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ABSTRACT

Given a continuously differentiable mapping f from R” into Rn,
in this work we study piecewise linear approximations to it on certain
subdivisions of R". It is shown that several properties of the sub-
division are critical when the Jacobeans of the pieces of linearity of
the approximation are required to be close to the Jacobeans of f. In
addition, it is shown that even under arbitrary scaling of the triangula-
tions used in fixed point algorithms, good approximations of the deriva-

tives result.
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ON PIECEWISE LINEAR APPROXIMATIONS TO SMOOTH MAPPINGS

R. Saigal

1. INTRODUCTION

Given a continuously differentiable mapping f = (fl, f2’ . e ey
fn) from Rn, the n-dimensional Euclidean space into itself, we consider
here the problem of generating piecewise linear approximations to f on
some given subdivisions of R". In particular, we will study the proper-
ties of the subdivisions which ensure that both f and its Jacobean Df
are "close'" to the piecewise linear approximation and its derivative.
This study is related to the recent study of Kojima [3], who used some
fundamental theorems of Whitehead [15] to establish such approximations.
Our approach is to get explicit bounds under the assumption that Df is
Lipschitz continuous.

1.
Throughout this paper we use the %, norm ||x|| = (xtx)2 and for

2

. The results established in this

an x n matrix, IIAII = max |le|
|| x([=2
paper have implications for the recent algorithms that compute fixed
points, namely those of Eaves and Saigal [2] and Merrill [5]. Some of
these results have been used in Saigal [9], Saigal and Todd [11].
In section 2 we establish some basic results used in the sub-
sequent sections; in section 3 we establish some basic properties of

piecewise linear approximations; in section 4 we study approximations

on scaled triangulations; and in section 5, an application is given.



2. NOTATION, DEFINITIONS AND PRELIMINARY RESULTS

Throughout this work we will assume that f is differentiable,
with its derivative Df Lipschitz continuous, that is, there is a a>0
such that for each x and y in R"

[Ipf(x) ~ DE(yY || = aflx-y]]

We shall frequently use the following result in this paper, and its

proof can be found in [6, 3.2.12].

Theorem 2.1: Let f be differentiable, and its derivative Df be Lipschitz
continuous on an open convex set W.Then, there exists a mapping e:
Wx W + R" such that for all x and y in W,

f(y) = £(x) + DEfx)(y-x) + e(y,x)

2 . . .
%al|x—yl| , where a>0 is the Lipschitz constant.

A

and that ||e(y,x)]]|

Given n + 1 affinely independent points, called vertices,

Vl, Vz, e o . Vn+l in Rn, we call their convex hull a n-dimensional
simplex o = (vl, vz, N vn+l). For an n-simplex , define a n x n
matrix

V = (v2 - vl, v3 - vl, e e ey vn+l - vl).

Since v are affinely independent, V is nonsingular, and hence invertible.
Also, we define

e = max | |x -y|]
X,yJE€0

as the diameter of ¢ and for v = —l—-Zvl
n+l

P = min (Ix —GWI
x€d0

the radius of o, where 95 is the boundary of the simplex ¢. Also, we
define 6 = p/ec as the thickness of the simplex o.

We can then prove:



Theorem 2.2:

1 1 1 /n
V] @) /e vt

A
A

©

for any n~simplex ¢. The lower inequality is tight, in the sense that
there are simplexes for which equality is attained,

Before we prove this theorem, we have a Lemma:

Lemma 2.3: Let y = max {][eV—lll, max lluitv_lll} where u, is the ith
i
unit vector, and e = (1, 1, . . ., 1). Then
-1
P (otl)y
Proof:
Since ¢ is a n-simplex, its boundary §o can be written as the
union of (n-1)-simplexes cl, where o@ = (vl, o e ey vl_l, v1+1, o o ey
+
v 1)5 Hence
min ||x-v|] =  min { min, [Ix-@]]}
xeda i Xeo
. . , . . + . .
Define V' = (Vl—vl, v —Vl, e e ey vt 1—vl, v 1—vl, e ey vn+1—v1)
for each i =1, . . ., ntl. Then
v o= wpt (2.1)
where 1 1
M = -1 -1 . . . -1 . . . ~1 and P' a permutation matrix.
1

For X € o= we have Aj z 0, j # i, ZAj = 1, and Z})j v} = x. Then



- 1.1 1, i-1 1, i-1
x=v = Q- FPV o+ RGP R ) * Oy T D +
1 n+1 1 i i
O T T Y Ty
1 1 <

where vy € p = {x: igl T L) i = o

(2.1), x-v = WM'Py.

Now, .Pl = min, Hx—GH = min HVH= L )
X€0 yeP 7 (n+1) | |ev ||
and, p, = min, ||xv]| =uwmin ||wiely || =min, . |]|vx]]
Y xeot yeP yeM PP
= L t -1 , and thus, we have our result.
(1) [fu, 7|
Proof of Theorem 2.2
To see the upper bound, let x be such that llV_lll = []V_lx ]l.
Then | [V = G, N, w, VT, L L, VT
S /n max llu.tV_l], = /oy = —fﬁ .
i * (n+l)p
To see the lower bound, note that ]luitv—lll = ||v'l|]
and erV—lll S A IIV—lll. Thus, Yy : A llfJWJ and so we have

our result.

To see the remaining half of the theorem, it can be readily

confirmed that for the simplex ¢ = (vl, e ey vn+l) with
vl = 0
vl+l = u, i=1, .. ., n
i

for the lower bound, equality is attained.



3. PIECEWISE LINEAR APPROXIMATIONS

We shall now study piecewise linear approximations to a function

f generated by a subdivision of R™;

Triangulations: Given a collection K of subsets of Rn, we will say that

it triangulates R™ with vertices K0 if

(1) members of K are n-simplexes, with vertices in KO.

(2) each x in R belongs to at least one n-simplex of K.

(3) if any two n-simplexes meet, they do so on a common face.
Given an arbitrary triangulation K of R” we say its grid is € > 0 if
the diameter of any simplex of K is bounded by e, and its thickness is

0 if the thickness of any simplex in K is larger than 8.

n
Linear Approximations: Given a triangulation K of R, and a simplex

g = (vl, . e ey vn+1) in K, we say the mapping Ax-a is a linear approx-

imation to f on ¢ if
i i .
Avi-a = f(v’) for each i =1, . . ., n+ 1.
We shall denote this linear approximation by fo'

For linear approximations, we can prove:

Theorem 3.1: Let K be a triangulation of R" of grid ¢ > 0. And let

o in K be a n-simplex. Then, for each xeo, ||f(x) - fo(x)ll = %—aaz.
Proof:
Since x € 0= (v, . . ., v'T0), there exist 0 S A1, 1= 1,
., D+l Zki = 1 such that x = ijyl. Using Theorem 2.1, we have

f(Vi) = f(x) + Df(x)(vi—x) + e(vi,x)

Also,
n+1 . n+l .
£(x) = 3 AR = £(x) + T re(vi,x)
i=1 i=1



And so
. 1 ™l i 2
l[f (x) - f(x)[[ = = 7 X“u[fv - x'l
o 2 (=1 i
<12 *
27"

and we have our result.
Thus, a piecewise linear approximation fK to fon K is then

generated by setting:leo = fc (i.e., fK restricted to ¢ is the linear

mapping fo)'

Let f0 (x) = AU x - a. Then, we can prove:

Theorem 3.2: Let K be a triangulation of R" with grid € > 0 and

thickness & > 0. Then, for any ¢ in K and xeo

£ Do g
oo - a1l = 2 5,
Proof: _
Let o = (vl, . e ey vn+l) andX € 0. Using Theorem 2.1, we have
f(v') = £(x) + DE(x) (v - x) + e(v,x). Hence,
f(v) - f(vl) = Df(X)(vl-vl) +e(v,x) - e(Vl,X)s
Or,
AgV = DE(x)V + E
where llEill z aaz and Ei is the ith column of E. Hence
< -1
[a, - e[| = [{e]]. [[V7]
And, from Theorem 2.2, if p 1is the radius of o,
£ na .EE
ntl p
- 1o €
n+l 6

and we have our result.



From Theorem 3.2 it is evident that if the thickness of a

simplex o in K is very small (i.e., it is relatively long and skinny), for

x & G, A; may be a "poor'" approximation of Df(x). To demonstrate this,

consider the function

f =
(Xl’xz)

) 1 2 3 .
and, for some & > 0, the simplex o (v, v7, v7) whose vertices are

1 2 3

vl = (0,0), v2 = (8,0), v> = (8%,a%

A simple calculation results in:

B 1 4
1+ A iy + 1+ A
A =
[9)
1 4
A -ft2+A
and for 0 €0, DE(0) = I and [|1—A0|| =%— 1 - 2% and for A suffic-

iently small, A0 is a very poor approximation of I. For A = 0.20, the

simplex ¢ is shown in Figure 3.1, and the thickness of o is less than

3
y

.0400

.0016
_-/
0 2
0 0

FIGURE 3.1



The above example indicates that there may be a fundamental
problem in scaling the triangulations in the fixed point algorithms.
In the next section we will show that even for arbitrarily scaled
triangulations that are popularly used in fixed point computing,
we get reasonable approximations to the derivativyes. We note that

arbitrary scaling can make the thickness of triangulations very small.



4. APPROXIMATIONS ON SCALED TRIANGULATIONS

In this section we consider scaled versions of the popular tri-
angulations I and J3, [8], [9], [13], [14], used in fixed point com-
puting. We now give a brief description of these triangulations.

The (unscaled) triangulation I of R" is generated as follows:
given a positive number d, the vertices IO of this triangulation
are all vectors in " whose coordinates are integer multiples of 4.

Then, each simplex ¢ in I has a unique representation (v,T) where v is

s 0 . . .
in I and 7 is a permutation of {1, . . ., n}. The vertices Vl, o o e
+
v 1 are then generated as follows:
1
v =v
i+l i
= + i = o e
v v duw(i) i l, , N

where ug is the ith unit vector in R

A scaled version SI of triangulation I is generated by picking
a diagonal matrix S whose diagonal entries Sii are the scale parameters.
The vertices of SI are SIO = {Su: ueIO} and the simplexes of SI are
So = {Sx: x £0} for some simplex ¢ in I. Figure 4.1 shows a scaled

=1, S =.1

and unscaled simplex in SI and I, respectively, where § 29

11
and d = 1. We note that the scaled simplex is long and skinny.

Another triangulation most frequently used in fixed point com-
puting is J3. This is the usual one on which the Eaves-Saigal algorithm
is implemented. This triangulation can be described as follows. Given

n
an arbitrary positive number d, J3 triangulates R x (0,d], in such a

n -
manner that the vertices lie in the sections R x {d.2 k} for k =0, 1,

> - n -
2, . . .. Also, if v = (Vl, . e e Vn+l) in R x (0,d] is a vertex,
Vi/vn+l are integers. For a vertex V, if vi/vn+l is an odd integer,

it is called a central vertex. The piecewise linear approximations to

f are created on the induced subdivision of R x {d.Z_k}. We shall study



=
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1
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0 1
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FIGURE 4.1
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11
this induced subdivision called Jl for k = O.

. . 1 n+1 . . n
Now, if ann-simplex o = (v, . . ., Vv ) lies in R x {d},
then it can be uniquely expressed as a triplet (v,7,s) where V is a
central vertex of J3, T a permutation of {1, . . ., n} and sann-vector

with s,€ {-1,1} for each i=1, . . ., n.

The vertices of o are then generated by

- v+ d
= $S5eUnegy

. .th .
where, as before, u; is the i unit vector.
As in I, a scaled version, SJ1 of J1 can be generated by
choosing a diagonal matrix S with Sii the scale parameters. We now show

how scaling affects the thickness:

Lemma 4.1: Let S be the scaling matrix, and let T = max Sii and s =

min Sii' Then the thickness of SI or SJ1 is bounded by_g;
]

Proof:
Tt is readily confirmed that the diameter of any simplex is
at least 5, and that the radius is at most s and we have our result.
The Lemma 4.1 indicates that by picking the scaling parameters
such that Efs is very small, in view of Theorem 3.2, we may get very
poor approximations to the derivative. We now show that this is not

the case. The following lemma can be readily established.

Lemma 4.2: Let o = (Vl, V2, e e, vn+l) be a simplex in SI or SJ1,

2 +
and V = (v2—vl, v3—v s o e e V" l—vn). Then V= dQPS where P is a
permutation matrix, S the scaling matrix, Q a diagonal matrix with

Qiie {~1, 41} and 9 the positive real number determining the grid of

the triangulation.
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We now prove our main theorem.

Theorem 4.3: Let o be a simplex in SI or SJ1, and let d> 0 and S (the

< ~
scaling matrix) be arbitrary. Then, for xe o, IIAO - Df(x)l! = %—a/ﬁ'sd,

s 2 2 2.% . .
where s = (Sll + 822 + .. .+ Snn )° . Hence, for sufficiently small

d, we have good approximations.

Proof: It can be readily confirmed that the grid of SI or SJ1 is sd.

Now, for each i, applying Theorem 2.1,

£t = feoh) 4 peH P - D) + e, WD

or,
fo™h —f ot = pE M - VY + oeeh) - b)) FHEvh)
+ e(vi+l, vi)

Df(x))(v1+l - vl) + e(vi+l, vl), the ith

and letting Ei = (Df(vl)
column of E, we get

AOV = DE(x)V + E

Hence,
-1
o, -peeoll = [
1 ~1
= 7 |les™||
But, if £ = ES 1, &, = gl—— E.. Hence,
i 44 1§
. < 1 .2 L 2. 2
IlEi|| = S0 [d asS., + Lod 8.3 ]
= %—adzé.
Hence, llﬁll é-% /o a dzé, and we have our result.
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5. AN APPLICATION

In this section we will consider the problem of finding a zero of F,
or, equivalently, finding an x such that f(x) = 0. 1In particular, we
wish to study the application of the fixed point algorithms [2], [5],
which generate a sequence of approximate solutions by creating piecewise
linear approximations of f on triangulations of K. 1In such an applica-
tion, zeros of piecewise linear approximations are founa.. Several
important uses of these results have already been made in Saigal [9],

Saigal and Todd [11]. We now establish some basic lemmas, and then

prove the main result.

Proposition 5.1: Let Abe a n X n matrix with IIA[] < 1. Then

det (I + A) > 0.

Proof: Consider the matrix A(t) = I + tA, te[0,1]. Det (A(0)) > 0. Now, assume

det (A(to)) = 0 for sometos[O,l]. Then, for some X, £ 0 A(to)x0 = 0,
oT X + tohAx, = 0 and so-—éL-is an eigenvalue of A. Hence ||A|l| =
0
éL— z 1, which is a contradiction.
0

Proposition 5.2: Let C = A - B and IIA-lC[[ < 1. Then det (AB) > O.

Also (1-t)A + tB is non-singular for each t in [0,1].

Proof: Now, det (A_lB) det (A—l(A-C))

det (I - A Tg),
and we have the first result from Proposition 5.1. Also, since
(1-t)A + tB = A [I - tA_lc] we have the second result using arguments

similar to those of Proposition 5.1.



We now prove the main result in this section.

Theorem 5.3: Let x be such that Df(x) is non-singular. Let K be a

triangulation of RY with grid e and thickness 6. If

where lbf(x)‘lll

Proof:

tA

B, then det (AODf(x)) > 0 where x € o.

Follows readily from Proposition 5.2 and Theorem 3.2.

14
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