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Abstract

We consider optimal control problems for stochastic fluid models of the following type:
suppose (Z;) is a continuous-time Markov chain with finite state space. As long as Z; = z,
the dynamics of the system at time ¢ are given by a function b*(u(-)), where u is a control
we have to choose. A cost rate function c is given, depending on the state and the action.
We want to control the system in such a way as to minimize the expected discounted cost
over an infinite horizon. We will call a problem of this type a Stochastic Fluid Program
(SFP). They typically appear in production and telecommunication systems. We formulate
the optimization problem as a discrete time Markov decision process and give conditions
under which an optimal stationary policy exists. Furthermore, we show how to solve SFPs
numerically, using Kushner’s approximating Markov chain approach. Last but not least

we apply our results to a multi-product manufacturing system without backlog.
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1 Introduction

In manufacturing and telecommunication systems we often encounter the situation that
there are different timescales for the occurrence of events. For example, if we allow for
random breakdowns of machines in manufacturing models, we typically assume that the
production process itself is much faster than the breakdowns of machines (cf. Sethi/Zhang
(1994)). Another example is the Anick/Mitra/Sondhi-model (1982). There, the authors
suppose that the cell stream sources in ATM multiplexers are on-off sources. Thus, we
have a certain cell transmission when the source is on and no transmission when the
source is off. The durations of the state lengths are random. In both cases we obtain
adequate models when we replace quantities that vary faster with their averages, whereas
we keep the slower processes stochastic. Formulations of this type are commonly used and
important in stochastic modeling. We now want to give a unified approach towards the
optimal control of such systems which we will call Stochastic Fluid Programs. An informal
description of the evolution of stochastic fluid programs is the following: Suppose S C RN
is the state space of the system and y € S the initial state. The local dynamics of the
system are determined by an external environment process (Z;) which we assume to be a
continuous-time Markov chain with finite state space Z and generator @) (this assumption
can be relaxed to (Z;) being a semi-Markov process). Whenever Z; = z, the system evolves
according to ¥y = y + fot b*(u(y, z,s)) ds, where u : S x Z x IR, — U C IR¥ is a control
and b* is a given measurable function b* : U — S. U is our action space. Moreover,
a cost rate function ¢ : S x Z x U — IRy and an interest rate § > 0 are given. The
6-tuple (F =S x Z,U,b,Q,c, ) will be called a Stochastic Fluid Program (SFP). We are
interested in minimizing the S-discounted cost of the system over an infinite horizon for
B> 0.

Let us first look at the following example of a multi-product manufacturing system without
backlog. Each of N parallel machines produces a different item for consumption. The
demand rate for item ¢ is p; > 0 for 7 = 1,...,N. Since the machines are subject to
random breakdown and repair, the total production capacity \;(z) € IR, for items of type
j depends on the number z = Z; of working machines at time t. Z; is our environment

process. The vector Y; = (Yi(¢),...,Yn(t)) gives the inventory of each product at time



t and we assume § = ZRf . We obtain a reward rate r; for each unit of item j which is
produced, but incur an inventory holding cost at rate ¢(y) which depends on the joint
inventory y € S. We have to decide now upon the production rate of each item and to
be able to get a non-negative inventory, we have to control the demand rate. Hence we
define (u,v) € U = [0,1]" x [0,1]", where \j(2)u; is the production rate and v;yu; is the
demand rate for items of type j, 7 =1,...,N. For u € U, z € Z the local dynamics of the

system are given by b%(u) = A(z)u; —vju;,7 =1,...,N. Hence,

E=RYxZ
U=1[0,1" x[0,1]¥

bi(u) = AM2)uj — pjvj, j=1,...,N
N

c(z) = ey) = DX (=),
j=1

together with an interest rate 8 and generator ) of the environment process specifies our
problem. It is important to note that the control variable v; is introduced only in order
to be able to keep the inventory non-negative. For a realistic cost rate function which is
increasing in the inventory we obtain for an optimal control v; = 1, whenever y; > 0.

By (Y;) we denote the stochastic process of the buffer contents and by (X;) = (Y, Z;)
the joint state process. x € E should always be understood as x = (y,z). At the jump
times (T},) of the environment process (Z;), decisions have to be taken in form of a control
u: E x[0,00) - U and ¢(z,u) ==y + fot b*(u(x,s)) ds gives the state of the system
at time ¢ under control u, starting in z. According to Yushkevich (1980) we can w.l.o.g.
restrict to decisions taken at jumps only (cf. also Remark 6a)). w is called admissible
if ¢¢(z,u) € S for all t > 0 and a sequence m = (u,) of admissible u,, defines a policy.
Hence we have Y; = ¢y_1, (X1, ,uy,) for T, <t < Tp41 and mp = up(X7,,t — Ty). The

optimization problem is
o
V(z) = inf Vi(z) = inf E7 [/ e Ple(Xy,m) dt|
™ ™ 0

where the infimum is taken over all policies. Thus SFPs are a special class of piecewise
deterministic Markov processes (see e.g. Davis (1993)) with one exception: in our model

we allow for constraints on the actions and the process can move along the boundary of



the state space. In the classical theory for piecewise deterministic Markov processes the
state process automatically jumps back into the interior of the state space as soon as it has
reached the boundary. However, as far as applications in telecommunications and manu-
facturing systems are concerned, the state process naturally moves along boundaries such
as non-negativity constraints. This boundary behavior in particular makes it difficult to
determine an optimal control. In the literature one can find examples of SFP which have
been solved explicitly, see e.g. Akella/Kumar (1986), Presman et al. (1995), Rajagopal et
al. (1995). Related models are Markov decision drift processes (cf. Hordijk/Van der Duyn
Schouten (1983)) and the more specific semi-Markov decision processes. In contrast to our
model, Markov decision drift processes and semi-Markov decision processes do not control
process movement between transitions while in SFPs the decision effects the determinis-
tic behavior between transitions. The jumps themselves cannot be controlled in SFPs.
Consequently we will use numerous results from piecewise deterministic Markov processes
and accommodate them to our constrained problem. In particular we will exploit the fact
that the optimization problem can be reduced to a discrete-time Markov decision process.
To prevent the optimality of randomized controls, we will make several convexity assump-
tions. For our applications this is no crucial restriction. After defining the mathematical
model and its discrete time reduction rigorously in section 2 - 4, we will prove in section
5 under some continuity and compactness assumptions that an optimal stationary policy
exists which is the solution of a deterministic control problem (Theorem 4). Section 6
summarizes properties of the value function which are helpful in applications. In section
7 we comment shortly on how to solve SFPs numerically and in section 8 we apply our

results to a multi-product manufacturing system.

2 Continuous-time Stochastic Fluid Program

We will first give a definition of a Stochastic Fluid Program in continuous time and make
some basic assumptions about our model which will be valid throughout the paper without
further mentioning them. Let Z be a finite set and @} a generator for a Markov chain on

Z. We assume that @ = (q,,/) defines an irreducible Markov chain. As usual denote ¢, :=



—q,, for z € Z. Let S C IRY and define by %B(S) the Borel-o-algebra on S. E := S x Z is
called state space of the system. A state € E is denoted by = = (y,2). U C IRE is the
action space of the system. For all z € Z, measurable functions b* : U — IR" are given,
the so-called dynamics of the system. We will write b: Z x U — IRY to summarize all b*.

A measurable function u : E X [0,00) — U is called an open-loop control. Define

dr(z,u) =y + /Ot b*(u(z,s)) ds.

¢i(z,u) gives the state of the system at time ¢ under control u, starting in state z. wu is
called admissible if ¢¢(x,u) € S for all ¢ > 0. Let m = (u,) be a sequence of controls,
where all u, are admissible. In this case we will call w a policy. When we denote by
(Ty), To = 0 the jump times of the environment process (Z;), then u,(Xr,,t —T),) is the
control which has to be applied for ¢ in the time interval [T),,T,+1). Moreover, we are
given a measurable cost rate function ¢: E x U — IR; and an interest rate § > 0. These
objects together will define our program. Instead of ¢ > 0 it is sufficient to assume that ¢

is bounded below. By 15(-) we denote the indicator function of set B.

Definition 1:
The 6-tuple (E,U,b,Q, ¢, 3) is called a (discounted) Stochastic Fluid Program (SFP).

For a fixed policy 7, there exists a family of probability measures {P7 | z € E} on a
measurable space (©,F) and stochastic processes (X;) = (Y3, Z;) and (m;) such that for
0 =Ty <Ti <Tp <...

Zt — ZTna Yi = ¢t—Tn (XTnaun)a T = Un(XTn,t - Tn) fOI' Tn S t< Tn+1

and

(i) PT(Xo=x)=P"(Th =0) =1 for all z € E.

(11) P;;T(Tn-i-l - Tn >t | TO,XTO, e ?Tn,XTn) = eiqZTnt_

azy 7
(111) Pwﬂ—(XTn+1 € B x {Z,} | TOaXToa ce 7XTn7TTL+1) = ZLn 1p (¢Tn+1*Tn (XTnaun)) for

9z,

2 € Z, 2 # Zy, and B € B(S) and zero, if 2/ = Z7,,.



The process (X;) = (Y3, Z;) will be called state process. Obviously (Z;) is a continuous-
time Markov chain with generator @ and jump times (7},). The optimization problem we

are interested in is the following:

Definition 2:

Let 7 be a policy. For z € E define

a) the expected discounted cost over an infinite horizon under policy 7, starting in x by
o0
Ve(z) = EJ {/ e Ple(Xy,m) di
0
b) the minimal expected discounted cost over an infinite horizon, starting in x by
V(z) := inf Vi (z).
e

c¢) m is called optimal, if it attains the infimum in b) for all z € E.

Remark 1:

a) Since the jump times of (Z;) cannot be controlled, it is easily possible to define for
fixed z € E a common probability measure P, on a measurable space (', F') such
that for all policies 7 there exist processes (XJ) = (Y;", Z;) such that P, (X[ € ) =
PI (X, € -). This observation is useful for sample path arguments.

b) When we have only one environment state, i.e. |Z| = 1, then the problem reduces to

a purely deterministic control problem.

3 Discrete-time Stochastic Fluid Program

We will now show that the optimization problem in Definition 1 can be transferred into an
equivalent discrete-time dynamic program with substochastic transition kernel. Exploit-

ing this fact, it is (in principle) possible to apply the theory of Markov decision processes.



The point is that the evolution between jumps of the environment process is purely deter-
ministic. This enables us to choose at the jump time points of the environment process
a control which is a function of the time only and which is applied until the next jump
occurs.

Suppose a SFP (E,U,b,Q,c,3) as defined in the previous section is given. On U we
assume to have the usual Borel o-algebra. Denote by A := {a : IRy — U | a measurable}

the action space and for x € E by
t
D(&) = {a € 4| ¢u(z,0) =y +/ b (as) ds € S,Vt > 0}
0

the set of admissible actions. If no further jump has occurred, a; is the action which is
applied ¢ time units after the last jump. Note that the action is now a function of the
time only. We assume that D(z) # 0 for all z € E and define D := {(z,a) | a € D(x)}.
Furthermore, let the transition kernel p : D x B(S) x Z — [0, 1] be defined by

Qo [ BN (By(w,a)) db, it %z
0

0 if 2/ =2

p(z,0; B x {2'}) i=

and the one-step cost function C': D — IR, by

C(z,a) ::/ e_(ﬂ+qz)tc(¢t(x,a),z,at) dt.
0

p is obviously a substochastic transition kernel. Note that p(z,a; B x {z'}) is exactly
the discounted probability of getting from state x at jump time 7T, to a state in the
set B x {z'} at the next jump time point T}, ;; under the control a. C is the cost that
is incurred during such a period from one jump to another. Theorem 1 below gives
the justification for these definitions. A o-algebra on A will be defined in section 4.
F:={f:E — A| f measurable, f(z) € D(x)} is called the set of decision rules and
o = (fn), where f,, € F is called a policy in the discrete case. After adding an absorbing
state to make the transition kernel stochastic, we obtain for a fixed policy o that there
exists a family of probability measures {P? | z € E} on a measurable space (Q, F) and a

discrete-time stochastic process (X,,) = (Yy, Z,) on (Q, F) such that

(i) P7(Xg=x)=1forall z € E.



(ii) P7(Xpy1 € B x {2’} | Xoy..., X)) = p( Xy, fu(X,); B x {#'}) for all 2/ € Z and

T

B e %B(9).

Remark 2:

a) It is important to point out that the Markov chain (X,,) as previously defined and
the process (X;) as defined in Section 2 are two different objects, as well as the
corresponding policies. It should always be clear from the context, whether the
continuous or the discrete version is considered and the notation should not lead to

any confusion.

b) By Eg we denote the expectation w.r.t. the probability measure Pg .

Definition 3:
The 6-tuple (E, A, D,p,C, 3) is called the Discretized Stochastic Fluid Program (DSFP).

Remark 3:

To obtain the connection with the continuous-time definition it is important to note that
whenever m = (u,,) is a policy for the SFP, o = (f,), where f,,(z)(t) = u,(x,t) is a policy
for the DSFP and vice versa. This result is not trivial since f,, and wu, have different

measurability requirements.

Theorem 1:
Let 7 be a policy for the SFP and o the corresponding policy for the DSFP. Then we

obtain

a) Velo) = B7 | £ € (X, £u(X)

n

A proof of Theorem 1 can be found in the appendix. For further investigations it is



convenient to define the following operators. If v : E — IR, we denote the operator U by
( - 1
Uv(z) := inf [C(z,a) +/ e~ (Bta:)t Z Qv (Pr(zya),2") dt| .
a€D(x) [ 0 s J
For f € F we will use the following notation
oo
Upv(z) := C(z, f(x)) +/ e~ (Bta:)t Z Qv (1(z, f(2)),2') dt.
0 2 £z
f € F will be called minimizer of v if f attains the infimum in Uv. Note that the

optimization problem given by operator U is a deterministic control problem.

Remark 4:

a) Let 0 = (f,) be a policy for the DSFP. Then we have V, = lim,, o, Uy, ... Uy, 0. The

proof is similar to the one for Theorem 1.

b) It is easily seen that both operators Uy and U are monotone, i.e. if we have v, w :

E — IR with v < w then Uyv < Upw and Uv < Uw.

c¢) Since U is a mapping from E to IRy we can again apply the operator U to the result

Uv. An n-times iterated application of U is denoted by U™v.

The next aim will be to show the existence of optimal policies for the DSFP. In order to
do this, we have to establish compactness and continuity properties. However, this causes
some difficulties since we have to find a topology on A which guarantees that A is compact
and that the right-hand side of the operator U is lower semicontinuous. Moreover, we have
not even yet defined a g-algebra on A. The usual way to cope with this problem is to pass
over to randomized actions or so-called relaxed controls. Relaxed controls have first been
introduced by Young for problems from the calculus of variations (cf. Kushner/Dupuis
(1992) chapter 9.5). The action space can then be shown to be compact w.r.t. the Young
topology (cf. Davis (1993)). This procedure will be explained briefly in the next section.
However, from a practical point of view we do not want to deal with randomized actions.
Thus, we will impose certain convexity assumptions which are quite natural and which
allow for the minimum to be taken in the smaller set A of deterministic actions. The

assumptions we need now are the following.



Assumption 1:

(i) S is closed and U is convex and compact w.r.t. the usual Euclidian norm.
(ii) uw > b*(u) is linear for all z € Z.

(iii) ¢ is lower semicontinuous on E x U and u — c¢(z,u) is convex for all z € E.

4 A Relaxed Problem

As indicated in the last section we will relax our DSFP by considering randomized actions.

Denote by IP(U) the set of all probability measures on U. Then we denote
R :={r: Ry — IP(U) | r measurable}.

Thus r; is now a probability measure which gives the probability with which actions are

taken at time t. Let a DSFP be given. For r € R, z € E, B € B(S), 2’ € Z we define
t
di(z,r) =y +/ / b*(u)rs(du) ds
0o Ju
C(z,r) = / e*(ﬁﬂz)t/ c(y(z,7), 2, u)r(du) di
0 U

Qzz Ofoe_(’“q”)tlB(ﬁgt(ﬂE,?“)) dt, ifz# 2
0

0 ifz =2
D(z) = {reR|d(zr)es, Vt>0}
D := {(z,r)|re D(z)}

The relaxed DSFP is given by the previously defined quantities (E, R, D, p,C, f3).

Remark 5:

a) As usual in LP-spaces, r should be thought of as an element of the A!-equivalence

class.

b) IP(U) is endowed with the Borel-o-algebra which is induced by the weak topology.



c) A C R since the elements of A can be interpreted as the one-point measures in R.
Thus, we have in particular if » = J,, i.e. the one-point measure on action a € A,

then qgt(w,r) = ¢i(z,a),c(z,r) = c(z,a) and p(x,r; B x {Z'}) = p(z,a; B x {Z'}).

It is possible to show that R is compact w.r.t. the Young-topology and R is metrizable.
For a definition of the Young-topology and a proof of these results we refer the reader to

Davis (1993) Section 4.3. The following Lemma will now be crucial.

Lemma 2:

Let a relaxed DSFP (E,R,D,p,C, ) be given. Under Assumption 1 it holds that

a) The mapping (z,7) — ¢(z,r) is continuous for all ¢ > 0.

=3

)
) D(z) is compact for all z € E and D is closed.

c¢) The mapping (z,r) — C(z,r) is lower semicontinuous and C > 0.

d) p is weakly continuous, i.e. (z,r) — [v(z')p(x,r;dz') is continuous and bounded for

every continuous, bounded function v : £ — IR.

e) The set-valued mapping & — D(z) is upper semicontinuous.

Proof:

a) See e.g. Davis (1993) Theorem 43.5.

b) Fix z € E. We have
D(z) = {r € R| di(z,r) € SVt >0} = Niso{r € R | di(z,7) € S}.

Since S is closed and ¢;(z,r) is continuous in r for all z and ¢, {r € R | ¢y(z,r) € S}
is closed. Hence D(z) is closed as the intersection of closed sets and since D(z) C R
it is compact. Analogously we can write D = Ni>o{(z,7) | ¢¢(z,r) € S} and since

(z,7) — ¢y(x,r) is continuous for all ¢ > 0 we obtain that D is closed.

c) and d) see e.g. Davis (1993) Theorem 44.11.

10



e) Define the mapping ¢ : E — D by 9(z) = D(z). Let B C R be closed (since R is

compact, B is also compact). We have to show that
¢ YB]:={z € E| D(z)NB# 0}

is again closed. Let z, € v ![B] with 2, — 2. Choose r, € R,n € IN such that
rn € D(:Jcn) N B C B. Since B is compact there exists a convergent subsequence
rn, — T € B for K — co. Because of the closedness of D it holds that (@ny,Tng) =

(z,7) € D. This implies z € 1)~ '[B]. O

For v € €. := {v : E — IR | v is lower semicontinuous} define the operator 7 for the

relaxed problem as

Tv(z) = inf
reD(x)

~ w ~
C(z,r) —|—/ e (Bra:)t Z QU (qﬁt(x,r),z') dt
0
2'#z

Theorem 3:
Let a DSFP be given and v € €. Under Assumption 1 we have Uv € €, and there
exists an f* € F such that

Upv =Uv =To.

Proof: Consider the relaxed DSFP. Due to our assumptions and using Proposition 7.31 in
Bertsekas/Shreve (1978) (which also holds for substochastic transition kernels) we can ap-
ply the measurable selection Theorem given in Herndndez-Lerma/Lasserre (1996) (Propo-
sition D.5) to show that there exists a measurable g : E — R with g(z) € D(z) for all
z € F which attains the infimum in 7v and Tv € €. Since A C R implies Uv > T, it
is now enough to show that there exists an f* € F' with Us<v = Uv < To.

For r € R define a; = [, uri(du), t > 0. Since U is convex, a; € U for all ¢ > 0 (see e.g.
Hinderer (1984) Theorem 25.10) and it is measurable, hence a € A. Moreover, since b* is

linear

be(z,r) =y + /Ot/sz(u)rs(du) =y+ /Ot bz(/Uurs(du)) ds = ¢¢(z,a)

11



which implies in particular that a € D(z). Using the convexity of ¢ in the last component

we obtain with the Jensen inequality

Ola,r) = / ~(B+a:) t/Uc i, 1), 2, w)re (dus) dt
> /0 B+ by (1, ), 2 / wry(du)) dt = C(z, a).
Now we define for all ¢ € E and t > 0
F@ = [ ugl)t.du.

Then f*: E — A is measurable and f*(z) € D(z). Moreover, for fixed z € E we obtain

Tv="Tyv > Uypv > Uv which implies Tv = Uv and the proof is complete. O

5 (-Discounted Cost Optimality Equation

The following assumption is needed to state our main theorem.
Assumption 2: There exists a policy 7 such that V;(z) < oo for all 2 € E.

Theorem 4: (S-Discounted cost optimality equation)
Suppose that Assumptions 1 and 2 hold. Then

a) V is the minimal solution of the -discounted cost optimality equation V. =UV, i.e.

forallz € F

Viz) =
@ = i,

C(z,a —|—/ ~(Bta:)t > @V (pelx,a),2') dt| . (1)
2%z

b) There exists a minimizer f* € F of V in (1) and the stationary policy (f*, f*,...) is

optimal.

12



The proof of part a) and b) follows essentially as in Herndndez-Lerma/Lasserre (1996).

Proof: a),b) Since 0 < C' we obtain immediately for all z € E
0<V,:=U"0LV

and since the operator U is monotone we have V,, 1 V < V. From Lemma 4.2.4 in
Hernéndez-Lerma/Lasserre (1996) (interchange of min and lim) together with Theorem 3

and the monotone convergence Theorem it follows that
Vi=1limV,=lim UVy_1= lim TV, =T lim Vi =TV =UV
n—00 n—00 n—o00 n—oo

ie. V is a solution of the optimality equation and V is lower semicontinuous. On the
other hand we know from Theorem 3 that there exists a decision rule f* which attains the

infimum in V = UV. Thus we obtain

for all n € IN which implies V> Vig= f=...) = infz V@ = V. Therefore, V=V. Moreover,
if W is an arbitrary solution of the optimality equation we can repeat the arguments and

obtain W > V. This completes the proof of a) and b). 0

Remark 6:

a) A natural question that arises is why the policies have been defined in a discrete
way in section 2. A natural candidate for a policy would be a measurable mapping
w2 Hy — U, t > 0, where Hy gives the history of the process (X;) up to time ¢ and
the corresponding state process satisfies Y," € S for all ¢ > 0. However, it is known
that Theorem 4 remains valid if we would minimize over all policies T = (f,,) such
that f,41 depends on the history h, = Oxgfit121 ... fatnZn, n € IN. Thus in terms
of Yushkevich (1980) Theorem 4 states that the optimal policy can be found among
the simple strategies and applying Theorem 2 of Yushkevich (1980), we obtain under

our assumption that minimizing over policies m; gives the same value function.

13



b) All the previous Lemmas and Theorems remain valid, when we allow the environment

process (Z;) to be a more general semi-Markov process, i.e. if for 2z € E and policy =
Pxﬂ—(Tn+1 - Tn S ta ZTn_H - Z, | TUaXToa ... 7Tn7YTn7 ZTn - Z) - FZZ’(t)pZZ’

If we denote by F,,/(t) := 1 — F,,/(t) the survival function, by F,(t) := 3",/ poo Fy. ()
and by f,, the density of F,,/, then we obtain for the DSFP

o0

pM (2, 0; B x {#'}) = paw / e Pt L (015 (dy(x,a)) di
0

CM(z,a) := /oo e PUE,(t)e (pi(z, a), 2, ar) dt.
0

All other data remains the same. In particular the optimality equation (1) is now of

the form

V(ZU) = aén[;?z) [CSM(ﬁ, Cl) + /000 e_ﬂt ;pzz’fzz’ (t)V (th(xaa')v Z,) dt| .

6 Properties of the Value Function

Suppose a SFP as defined in Section 2 is given and Assumptions 1 and 2 hold. We
will prove several properties of the value function which will be important in obtaining

structural results for the optimal control. In the following, we fix z € Z.

Lemma 5:

If S is convex and y — ¢(y, z,u) is convex for all u € U, z € Z then V(y, z) is convex in y.

Proof: The proof is by means of a sample path argument. The underlying probability
measure is here the one of Remark 1 b). Let y,y' € S, « € [0,1]. Moreover, denote by
(m) and (7}) the processes of the optimal policies for start in y and 3’ respectively. Define
7y = am + (1 —a)wj. 7 € U for all ¢ > 0 since U is convex. Obviously (7;) defines a

policy. Take () as a control for start in ay + (1 — «)y’. Hence

a~ t !
Yt”:ay+(1—a)y'+/ bt (ams + (1 — a)rl) ds = aY + (1 — )Y € S
0

14



since S is convex which yields that 7 is admissible. Therefore, we obtain

Viey+(1-a)y) < Vilay+ (1 -a)y) = B[ [ e elv} 2z 1) di

< aVi(y,2) + (1 =)V (y,2) =aV(y,2z) + (1 — )V (Y, 2)

and the proof is complete. O

For the next Lemma, we will need the following growth assumption on the cost rate

function ¢

Assumption 3:

There exist constants k € IN and Cy € IR, such that for all z € Z,u,v' € U and y,y' € S

oy, 2,u) — oy, z,u)| < Co(1+ Iyl + 15/11F) (ly = /I| + llu — ]l

Lemma 6:
If S = RN and y — c(y, z,u) is continuously differentiable and convex for allu € U,z € Z

and fulfills Assumption 3 then V (y, z) is continuously differentiable w.r.t. y.

Proof: Since V is convex due to Lemma, 5 it suffices to show that the partial derivatives
exist (cf. Rockafellar (1970)). Let y,4' € RN and h > 0. By e, we denote the v-th unit

vector. The convexity of ¢ implies the convexity of V' (Lemma 5), hence
Di(y,h) ==V (y,2) = V(y — hey,2) < V(y + hey,2) = V(y, z) =t Da(y, h).

Let (m) be the process of the optimal policy for start in y. Due to our assumptions,
(m¢) is also admissible for start in y + he, and y — he,. Therefore, we obtain for the two

differences above
Doty ) < By [ [ e (el hers Zuym) — Vi Zuym) ]
0

o0
Di(y,h) > Ey [/0 efﬁt(C(Yt, Zy, ) — (Vs — heu,Zt,Wt)) dt} :
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If we now define
) —,Btl
f(h) = e E(C(Yrt +hellaZta7Tt) _C(Y;faZta']rt)) dt
0
then we have with Assumption 3 for |h| small enough
> t k k 1
£ < Co [ e (Lt Vi e |+ Vi) dt < Gt

since the trajectories can grow at most linear. An analogous bound can be derived for
the second difference. Thus, dividing both sides by h and letting h — 0 we obtain with

bounded convergence

Dl (ya h)

™ * —pt 9 :
Ey {/0 e a—yc(Yt,Zt,m) dt} < l]%ﬂ]l

. Dy(y,h) _ ([ 5
<lim =202 < B {/0 e el¥i ) dt} < oo

which implies the statement. O

Lemma 7:
If N =2and y — c(y,z,u) is supermodular for all u € U,z € Z then V(y,z) is super-

modular in y.

Proof: Let y,y' € S. W.Lo.g. y1 <y}, y2 > y5. Denote by (7';) and (o}) the processes of
the optimal policies for start in (y Ay’) and (y Vy') respectively (A denotes the componen-
twise minimum and V the componentwise maximum). Define #; := inf{t > 0 | Y{" (t) =
Y7 (t)} and ty = inf{t > 0 | Y (t) = YJ (t)}. Suppose that for fixed w € Q w.lo.g.

t1 < to. Define

() = () ,t<t o

o

—_~ =~
Q
—
—
~
~
I
—_~ =~

(t) > 1 7T(t) > 1

mo(t) = oh(t), t >0, oa(t) =mH(t), ¢t > 0.

Hence 7 and o define admissible policies and
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YF(t) =Yy (t), t >0, YJ(@)=YS,t>0.

Thus, the assertion follows with our assumption on c since

Viyny,2)+VyVvy,z) =Vuly Ay, 2) +Va(y vy, 2)

V.
[ee] , , [oe]
=F [/ e Pe(Y , Zy, ) + (Y, Zy, o) ] {/ e Pe(Y], Zy,mi) + (Y7, Zy,0y) di
0 0
>

=Va(y,2) + Vo (y',2) 2 V(y,2) +V(y',2). O

It is not clear whether Lemma, 7 holds for N > 2. The construction of the policies = and

o we have used does not generalize to higher dimensions.

7 Numerical Methods for Stochastic Fluid Programs

When we have the special case of one environment state and a linear cost rate function
then the optimization problem reduces to a so-called separated continuous linear program
(SCLP) which can be solved quite efficiently (see e.g. Pullan (1993, 1995)). In general,
we can use the Approximating Markov chain approach (see Kushner/Dupuis (1992)) to
solve SFPs numerically. In what follows, we give a short outline of how to apply it to our
SFP as defined in Section 2. First we look at a time discretization of our process. Let
h > 0 be small and define At" = h (maxueyzez{z 1 0% (u )|})~L. Denote D(z) = {u €
U |y+0b*(u)Ath € S}, = € E the set of admissible actions in state z. The discrete time
optimality equation then reads

Vi) = inf S Athe(ru)+e A [AR 3T gV (g, )+ (1A GV (g (w) At 2)
ueD(2) 7

In a next step we restrict the state space to a grid with distance h > 0. This can be done
by applying a finite-element method. The crucial point is that the new state y 4 b*(u)At"

can be written as a convex combination of grid points:

EAVA— b? (u)~ At"
b* (u) At" Zhe] () + ey 1A
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where 27 and 2~ denote the positive and negative part of = respectively. Notice that the
sum of the weights is less than 1 due to the definition of At". Approximating the value

function by a linearization over the grid, we obtain the following optimality equation

Vi) = min ¢ Atelwu) +e P (AN Y V() + (1= Ag.)
ueD(a) 7

Zj +Ath N bz Ath

N
[Z (y-i—he], +Z J (y—hej,z)-i-

1- 555 vl |

j=1
Under Assumptions 1 and 2 there exists a minimizer f of V" and the stationary policy
m=(f,f,...) is optimal. From Kushner/Dupuis (1992) we know that for h — 0 the value

functions V" (z) converge to V() for every environment state z.

8 Application

In this section we apply our general results to the multi-product manufacturing system
described in the introduction.

A controller has to decide upon the production rates for N items in parallel. If the
environment process is in state z at time ¢ the maximal production rate for items of type
j is Aj(2) > 0. The demand rate for item j is y; > 0, j = 1,...,N. The controller
obtains a reward r; for each unit of item j which is produced, but has to pay inventory
costs ¢(y) which depend on the joint inventory y. We formulate the control as a vector
(u,v) € [0,1]Y x [0,1]", where \j(2)u; is the production rate for items of type j and
vjp; is the demand rate for items of type j. If we would fix the demand rate y;, then it
is inconvenient to define the control set, since it must be possible to hold the inventory
non-negative, which forces an artificial definition of u; if A\;(2) < p; and y; = 0. It will
turn out in our formulation that v; = 1, whenever y; > 0 (see Theorem 9b)). In terms of

our SFP, the data is given by
E=RYxZ
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U=10,1" x[0,1)¥

bj(u) = Nj(2)uj — pyvs, g =1,...,N

N
c(z) = é(y) — Z riNi(2)u;
j=1

To obtain a reasonable model we will assume that the mapping y — ¢(y) is non-negative,
strictly increasing and convex (< is interpreted componentwise). Note that the problem
does not decouple into N independent problems since there is a common cost function ¢
for the inventory and we do not assume that ¢ is additive, i.e. é(y) = Z;V:l ¢;(y;) (this of
course would give us N independent problems). This is a realistic assumption when we
suppose that the N type of items share a common inventory. Moreover, in Theorem 9
we will assume that ¢ is supermodular which means that increases in the inventory of one
type of item will make the storage of additional items of other types more expensive. This
situation is often encountered in practice. Note also that we assume an infinite capacity
for the inventory and that the only stochastic part in the model is the random variation
of the production capacity of the machines (for a motivation see Sethi/Zhang (1994)).
Obviously Assumptions 1 and 2 of sections 3 and 5 are satisfied (for the control which
holds the inventory process in the initial state we have V;(z) < co) and we obtain with

Theorem 4:

Theorem 8:
In the parallel machine production problem without backlog there exists an optimal sta-

tionary policy (f*, f*,...) where f* is a minimizer of V' in (1).

In the cases of one or two items (N < 2) we can further show that the optimal policy
has a certain structure. From now on we focus on determining the optimal production
policy which is given by the first NV components of f*. We will call a feedback control
g:E—=[0,1]V, g(y,2) = (91(y, 2),--.,gn(y, 2)) of switching-type, if it has the following
properties for all z € Z,7 =1,...,N.

(i) gjly,2) =1, v <y =gj(y,2) =1

(i) gj(y,2) =0, ¥y >y =gy, 2) =0.
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When the production control is of switching-type this means that if it is optimal to produce
items of type 7 at maximum rate when the inventory is y, then also when the inventory is
y' < y. Vice versa, if it is optimal to stop production of items of type 7 when the inventory

is y, then also when 3’ > y.

Theorem 9:
Suppose N < 2 and y — ¢(y) is strictly increasing, convex, supermodular, continuously

differentiable and satisfies the growth condition of Assumption 3. Then we obtain

a) The value function y — V(y,z) is strictly increasing, convex, supermodular and
continuously differentiable for all z € Z.

b) The optimal production policy is a feedback-control g of switching type and v; = 1,
ify; >0,7=1,...,N.

c¢) Further, suppose V' is twice continuously differentiable and strictly convex. If N = 2,
then there exists for every z and j a so-called switching-curve y; — S;(y1, z) which

is continuous and decreasing, such that for j = 1,2

L, ifye < Sj(y1,2)
9i(y,2) = _
0, 1fy2 > Sj(yl,z).

Proof:

a) See the appendix for this part.

b) We have to solve now the optimality equation (1). This is a deterministic control

problem and the Hamiltonian of the optimization problem (1) is given by

N
H(y,u,v,p) = Y [pj(Nj(2)uj — pjvy) — rihj(2)us] + D @ V(y,2') + é(y)
j=1 2l#z
N
= Y [uiAi(2)(p; — i) — pinvil + Y @V (y,2') + éy).
j=1 2 £z

Since V' is continuously differentiable, it is well-known (cf. Seierstad/Sydsaeter (1987)
p. 212) that p, = %—‘gj(yf,z), where (y;) is the optimal trajectory. According to Pon-

tryagins maximum principle the optimal control u} (t) at time ¢ minimizes the function
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oV :
Uj = U (@(yf,z) — rj). Thus we obtain

s ={ LT RO s

0 Lif rj < G- (7, 2)

and uj(t) holds the inventory on the line r; = g—;;(yz‘, z) whenever this is possible.
This means that the optimal production control is a feedback control. Similar v} (t)
at time ¢ maximizes v; — ng—;;(yf ,z). Since V is strictly increasing we have %—Z >0
and vj(t) = 1 if y7 > 0 (if y; = 0, vj(?) is not necessary equal to 1, because of the
boundary condition). It remains to show that g; is of switching-type. Therefore, let
(y,2) € E and gj(y,z) = 1, hence r; > g—;;(y,z). Let y = y — de;, 0 > 0, where
ej is the j—th unit vector in IR". Since V is convex we obtain that g—;;(y,z) is
increasing in y;, hence g—gx(y' ,2) < rj which implies that g;(y',z) = 1. Similar if
y =y —dex, k£ 7, 6 >0 then, since V is supermodular, %(y,z) is increasing in
Yk, hence g—;;(y’, z) < rj which implies that g;(y’, z) = 1. The assertion for arbitrary
y € ZRf follows by induction over the components. The second property of the

switching-type control can be shown analogously.

If V is strictly convex then V2V is regular. Using the Theorem for implicit functions
we obtain that there exists a continuous function S; : IRy x Z — IR such that
T = g—;;(yl, Sj(y1,2),%). The monotonicity of S; follows from the proof of part b).

g

Remark 7:

2)

b)

The control on the switching curve is such that the inventory is kept on the switching

curve if this is possible, until the next environment change occurs.

If N =1, the optimal control is of threshold-type. That means, there exists a constant
ys, the so-called turnpike level, for every environment state z such that it is optimal to
produce nothing if y > y; and to produce at maximal rate if y < y}. The production
rate at y} is A(z)u with u = Xl(l7) in the case that A(z) > p. This is shown in Rajagopal
et al. (1995).
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c) When we look at the same model with backlog, i.e. S = RN, we obtain the same
structure for the production policy. Indeed, the analysis is easier here, since we do
not need the control variables v;, j = 1,..., N and the differentiability of the value
function follows directly from Lemma 6. Instead of ¢ increasing we have of course to

assume that ¢(y) — oo for |y| — oo.

The following numerical computation of the optimal policy has been done for the one-
and two-item case with two environment states using the approximating Markov chain
approach. In the finest grid we have used for our computation, the points had distance
h = 0.033. This leads to 30,000 states in the discrete value iteration which terminates
after 50,000 iterations. Obviously, for small h it is not practical to do the computation for
more than a couple of environment states. The aim of the computation was to get some
conjectures about how the switching curves depend on the production capacity and on
the intensity with which the environment changes. For these questions we got some nice
results.

Figure 1 and 2 refer to the one-item case with é(y) = (y+0.5)%, 8=0.9, r =%, p=2.
In figure 1 we have fixed ¢y = ¢1 = 2, A\(0) = 4 and have varied the maximal production
rate in environment state 1, A(1) from 0 to 2.5. The curve consisting of circles represents
the optimal threshold y; in environment state 0 and the other curve, the optimal threshold
Y} in environment state 1. In Sethi et al. (1992) it has been shown that if A(0), A\(1) > p,
which is the case if A(1) > 2, the optimal thresholds are independent of the environment
state and can be computed from %é(y*) = fBr which gives y* = 0.5 in our case. From
Rajagopal et al. (1995) we know that A(1) < A(0) implies that yi > yj. Moreover the
numerical computations allow to conjecture that the optimal thresholds are decreasing
in the production rate A(1). In terms of our model this means that a lower maximal
production rate forces us to keep a higher threshold level which can be seen as a benchmark
inventory we should try to keep. Since both environment states are coupled by a stochastic
mechanism, this observation is true for both states, whereas of course state 1 with the lower

production rate is more affected. The influence on state 0 is regulated by the intensities

qo, q1 with which the environment changes as we will see in figure 2. The higher target
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inventory is the price we have to pay for being less flexible with a lower production rate.
Also it is important to note from an economical point of view that it is sufficient to keep
the production rate in any state slightly above the demand rate. Any further additional
production rate does not lead to a lower target inventory. In figure 2 we have fixed
the two maximal production rates A(0) = 4 and A\(1) = 1 and have varied the intensity
go = q1 with which the environment process changes. For ¢y — 0 the system decouples
into two deterministic systems with thresholds y5 = 0.5 and yj = 1.446. For ¢y — oo
the environment process converges uniformly on compact sets to a constant production
rate A = £(A(0) + A(1)) = 2.5. Hence we would expect that both y§ = y(go) and
y7 = yi(qo) converge to 0.5 which is the optimal threshold in the deterministic case
with production rate A. Indeed, for our simple example, this statement follows from
Remark 7.3 in Chapter 5 of Sethi/Zhang (1994), in fact, numerical computation reveals
that when go = 100, y§(qo) = 0.54. Remark 5.7.3 in Sethi/Zhang (1994) suggests that this
convergence is very slow, presumably of order of the fourth root of qLO. Moreover, y;(qo)
is decreasing and yi(gp) has a unique maximum point which can be interpreted as the
parameter setting possessing the most randomness. As far as the model is concerned it is
interesting to note that the threshold levels are much higher in a setting with an unequal
production rate of 1 and 4 compared to the situation with a constant average production
rate of 2.5. Indeed, this effect seems to be quite resistant even when we considerably
increase the speed of environment changes. Thus, we can conclude that it should be the
highest priority of a manufacturing system to try and keep the production capacity as
constant as possible.

The figures 3-6 for the two-item case show the same behavior. Here we have chosen the
following data: c(yi,y2) = €' 192, 8 = 0.9,71 = ry = %,,ul = pp = 2. From Theorem
9 we know that the optimal production policy is characterized by 4 switching-curves
S1(y1,0), S2(y1,0), S1(y1,1) and So(y1,1) where y» < S;(y1, 2) if and only if the maximal
production rate is used for item j in environment state z, when the inventories are y; and
yo respectively. Since the data is symmetric in item 1 and 2, the optimal policy is also
symmetric. Hence we can restrict w.l.o.g. to the policy for the first item. In figure 3 and
4 we see the optimal policy for item 1 in environment states 0 and 1 respectively, with

g0 = q1 = 2,21(0) = A2(0) = 4 where we have varied A\;(1) = Ay(1) from 0.4 to 2.3. The
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region below the curve is the maximal production region. It seems that the optimal policy
in the two-item case has the same properties as in the one-item case, that is: as soon as
A1(1) > pq, the policy does not change; both maximal production regions increase when
A1(1) decreases and the maximal production region in environment state 1 is always greater
than the one in environment state 0. This implies that we can draw the same conclusions
for the model in the two-buffer case, namely that a decrease of the maximal production
rate below the demand rate leads to a sort of unflexibility which forces us to keep higher
inventories. In figure 5 and 6 we have fixed A1(0) = A2(0) = 4, A1(1) = A2(1) =1 and
varied the intensity with which the environment process changes, where ¢y = ¢;. Figure
5 refers to the optimal policy in environment state 0, figure 6 to the one in environment
state 1. Again, for ¢qg — 0 and g9 — oo we are in completely deterministic settings and
the maximal production region in environment state 1 is decreasing in gg. Moreover, the
acceptance region in environment state 1 is always greater than the one in environment
state 0. Again we have the situation that the stochastic changes between two states, with
one state having production capacity below demand rate, puts us in a worse situation than

in the deterministic setting with average production rate.

Appendix
Proof of Theorem 1: Part b) follows directly from a). For a) let 7 be fixed. If we denote by

{F:} the natural filtration of the state process (X;) we obtain by conditioning on {Fr, }

[ roo S Thi1
Vi(z) = ET /0 e Ple(Xy, my) dt}:E;T [Z / e Ple(Xy, my) dt]
- n=0"""n

[ > Tn+l
= EI Z ET {/ e Ple(Xy, m) dt‘ Fr, H

Ln=0 Th
_oo Thnt1—Tn
= B | e By [ eV 2 fal X ) (- T) dt | P,
n=0 0
:OO
= Ep | e 0 (X, fn(XTn»] ,
Ln=0

c.f. also Davis (1993). Now we will show by induction on m € IN that forallz € E, m € IN

E} [i eﬂT"C(XTn,fn(XTn))] = EJ [i C(Xn,fn(Xn))]

n=0 n=0
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which yields the result. m = 0 is obvious. Suppose the assertion is valid for k =0,...,m—
1. Then we obtain by applying the induction hypothesis

ET [i eBT"C(XTn,fn(XTn))]

n=0

= Cl=, fo(z)) + Ef

e PMET, {Z A0 Xy, fu(X1,) \an

= C(z, fo(z)) + Z o / 7ﬁtE (pt(z,fo),2 lz € ﬂTnC(XTnafn—l—l(XTn))] Qzeiqﬂ dt

P
m—1
= Oz, fo(z)) + %,; 02z / B o).z [Z C(Xn, fay1(X ))] dt

= Eg [in: C(Xnafn(Xn))] -0

n=0

Proof of Theorem 9 a): The convexity and supermodularity of y — V (y, z) follow directly
from Lemma 5 and Lemma 7 respectively. Let us next show that y — V(y,z) is con-
tinuously differentiable. Since S = ZRﬂY we have to modify the proof of Lemma 6. We
have to show that the right and left partial derivatives are the same in the interior of the
state space (the single-sided derivatives at the boundary exist since V' is convex and V' is
also continuous at the boundary). As in the proof of Lemma 6 we will do this for every
sample path w € €. Moreover, since the control of one component does not influence
the dynamics of the other components, it suffices to restrict to the case N = 1. Now let
y > h > 0 and fix w € Q. Denote by (m;) the process of the optimal policy starting in y.
Let 7 := inf{t > 0 | Y = 0} and suppose Y;” = 0 on a positive time interval 7,7 + A]
(it takes a small thought to see that the optimal trajectory cannot simply touch zero and
then get positive again). If 7 = oo, then we can proceed as in Lemma 6. Suppose 7 < 00.
The probability is O(h) that a jump in the environment occurs during the time interval
[T — Ah, 7 + Ah] for fixed A > 0. Therefore, suppose that no jump occurs. Denote by
7l :=inf{t > 0 | Y7 — h = 0}. Obviously, 7' < 7 and let » > 0 be small enough such
that ;" —h < 0 for t € [7!,7]. Define 7" := 7 + (7 — 7). We will construct the policies

(7F), (w}) for start in state y + h and y — h respectively such that

mh=al=m for 0<t<7l,t>7"
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m=my q and 7 =m for 7'<t<7
7ri =m and 7 =744—r for T<t< 7"

Hence (7!) and (77) give admissible policies and we have Yﬁl =YY% =YY% =0 and

. o _ﬁtl " r T
flblg%) ; ey (C(Yt , Z,my) — (Y ,Zt,ﬂ't)) dt

7 T 7"

:}Eig(l) A dt—)—}llig(l) L dt—l—}llig(l) SR dt:%ig(l)lf(h)—i—}lbiir%]fg(h)wL%ig(l)Ig(h).
And
lim ooefﬁtl (C(Yt”,Zt,Wt) —C(Y?rl,Zt,Tri)) dt = lim Tl... dt + lim T... dt
h—0.Jo h h—0Jo h—0 /71

_ 1 l : l
= lim 7} (k) + lim I3(h).

Due to the construction of our policies it holds that limy,_,o I3 (h) = 0 since on [r!,7] the
rewards are equal for 7 and 7" and the derivative of ¢ is bounded due to the growth condi-
tion of Assumption 3. Moreover, we have limy_,q I7(h) = limy, o It (h) and limy,_, I} (h) =
limy, o I4(h). The interchange of expectation and limit can be proved in the same way as
in Lemma 6. Hence the statement follows.

The monotonicity of V' can be shown, using a similar construction of policies. O

Acknowledgment
I am grateful to Ulrich Rieder for some deep discussions and to two referees for their

valuable comments.

References

AKeELLA RA AND PR KumARr (1986) Optimal control of production rate in a failure
prone manufacturing system. IEEE Trans. Automa. Control AC 31 116-126.

AnNick D, MITRA D AND MM SONDHI (1982) Stochastic theory of a datahandling system
with multiple sources. In The Bell System Technical Journal 61 1871-1894.

BERTSEKAS DP AND SE SHREVE (1978) Stochastic optimal control: the discrete time
case. Academic Press, New York.

Davis MHA (1993) Markov models and optimization. Chapman & Hall, London.

26



HERNANDEZ-LERMA O AND JB LASSERRE (1996) Discrete-time Markov control processes.
Springer-Verlag, New York.

HINDERER K (1984) Grundbegriffe der Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin
Heidelberg.

HorpJK A AND FA VAN DER DUYN SCHOUTEN (1983) Average optimal policies in
Markov decision drift processes with applications to a queueing and a replacement model.
Adv. Appl. Probab. 15 274-303.

KusHNER HJ AND PG Duruis (1992) Numerical methods for stochastic control problems
in continuous time. Springer-Verlag, New York.

KusuNER HJ (1990) Numerical methods for stochastic control problems in continuous
time. SIAM J. Contr. Optim. 28, 999-1048.

PRESMAN E, SETHI SP AND QQ ZHANG (1995) Optimal feedback production planning in
a stochastic N-machine flowshop. Automatica 31 1325-1332.

PurLLaN MC (1993) An algorithm for a class of continuous linear programs. SIAM .J.
Control Optim. 31 1558-1577.

PuLLaN MC (1995) Forms of optimal solutions for separated continuous linear programs.
SIAM J. Control Optim. 33 1952-1977.

RAJAGOPAL S (1995) Optimal control of stochastic fluid-flow systems with applications
to telecommunication and manufacturing systems. PhD Dissertation at the University of
North Carolina, Chapel Hill.

RAJAGOPAL S, KULKARNI VG AND S STIDHAM (1995) Optimal flow control of stochastic
fluid-flow systems. IEEE Journal on selected areas in Communications 13 1219-1228.
ROCKAFELLAR RT (1970) Convex analysis. Princeton University Press, Princeton.
SEIERSTAD A AND K SYDSETER (1987) Optimal control theory with economic applica-
tions, North-Holland, Amsterdam.

SETHI SP, SONER HM, ZHANG Q AND J JIANG (1992) Turnpike sets and their analysis
in stochastic production planning problems. Math. Operations Res. 17 932-950.

SETHI SP AND Q ZHANG (1994) Hierarchical decision making in stochastic manufacturing
systems. Birkhauser, Boston.

YUSHKEVICH AA (1980) On reducing a jump controllable Markov model to a model with

discrete time. Theory Probab. and Appl. 25 58-69.

27



