [0, 7], but thiscontradicts h,,, (7) — h.,,(0) = 1. We concludethat £, (7) > h,,—1(7) and
that h,,, () isincreasing for each m. .

Toillustrate threshold behavior, we briefly describe anumerical techniquefor evaluating n,,, () and
Tm. Assume we have computed 74, ..., 7,,—1 and ny(t), ..., n,—1(t). The computation of n,,(t) is
done by generating successive approximations, 7 and n*, (1), k = 1,2, ..., to 7, and n,,(t), respec-
tively. Theinitial approximations ., and »!, (¢) are obtained by solving the optimality equation (using
the method of Section 2.4)

d .
T (1) = min{@r (mg, s —1)(1), @2(s m—1)(1)}
withnl (1) = ny,—1(7) . The optimality equation guarantees

nl (1) = nl(0) < npm_1(7) = np_1(0) = 1.

The next approximation is cal culated using the boundary condition

1 — (1, (1) = 1, (0))
1 — e—27+74 ’

(22) N (1) =, (7) +

13



We determine this condition by solving the following differential equation for 7 (¢)

~1 1

CUR G NG
with the boundary condition 2, (0) = =l (0) 4+ 6. Straightforward calculation showsthat 7} (7) =
nl (r) + 62"~ 7m. Selecting § such that 7!, (7) — A} (0) = 1 resultsin aboundary condition for the
next iteration (viz., (22)) which satisfies: n2,(0) > n),(0) and n%, (1) — n2,(0) < 1. Thisprocedureis
repeated until n% (1) — n* (0) is sufficiently closeto 1, a which point weset 7, = 7% and n,, () =
In Figure ?? we show the values of ,,, form = 2,...,15, where r = 1.5. Ascan be seeninthe
figure, 7,,, isnot monotonein m. In general, monotonicity in m does not even hold asymptaticaly, i.e.,

for al m sufficiently large, as we will seein the next section.

3.3. Thethreshold function 7,

This subsection works out an asymptotic anaysis of n,,, () that establishesthe oscillatory behavior of
Tm. If 7 < In 2 then we find that shadowing is never called for and the optimal solutionis given by
nm(t) = mn4(t). Henceforth we will assume 7 > In 2.

Itisintuitively clear that if m issolargethat the probability of completingajobisvery nearly 1 then,
roughly speaking, the optimal strategy will be to minimize the number of processors spent completing
thejob. Here we see the connection with the variant in Section 2.5. It isfairly easy to provethat 7,,, —

In 2 asm — oo. Knowing this, it is possibleto obtain the asymptotic form of n,, .

Consider t
m—14e
i (1) 1= C"’ma) 0<t<In2,
AR m+14+2(t—In2
¢+ Trpomay o m2<t<T

where ¢ is somefixed constant. It is easy to verify that the 7i,,,, m > 2, satisfy equation (20). It follows
from the above that n.,, () — n.m—1(t) @nd 7, (t) — 7,,—1(t) are asymptoticaly equal. But, athough
thereisaconstant ¢ such that n,, () isasymptotic to 7, (%), it is not readily determined.
The oscillation of 7,,, isredly an artifact of the oscillation of d,,,(0) := n,,(0) — n,,—1(0), where
dm(t) isredefined here in analogy withitsusein Section 2.3. Since n,,, isC'!, we have
__ 2dna(0)
2d,,—1(0) — d,,,(0)
This equation is exact, i.e,, the O(.) error term vanishes, when 7,,, < 7,,_1. ASm — oo, we have

dm(0) — , s0if wedefine 3,, := 1+2(717—h12) —d,,(0), then

T™m

+ O((Ty — Tm_l)z) )

1
1+2(7—In2)

T =2+ (14 2(1 =1 2)) (B — Brm1) + O(B2 4+ B2_1),
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Thus, we can study the asymptotic oscillationin 7,,, by studying that of 3,,,.

It turnsout that the oscillationin 3, persistseven if the oscillationin 7, isartificially removed. To
see this, consider the effect of choosing a non-optimal policy by perturbing 7,,,. We discover that, to
first order, the policy is still optimal. If we let n,,,(T')(t) represent the value obtained by choosing the
threshold time 7" with m processors, leaving n,,—; fixed, thenit is easily verified that

(1) Dlg=r = 0.
This arises from the fact that n,,,(¢) is C'', which in turn arises from the optimality of 7,,,. Thus, if we
start with somevery largem > M and simply set 7,,, = In 2, thenthevaues of 3, will beatered only
on the order of (7,, — In 2)2. Hence, the oscillation of 3,, will persist.

For m > M, define ¢,,,(t) := n,,(In2)(t) — np—1(In2)(¢) and for m = M, define g, (1) :=
N, (10 2)(1) — N —1(1). Then, form > M, g, satisfies

gm (1)
9n(0) = gm(7).

Since the threshold is fixed we have ¢,,,(In 2) = 2¢,,(0) — ¢, —1(0) = 29, (7) — gm—1(7). Itis
more convenient, therefore, to consider f,,,(t) := ¢,,(7 —t) ontheinterval [0, 7] wherer, := 7 —In 2.

Thus, we consider

(23) Fn(®) = 2 () = fu(D).0<E < 7
fu(m) = 2fn(0) = fra(0).

In principlethisequation can besolved asfollows. Givenany function r(t) satisfyingr(t) = 2[f,,—1(t)—
r(t)] on [0, 7.], we have f,, (1) = r(t) + ae~2t, where a is chosen so that the boundary conditionsare
satisfied.

Oneway of obtainingasuitabler isfirst to represent f,,,_1(¢) viaits Fourier series. Given asinusoid

fm—1(t) = asin(ut 4+ ¢) .

we may then write
r(t) = o’ sin(ut + ¢')

wherea’ = (1—|—u2/4)_1/2a and ¢’ = ¢ —arctan(u/2). 1t canbeshownthatif f,,—1 = ap,—1 sin(ut+
¢m—1) for u slightly smaller than 27 /7., then f,,, ~ r. Theoscillationin f,,(0) arisesfrom thisfact. To
make this more rigorous we need to estimate the deviation from this approximate solution. Thisturns

out to be afairly complicated task. For thisreason we have relegated the analysis to an appendix.

15



Briefly, the appendix proceeds by defining aclass ¢ of functionswhich are small perturbationsof the
approximate solutionindicated above, and then by provingthatif f,,,_ € ® then f,,, € ®. For technica
reasonswe provethisonly for thecaser,. = 27,i.e, 7 = In 2+27. Theformal definitionsand the proof
may be foundin the appendix. Themain result (see Theorem ?7?) accountsfor the oscillationin 7,,,. The
restrictionon 7, isnot critical but it allowsusto replace certain ana ytical boundswith numerical values,

thereby significantly shortening the proof.

3.4. A generalization

Supposewe generalize the problemwithinfinitely jobs so that every job but thefirst hasitsrunningtime
drawn independently at random from aknown distribution Q). Thefirst, or current, job must be finished
first and it is known to have 7 time unitsleft to run. The remaining jobs must be completed in agiven
order, and we do not learn ajob’sduration until it becomes the current job. The previous problemisthe
specia case where () is concentrated at 7. We assume that () has a positive expected value.

Let N,,(7,t) denote the expected number of jobs that will be completed under an optimal policy
givenm processorsand acurrent job of duration with ¢ unitsof accrued processingtime. By arguments

similar to those in Section 2.1, we find that for m > 2 we can obtain N, (7, t) asthe solution n,, (7, t)

of
%RM(Tv t) = min{@l(nm(T, t)v nm—l(Tv t))v @Q(RM(Tv t)v nm—l(Tv t))}
N (T, 7) = 1 + 70, (0),
where
i (0) := Eq(nm(t,0))
and

Folf(t):= [ fdQ(n).

Directly, we have ny(7,t) = €"~7[1 + 71(0)], where i1 (0) = Eg(e™")/[1 — Eg(e™)].

Theorem 4. An optimal policy is of threshold type.

Proof: We define h,, (7,1) := 2n,,_1(7,t) — np (7, ) @d by (0) := Eq(hi,(2,0)), and then show
that hy(7,t) isincreasing and that /2,,, (0) > h.,,—1(0). An application of Lemma (4) then completesthe
proof.

We show that hy(7,t) isincreasing by contradiction. Sincein general we have

d
%hQ(Tv t) = maX{h?(Tv t) + nl(Tv 0)7 2h2(7_7 t)}v
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we see that /(7. ¢) is monotone. Further, if hy(7,1) is non-increasing for some 7, then hy(7,7) =
14 hy(0) < 0 and wecan conclude that hy(7, ) < 0 for al ¢ and 7. Thisimplies that shadowing never

occurs when there are two processors and we can solve for ny (7, ¢) explicitly. In particular, we obtain
na(7,1) = €7 T(1 + 712(0)) + (1 — """ )ny(7,0)

from which we derive

75(0) = Eq(e™) | Eg(e™") = Fo(e™™)
L—FEg(e™) = (1— Eg(e™))?

Then
A - 1 Eg(e™) — Eg(e™)
ha(0)+1 = 1— Eg(et Q(l - EQ(e_?))2
_ (L= Fo(e™)* + Eqg((e™" = Eq(e™"))?)
(1= Eg(e™))?
> 0,

which is a contradiction.

To seethat 4, (0) > h,,_1(0), suppose the contrary. Then, for some minimal m, we have

/(hm(r, 0) = hm_1(r,0))dQ(r) < 0.

Hence, for some T wehave h,, (7, 0) = hy—1(7,0)) < i (0) — hpy—1(0) < 0. But then, asthe proof of
Lemma4 shows, we can concludethat k., (7, 7) isdecreasing. Thus, wehave h., (7, 7) = hy—1(7,7) <
P (7,0) = hpy_1(7,0), which isa contradiction. -

Under mild assumptionson @ and = > In 2, there will be an optimal threshold which will converge
toln2 asm — oo, asin the previous problem. Furthermore, n,,(7,¢) — n,,—1(7,t) will converge to
some fixed function. Aswe are dealing here with agenerdization of the previous problem, the conver-

gence of the optimal threshold need not be monotonein general.

4. Conclusions

In an obviousgeneralization to thevariant of Section 3.4, the current job’srunningtimeisalso arandom
samplefrom @). In spiteof our efforts, whichweintend to continue, this‘ completely stochastic’ problem
remains open.

Asnoted in the introduction, more general settings are abtained by allowing for anonzero, but dif-
ferent failurerate for idling processors, and by allowingfor repairsand re-use of failed processors. Also,
we have assumed that processor failures are instantly and reliably detected. It would be more realistic

to assume that the detection mechanism itself isunreliable and attempt to model thissituation. We have
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also assumed that thereis no cost associated with starting up the shadowing processor. These and other
complicating factors suggest many new lines of inquiry. Another issue not considered in this paper is
the importance of the completion time of the job, given that it is completed. For example, it may bethe
case that if ajob takes too long to finish then its utility is diminished. The tradeoff between success-
ful completion and timely completion might be modeled by a discounted reward which is a function of
the job completion time. Intuitively, this would provide an incentive to begin shadowing earlier than

determined by the policiesin this paper in order to maximize the expected reward.

References

[1] V.I.Arnold (1981). Ordinary Differential Equations, MIT Press.

[2] Richard E. Barlow and Frank Proschan (1996). Mathematical Theory of Reliability, SIAM,
Philadel phia.

[3] L.B.Boguslavsky, E. G. Coffman, Jr., E. N. Gilbert, and Alexander Y. Kreinin (1992). Scheduling
Checks and Saves, ORSA Journal on Computing, Vol. 4, No. 1.

[4] P F Chimento, Jr., and K. S. Trivedi (1993). The Completion Time of Programs on Processors
Subject to Failure and Repair, IEEE Transactionson Computers, 42(10),1184-1194.

[5] E. G. Coffman, Jr. and E. N. Gilbert (1990). Optimal strategiesfor Scheduling Saves and Preven-
tive Maintenance, | EEE Transactions on Reliability, 39, 9-18.

[6] A.Duda(1983). The Effects of Checkpointing on Program Execution Time, Information Process-
ing Letters, 16, 221-229.

[7] R. Geist, R. Reynolds, and J. Westall (1988). Selection of a Checkpoint Interval in a Critical-Task
Environment, |EEE Transactionson Reliability, 37(4), 395-400.

[8] A. Goyadl, V. Nicola, A. Tantawi, and K. Trivedi (1987). Reliability of Systemswith Limited Re-
pairs, |EEE Transactionson Reliability, 36, 202—207.

[9] B.Kalyanasundaramand K. R. Pruhs(1994). Fault-Tolerant Scheduling (Extended Abstract), Pro-
ceedings, Symp. Th. Comput., ACM Press, New York, 115-124.

[10] V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi (1990). Effects of Checkpointing and Queueing on
Program Performance, Commun. Statist.-Sochastic Models, 6(4), 615-648.

[11] V.G.Kulkarni,V.F. Nicola, andK. S. Trivedi (1987). The Completion Time of aJob on Multimode
Systems, Adv. Appl. Prob., 19, 932-954.

18



[12] P L’ Ecuyer and J. Maenfant (1988). Computing Optimal Checkpointing Strategies for Rollback
and Recovery Systems, IEEE Transactionson Computers, 37(4), 491-496.

19



