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Abstract. We examine the sequence of local minimizers of the log-barrier function for a nonlinear program
near a solution at which second-order sufficient conditions and the Mangasarian-Fromovitz constraint qual-
ifications are satisfied, but the active constraint gradients are not necessarily linearly independent. When
a strict complementarity condition is satisfied, we show uniqueness of the local minimizer of the barrier
function in the vicinity of the nonlinear program solution, and obtain a semi-explicit characterization of this
point. When strict complementarity does not hold, we obtain several other interesting characterizations, in
particular, an estimate of the distance between the minimizers of the barrier function and the nonlinear
program in terms of the barrier parameter, and a result about the direction of approach of the sequence of
minimizers of the barrier function to the nonlinear programming solution.

1. Introduction

We consider the nonlinear programming problem

min f(x) subject to c(x) ≥ 0, (1.1)

where f : IR
n → IR and c : IR

n → IR
m are smooth (twice Lipschitz continuously differentiable)

functions. We assume that second-order sufficient conditions hold at a point x∗, so that x∗ is a
strict local solution of (1.1).

The logarithmic barrier function for (1.1) is

P (x;µ) = f(x) − µ
m
∑

i=1

log ci(x). (1.2)

Under conditions assumed in this paper, and discussed in detail below, this function has a local
minimizer near x∗ for all µ sufficiently small. Methods based on (1.2) find approximations to the
minimizer of P (·;µk), which we denote by x(µk), for some sequence {µk} with µk ↓ 0, usually by
applying some variant of Newton’s method. Extrapolation techniques are sometimes used to find
an appropriate initial guess after each change in µ.

In this paper, we examine properties of the sequence of minimizers of P (·;µ) for small µ, in
the vicinity of x∗. Previous analyses have assumed that the active constraint gradients are linearly
independent at the solution—the so-called linear independence constraint qualification. By contrast,
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we make the weaker assumption that the Mangasarian-Fromovitz constraint qualification holds.
This more general condition, which is equivalent to boundedness of the set of optimal Lagrange
multipliers, has been used by many authors in studying the local convergence analysis of nonlinear
optimization and complementarity problems and the stability of their solutions. In Section 3, we
examine the case in which at least one of the optimal multipliers satisfies the strict complementarity
condition. In this case, the path of minimizers of P (·;µ) behaves similarly to the case of linearly
independent constraints: The minimizers are locally unique, the path traced by the minimizers
is smooth (as a function of µ) with a well-defined derivative, and the corresponding sequence of
multiplier estimates approaches the analytic center of the multiplier set. In Section 4, we consider
the case in which the strict complementarity condition does not hold. In this case, the path traced
by the set of minimizers takes on a quite different character. We prove an existence result, derive
an estimate of the distance between the minimizer of P (·;µk) in terms of µk, and show that any
path of minimizers that converges to x∗ must approach this point tangentially to the strongly active
constraints.

The previous literature on the log-barrier function and properties of the minimizers of P (·;µ)
is plentiful. The seminal book of Fiacco and McCormick [9] presents general results about the
existence of minimizers of the barrier function in the vicinity of x∗ and the convergence of the
minimizer sequence to x∗ as µk ↓ 0 [9, Theorem 8]. It also shows that the path of minimizers of
P (·;µ) is isolated and smooth when the active constraint gradients are linearly independent and
strict complementarity holds [9, Sections 5.1, 5.2]. Adler and Monteiro [1] analyze the trajectories
produced by minimizers of the log-barrier function in the case of linear programming. The differences
in formulation and the linearity of the problem make it difficult to relate the results of Adler and
Monteiro to those of this paper. However, their Theorem 3.2 corresponds to our observation that
the Lagrange multiplier estimates converge to the analytic center of the optimal multiplier set,
while their Theorem 5.4 corresponds to our Theorem 3.3 in describing the direction of approach of
the trajectory of minimizers to x∗. The convexity and lack of curvature in their problem gives the
results a significantly different flavor, however, and their proof techniques depend strongly on the
constancy of the closed subspace spanned by the active constraint gradients in the vicinity of x∗,
which does not occur in (1.1) under our assumptions.

Recently, McCormick and Witzgall [17] examined the behavior of the log barrier trajectory
for the case in which either the primal or dual solutions are nonunique. They assume a convex
programming problem (that is, f and −ci, i = 1, 2, . . . ,m are convex functions) and the Slater
constraint qualification, which is equivalent to the Mangasarian-Fromovitz constraint qualification
for convex problems. Apart from their somewhat different assumptions, Theorem 2 in [17] is similar
to our Theorem 3.2, in that both show convergence of the Lagrange multiplier estimates to the
analytic center of the optimal multiplier set when a strict complementarity condition holds. In
other respects the aspects addressed in [17] are somewhat different from those addressed here.
Unlike in [17], we do not consider nonunique primal solutions. On the other hand, we do tackle
existence and uniqueness issues for minimizers of P (·;µ) for sufficiently small µ (which are more
complex in the nonconvex case than in the convex case), present a complete characterization of the
direction of approach of the minimizers of P (·;µ) to the solution x∗ as µ ↓ 0 (Theorem 3.3), derive
an estimate of the distance of multiplier estimates to the optimal multiplier set (Lemma 2.3), and
prove a relationship between µ and the distance of a minimizer of P (·;µ) to the optimal multiplier
set in the non-strict complementarity case (Section 4).

The geometry of the central path has been studied extensively in a number of contexts in which
convexity or monotonicity properties are present. Behavior of the (primal-dual) central path in
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the absence of strict complementarity has been studied for monotone complementarity problems
by Kojima, Mizuno, and Noma [15] and Monteiro and Tsuchiya [22]. In [15], the authors work
with nonlinear and linear monotone complementarity problems, and prove existence of the central
path and (in the linear case) convergence of this path to the analytic center of the solution set.
Linear monotone complementarity problems are discussed in [22], where the authors prove results
related to those of Section 4 of this paper. Specifically, they show that the distance of the point
parametrized by µ on the central path to its limit in the solution set varies like µ1/2 when strict
complementarity does not hold. Monteiro and Zhou [23] discuss existence of the central path for a
more general class of convex problems. Earlier fundamental work on the central path was performed
by McLinden [18,19] and Megiddo [20].

Although their focus is on the log-barrier function, Fiacco and McCormick [9] actually consider
a more general class of barrier functions, and also derive results for the case in which equality
constraints are represented by quadratic penalty terms. Nesterov and Nemirovskii [25] study the
general class of self-concordant barriers of which the log barrier is a particular instance. Following
the results of Murray [24] and Lootsma [16] regarding the ill conditioning of the Hessian matrix
Pxx(·;µ) along the central path, the nature of the ill conditioning in the neighborhood of the solution
is examined further by M. H. Wright [31]. The latter paper proposes techniques for calculating
approximate Newton steps for the function P (·;µ) that do not require the solution of ill-conditioned
systems. In earlier work, Gould [13] proposed a method for computing accurate Newton steps by
identifying the active indices explicitly, and forming an augmented linear system that remains well
conditioned even when µ is small. The effect of finite-precision arithmetic on the calculation of
Newton steps is examined by M. H. Wright [32]. Both M. H. Wright [31,32] and S. J. Wright [36]
use a subspace decomposition of the Hessian Pxx(·;µ) like the one used in Section 3 below, but
there is an important distinction that we note later. The paper [36] and also Villalobos, Tapia,
and Zhang [29] address the issue of domain of convergence of Newton’s method applied to P (·;µ),
which is also addressed in Theorem 3.1 below.

The Mangasarian-Fromovitz constraint qualification has been used in place of the standard as-
sumption of linear independence of the constraint gradients in several recent works on nonlinear
programming. Ralph and Wright [28] describe a path-following method for convex nonlinear pro-
gramming that achieves superlinear local convergence under this condition. S. J. Wright [35,33]
and Anitescu [2] study the local convergence of sequential quadratic programming methods under
this assumption.

Our paper concludes with comments about two important issues: Convergence of the Newton/log-
barrier method, in which Newton’s method is used to find an approximate minimizer of P (·;µk)
for each µk, and relevance of our results to primal-dual methods, which generate iterates with both
primal and dual (Lagrange multiplier) components rather than primal components alone. Detailed
study of these topics is left to future work.

2. Assumptions, Notation, and Basic Results

2.1. Assumptions

In this section, we specify the optimality conditions for the nonlinear program (1.1) and outline
our assumptions on the solution x∗.

Assume first that the functions f and c are twice Lipschitz continuously differentiable in the
neighborhood of interest. The Lagrangian function for (1.1) is

L(x, λ) = f(x) − λT c(x), (2.1)
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where λ is the vector of Lagrange multipliers. Necessary conditions for x∗ to be a solution of (1.1)
are that there exists a Lagrange multiplier vector λ∗ such that

c(x∗) ≥ 0, λ∗ ≥ 0, (λ∗)T c(x∗) = 0, Lx(x∗, λ∗) = 0. (2.2)

The active constraints are the components of c for which ci(x
∗) = 0. Without loss of generality we

assume these to be the first q components of c, so that

ci(x
∗) = 0 i = 1, 2, . . . , q, (2.3a)

ci(x
∗) > 0, λ∗

i = 0, i = q + 1, . . . ,m. (2.3b)

We define UR to be an orthonormal matrix of dimensions n × q̄ for some q̄ ≤ q whose columns
span the range space of the active constraint gradients, that is,

Range UR = Range {∇ci(x
∗) | i = 1, 2, . . . , q}. (2.4)

We let UN denote an orthonormal matrix of dimensions n× (n− q̄) whose columns span the space
of vectors orthogonal to ∇ci(x

∗) for all i = 1, 2, . . . , q. By the fundamental theorem of algebra, we
have that

[

UR UN

]

is orthogonal. (2.5)

We assume that the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x∗, which
is that there is a vector p such that

∇ci(x
∗)T p < 0, i = 1, 2, . . . , q. (2.6)

The stronger linear independence constraint qualification (LICQ), which assumes linear indepen-
dence of the vectors ∇ci(x

∗), i = 1, 2, . . . , q, is used by M. H. Wright [30], Fiacco and McCormick [9],
and S. J. Wright [36], for instance. Unlike LICQ, MFCQ does not imply uniqueness of λ∗. We can
use (2.1) and (2.2) to express the conditions on λ∗ as

∇f(x∗) =
∑q

i=1
λ∗

i∇ci(x
∗), λ∗

i ≥ 0, i = 1, 2, . . . , q, (2.7a)

λ∗
i = 0, i = q + 1, . . . ,m. (2.7b)

We define Sλ to be the set of multipliers satisfying these conditions at x∗, that is,

Sλ
4
= {λ∗ | (x∗, λ∗) satisfy (2.2)}. (2.8)

Gauvin [11, Theorem 1] shows that the condition (2.6) is equivalent to boundedness of the set Sλ.
We conclude from (2.7) that Sλ is a bounded polyhedral set.

The strict complementarity condition is that

λ∗
i + ci(x

∗) > 0, i = 1, 2, . . . ,m, (2.9)

for at least one λ∗ ∈ Sλ. This condition is assumed in Section 3. When it holds, we can define the
analytic center λ̄∗ of Sλ to be

λ̄∗ = arg min
λ∗∈Λ∗

−
q
∑

i=1

lnλ∗
i , (2.10)
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where Λ∗ is the set of strictly complementary multipliers, that is,

∇f(x∗) =
∑q

i=1
λ∗

i∇ci(x
∗), λ∗

i > 0, i = 1, 2, . . . , q, (2.11a)

λ∗
i = 0, i = q + 1, . . . ,m. (2.11b)

Since the problem (2.10), (2.11) has a smooth, strictly convex objective and a convex bounded
feasible set, it has a unique minimizer λ̄∗ whose components 1, 2, . . . , q are characterized by the
first-order conditions, which is that there exists a vector ζ ∈ IR

n such that

1

λ̄∗
i

= ∇ci(x
∗)T ζ > 0, i = 1, 2, . . . , q. (2.12)

(Were the MFCQ not satisfied, there would not exist a vector ζ satisfying ∇ci(x
∗)T ζ > 0, i =

1, 2, . . . , q, and so the problem (2.10), (2.11) would have no solution.) Note that ζ is defined by
(2.12) only up to a term in the null space of the active constraint gradients. In other words, if we
decompose ζ as

ζ = URζR + UN ζN , (2.13)

where UR and UN are defined as in (2.4), (2.5), the formula (2.12) defines ζR uniquely while leaving
ζN completely free. However, we will see in Section 3 that we can define ζN in such a way that ζ
has particularly interesting properties.

Finally, we assume that the following second-order sufficient conditions for optimality are satis-
fied:

yTLxx(x∗, λ∗)y > 0, for all λ∗ ∈ Sλ (2.14)

and all y 6= 0 with ∇f(x∗)T y = 0 and ∇ci(x
∗)T y ≥ 0 for all i = 1, 2, . . . , q.

The conditions (2.2), (2.6), and (2.14) together imply that there is a η > 0 such that

f(x) − f(x∗) ≥ η‖x − x∗‖2, for all feasible x sufficiently close to x∗; (2.15)

see for example Bonnans and Ioffe [5].
When the strict complementarity condition (2.9) is satisfied, the second-order conditions are

equivalent to the following:

yTLxx(x∗, λ∗)y > 0, for all λ∗ ∈ Sλ (2.16a)

and all y 6= 0 with ∇ci(x
∗)T y = 0 for all i = 1, 2, . . . , q. (2.16b)

Using the matrix UN defined in (2.5), we can rewrite these conditions as follows:

UT
NLxx(x

∗, λ∗)UN positive definite, for all λ∗ ∈ Sλ. (2.17)

When the condition (2.9) is not satisfied, we can identify indices in {1, 2, . . . , q} such that λ∗
i = 0

for all λ∗ ∈ Sλ. We assume WLOG that these indices are q̄ + 1, q̄ + 2, . . . , 1 for some q̄ < q. The
second-order sufficient conditions (2.14) can then be rewritten as follows:

dTLxx(x∗, λ∗)d > 0, for all λ∗ ∈ Sλ (2.18a)

and all d 6= 0 with ∇ci(x
∗)T d = 0 for all i = 1, 2, . . . , q̄ (2.18b)

and ∇ci(x
∗)T d ≥ 0 for all i = q̄ + 1, . . . , q. (2.18c)
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2.2. Notation

We use the following notation in the rest of the paper. For related positive quantities α and β, we
say β = O(α) if there is a constant M such that β ≤ Mα for all α sufficiently small. We say that
β = o(α) if β/α → 0 as α → 0, β = Ω(α) if α = O(β), and β = Θ(α) if β = O(α) and α = O(β).
It follows that the expression β = O(1) means that β ≤ M for some constant M and all values of
β in the domain of interest.

For any real number β we define

β− = max(0,−β), β+ = max(0, β). (2.19)

For a given value of µ, we define a local minimizer of P (·;µ) close to x∗ generically by x(µ).
(The uniqueness or at least specialness of this point is made clear in subsequent discussions.)

2.3. Basic Results

Given any strictly feasible point x and any positive value of the barrier parameter µ in (1.2), we
define a vector of Lagrange multiplier estimates λ(x, µ) by

λ(x, µ) = µC(x)−1e =

[

µ

c1(x)
, . . . ,

µ

cm(x)

]T

, (2.20)

where C(x) = diag(c1(x), c2(x), . . . , cm(x)). In the special case where x = x(µ) (defined above), we
write

λ(µ)
4
= λ(x(µ), µ). (2.21)

Moreover, in the discussions of Sections refcentral and 4, we frequently use zk to denote a local min-
imizer of P (·;µk) for some µk > 0. In this case we use the following notation for the corresponding
multiplier estimate:

λk 4
= λ(zk, µk). (2.22)

For future reference, we write the derivatives of the barrier function (1.2) as follows:

Px(x;µ) = ∇f(x) −
m
∑

i=1

µ

ci(x)
∇ci(x), (2.23a)

Pxx(x;µ) = ∇2f(x) + µ
m
∑

i=1

[

1

c2
i (x)

∇ci(x)∇ci(x)T − 1

ci(x)
∇2ci(x)

]

. (2.23b)

By combining (2.20) with (2.23a), we obtain

∇f(x) =
m
∑

i=1

λi(x, µ)∇ci(x) + Px(x;µ), (2.24)

while for the case x = x(µ), we have from (2.20) that

∇f(x(µ)) =
m
∑

i=1

λi(x(µ), µ)∇ci(x(µ)).
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We denote by C the feasible set for (1.1), that is,

C 4
= {x | c(x) ≥ 0},

and by strict C we denote the set of points at which the inequalities are satisfied strictly, that is,

strict C 4
= {x | c(x) > 0}.

It is easy to show that, under the MFCQ assumption (2.6), there is a neighborhood of x∗ within
which strict C coincides with int C.

Lemma 2.1. Suppose that (2.6) is satisfied. Then there is a neighborhood N of x∗ such that

strict C ∩ N = int C ∩ N 6= ∅,

and x∗ lies in the closure of strict C.

Proof. Choose N such that (2.6) continues to hold whenever x∗ is replaced by x, for all x ∈ C∩N ,
while the constraints q + 1, . . . ,m remain inactive throughout N . We prove the result by showing
that strict C ∩ N ⊂ int C ∩N , and then the converse.

Consider some x ∈ strict C ∩ N . By continuity of c, we can choose δ > 0 such that the open
Euclidean ball of radius δ around x, denoted by Bδ(x), satisfies Bδ(x) ⊂ N and c(z) > 0 for all
z ∈ Bδ(x). Hence, z ∈ strict C ∩ N ⊂ C, and therefore x ∈ int C.

Now consider a point x ∈ N\strict C. If x /∈ C, then clearly x /∈ int C ∩ N , and we are done.
Otherwise, we have cj(x) = 0 for some j ∈ {1, 2, . . . , q}. Consider now the points x − αp for p
defined in (2.6) and α small and positive. We have by continuity of ∇cj that

cj(x − αp) = cj(x) − α∇cj(x)T p + o(α) < 0,

for all α > 0 sufficiently small. Therefore, x − αp /∈ C, so that x /∈ int C.
The claim that strict C ∩ N 6= ∅ is proved by considering points of the form x∗ + αp, for α > 0

and p satisfying (2.6). Consideration of the same set of points demonstrates that x∗ lies in the
closure of strict C.

We now show boundedness of the Lagrange multiplier estimates arising from approximate min-
imization of P (·;µ).

Lemma 2.2. Suppose that the first-order necessary conditions (2.2) and the MFCQ condition (2.6)
hold. Then there are positive constants r and ε such that the following property holds: For any β1 ≥ 0
there is β2 such that for all x and µ with

‖x − x∗‖ ≤ r, x feasible, µ ∈ (0, ε], ‖Px(x;µ)‖ ≤ β1, (2.25)

we have ‖λ(x, µ)‖ ≤ β2.

Proof. Let ε be any positive number, and choose r small enough that there are positive constants
γ1 and γ2 such that for all x with ‖x − x∗‖ ≤ r we have

∇ci(x)T p ≤ −γ1, i = 1, 2, . . . , q, (2.26)

ci(x) ≥ γ2, i = q + 1, . . . ,m, (2.27)

where p is the vector from (2.6).
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Suppose for some β1 that there is no β2 with the claimed property. Then we can define sequences
{xk} and {µk} such that (2.25) holds for x = xk and µ = µk for all k, yet ‖λ(xk, µk)‖ ↑ ∞. Defining

λ̄k 4
=

λ(xk, µk)

‖λ(xk, µk)‖
,

we can assume without loss of generality (by compactness of the unit ball) that λ̄k → λ̄, for some
vector λ̄ such that

λ̄ ≥ 0, ‖λ̄‖ = 1.

Note that because of (2.27) and µk ≤ ε, we have that

i = q + 1, . . . ,m ⇒ λ̄k
i =

µk

ci(xk)‖λ(xk, µk)‖
≤ ε

γ2‖λ(xk, µk)‖
→ 0,

so that
λ̄i = 0, i = q + 1, . . . ,m. (2.28)

By compactness of {x | ‖x − x∗‖ ≤ r}, we can choose a further subsequence if necessary and define
a vector x̄ with ‖x̄ − x∗‖ ≤ r such that xk → x̄.

From (2.20), (2.23a), our assumption that ‖λ(xk, µk)‖ ↑ ∞, and (2.28), we have that

0 = lim
k→∞

‖λ(xk, µk)‖−1Px(xk;µk)

= − lim
k→∞

m
∑

i=1

λ̄k
i ∇ci(x

k) + lim
k→∞

‖λ(xk, µk)‖−1∇f(xk)

= −
q
∑

i=1

λ̄i∇ci(x̄).

Since x̄ satisfies the property (2.26), we have by taking inner products of this last expression with
p that

0 =
q
∑

i=1

λ̄i∇ci(x̄)T p ≤ −γ1

q
∑

i=1

λ̄i,

which together with λ̄ ≥ 0 implies that λ̄ = 0. This contradicts ‖λ̄‖ = 1. We conclude that the
sequence of multiplier estimates {λ(xk, µk)} must remain bounded, so it must be possible to choose
a constant β2, as claimed.

A slight extension of this result shows conditions under which the sequence of multiplier estimates
converges to the optimal multiplier set Sλ.

Lemma 2.3. Suppose that the first-order necessary conditions (2.2) and the MFCQ condition (2.6)
hold. Then, given any sequences {µk} and {xk} with xk → x∗, µk ↓ 0, and Px(xk;µk) → 0, the
sequence of multiplier estimates λ(xk, µk) defined by (2.20) satisfies

dist Sλ
λ(xk, µk) = O

(∥

∥

∥xk − x∗
∥

∥

∥

)

+ O(µk) + O
(∥

∥

∥Px(xk;µk)
∥

∥

∥

)

.

Proof. From Lemma 2.2, we have that the sequence λ(xk;µk) is bounded. Therefore, we have

Px(xk;µk) = ∇f(xk) −
m
∑

i=1

µk

ci(xk)
∇ci(x

k)

= ∇f(x∗) −
q
∑

i=1

λi(x
k, µk)∇ci(x

∗) + O(µk) + O(‖xk − x∗‖).
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By comparing this expression with the definition (2.7), (2.8) of Sλ, and applying Hoffmann’s
lemma [14], we obtain the desired result.

3. Behavior of the Central Path near x

�

Under Strict Complementarity

In this section, we examine the properties of a path of exact minimizers x(µ) of P (x;µ). We prove
that x(µ) exists and is unique for all sufficiently small µ, and that the path of minimizers

P 4
= {x(µ), µ > 0}

is smooth and approaches x∗ along a direction ζ of the form (2.13) with interesting properties. We
refer to P as the primal central path.

We start in Section 3.1 by defining the direction of approach ζ and providing some motivation for
this quantity in terms of the primal-dual optimality conditions. In Section 3.2, we show existence
of a minimizer of P (·;µ) for all µ sufficiently small in a somewhat unorthodox way; namely, by
proving that Newton’s method applied to P (·;µ) from all starting points in a certain ball converges
to a point x(µ) and that this point must be a strict local minimizer of P (·;µ). The main result
in this section is Theorem 3.1. We then prove in Theorem 3.2 of Section 3.3 that x(µ) is unique
in the sense that there cannot be any other minimizers of P (·;µ) near x∗, for small µ. Finally, in
Section 3.4, we show that the direction of approach of x(µ) to x∗ as µ ↓ 0 is indeed ζ.

3.1. Motivation

We introduced the vector ζ in (2.12) as the Lagrange multiplier in the problem of finding the
analytic center of the optimal multiplier set Sλ. Decomposing ζ as (2.13), we noted that (2.12)
defined the ζR component. If we define the ζN component to be the solution of

UT
NLxx(x

∗, λ̄∗)UNζN = −UT
NLxx(x∗, λ̄∗)URζR +

m
∑

i=q+1

1

ci(x∗)
UT

N∇ci(x
∗), (3.1)

we find that ζ takes on an additional significance as the direction of approach of the primal central
path to x∗. We sketch a justification of this claim here. Note from (2.23a), (2.20), (2.21), and (2.1)
that the minimizer x(µ) of P (·;µ) and its associated Lagrange multiplier λ(µ) satisfy the following
system of nonlinear equations:

[

Lx(x, λ)
C(x)λ

]

=

[

0
µe

]

,

in addition to the feasibility conditions c(x) > 0 and λ > 0. By differentiating this system at
(x(µ), λ(µ)) with respect to µ, we obtain

Lxx(x(µ), λ(µ))ẋ(µ) −
m
∑

i=1

λ̇i(µ)∇ci(x(µ)) = 0, (3.2a)

λi(µ)∇ci(x(µ))T ẋ(µ) + λ̇i(µ)ci(x(µ)) = 1, i = 1, . . . ,m. (3.2b)

Suppose for the sake of our present argument that limµ↓0 λ(µ) = λ̄∗ (2.10) and that the derivatives
λ̇(µ) and ẋ(µ) are bounded for µ close to zero. For the active indices, we have by taking limits in
(3.2b) that

∇ci(x
∗)T ẋ(0+) = 1/λ̄∗

i > 0, i = 1, . . . , q, (3.3)
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where ẋ(0+) denotes limµ↓0 ẋ(µ). For the inactive indices, we have that

λ̇i(0+) =
1

ci(x∗)
, i = q + 1, . . . ,m. (3.4)

Using UN and UR defined in (2.4), (2.5), we have by premultiplying (3.2a) by U T
N and substituting

(3.4) that

UT
NLxx(x

∗, λ̄∗)ẋ(0+) −
m
∑

i=q+1

1

ci(x∗)
UT

N∇ci(x
∗) = 0. (3.5)

By decomposing ẋ(0+) = URẋR(0+) + UN ẋN (0+), we observe that (3.3), (3.5) can be identified
with (2.12), (3.1) when we identify ẋ(0+) with ζ.

A more formal proof of our claim that ẋ(0+) = ζ is the main topic of this section, culminating
in Theorem 3.3.

3.2. Existence of Minimizers of the Barrier Function

Our main result, Theorem 3.1, shows the existence of a minimizer x(µ) of P (·;µ) that lies within a
distance Θ(µ) of x∗, and characterizes the domain of convergence of Newton’s method for Px(·;µ)
to this minimizer. It derives a first-order estimate of the location of this minimizer, showing that
it lies within a distance O(µ2) of the point

x̄(µ) = x∗ + µζ, (3.6)

where µ > 0 and ζ is the vector that is uniquely specified by the formulae (2.12), (2.13), and (3.1).
Our second result, Theorem 3.2, shows that the minimizer x(µ) is locally unique in a certain sense.

One key to the analysis is the partitioning of IR
n into two orthogonal subspaces, defined by

the matrices UR and UN of (2.4) and (2.5). This decomposition was also used in the analysis of
S. J. Wright [34], but differs from those used by M. H. Wright in [31,32] and S. J. Wright [36],
which define these matrices with respect to the active constraint matrix evaluated at the current
iterate x, rather than at the solution x∗ of (1.1). By using the latter strategy, we avoid difficulties
with loss of rank in the active constraint matrix at the solution, which may occur under the MFCQ
assumption of this paper, but not under the LICQ assumption used in [31,32,36].

All results in this section use the following assumption.

Assumption 3.1. At least one constraint is active at the solution x∗, and the first-order necessary
conditions (2.2), the strict complementarity condition (2.9), the second-order sufficient conditions
(2.16), and the MFCQ (2.6) all hold at x∗.

Our first lemma concerns the eigenvalues of the Hessian Pxx(x;µ) (2.23b) in a neighborhood of
the point x̄(µ).

Lemma 3.1. Suppose that Assumption 3.1 holds. There is a positive constant χ1 such that for all
µ ∈ (0, χ1] and all x with

‖x − (x∗ + µζ)‖ = ‖x − x̄(µ)‖ ≤ χ1µ, (3.7)

the following property holds. Denoting

[

HRR HRN

HNR HNN

]

=

[

UT
RPxx(x;µ)UR UT

RPxx(x;µ)UN

UT
NPxx(x;µ)UR UT

NPxx(x;µ)UN

]

, (3.8)
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and
[

J11 J12

JT
12 J22

]

=

[

HRR HRN

HT
RN HNN

]−1

, (3.9)

we have that Pxx(x;µ) is positive definite (so that J is well defined) and that

J11 = O(µ), J12 = O(µ), J22 = O(1),

where the constants in the O(·) terms are independent of χ1.

Proof. Using the definition (2.23b) together with (2.3) and Taylor’s theorem, we obtain

Pxx(x;µ)

= ∇2f(x∗) + O(µ) −
q
∑

i=1

[

∇ci(x
∗)T ζ + O(χ1)

]−1 [

∇2ci(x
∗) + O(µ)

]

+
q
∑

i=1

µ−1
[

∇ci(x
∗)T ζ + O(χ1)

]−2 [

∇ci(x
∗)∇ci(x

∗)T

+v1i∇ci(x
∗)T + ∇ci(x

∗)vT
2i + O(µ2)

]

,

where v1i and v2i, i = 1, 2, . . . , q are vectors that satisfy the estimates

v1i = O(µ), v2i = O(µ), i = 1, 2, . . . , q.

In expanding the last term, we have used the following relation, which holds for any two vectors a
and b:

aaT = bbT + (a − b)bT + b(a − b)T + (a − b)(a − b)T .

By using (2.12), we have that

Pxx(x;µ) (3.10)

= ∇2f(x∗) −
q
∑

i=1

λ̄∗
i∇2ci(x

∗) +
q
∑

i=1

O(χ1)∇2ci(x
∗)

+µ−1

q
∑

i=1

(λ̄∗
i )

2∇ci(x
∗)∇ci(x

∗)T + µ−1

q
∑

i=1

O(χ1)∇ci(x
∗)∇ci(x

∗)T

+µ−1

q
∑

i=1

[

v̂1i∇ci(x
∗)T + ∇ci(x

∗)v̂T
2i

]

+ O(µ),

where v̂1i and v̂2i are both of size O(µ) for all i = 1, 2, . . . , q. We now examine the eigenstructure
of this Hessian matrix. Using G to denote the active constraint gradients, that is,

G
4
= [∇c1(x

∗),∇c2(x
∗), . . . ,∇cq(x

∗)] ,

with rank G = q̄ ≤ q, we have a q̄ × q matrix R with full row rank such that

G = URR.
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Focusing on the O(µ−1) term in (3.10), we have that

Pxx(x;µ) = µ−1

q
∑

i=1

(λ̄∗
i )

2∇ci(x
∗)∇ci(x

∗)T + µ−1O(χ1) + O(1)

= µ−1GDGT + µ−1O(χ1) + O(1)

= µ−1UR(RDRT )UT
R + µ−1O(χ1) + O(1),

where D is the diagonal matrix whose diagonal elements are (λ̄∗
i )

2, i = 1, 2, . . . , q, all of which
are positive. Therefore the q̄ eigenvalues of RDRT are all of size Θ(µ−1), so by choosing χ1 small
enough, we can ensure that the matrix HRR defined in (3.8) also has all q̄ of its eigenvalues of size
Θ(µ−1). In particular, we have

‖HRR‖ = O(µ−1),
∥

∥

∥H−1

RR

∥

∥

∥ = O(µ). (3.11)

We have by the definition of UN together with (3.10) that

HNN
4
= UT

NPxx(x;µ)UN

= UT
N

[

∇2f(x∗) −
q
∑

i=1

λ̄∗
i∇2ci(x

∗)

]

UN + O(χ1) + O(µ)

= UT
NLxx(x

∗, λ̄∗)UN + O(χ1),

and by the second-order sufficient condition, we have that this matrix is positive-definite with all
eigenvalues of size Θ(1), provided that we choose χ1 sufficiently small.

For the cross-term, we have that

HNR
4
= UT

NPxx(x;µ)UR = UT
NLxx(x∗, λ̄∗)UR + µ−1UT

N V̂1G
T UR + O(χ1),

where V̂1 = [v̂11, . . . , v̂1q] = O(µ). It follows from this estimate that

HT
RN = HNR = O(1).

for all χ1 sufficiently small.
By applying a standard result for inverse of a partitioned matrix (see, for example, Wright [36,

Lemma 2]) to (3.9), and using the estimates developed above, we have that

J22 =
(

HNN − HT
RNH−1

RRHRN

)−1

= (HNN + O(µ))−1

= O(1), (3.12a)

J11 = H−1

RR + H−1

RRHRN

(

HNN − HT
RNH−1

RRHRN

)−1

HT
RNH−1

RR

= O(µ), (3.12b)

J12 = −H−1

RRHRN

(

HNN − HT
RNH−1

RRHRN

)−1

= O(µ), (3.12c)

giving the required estimates. We omit the proof of positive definiteness of Pxx(x;µ), which follows
from positive definiteness of J−1

22 and HRR.
Our next lemma concerns the length of a Newton step for P (·;µ), taken from a point x that is

close to x̄(µ).
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Lemma 3.2. Suppose that Assumption 3.1 holds. There are positive constants χ2 and C2 such that
the following property holds. For all µ ∈ (0, χ2] and all ρ ∈ (0, χ2] and all x with

‖x − (x∗ + µζ)‖ = ‖x − x̄(µ)‖ ≤ ρµ, (3.13)

the point x is strictly feasible and the Newton step s generated from x satisfies

‖s‖ ≤ C2(ρ + µ)µ.

Proof. We show first that χ2 can be chosen small enough to ensure strict feasibility of x satisfying
(3.13). For the inactive constraints ci, i = q + 1, . . . ,m, there is a constant C2,0 such that

ci(x) ≥ ci(x
∗) − C2,0‖x − x∗‖

≥ ci(x
∗) − C2,0(µ‖ζ‖ + χ2µ) ≥ (1/2)ci(x

∗) > 0, i = q + 1, . . . ,m,

for χ2 sufficiently small. For the active constraints, we have from (2.12) that there are constants
C2,1 and C2,2 such that

ci(x) ≥ ci(x
∗) + µ∇ci(x

∗)T ζ − C2,1χ2µ − C2,2µ
2

≥ µ/λ̄∗
i − (C2,1 + C2,2)χ2µ

≥ µ/(2λ̄∗
i ), i = 1, 2, . . . , q,

for χ2 sufficiently small.
We now examine the properties of Px(x;µ) by expanding about x∗ and using the properties

(3.13) and (2.3) to obtain

Px(x;µ) = ∇f(x∗) + µ∇2f(x∗)ζ + µO(ρ)

−
q
∑

i=1

[

∇ci(x
∗)T ζ + O(ρ)

]−1 [

∇ci(x
∗) + µ∇2ci(x

∗)ζ + µO(ρ)
]

−
m
∑

i=q+1

µ [ci(x
∗) + O(µ)]−1 [∇ci(x

∗) + O(µ)] .

By choosing χ2 sufficiently small, we have for all ρ ∈ (0, χ2] that [1 + O(ρ)]−1 = 1 + O(ρ), so

Px(x;µ) = ∇f(x∗) + µ∇2f(x∗)ζ + µO(ρ)

−
q
∑

i=1

λ̄∗
i (1 + O(ρ))

[

∇ci(x
∗) + µ∇2ci(x

∗)ζ + µO(ρ)
]

−
m
∑

i=q+1

µ

ci(x∗)
∇ci(x

∗) + O(µ2)

= ∇f(x∗) −
q
∑

i=1

λ̄∗
i∇ci(x

∗) + µ

[

∇2f(x∗) −
q
∑

i=1

λ̄∗
i∇2ci(x

∗)

]

ζ

+
q
∑

i=1

O(ρ)∇ci(x
∗) −

m
∑

i=q+1

µ

ci(x∗)
∇ci(x

∗) + (ρ + µ)O(µ).

Hence by the definition (2.1) and the first-order conditions (2.2), we have

Px(x;µ) = µLxx(x
∗, λ̄∗)ζ −

m
∑

i=q+1

µ

ci(x∗)
∇ci(x

∗) +
q
∑

i=1

O(ρ)∇ci(x
∗) + (ρ + µ)O(µ). (3.14)



14 Stephen J. Wright, Dominique Orban

By using the definitions (2.4) and (2.5) and the decomposition (2.13), we have that

UT
NPx(x;µ) = µUT

NLxx(x∗, λ̄∗)UN ζN + µUT
NLxx(x

∗, λ̄∗)URζR

−µ
m
∑

i=q+1

1

ci(x∗)
UT

N∇ci(x
∗) + (ρ + µ)O(µ).

Hence by the definition (3.1) of ζN , we have that

UT
NPx(x;µ) = (ρ + µ)O(µ). (3.15)

Meanwhile, it follows immediately from (3.14) that

UT
RPx(x;µ) = (ρ + µ)O(1). (3.16)

By reducing χ2 if necessary so that χ2 ≤ χ1, we can apply Lemma 3.1 to x, ρ, µ satisfying (3.13).
We have from (3.8) that

s = −Pxx(x;µ)−1Px(x;µ) = −
[

UR UN

]

[

HRR HRN

HT
RN HNN

]−1 [

UT
RPx(x;µ)

UT
NPx(x;µ)

]

,

so it follows from (3.15), (3.16), and Lemma 3.1 that

UT
Rs = −J11U

T
RPx(x;µ) − J12U

T
NPx(x;µ) = (ρµ + µ2)O(1), (3.17a)

UT
Ns = −JT

12U
T
RPx(x;µ) − J22U

T
NPx(x;µ) = (ρµ + µ2)O(1). (3.17b)

We conclude that ‖s‖ = (ρµ + µ2)O(1), as claimed.
The next lemma concerns the first two Newton steps for P (·;µ) taken from a point x close to

x̄(µ). It derives a bound on the second step in terms of the first.

Lemma 3.3. Suppose that Assumption 3.1 holds. There are positive constants χ3 and C3 such that
the following property holds. For all µ ∈ (0, χ3] and all x̃ with

‖x̃ − (x∗ + µζ)‖ = ‖x̃ − x̄(µ)‖ ≤ χ3µ, (3.18)

the first and second Newton steps s̃ and s̃+ (respectively) generated from the point x̃ satisfy the
bounds

‖s̃+‖ ≤ C3µ
−1‖s̃‖2, ‖s̃+‖ ≤ (1/2)‖s̃‖.

Proof. We start by choosing χ3 small enough that

(1 + 2C2)χ3 ≤ χ2, (3.19)

where χ2 and C2 are as defined in Lemma 3.2. We have by applying Lemma 3.2 that

‖s̃‖ ≤ C2(χ3µ + µ2) ≤ 2C2χ3µ. (3.20)

Therefore, we have

‖x̃ + s̃ − x̄(µ)‖ ≤ ‖x̃ − x̄(µ)‖ + ‖s̃‖ ≤ (χ3 + 2C2χ3)µ ≤ χ2µ, (3.21)

where we used (3.19) to derive the last inequality. We have from (3.21) and Lemma 3.2 that x̃ + s̃
is strictly feasible, so a second Newton step s̃+ is well defined.
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We now seek a bound on ‖s̃+‖. By Taylor’s theorem, we have

Px(x̃ + s̃;µ)

= Px(x̃;µ) + Pxx(x̃;µ)s̃ +

∫

1

0

[Pxx(x̃ + τ s̃;µ) − Pxx(x̃;µ)] s̃dτ,

=

∫

1

0

[Pxx(x̃ + τ s̃;µ) − Pxx(x̃;µ)] s̃dτ. (3.22)

Techniques like those leading to Wright [36, equation (46)] can be used to analyze this integrand.
We obtain

∫

1

0

[Pxx(x̃ + τ s̃;µ) − Pxx(x̃;µ)] s̃dτ =
q
∑

i=1

O(µ−2‖s̃‖2)∇ci(x
∗) + O(µ−1‖s̃‖2),

so we conclude from (2.4), (2.5), and (3.22), that

UT
RPx(x̃ + s̃;µ) = O(µ−2‖s̃‖2), UT

NPx(x̃ + s̃;µ) = O(µ−1‖s̃‖2). (3.23)

Since, by (3.21), x̃ + s̃ lies a the neighborhood of the form (3.13), within which the bounds (3.12)
on the component blocks of the inverse Hessian Pxx(x̃ + s̃;µ)−1 apply, we can use these bounds
together with (3.23) in the same fashion as in the argument that led to the estimate (3.17) to
deduce that

‖x̃ − x̄(µ)‖ ≤ χ3µ ⇒ ‖s̃+‖ ≤ C3µ
−1‖s̃‖2, (3.24)

for some constant C3. This proves the first claim.

By combining (3.24) with (3.20), we obtain that

‖s̃+‖ ≤ 2C3C2χ3‖s̃‖,

so that by reducing χ3 as needed to ensure that 2C3C2χ3 ≤ (1/2), we ensure that the second part
of the result also holds.

We now prove our main result, which shows the existence of a minimizer x(µ) of P (·;µ) close
to x̄(µ), and moreover proves convergence of Newton’s method to this point when started from a
neighborhood of x̄(µ).

Theorem 3.1. Suppose that Assumption 3.1 holds. Then there is a positive constant χ4 such that
for all µ ∈ (0, χ4] and all x0 satisfying

‖x0 − (x∗ + µζ)‖ = ‖x0 − x̄(µ)‖ ≤ χ4µ, (3.25)

the sequence {xi} obtained by setting

xi+1 = xi + si, i = 1, 2, . . . ,

where si is the Newton step for Px(·;µ) from xi, is well defined and converges to a strict local
minimizer x(µ) of Px(·;µ). Moreover we have that

‖x(µ) − x̄(µ)‖ = O(µ2) (3.26)

and that x(µ) is the only local minimizer of P (·;µ) in the neighborhood (3.7) of x̄(µ).
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Proof. The main part of the proof shows that for a certain choice of χ4, the sequence {xi} stays
inside the neighborhood defined by (3.18), and that

‖si+1‖ ≤ (1/2)‖si‖, i = 0, 1, 2, . . . . (3.27)

It follows that {xi} is a Cauchy sequence and hence convergent.
We choose χ4 to satisfy the following condition:

χ4 + 4C2χ4 ≤ χ3. (3.28)

Since χ3 ≤ χ3 ≤ χ2, we can apply Lemma 3.2 with x = x0 to find that the first Newton step s0

satisfies
‖s0‖ ≤ C2(χ4 + µ)µ ≤ 2C2χ4µ. (3.29)

Since χ4 ≤ χ3, we can also apply Lemma 3.3 with x̃ = x0 and deduce that the second Newton step
s1 satisfies

‖s1‖ ≤ (1/2)‖s0‖ ≤ C2χ4µ.

Since from (3.28) and (3.29) we have

‖x1 − x̄(µ)‖ ≤ ‖x0 − x̄(µ)‖ + ‖s0‖ ≤ χ4µ + 2C2χ4µ ≤ χ3µ

we can apply Lemma 3.3 with x̃ = x1 to obtain that ‖s2‖ ≤ (1/2)‖s1‖ ≤ (1/4)‖s0‖. A simple
inductive argument along these lines shows that

‖xi − x̄(µ)‖ ≤
[

χ4 + (2 − 2i−1)2C2χ4

]

µ ≤ χ3µ,

(using (3.28) for the last bound), so that Lemma 3.3 can be applied from each xi and that (3.27)
holds. Hence the sequence is Cauchy and has a limit x(µ) that satisfies (3.18) (with x̃ = x(µ))
and hence also (3.7) (with x = x(µ)). Hence, by Lemma 3.1 we have that Pxx(x(µ);µ) is positive
definite in the whole neighborhood (3.7). Moreover, by using (3.27) and setting x̃ = xi and s̃ = si

and taking limits as i → ∞ in (3.23), we have that Px(x(µ);µ) = 0. It follows that x(µ) is a strict
local minimizer of P (·;µ) and is in fact the only minimizer in the neighborhood (3.7) of x̄(µ).

To verify the estimate (3.26), we consider the Newton sequence that starts at x0 = x̄(µ). This
starting point certainly satisfies (3.25), so the sequence converges to x(µ) and its steps satisfy (3.27).
It also satisfies (3.13) with ρ = 0, so by Lemma 3.2 we have that ‖s0‖ ≤ C2µ

2. Hence from (3.27),
we obtain that

‖x(µ) − x∗‖ ≤
∞
∑

i=0

‖si‖ ≤ 2‖s0‖ ≤ 2C2µ
2.

The Q-quadratic rate of convergence of the Newton sequence to x(µ) with rate constant propor-
tional to µ−1 follows from (3.24) and (3.27). Ideed, from (3.24), we can choose i sufficiently large
that ‖si+1‖ ≤ (1/4)‖si‖. Meanwhile we have from (3.27) that

‖xi − x∗‖ ≥ ‖si‖ −
∞
∑

j=i+1

‖sj‖ ≥ ‖si‖ − 2‖si+1‖ ≥ (1/2)‖si‖

while

‖xi+1 − x∗‖ ≤
∞
∑

j=i+1

‖sj‖ ≤ 2‖si+1‖

By using these expressions with (3.24) we obtain

‖xi+1 − x∗‖ ≤ 2‖si+1‖ ≤ 2C3µ
−1‖si‖2 ≤ 8C3µ

−1‖xi − x∗‖2.
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3.3. Uniqueness of Barrier Function Minimizer

We now prove that the minimizers x(µ) of P (·;µ) that we discussed in the previous subsection are
unique, in the sense that there can be no other local minimizers of P (·;µ) in the vicinity of x∗ for
µ small.

Our first step is to prove that the ratio of ci(z
k) to ‖zk − x∗‖ is bounded below for all active

indices i = 1, 2, . . . , q.

Lemma 3.4. Suppose that Assumption 3.1 holds. For all {µk} and {zk} with the properties that

µk ↓ 0, zk → x∗, zk a local min of P (·;µk), (3.30)

we can choose a constant ε > 0 such that ci(z
k) ≥ ε‖zk − x∗‖ for all i = 1, 2, . . . , q and all k

sufficiently large.

Proof. Suppose for contradiction that there is an index i ∈ {1, 2, . . . , q} and a subsequence K
such that

lim
k∈K

ci(z
k)

‖zk − x∗‖ = 0. (3.31)

We know from Lemma 2.3 and the definition λk 4
= λ(zk, µk) (2.22) that dist Sλ

λk → 0, so that all
limit points of {λk} lie in Sλ, by closedness. By taking a further subsequence of K we can assume
that there is a vectors λ̂ ∈ Sλ such that

lim
k∈K

λk = λ̂, (3.32)

Similarly, by taking a further subsequence, and using compactness of the unit ball, we can identify
d ∈ IR

n with ‖d‖ = 1 such

lim
k∈K

zk − x∗

‖zk − x∗‖ = d.

Since cj(z
k) ≥ 0 and cj(x

∗) = 0 for each j = 1, 2, . . . , q, we have that

∇cj(x
∗)T d ≥ 0, j = 1, 2, . . . , q. (3.33)

For the index i in (3.31), we have by boundedness of Sλ and (3.32) that limk∈K µk/ci(z
k) = λ̂i <

∞, so that
lim
k∈K

µk/‖zk − x∗‖ = lim
k∈K

λ̂ici(z
k)/‖zk − x∗‖ = 0. (3.34)

Consider now the set of indices defined by

Z 4
= {j = 1, 2, . . . , q |∇cj(x

∗)T d = 0}, (3.35)

and let Zc denote {1, 2, . . . , q}\Z. It is easy to show that i from (3.31) belongs to Z. Also, for any
index j /∈ Z we have

λ̂j = lim
k∈K

µk

cj(zk)
= lim

k∈K

µk

∇ci(x∗)T d‖zk − x∗‖ + o(‖zk − x∗‖) = 0. (3.36)

Therefore from the KKT condition (2.7a), we have that

∇f(x∗) =
q
∑

j=1

λ̂j∇cj(x
∗) =

∑

j∈Z

λ̂j∇cj(x
∗). (3.37)
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By the strict complementarity assumption (2.9), there is a multiplier λ∗ such that

∇f(x∗) =
q
∑

j=1

λ∗
j∇cj(x

∗), λ∗
j > 0, for all j = 1, 2, . . . , q. (3.38)

By taking differences in (3.37) and (3.38), we have that

∑

j∈Z

(λ∗
j − λ̂j)∇cj(x

∗) +
∑

j∈Zc

λ∗
j∇cj(x

∗) = 0.

By taking the inner product with d, and using the definition of Z, we have

∑

j∈Zc

λ∗
j∇cj(x

∗)T d = 0. (3.39)

Since λ∗
j > 0 and since ∇cj(z

∗)T d ≥ 0 by (3.33), we must have ∇cj(z
∗)T d = 0, so that Zc must be

empty. Hence, Z = {1, 2, . . . , q}.
Since zk is a local minimizer of P (·;µk), we have from (2.23a) and (2.1) that

Px(zk;µk) = Lx(zk, λk) = 0.

Since λ̂ ∈ Sλ, we have that Lx(x
∗, λ̂) = 0. By taking differences, we have that

0 = Lx(z
k, λk) −Lx(x∗, λ̂)

= Lx(z
k, λk) −Lx(zk, λ̂) + Lx(z

k, λ̂) −Lx(x∗, λ̂)

= −
m
∑

j=1

[

λk
j − λ̂j

]

∇cj(z
k) + Lxx(x∗, λ̂)(zk − x∗) + o(‖zk − x∗‖)

=
q
∑

j=1

o(1)∇ci(x
∗) + O(µk) + Lxx(x

∗, λ̂)(zk − x∗) + o(‖zk − x∗‖),

where we have used the estimate λk
j = µk/cj(z

k) = O(µk) for j = q + 1, . . . ,m to derive the final

equality. Taking the inner product with d, and noting that ∇cj(x
∗)T d = 0 for all j = 1, 2, . . . , q, we

have that

0 = dTLxx(x∗, λ̂)(zk − x∗) + O(µk) + o(‖zk − x∗‖).

If we divide by ‖zk − x∗‖, take the limit, and use (3.34), we obtain

0 = dTLxx(x∗, λ̂)d.

However, the second-order conditions (2.16) require that dTLxx(x
∗, λ̂)d > 0 for all d 6= 0 with

∇cj(x
∗)T d = 0, giving a contradiction.

We conclude that no i with the property (3.31) can exist, giving the result.

We use this result to show that µk = Θ(‖zk − x∗‖) for all sequences satisfying (3.30).

Lemma 3.5. Suppose that Assumption 3.1 holds. Then for all sequences {µk} and {zk} satisfying
(3.30), we have that µk = Θ(‖zk − x∗‖).
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Proof. Defining λk 4
= λ(zk, µk) again we show first that it is not possible to choose a subsequence

K such that

lim
k∈K

µk

‖zk − x∗‖ = 0. (3.40)

If this were true, we would have from Lemma 3.4, using an expansion like that in (3.36) that

0 ≤ lim
k∈K

λk
j = lim

k∈K

µk

cj(zk)
≤ lim

k∈K

µk

ε‖zk − x∗‖ = 0, j = 1, 2, . . . , q. (3.41)

Since by Lemma 2.3 we have dist Sλ
λk → 0, (3.41) implies that 0 ∈ Sλ. Hence, given any strictly

complementary solution λ∗ ∈ Sλ, we have that αλ∗ ∈ Sλ for all α ≥ 0. Hence, Sλ is unbounded,
contradicting Gauvin [11, Theorem 1].

We now show that it is not possible to choose a subsequence K such that

lim
k∈K

µk

‖zk − x∗‖ = ∞. (3.42)

If this were possible, we would have from smoothness of cj , j = 1, 2, . . . , q that

lim
k∈K

λk
j = lim

k∈K

µk

cj(zk)
≥ lim

k∈K

µk

M‖zk − x∗‖ , j = 1, 2, . . . , q,

for some positive constant M , so that limk∈K λk = ∞. This contradicts boundedness of Sλ and
dist Sλ

λk → 0.
We conclude that neither (3.40) nor (3.42) can occur for any subsequence K, proving the result.

Theorem 3.2. Suppose that Assumption 3.1 holds. For all {µk} and {zk} with the properties (3.30),
we have that µk/ci(z

k) → λ̄∗
i for all i = 1, 2, . . . ,m, where λ̄∗ is defined by (2.12), and in fact that

zk = x(µk) for all k sufficiently large.

Proof. By Lemma 3.5, we have that the sequence {dk} with

dk 4
=

zk − x∗

µk
(3.43)

lies entirely inside the compact set {v |β0 ≤ ‖v‖ ≤ β1}, where β0 and β1 are positive constants.
Since dist Sλ

λk → 0 and since Sλ is compact, we can find a limit point λ̂ ∈ Sλ and a subsequence
K such that limk∈K λk = λ̂. We can choose a further subsequence of K such that limk∈K = d for
some vector d with β0 ≤ ‖d‖ ≤ β1. For any j = 1, 2, . . . , q, we then have

λ̂j = lim
k∈K

µk

cj(zk)

= lim
k∈K

µk

∇cj(x∗)T (zk − x∗) + o(‖zk − x∗‖) = lim
k∈K

1

∇cj(x∗)T dk + o(1)
=

1

∇cj(x∗)T d
.

Hence, λ̂ satisfies the conditions (2.12) to be the analytic center of Sλ, and by uniqueness of this
point, we have λ̂ = λ̄∗. By compactness of Sλ, the limit dist Sλ

λk = 0, and our arbitrary choice of
limit λ̂, we conclude that

lim
k→∞

λk = λ̄∗.
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For any j = 1, 2, . . . , q, we have that

λ̄∗ = lim
k→∞

µk

cj(zk)
= lim

k→∞

1

∇cj(x∗)T dk + o(1)
,

so that
lim

k→∞
∇cj(x

∗)T dk = λ̄∗
j = ∇cj(x

∗)T ζ, (3.44)

for the vector ζ defined in (2.12), (2.13), and (3.1). It follows from these observations together with
(2.12), (3.6), (3.43), (3.44), and Theorem 3.1 that

∇ci(x
∗)T (zk − x∗) = µk∇ci(x

∗)T ζ + o(µk)

= ∇ci(x
∗)T (x̄(µk) − x∗) + o(µk)

= ∇ci(x
∗)T (x(µk) − x∗) + o(µk), i = 1, 2, . . . , q,

and therefore
∇ci(x

∗)T
(

x(µk) − zk
)

= o(µk), i = 1, 2, . . . , q.

Hence, we have for all α ∈ [0, 1] that

ci

(

zk + α(x(µk) − zk)
)

= ci(z
k) + α∇ci(z

k)T (x(µk) − zk) + O(µ2
k)

=
[

µk/λ̄
∗
i + o(µk)

]

+ o(µk) + O(µ2
k)

= µk/λ̄
∗
i + o(µk), i = 1, 2, . . . , q. (3.45)

We now consider the Hessian Pxx(·;µk) evaluated at the points zk + α(x(µk) − zk), α ∈ [0, 1].
By using analysis similar to that in the proof of Lemma 3.2, together with the observation (3.45),
we can show that this matrix is positive definite for all α ∈ [0, 1], for all k sufficiently large. By
Taylor’s theorem, we have

0 =
(

zk − x(µk)
)T [

Px(zk;µk) − Px(x(µk);µk)
]

=

∫

1

0

(

zk − x(µk)
)T

Pxx

(

zk + α(x(µk) − zk), µk

) (

zk − x(µk)
)

dα.

Observe that the right-hand side of this expression is positive whenever zk 6= x(µk) for all k
sufficiently large. We conclude that zk = x(µk) for all k sufficiently large, as required.

3.4. Direction of Approach of the Central Path

We now demonstrate the differentiability of the path x(µ) described in Theorems 3.1 and 3.2. The
proof again uses the decomposition of the Hessian Pxx(x;µ) that was first derived in the proof of
Lemma 3.2.

Theorem 3.3. Suppose that Assumption 3.1 holds. Then for the minimizers x(µ) defined in The-
orem 3.1, there is a threshold µ̄ such that x(µ) exists and is a continuously differentiable function
of µ for all µ ∈ (0, µ̄], and we have that

ẋ(0+)
4
= lim

µ↓0
ẋ(µ) = ζ. (3.46)
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Proof. Setting µ̄ = χ4, we have from Theorem 3.1 that x(µ) exists for all µ ∈ (0, µ̄].
Choose σ = 2 in Theorem 3.1, and let µ̄ and C0 be defined accordingly. We now have existence

of x(µ) for all µ ∈ (0, µ̄], and the estimate (3.26) holds. Each such x(µ) solves the equation

Px(x(µ);µ) = 0.

Pxx is nonsingular and continuous at each µ ∈ (0, µ̄], by (3.9), (3.12) and the discussion preceding
these expressions. Hence, we can apply the implicit function theorem (see, for example, Ortega and
Rheinboldt [26, p. 128]) to conclude that x(·) is differentiable at µ and that the derivative ẋ(µ)
satisfies the equation

Pxx(x(µ), µ)ẋ(µ) − r(µ) = 0, (3.47)

where

r(µ)
4
=

m
∑

i=1

1

ci(x(µ))
∇ci(x(µ)). (3.48)

We now show (3.46) by showing that ẋ(µ) = ζ +u(µ), where u(µ) = O(µ) and so, in particular,
u(µ) → 0 as µ ↓ 0. By substituting into (3.47), we have that u(µ) satisfies the expression

Pxx(x(µ), µ)u(µ) = r(µ) − Pxx(x(µ), µ)ζ. (3.49)

We can substitute x(µ) for x in the analysis of Pxx(·;µ) that leads to (3.9), (3.12), since x(µ)
certainly lies in the neighborhood (3.25) within which this estimate is valid. Hence, by applying
(3.9) to (3.49), we have that

[

UT
Ru(µ)

UT
Nu(µ)

]

=

[

J11 J12

JT
12 J22

] [

UT
R

UT
N

]

[r(µ) − Pxx(x(µ), µ)ζ] .

Hence, from the estimates (3.12), we have that

u(µ) = O(µ)
∥

∥

∥UT
R [r(µ) − Pxx(x(µ), µ)ζ]

∥

∥

∥+ O(1)
∥

∥

∥UT
N [r(µ) − Pxx(x(µ), µ)ζ]

∥

∥

∥ .

Therefore, our estimate u(µ) = O(µ) will follow if we can show that

UT
R [r(µ) − Pxx(x(µ), µ)ζ] = O(1), (3.50a)

UT
N [r(µ) − Pxx(x(µ), µ)ζ] = O(µ). (3.50b)

By substituting directly from (2.23b) and (3.48), we have that

Pxx(x(µ);µ)ζ − r(µ) =

[

∇2f(x(µ)) +
m
∑

i=1

µ

ci(x(µ))
∇2ci(x(µ))

]

ζ (3.51)

+
q
∑

i=1

1

ci(x(µ))

[

µ∇ci(x(µ))T ζ

ci(x(µ))
− 1

]

∇ci(x(µ))

+
m
∑

i=q+1

1

ci(x(µ))

[

µ∇ci(x(µ))T ζ

ci(x(µ))
− 1

]

∇ci(x(µ)).

From (3.26) we have

x(µ) − x∗ = µζ + (x(µ) − x∗ − µζ) = µζ + O(µ2),
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so from (2.12) we obtain

ci(x(µ)) = ∇ci(x
∗)T (x(µ) − x∗) + O(µ2)

= µ∇ci(x
∗)T ζ + O(µ2) =

µ

λ̄∗
i

+ O(µ2), i = 1, 2, . . . , q. (3.52)

Hence, Lipschitz continuity of ∇2f(·) and ∇2ci(·), i = 1, 2, . . . ,m implies that

∇2f(x(µ)) +
m
∑

i=1

µ

ci(x(µ))
∇2ci(x(µ)) = ∇2f(x∗) +

m
∑

i=1

λ̄∗
i∇2ci(x

∗) + O(µ). (3.53)

For the second term on the right-hand side of (3.51), we use (3.52) again to obtain

µ∇ci(x(µ))T ζ

ci(x(µ))
− 1 =

µ/λ̄∗
i + O(µ2)

µ/λ̄∗
i + O(µ2)

− 1 = O(µ), i = 1, 2, . . . , q. (3.54)

Hence, by using (3.52) again together with the property λ̄∗
i > 0, i = 1, 2, . . . , q, we have that

q
∑

i=1

1

ci(x(µ))

[

µ∇ci(x(µ))T ζ

ci(x(µ))
− 1

]

∇ci(x(µ))

=
q
∑

i=1

O(µ)

ci(x(µ))
∇ci(x(µ)) =

q
∑

i=1

O(1)∇ci(x
∗) + O(µ). (3.55)

For the third term on the right-hand side of (3.51), we have that, since ci(x(µ)) is bounded away
from zero for µ sufficiently small,

m
∑

i=q+1

1

ci(x(µ))

[

µ∇ci(x(µ))T ζ

ci(x(µ))
− 1

]

∇ci(x(µ)) = −
m
∑

i=q+1

1

ci(x∗)
∇ci(x

∗) + O(µ). (3.56)

By substituting (3.53), (3.55), (3.56) into (3.51), and taking the inner product with U T
R , we have

that (3.50a) is satisfied. When we take the inner product with U T
N , the terms involving ∇ci(x

∗),
i = 1, 2, . . . , q in (3.55) are eliminated, and we are left with

UT
N [Pxx(x(µ);µ)ζ − r(µ)] = UT

NLxx(x
∗, λ̄∗)ζ −

m
∑

i=q+1

1

ci(x∗)
UT

N∇ci(x
∗) + O(µ).

By comparing this expression with (3.1), we conclude that (3.50b) is satisfied, completing the proof.

The relation (3.46) together with (2.12) shows that the primal central path reaches x∗ nontan-
gentially to the active constraints, but rather is tangential to the linear path {x̄(µ) |µ ∈ (0, µ]} at
x∗. It also shows that p = −ζ = −ẋ(0+) is a direction that satisfies the MFCQ condition (2.6).

The proof of (3.46) is much simpler in the case of linearly independent active constraints. When
this condition holds, Fiacco and McCormick [9, Section 5.2] replace (3.47) by an “augmented”
linear system whose unknowns are both ẋ(µ) and λ̇(µ) and whose coefficient matrix approaches
a nonsingular limit as µ ↓ 0. The result follows by setting µ = 0 and calculating the solution of
this system directly. M. H. Wright performs a similar analysis [30, Section 3] and observes the
nontangentiality of the path to the active constraints.
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4. Relaxing the Strict Complementarity Condition

In this section, we discuss the properties of the sequence of minimizers of P (·;µk) when strict
complementarity (2.9) does not hold. That is, we have for some active constraint index i = 1, 2, . . . , q
that λ∗

i = 0 for all λ∗ ∈ Sλ. Lemmas 2.1, 2.2, and 2.3 continue to hold when (2.9) is not satisfied.
However, the problem (2.10), (2.11) that defines the analytic center is not even feasible, so the path
of minimizers of P (·;µ) with the particular form described in Section 3 is not defined.

Our main results are as follows. Under the second-order sufficient condition (2.18) for the non-
strict complementarity case, we can show existence of a local minimizer of P (·;µk) in the vicinity
of x∗, for all µk sufficiently small, using a simple modification of results of M. H. Wright [30]. We
show that the direction of approach of the sequence of minimizers to x∗ is tangential to the strongly
active constraints (those for which λ∗

i > 0 for some λ∗ ∈ Sλ). Finally, we show that

µk = Θ(‖zk − x∗‖2),

where zk is the local minimizer of P (·;µk). This contrasts with the strictly complementary case, in
which the exponent 2 does not appear. We are not able to prove local uniqueness of the minimizer
(as was seen for the strictly complementary case in Theorem 3.2), nor are we able to obtain the
semi-explicit characterization of the minimizer seen in Theorem 3.1.

We can obtain some insight into the case of non-strict complementarity by considering the
following simple example:

min 1

2

(

x2
1 + x2

2

)

subject to x1 ≥ 1, x2 ≥ 0.

The solution is x∗ = (1, 0)T , with both constraints active and unique optimal Lagrange multipliers
λ∗

1 = 1, λ∗
2 = 0. It is easy to verify that the minimizer of P (·;µ) in this case is

x(µ) =

(

1 +
√

1 + 4µ

2
,
√

µ

)T

≈ (1 + µ,
√

µ)T .

The path of minimizers is dramatically different from the one that would be obtained by omitting
the weakly active constraint x2 ≥ 0 from the problem, which would be

x(µ) =

(

1 +
√

1 + 4µ

2
, 0

)T

≈ (1 + µ, 0)T .

Note that the path becomes tangential to the strongly active constraint x1 ≥ 1 and that the distance
from x(µ) to the solution x∗ is O(µ1/2) rather than O(µ), as in the case of strict complementarity.

Convergence to the analytic center of the dual multiplier set (defined by a modification of (2.10)
in which we sum only over the “strictly complementary” indices) cannot be expected in this case,
as shown in an example in McCormick and Witzgall [17, Section 8].

As before, we suppose that the “non-strictly complementary” indices are q̄ + 1, . . . , q, that is,

λ∗
i = 0, for all λ∗ ∈ Sλ, all i = q̄ + 1, . . . , q, (4.1)

and recall the second-order sufficient conditions (2.18).

All results in this section use the following assumption.
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Assumption 4.1. At least one constraint is active at the solution x∗, and the first-order necessary
conditions (2.2), the second-order sufficient conditions (2.18), and the MFCQ (2.6) hold at x∗. The
strict complementarity condition fails to hold, that is, q̄ < q in (4.1).

We state first a result about the curvature of the Lagrangian Hessian along directions d that
are “close” to those directions defined in (2.16b) and in (2.18b), (2.18c). The proof appears in the
appendix.

Lemma 4.1. There exist positive constants εd and η̄ such that for all d with ‖d‖ = 1 and

|∇ci(x
∗)T d| ≤ εd, i = 1, 2, . . . , q̄, (4.2a)

(∇ci(x
∗)T d)− ≤ εd, i = q̄ + 1, . . . , q, (4.2b)

(where (·)− is defined in (2.19)), we have that

dTLxx(x
∗, λ∗)d ≥ η̄, for all λ∗ ∈ Sλ.

We now cite a result on the existence of a sequence of minimizers of the barrier function that
approaches x∗. It is a consequence of Theorem 7 in M. H. Wright [30]. Under our assumptions, x∗

is a strict local minimizer of the problem (1.1), and so the set M in the cited result is the singleton
{x∗}.

Theorem 4.1. Suppose that Assumption 4.1 holds. Let {µk} be any sequence of positive numbers
such that µk ↓ 0. Then

(i) there exists a neighborhood N of x∗ such that for all k sufficiently large, P (·;µk) has at least one
unconstrained minimizer in strict C ∩ N . Moreover, every sequence of global minimizers {x̄k}
of P (·;µk) in strict C ∩ cl N converges to x∗.

(ii) limk→∞ f(x̄k) = limk→∞ P (x̄k;µk) = f(x∗).

The next three results concern the behavior of any sequences {µk} and {zk} with the following
properties:

µk ↓ 0, zk → x∗, zk a local min of P (·;µk). (4.3)

The sequence of global minimizers {x̄k} described in Theorem 4.1 is one possible choice for {zk}.
Note that for sequences satisfying (4.3), we have from (2.1), (2.20), (2.22), and (2.23a) that

0 = Px(zk;µk) = Lx(zk, λk). (4.4)

Theorem 4.2. Suppose that Assumption 4.1 holds. Let {µk} and {zk} be sequences with the prop-
erties (4.3). Then we have that

µk = O(‖zk − x∗‖2). (4.5)

Proof. From Lemma 2.3, we have that

λk
i ≤ dist Sλ

λk = O
(

‖zk − x∗‖ + µk

)

, for all i = q̄ + 1, . . . , q.

By substituting from (2.20), and using the estimate ci(z
k) = O

(

‖zk − x∗‖
)

, we have that

µk ≤ ci(z
k)O

(

‖zk − x∗‖ + µk

)

≤ K1

(

‖zk − x∗‖2 + µk‖zk − x∗‖
)

,
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for some K1 > 0 and all k sufficiently large. Therefore, we have

(

1 − K1‖zk − x∗‖
)

µk ≤ K1‖zk − x∗‖2,

so by taking k large enough that ‖zk − x∗‖ ≤ 1/(2K1), we have the result.
We now show that the approach of the minimizer sequence is tangential to the strongly active

constraints.

Lemma 4.2. Suppose that Assumption 4.1 holds, and let {µk} and {zk} be sequences that satisfy
(4.3). Then defining

dk 4
= (zk − x∗)/‖zk − x∗‖, (4.6)

we have that

|∇ci(x
∗)T dk| = O(‖zk − x∗‖), i = 1, 2, . . . , q̄,

(∇ci(x
∗)T dk)− ≤ O(‖zk − x∗‖), i = q̄ + 1, . . . , q.

Proof. We start by noting that since ci(x
∗) = 0 for i = 1, 2, . . . , q, we have from (4.3) that

∇ci(x
∗)T (zk − x∗) = ci(z

k) + O(‖zk − x∗‖2), i = 1, 2, . . . , q.

and therefore, since {zk} is a feasible sequence, we have

(∇ci(x
∗)T dk)− ≤ ci(z

k)−/‖zk − x∗‖ + O(‖zk − x∗‖) = O(‖zk − x∗‖), i = 1, 2, . . . , q. (4.7)

Therefore our result follows if we can prove in addition to (4.7) that

(∇ci(x
∗)T dk)+ = O(‖zk − x∗‖), i = 1, 2, . . . , q̄. (4.8)

The remainder of the proof is directed to showing that (4.8) holds.
We write

f(zk) − f(x∗) =
[

L(zk, λk) −L(x∗, λk)
]

+ (λk)T [c(zk) − c(x∗)]. (4.9)

For the first term on the right-hand side, we have from (4.4) that

L(x∗, λk) −L(zk, λk) = O(‖zk − x∗‖2). (4.10)

In the second term on the right-hand side of (4.9), we have by the definition (2.20), (2.22) that

(λk)T c(zk) = mµk, (4.11)

while

λk
i ci(x

∗) = µk
ci(x

∗)

ci(zk)
= 0, i = 1, 2, . . . , q, (4.12a)

λk
i ci(x

∗) = µk
ci(x

∗)

ci(x∗) + O(‖zk − x∗‖) = O(µk), i = q + 1, . . . ,m. (4.12b)

By substituting (4.10), (4.11), and (4.12) into (4.9), we obtain

f(zk) − f(x∗) = O(‖zk − x∗‖2 + µk).
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Therefore, using Theorem 4.2, we obtain that

f(zk) − f(x∗) = O(‖zk − x∗‖2),

so that
∇f(x∗)T (zk − x∗) = f(zk) − f(x∗) + O(‖zk − x∗‖2) = O(‖zk − x∗‖2). (4.13)

Given the convexity of Sλ and our definition of q̄, we can choose a vector λ∗ such that

λ∗ ∈ Sλ, λ∗
i > 0 for i = 1, 2, . . . , q̄, λ∗

i = 0 for i = q̄ + 1, . . . ,m. (4.14)

From (2.2) and (4.13), we have

q̄
∑

i=1

λ∗
i∇ci(x

∗)T dk =
m
∑

i=1

λ∗
i∇ci(x

∗)T dk = ∇f(x∗)T dk = O(‖zk − x∗‖).

Hence, by using the identity β = β+ − β− together with (4.7), we have that

q̄
∑

i=1

λ∗
i (∇ci(x

∗)T dk)+ =
q̄
∑

i=1

λ∗
i (∇ci(x

∗)T dk)− + O(‖zk − x∗‖) = O(‖zk − x∗‖).

Because of the property (4.14) and the fact that (∇ci(x
∗)T dk)+ ≥ 0, we conclude that (4.8) holds,

completing the proof.
An immediate consequence of Lemmas 4.1 and 4.2 is that there is a positive constant η̄ such

that for all k sufficiently large, we have

(dk)TLxx(x∗, λ∗)dk ≥ η̄, for all λ∗ ∈ Sλ. (4.15)

We now show that there is a lower bound on µk in terms of ‖zk − x∗‖2 to go with the upper
bound in (4.5).

Theorem 4.3. Suppose that Assumption 4.1 holds, and let {µk} and {zk} be sequences with the
properties (4.3). Then we have that

‖zk − x∗‖2 = O(µk). (4.16)

Proof. Using (4.11), the definition (2.1), and the inequality L(x∗, λk)− f(x∗) = −c(x∗)T λk ≤ 0,
we have

mµk = c(zk)T λk

=
[

f(zk) − f(x∗)
]

−
[

L(zk, λk) − f(x∗)
]

≥
[

f(zk) − f(x∗)
]

−
[

L(zk, λk) −L(x∗, λk)
]

. (4.17)

From (2.15), and by rearranging (4.17), we have for k sufficiently large that

η‖zk − x∗‖2 ≤ mµk +
[

L(zk, λk) −L(x∗, λk)
]

.

Hence, it suffices for our result to prove that the second term on the right-hand side of this expression
is nonpositive.
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When the sequences {µk} and {zk} satisfy (4.3), we have from Lemma 2.3 that

dist Sλ
λk = O(‖zk − x∗‖ + µk) → 0.

Moreover, by compactness of Sλ, there is a λk
∗ ∈ Sλ such that ‖λk − λk

∗‖ = dist Sλ
λk.

By using a Taylor series expansion of L(·, λk) around zk, and using (4.4), (4.6), and (4.15), we
have for some ξk lying on the line segment between x∗ and zk that

L(zk, λk) −L(x∗, λk)

= −‖zk − x∗‖2(dk)TLxx(ξk, λk)dk

= −‖zk − x∗‖2
[

(dk)TLxx(x
∗, λk

∗)d
k + O(‖zk − x∗‖) + dist Sλ

λk
]

≤ −‖zk − x∗‖2η̄/2 ≤ 0,

giving the result.
This result appears similar to one of Mifflin [21, Theorem 5.4], but the assumptions on L(·;λ∗)

in that paper are stronger; they require L(·;λ∗) to satisfy a strong convexity property over some
convex set containing the iterates zk, for all k sufficiently large.

The final result follows immediately from Theorems 4.2 and 4.3.

Corollary 4.1. Suppose that Assumption 4.1 holds. Then any sequences {µk} and {zk} with the
properties that

µk ↓ 0, zk → x∗, zk a local min of P (·;µk), (4.18)

will satisfy

µk = Θ(‖zk − x∗‖2). (4.19)

5. Discussion

Motivated by the success of primal-dual interior-point methods on linear programming problems,
a number of researchers recently have described primal-dual methods for nonlinear programming.
In these methods, the Lagrange multipliers λ generally are treated as independent variables, rather
than being defined in terms of the primal variables x by a formula such as (2.20). We mention in
particular the work of Forsgren and Gill [10], El Bakry et al. [3], and Gay, Overton, and Wright [12],
who use line-search methods, and Conn et al. [7] and Byrd, Gilbert, and Nocedal [6], who describe
trust-region methods. Methods for nonlinear convex programming are described by Ralph and
Wright [27,28], among others.

Near the solution x∗, primal-dual methods gravitate toward points on the primal-dual central
path, which is parametrized by µ and defined as the set of points (x(µ), λ(µ)) that satisfies the
conditions

∇f(x) −
m
∑

i=1

λi∇ci(x) = 0, (5.1a)

λici(x) = µ, for all i = 1, 2, . . . ,m, (5.1b)

λ > 0, c(x) > 0. (5.1c)

When the LICQ and second-order sufficient conditions hold, the Jacobian matrix of the nonlinear
equations formed by (5.1a) and (5.1b) is nonsingular in a neighborhood of (x∗, λ∗), where λ∗ is
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the (unique) optimal multiplier. Fiacco and McCormick use this observation to differentiate the
equations (5.1a) and (5.1b) with respect to µ, and thereby prove results about the smoothness of
the trajectory (x(µ), λ(µ)) near (x∗, λ∗).

The results of Section 3 above show that the system (5.1) continues to have a solution in the
neighborhood of {x∗}×Sλ when LICQ is replaced by MFCQ. We simply take x(µ) to be the vector
described in Theorems 3.1, 3.2, and 3.3, and define λ(µ) by (2.20). Hence, we have existence and
local uniqueness of a solution even though the limiting Jacobian of (5.1a), (5.1b) is singular, and
we find that the primal-dual trajectory approaches the specific limit point (x∗, λ̄∗). The smoothness
properties of the path under MFCQ are not obvious, however.

In the case of no strict complementarity, the (weaker) existence results of Section 4 can again
be used to deduce the existence of solutions to (5.1) near {x∗} × Sλ, but we cannot say much else
about this case other than that the convergence rate implied by Lemma 2.3 is satisfied.

Finally, we comment about the use of Newton’s method to minimize P (·;µ) approximately
for a decreasing sequence of values of µ, a scheme known as the Newton/log-barrier approach.
Extrapolation can be used to obtain a starting point for the Newton iteration after each decrease in
µ. Superlinear convergence of this approach is obtained by decreasing µk superlinearly to zero (that
is, limk→∞ µk+1/µk = 0) while taking no more than a fixed number of Newton steps at each value
of µk. In the case of LICQ, rapid convergence of this type has been investigated by Conn, Gould,
and Toint [8], Benchakroun, Dussault, and Mansouri [4], Wright and Jarre [37], and Wright [38].
We anticipate that similar results will continue to hold when LICQ is replaced by MFCQ, because
the central path continues to be smooth and the convergence domain (3.25) for Newton’s method
is similar in both cases. A detailed investigation of this claim and an analysis of the case in which
strict complementarity fails to hold are left for future study.
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Proof of Lemma 4.1.

Note first that by compactness of Sλ and of the unit ball, we can choose a positive constant η̄ small
enough that

dTLxx(x
∗, λ∗)d ≥ 6η̄‖d‖2, for all λ∗ ∈ Sλ, all d satisfying (2.18b), (2.18c).

By Hoffmann’s lemma [14], there is a constant M such that for any d with ‖d‖ = 1 satisfying (4.2),
there is a d̄ satisfying (2.18b), (2.18c) such that

‖d − d̄‖ ≤ Mεd.

Therefore, assuming that εd ≤ 1/(2M), we have

‖d̄‖ ≥ ‖d‖ − ‖d − d̄‖ ≥ 1 − Mεd ≥ 1/2, ‖d̄‖ ≤ 3/2.
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For all λ∗ ∈ Sλ, we have from these bounds that

dTLxx(x∗, λ∗)d ≥ d̄TLxx(x
∗, λ∗)d̄ − ‖Lxx(x

∗, λ∗)‖
[

2‖d̄‖‖d − d̄‖ + ‖d − d̄‖2
]

≥ 6η̄‖d̄‖2 − ‖Lxx(x∗, λ∗)‖[2‖d̄‖Mεd + M2ε2
d]

≥ (3/2)η̄ − ‖Lxx(x∗, λ∗)‖(3Mεd + M2ε2
d).

Now reducing εd if necessary so that

‖Lxx(x∗, λ∗)‖(3Mεd + M2ε2
d) ≤ η̄/2, for all λ∗ ∈ Sλ,

we obtain the result.

References

1. I. Adler and R. D. C. Monteiro. Limiting behavior of the affine scaling continuous trajectories for linear
programming problems. Mathematical Programming, 50:29–51, 1991.

2. M. Anitescu. On the rate of convergence of sequential quadratic programming with nondifferentiable
exact penalty function in the presence of constraint degeneracy. Preprint ANL/MCS-P760-0699, Argonne
National Laboratory, Argonne, Illinois, USA, 1999.

3. A. S. El Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On the formulation and theory of newton
interior point methods for nonlinear programming. Journal of Optimization Theory and Applications,
89(3):507–541, 1996.

4. A. Benchakroun, J.-P. Dussault, and A. Mansouri. A two parameter mixed interior-exterior penalty
algorithm. ZOR - Mathematical Methods of Operations Research, 41:25–55, 1995.

5. J.-F. Bonnans and A. Ioffe. Second-order sufficiency and quadratic growth for nonisolated minima.
Mathematics of Operations Research, 20(4):801–819, 1995.

6. R. H. Byrd, J.-Ch. Gilbert, and J. Nocedal. A trust region method based on in-
terior point techniques for nonlinear programming. Mathematical Programming Series A,
http://dx.doi.org/10.1007/s101070000189, 2000.

7. A. R. Conn, N. I. M. Gould, D. Orban, and Ph. L. Toint. A primal-dual trust-region algorithm for
non-convex nonlinear programming. Mathematical Programming B, 87(2):215–249, 2000.

8. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A note on using alternative second-order models for the
subproblems arising in barrier function methods for minimization. Numerische Mathematik, 68:17–33,
1994.

9. A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization
Techniques. Wiley, New York, 1968. Reprinted by SIAM Publications, 1990.

10. A. Forsgren and Ph. E. Gill. Primal-dual interior methods for nonconvex nonlinear programming. SIAM
Journal on Optimization, 8(4):1132–1152, November 1998.

11. J. Gauvin. A necessary and sufficient regularity condition to have bounded multipliers in nonconvex
programming. Mathematical Programming, 12:136–138, 1977.

12. D. M. Gay, M. L. Overton, and M. H. Wright. A primal-dual interior method for nonconvex nonlinear
programming. Technical Report 97-4-08, Computing Sciences Research, Bell Laboratories, Murray Hill,
NJ, July 1997.

13. N. I. M. Gould. On the accurate determination of search directions for simple differentiable penalty
functions. IMA Journal of Numerical Analysis, 6:357–372, 1986.



30 Stephen J. Wright, Dominique Orban

14. A. J. Hoffman. On approximate solutions of systems of linear inequalities. Journal of Research of the
National Bureau of Standards, 49:263–265, 1952.

15. M. Kojima, S. Mizuno, and T. Noma. Limiting behavior of trajectories by a continuation method for
monotone complementarity problems. Mathematics of Operations Research, 15(4):662–675, 1990.

16. F. A. Lootsma. Hessian matrices of penalty functions for solving constrained optimization. Philips Res.
Repts, 24:322–331, 1969.

17. G. P. McCormick and C. Witzgall. Logarithmic SUMT limits in convex programming. Mathematical
Programming, Series A, 90:113–145, 2001.

18. L. McLinden. An analogue of Moreau’s proximation theorem, with application to the nonlinear comple-
mentarity problem. Pacific Journal of Mathematics, 88:101–161, 1980.

19. L. McLinden. The complementarity problem for maximal monotone multifunctions. In R. W. Cottle,
F. Gianessi, and J.-L. Lions, editors, Variational Inequalities and Complementarity Problems, chapter 17,
pages 251–270. Wiley, New York, 1980.

20. N. Megiddo. Pathways to the optimal set in linear programming. In N. Megiddo, editor, Progress
in Mathematical Programming: Interior Point and Related Methods, pages 131–158, New-York, 1989.
Springer Verlag. Identical version in: Proceedings of the 6th Mathematical Programming Symposium of
Japan, Nagoya, Japan, pages 1–35, 1986.

21. R. Mifflin. Convergence bounds for nonlinear programming algorithms. Mathematical Programming,
8:251–271, 1975.

22. R.C. Monteiro and T. Tshuchiya. Limiting behavior of the derivatives of certain trajectories assiciated
with a monotone horizontal linear complementarity problem. Mathematics of Operations Research,
21:793–814, 1996.

23. R.C. Monteiro and F. Zhou. On the existence and convergence of the central path for convex program-
ming and some duality results. Computational Optimization and Applications, 10:51–77, 1998.

24. W. Murray. Analytical expressions for the eigenvalues and eigenvectors of the Hessian matrices of barrier
and penalty functions. Journal of Optimization Theory and Applications, 7:189–196, 1971.

25. Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming. SIAM,
Philadelphia, USA, 1994.

26. J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several variables.
Academic Press, New York and London, 1970.

27. D. Ralph and S. J. Wright. Superlinear convergence of an interior-point method for monotone variational
inequalities. In M. C. Ferris and J.-S. Pang, editors, Complementarity and Variational Problems: State
of the Art, pages 345–385. SIAM Publications, Philadelphia, Penn., 1997.

28. D. Ralph and S. J. Wright. Superlinear convergence of an interior-point method despite dependent
constraints. Mathematics of Operations Research, 25(2):179–194, May 2000.

29. M. C. Villalobos, R. A. Tapia, and Y. Zhang. The sphere of convergence of newton’s method on
two equivalent systems from nonlinear programming. Technical Report CRPC-TR9915, Department of
Computational and Applied Mathematics, Rice University, Houston, TX 77005, September 1999.

30. M. H. Wright. Interior methods for constrained optimization. In Acta Numerica 1992, pages 341–407.
Cambridge University Press, Cambridge, 1992.

31. M. H. Wright. Some properties of the Hessian of the logarithmic barrier function. Mathematical Pro-
gramming, 67:265–295, 1994.

32. M. H. Wright. Ill-conditioning and computational error in interior methods for nonlinear programming.
SIAM Journal on Optimization, 9:84–111, 1998.



Properties of the Log-Barrier Function on Degenerate Nonlinear Programs 31

33. S. J. Wright. Modifying SQP for degenerate problems. Preprint ANL/MCS-P699-1097, Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, Ill., 1997. Revised June 2000.

34. S. J. Wright. Effects of finite-precision arithmetic on interior-point methods for nonlinear program-
ming. Preprint ANL/MCS-P705-0198, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, Ill., 1998. To appear in SIAM Journal on Optimization, 2001.

35. S. J. Wright. Superlinear convergence of a stabilized SQP method to a degenerate solution. Computa-
tional Optimization and Applications, 11:253–275, 1998.

36. S. J. Wright. On the convergence of the Newton/log-barrier method. Mathematical Programming, Series
A, 90:71–100, 2001.

37. S. J. Wright and F. Jarre. The role of linear objective functions in barrier methods. Mathematical
Programming, Series A, 84:357–373, 1998.

38. S.J. Wright. On the convergence of the Newton/log-barrier method. Mathematical Programming, 90:71–
100, 2001.


