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ABSTRACT

We derive the Lipschitz dependence of the set of solutions
of a convex minimization problem and its Lagrange multipliers
upon the natural parameters from an Inverse Function Theorem for
set-valued maps. This requires the use of contingent and Clarke
derivatives of set-valued maps, as well as generalized second

derivatives of convex functions.
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LIPSCHITZ BEHAVIOR OF SOLUTIONS
TO CONVEX MINIMIZATION PROBLEMS

Jean-Pierre Aubin

INTRODUCTION

1. One of the objectives of this paper is to propose a solution
to the much studied problem of the local Lipschitz dependence of
the set of solutions of a (convex) minimization problem and its

Lagrange multipliers upon the natural parameters of this problem.

Namelv, consider two finite dimensional vector spaces X and
Y, a linear operator AO from X onto Y and two proper lower semi-

continuous convex functions U:X =R U{+»} and V:Y->IRU {+x}.

The parameters of the optimization probhlem are the operator

*
A, and the vectors YoEY and Py EX belonging to
i) Yo €Int (Dom V = A0 Dom U)
.. * * *
ii) pOEEInt (A0 Dom V + Dom U )

* * % * *
where AOGEL(Y X ) is the transpose of AO and U and V are the

conjugate functions of U and V respectively.

%*
Then we know that there exist solutions xOEEX and qOEEY to

the minimization problems



Al

U(xo) + V(A0x0-+y0} - <p0,x0>
(2)

= min (U(X) + V(A X +Yn) = <PnrX>)
¢ 0 0
xeX

% % %
U (-Rpqy*tPy) +V (qg) - <dyr¥q>
(3)

* * *
= min, (U (-A,g+c,.) +V (q) - <q,y,>)
* 0 0] 0
qeY

related by the equation
* * *
U(xo) + U (—A0q0-+p0) + V(A0x0-+y0) + VvV (qo)
= <p0,x0> + <q0,y0>

We denote by F—1(p0,y0,A0) the set of pairs (xo,qo) satisfying
the three properties (2), (3) and (4), i.e., of pairs of solu-
tions Xq to the minimization problem (2) and its Lagrange multi-

pliers dq- We state the following problems:

a) Do there exist neighborhoods U of (xo,qo) and V of
(PgrYqyrRy) such that

V(p,y,A) €V, F ' (p,y,B)NU ¥ ¢ 2

b) Does the map (pfy,A)fEV-+F—1(p,y,A) possess a Lipschitz
behavior?

c) Can we find the effect of marginal variations §&p,
8y and SA on the solution X and its Lagrange

multiplier dq ?

For solving these problems, we shall define a suitable concept
of generalized second derivative of convex functions U: for
each X and pOEEBU(xo), the second derivative 32U(x0,p0) is a
monotone closed convex process from X to itself, i.e., a set
valued map whose graph is a monotone closed convex cone. Such
maps are set valued analogs of positive continuous linear oper-
ators. Naturally, if U is twice continuously differentiable,
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82U(x0,p0) coincides with the second derivative in the usual

sense.
We shall prove the following result. If the monotone closed
convex process from X xY to itself defined by the matrix

2 * *

2 -—
0 (3°V(Ax,+yyrap)
is surjective, then there exist neighborhoods U of (xo,qo) and V
of (po,yo,AO) such that, for all parameters (p,y,A) in V, the
set F-1(p,y,A)ﬁU of solutions (x,q) to the problems (2), (3) and
(4) is nonempty. This set of solutions depends upon the param-
eters p, v and A in a Lipschitz way. The marginal variations
of the parameters 8p, 8y and SA and the associated variations
dx and 6g are related by
* * -1 *
§x 82U(x Pn = A Q,) A Sp-8A g
0'+0 00 0 =0
€
2 -1
g A (o V(Ax0+y0,qo)) Sy + A Xq

We shall arrive at this result by building a quite natural
machinery and by piecing together independent results which may

have intrinsic values.

2. We already observed that the solution of the third problem
requires a convenient definition of a derivative of the set-valued
map F, because we cannot assume uniqueness of the solutions with-

out restricting too much the validity of the result.

We also observe that the generalized gradient of a convex
function U is a set-valued map x +- 3U(x). Therefore, the defini-
tion of a generalized second derivative requires a suitable con-

cept of a derivative of a set-valued map.

Finally, the only available strategy for solving the above
problems is to define the set F'1(p0,y0,Ao) of solutions as the set

of solutions to the equivalent (hamiltonian) system of inclusions
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*
i) Pg € BU(xo) + Aoq0

., *
ii) Yo € ~BpX,y *+ 3V (gq)

and use a sort of Inverse Function Theorem for the "matrix" of

set-valued maps

* *
mapping X xY to X XxY.

This is a third reason for introducing one or several concepts
of derivatives of set-valued maps which allow to state Inverse
Function Theorems for set-valued maps involving reasonable and

checkable assumptions.

Inverse Function Theorems for nondifferentiable maps or for
special set-valued maps are already known and widely used. Let
us mention, among other papers, the paper of Clarke [3] using
generalized Jacobians, the papers of Ioffe [1], [2] using fans
and a series of pavers of Robinson [1], [2], [61, [7], [9] studying
inverse functions for sums of differentiable maps and maximal
monotone operators. Robinson used his results in [9] for study-
ing the dependence of the set of solutions upon parameters and
Cornet & Laroque [1] used the Clarke Inverse Function Theorem for
solving the above problems for optimization problems relevant

to economic theory.

3. In this paper, we use an approach due to Ekeland for proving
the Inverse Function Theorem which involves his powerful theorem
(see Ekeland [1]). This approach was used in Aubin [7] for de-
vising an Inverse Function Theorem for set-valued maps, which was
both simplified and dramatically improved by Lebourg [1]. We

shall adopt Lebourg's approach to suit our purpose.

So, we have to tackle the issue of defining a derivative
to set-valued maps. We follow a very simple strategy, which is

the ancient Fermat's geometrical view, which regards the graph




of the derivative at a point as the tangent to the graph of the

map.

If the graph of a single-valued map is a smooth manifold,
then the tangent space at a point is a vector subspace, and thus,

is the graph of a linear operator.

If the graph of a set-valued map is convex, there is still
no ambiguity for defining a tangent cone to the graph, which is
a closed convex cone: then it is the graph of a closed convex
process (see Aubin [6]). When the graph of a set-valued map is
neither smooth nor convex, we have to make a choice of a tangent
cone among the many suggestions proposed in the fast growing
specialized literature. We shall retain only two tangent cones,

the contingent cone, introduced by Bouligand (see for instance

Aubin [7]) and the Clarke tangent cone (see for instance Clarke

[1], [2] and Rockafellar [4], [5], [6] among the many papers
dealing with this topic.) These two cones are closely related
since the Clarke tangent cone at X is some kind of limit of the
contingent cones at x when x converges to Xq- Therefore, prop-
erties of the Clarke tangent cone at a point Xq vield (weaker)
properties of the contingent cones at the points of a neighbor-
hood of Xgr

suit our purposes.

properties which are most of the time sufficient to

The Clarke tangent cone is always a closed convex cone con-
tained in the contingent cone. Therefore, we shall define both
contingent and Clarke derivatives to a set-valued map, whose
graphs are the contingent cone and the Clarke tangent cones to
the graph.

Maps with closed convex graph are called closed convex

processes (see Rockafellar [1], [2]) which are the set-valued
analogs of continuous linear operators. So, Clarke derivatives

are closed convex processes. Closed convex processes enjoy many

properties of the continuous linear operators, and, specially,
the Banach open mapping principle, which plays an important under-
lying role in the Inverse Function Theorem. Robinson [2] and

Ursescu [1] proved that the inverse of a surjective closed convex

process is a Lipschitz set-valued map.
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The Inverse Function Theorem that we shall propose has a very

simple formulation.

Let F be a set-valued map with a closed graph and let
(xo,yo) belong to the graph of F. Assume that the Clarke
deritvative of F at (xo,yo), which 1s a closed convex process,

18 surjective. Then there exist neighborhoods U of X, and V
of ¥q such that yeEV-*F_1(y)ﬂu has nonempty values and 1s quasi-
Lipschitz.

4. The Inverse Function Theorem is certainly as useful for other
applications as the classical one. We propose in this paper to
use it for "computing" the Clarke tangent cone to subsets of the
form LfWA_1(M) where L CX and MCY are closed subsets and where
A is a continuously differentiable map from X to Y. We denote

by C_ (x) the Clarke tangent cone to K at x.

K
When L and M are convex and A is linear, we know that the

condition
(6) 0eInt (M-A(L))

implies that

1

(7) c Cpq (Bx)

LA~ (M) (x) = CL(X) Nna

(See Aubin [2]), [3] and [6], for instance).

For nonconvex subsets, Rockafellar [4] has proved that the

condition
(8) 0 € Int CM(Ax) - VA(X)CL(x)
implies that
-1
N
(9) CLnA_1(M)(x):DCL(x) A CM(Ax) .

The Inverse Function Theorem allows to relax assumption (8) and

to replace it by the weaker assumption



(10) CM(Ax) - VA(X)CL(X) =Y

(which is equivalent to 0 € Int (CM(Ax)-VA(x)CL(x)). This as-
sumption does not require that the Clarke tangent cone to M has
a nonempty interior. Such formulas allow to devise a satisfying

calculus for Clarke derivatives.

5. We define in a first section the contingent and Clarke tan-
gent cones and, in the second section, the contingent and Clarke
derivatives of a set-valued map. We devote the third section

to the Inverse Function Theorem, which we apply in the fourth

. -1
N
for proving the formula CL(xo) VA(xO) CM(AxO) CCL (XO)-

=T (M)
The fifth section deals with the proof of the regularity of the
solutions of an optimization problem. Since the surjectivity of
the Clarke derivative plays such an important role, we adapt in
the last section the Lax-Milgram Theorem to closed convex pro-

cesses.

1. CONTINGENT AND CLARKE TANGENT CONES

We recall the definitions of RBouligand's contingent cone
to K at x and of the Clarke tangent cone and we mention the
properties we need. Let K be a nonempty subset of a Banach
space X. We denote by e€B and eg the ball (resp. open ball) of
center 0 and radius € >0. We set BK(xo,e): = Kﬁ(x0-+eB) and

the symbol xizxo denotes the convergence of x to X in K.

Definition 1

We say that the subset

1

(1) Tg(x) =N N U (g(KR-x) +¢eB)
e>0 a>0 O<h<a
is the "contingent cone" to K at x. -

In other words, VEETK(X) if and only if

¥e >0, YVo>0, Zuev + ¢B, Zhe]0,a]

(2)
such that x + huek ’



or, egquivalently, VGETK(X) if and only if there exists a sequence

of strictly positive numbers hn and of elements unGEX satisfying

(3) 1) 1lim u, = v, ii) 1lim h 0, 1i1i) VnZO,x+hnun€K

n—>oc n-—»>oo

We characterize the contingent cone by using the distance

function dK(-) to K defined by dK(x): = inf {lIx-yll |y €K}:
dK(x-+hv)
(4) VET,(x) if and only if 1lim inf ——— = 0 . ®
h > 0+

It is guite obvious that the contingent cone is a closed cone,

which is trivial when x belongs to the interior of K:
(5) When x €Int (K) , then TK(x) = X

For all x € X, we have Tx(x) = X. We shall set T¢(x): = ¢, |

It is convenient to recall the definition of the "limitinf" of

a family of subsets F(u).

Definition 2

Let U be a metric space, Uy belong to U and F be a set-
valued map from U to X. We set

(6) lim inf F(u): = N U N (F (u) + €B)
u-~ru e>0 n>0 uEB(uo,n)

We observe that

(7) lim inf F(u)(ZF(uO)
u"*u0

and that F is lower semicontinuous at u, if and only if

0

(8) F(uo) = 1lim inf F(u)
u-u,

Let us set d(v,K) := inf | v-wll
weEK



It is useful to notice that v belongs to lim inf F(u) if and

only if 4”4y
(9) ¥e >0, 3In>0 such that sup d(v,F(u)) <e.
u€B (uy,n)
Definition 3
We say that the subset
(10) Cplxg):=1lim inf f(K-x):= N U N (£(K-X) + B)
h > 0+ e>0 «,B>0 xEBK(xo,a)
X > X
g0 hel0, 8]
is the Clarke tangent cone to K at Xq- (See Clarke [1]) a

In other words, VGECK(XO) if and only if

¥e >0, 3a>0, @R8>0 such that VXGBK(xo,a) ’

(11)
¥Yhe€]0,R], 3u€v+eB satisfying x+hu€Xk ,

or, equivalently, if and only if

o)
for all sequences of elements (xn,hn)erlR+
converging to (xO,O), there exists a seqguence

(12) of elements u €X converging to v such that

X, + hnun belongs to K for all n.

It is also characterized in the following way

dK(x-+hv)
(13) VGECK(XO) if and only if lim 5 = 0 .
X >Xg
K
h-»> 0+

The Clarke tangent cone is obviously contained in the con-

tingent cone. Actually, we observe that
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(14) CK(XO)<lem inf TK(X)
X>X
K 0

If not, there would exist v. in CK(xo) such that Vo does not

0
belong to lim inf TK(x). The latter property means that there exist
X > X
0
K

€ >0 and a sequence of elements X converging to X such that
N =
(v04-eB) TK(xn) ¢.

Then there exists a sequence of elements hn >0 converging to 0

such that

1
N (— - =
(15) (v04-€B) (hn(K xn)) ¢ for all n
Since Vo belongs to CK(xo), there exists a sequence of elements

v, converging to Vo such that X + hnvn belongs to K. This 1is

a contradiction of property (15).

]
A theorem due to Cornet (see Cornet [1], [2]) states that
CK(XO) is equal to lim inf TK(X) when X is finite dimensional
X >X
K0

(see also Penot [1]).

Theorem 1. Let K be a nonempty closed subset of a

finite dimensional space. Then

(16) Cg(xy) = lim inf Ty (x) = lim inf co Ty (%)
X>X X?>x
K0 K°0

Corollary 1

Assume that X is finite dimensional.
The set-valued map x-+TK(x) is lower semicontinuous at X
if and only if the contingent cone to K at X coincides with the

Clarke tangent cone to K at xo. A

For the sake of completeness, we provide Cornet's proof,

which is based on the following lemmas.
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Lemma 1

Let KCX be a closed subset. We denote by WK(Y) the subset
of elements x €K such that lx-yll = dK(y). We obtain the follow-

ing inequalities
(17) vy €K, vx € T (), Yv € co Ty (x), then <y-x,v><0 . A

Proof.

Let XGEWK(Y) and veETK(x). We deduce from the inequalities

fy=-xll - dK(x-+hv) = dK(y) - dK(x-+hv) < lly=x-hvll that

d., (x+hv)
<y ‘)_{r V> 1im Ly=x| _h”Y'x"hV” < lim inf Kh—_ =0
Il y=xIl h - 0+ h -+ 0+
for v # x, u~|u|| is differentiable at u #¥ 0 and VGETK(X). So

<y -x,v><0 for all VGETK(X), and, consequently, for all v e&co TK(x).

]
Lemma 2

For any y €X, we have

.. 1 2 2 —
(18) lim inf EH(dK(y+hv) -dK(y) ) < dK(y)d(v,co TK(HK(Y)) .
h -+ 0+ N
Proof.
Let us take x in WK(y). We observe that
1 2 2 1 2 2
L (@ v 2 -a, (1% < S (iy+hv-xi 2 - ) y-x) ?)
because dK(y) = ||ly=-x||. Therefore
lim inf == (4, (y*hv)2 - d_ (y)) 2 < <y=-x,v>
2n 9k 'Y g Y 2 SYTEy

h -+ 0+

and, for all weco T, (x), we deduce from the above lemma that
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lim inf _ (dK(y+hv)2-dK(y)2) < <y-X,V-w>

h+o+ 20
< Ny=xliliv-wll = d (¥ lv-wl
Lemma 1 ensues by taking the infimum when w ranges over co Ty (%)

and x over ﬂK(y).

Corollary 2

Let us consider the Lipschitz function f defined by f(t):=

%dK(x+tv)2, For almost all t > 0, we have

(19) £'(t) < dp(x+tv)d(v,co Ty (m (x+tv))) .

Proof of Theorem 1

Let v, belong to lim inf co Ty (Xx). Then, for all e >0,
X > X

there exists n >0 such that, for all X € By (x4,n), VOGEES TK(x)-+eB.

Now, if x belongs to BK(xO,a) and £t€10,R[, then ﬂK(x-+tvO) C
BK(xO,n) whenever 2o + BHVOH < n. This happens for instance when
- 2

a: = n/4 and B: = n/2HvOH. By setting f(t): = % dK(X+tVO) ; We
deduce from Corollary 2 that

£'(t) < dK(x+tV0)d(vO,co TK(WK(x+tvO)))

< edp(xttvy) < etllvll

because Ay (x+tvy) < tlvoll -

Therefore, for all XEBK(XO,OL) and t€10,8],

1 2 h h?

5 dK(x+hv0) = £f(h) - £(0) = [ f'(t)dt < ellvyllz

0

and consequently,

d. {(x+hv,.)
lim X0 _ 4
X'*xo h

h > 0+
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This implies that Vo belongs to the Clarke tangent cone CK(xo).

Then, by formula (14), we obtain:

lim inf T, (x) € 1lim inf co T, (x) CC_(x,) Clim inf T_(x)
K K K70 K
X > X X+ X X > X

We recall that when K is closed and convex, both the contingent
cone TK(xo) and the Clarke tangent cone CK(xo) coincide with the

tangent cone to K at xO:

1
(20) C,(x.) = T_ (x.) = cl( U = (K-x 9 .
K70 K70 h>0 h 0

2. CONTINGENT AND CLARKE DERIVATIVE OF A SET-VALUED MAP

We adapt to the case of a set-valued map the intuitive
definition of a derivative of a function in terms of the tangent

to its graph.

Let F be a strict set-valued map from KCX to Y. (We say
that F is strict if its images F(x) are nonempty for all xe€XK.)

Let x, €K and yOEF(xo).

0
We denote by DF(xO,yO) the set-valued map from X to Y whose
graph is the contingent cone Tgraph(F)(xo’yo) to the graph of F
at (xo,yo).

In other words,

(1) VOEDF(xo,yo) (uo) if and only if (uo,vo) ETgraph(F) (xo,yo) .

We observe that Vo belongs to DF(xO,yo)(uO) if and only if

There exist sequen > 0+ - -
guences hn 0+, u, > ug and Va Vo

F(xath u ) -y
such that v_e€ 0O n'n O for all n

hn
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Definition 1

We shall say that the set~valued map DF(xO,yO) from X to Y
is the "contingent derivative" of F at X €K and yOGEF(xo).

It is a "process", i.e. a positively homogeneous set-valued

map (since its graph is a cone) with closed graph.

We shall give an analytical characterization of DF(xO,yO),
which justifies that the above definition is a reasonable candi-
date for capturing the idea of a derivative as a (suitable) limit
of differential quotients. We extend F to X by setting F(x) = ¢
when x € K.

Let F be a set-valued map from KCX to Y and (xo,yo) belong
to graph(F). Then Vo belongs DF(xO,yO)(uO) if and only if

F(x0+hu)--yO

(3) lim inf d(vO , ) = 0

h ~ 0+ h

u->ug

A
When F is a single-valued map, we set
(4) DF(x4,yy) = DF(x,) ’
since Yo = F(xo). The above formula shows that in this case,
Vo belongs to DF(xo)(uo) if and only if
F(x,thu) - F(x,) - hv

(5) lim inf L0 0 ol _

h » 0+ h

u~ug,

When the

If F is differentiable, then DF(xO)(uO) = VF(xO)-uO.

graph of F is convex, we observe that v, belongs to DF(xO,yO)(uO)

0
if and only if

F(xo+hu)--yo
(6) lim inf (inf d<VO' )) = 0
u->u, h>0 h

We say that F is Lipschitz on a neighborhood U of Xo € Int (RK) if
there exists a constant c >0 such that ¥x,y €U, F(x) CF(y) + clx-ylB.
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Proposition 1
Assume that F is Lipschitz on a neighborhood of X (belonging

to Int K). Then Vo belongs to DF(xO,yO)(uO) if and only if
F(x,+hu,) -y
(7) lim inf d(vo, 0 0 °> =0 .
h » 0+ h

Furthermore, if the dimension of Y is finite, then

(8) Dom DF(xO,yO) = X .
Proof
a) The first statement follows from the fact that
(9) F(xy+hu) - yOCF(x0+hu0) - Yo * 9,h||u-u0||B

when both h and Hu-uOH are small.
b) Let u, belong to X. Then, for all h>0 small enough,

(10) yOGF(xo) CF(x0+hu0) + zhﬂuollB

GF(x0+hu0) such that (vh—yo)/h belongs

Hence, there exists Vi
toQHuOHB, which is compact. A subsequence (vh --yo)/hn converges
n
[

to some Vor which belongs to DF(xO,yO)(uO).

We point out that

€K, VyOGF(x DF(xo,yo)“1 = D(F-1) (yorxo)

(1) VX, o) 7

Indeed, to say that (UO'VO)eETgraph(F)(XO'yO) amounts to saying

Contingent derivatives allow to "differentiate" restrictions

of a map or a set-valued map to a subset.
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Proposition 2

Let F be a single-valued map from an open subset Q of X
to Y differentiable at x
Then

OGEK and K be a nonempty subset of Q.

VF (xO)u0 if U, € TK (xo)

(12) DF|K(x0)u0

) if uodETK(xo)

Proof

If F is a differentiable single-valued map at Xq and U,
belongs to TK(xo), then there exist sequences hn-+0 and u, >y,

such that x +hnun belongs to K. Since

0

F|K(x0+hnun) = F(xg+hu) = F(xy) + h (VF(xg)u +0(h))

we deduce that the elements Vo= VF(xo)un + O(hn) converge to

VF(xO)u0 and belong to (FIK(x0-+hnun)-F|K(xo))/hn. Therefore,

DF|K(x0,F(x0))(u0) = VF(xo)u0

A
We follow the same procedure for defining the Clarke derivative

of a set-valued map from X to Y.

Let (xo,yo) belong to the graph of F. We denote by CF(xo,yo)
the closed convex process from X to Y whose graph is the Clarke
tangent cone Cgraph(F)(XO'yo) to the graph of F at (xo,yo).
Briefly

(13) VO<ECF(x0,y0)(u0) if and only if (uO’VO)ezcgraph(F)(XO’yo)‘

Definition 2

We shall say that the closed convex process CF(xO,yO) from
X to Y is the Clarke derivative of F at xoezDom F and yoezF(xo).

We observe that Vo belongs to CF(xO,yO)(uO) if and only if
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0
for all sequences of elements (xn,yn,hn)ezgraph(F) * IR,

converging to(xo,yo,o), there exist sequences of
(14) elements u converging to u, and Vi converging to

Vo such that Yot hnvne F(xn + hnun) for all n>0

We shall avoid using the analytical formula playing the role of

formula (3), which involves a sort of mixture of both limsup and
liminf. It is simplified when F is Lipschitz on a neighborhood

of xoeInt Dom F.

Proposition 3

Assume that F is Lipschitz on a neighborhood of an element

Xy € Int Dom F. Then v, belongs to CF(xO,yO)(uO) if and only if

F(x+hu0) - Yg
(15) lim d vy = 0 .
x-+x0,h-+0+ h a
K
The proof is analogous to the one of Proposition 1. When F is

single-valued, we shall set

(16) CF(xO): = CF(xO,F(xo))

If F is continuously differentiable at Xqr We have
(17) CF(xO) = VF(xO) .

Naturally, the formula on Clarke derivatives of inverses is obvious:

(18)  ¥(xy,y,) €graph(F), CF(xy,yy) | = C(E ) (yy,x,) -

Proposition 4

Let F be a single-valued map from an open subset Q of X to Y,
continuously differentiable at xOGEQ, and K be a nonempty subset
of X. Then



-18-

VF(xo)u0 if U, € CK(XO)

(19) CF |, (xy)u,

¢ if u0¢cK(x0)

Proof

o) . 0
Let (xn,hn) €K X ]R+ converge to (xO,O) in K x IR_. If U,
belongs to CK(xo), there exists a sequence of elements u, con-

verging to U, such that X + hnun belongs to K for all n. Then

F|K(xn+hnun) = F(x,+hu ) = F(x ) + h (VF(x )u +0(h)).

Since F is continuously differentiable, the sequence of elements
v, o= VF(xn)un + O(hn) converges to VF(xo)u0 and we have
FIK(xn) + hv = FlK(x+hnun) for all n.

Proposition 5

Let F be a monotone map from X to X* and (xo,yo) belong to
the graph of F. Then the Clarke derivative of F at (XO’YO) is a

monotone (closed convex) process from X to X*.
A

Proof

Let (ul,vY) (i=1,2) belong to the graph of the Clarke deri-

vative CF(xo,yo). We take X 8 = X0 ¥ = Y, and hn.>0 converging

n:

to 0. Then there exist sequences (u;,v;) converging to (ul,vl)
i i . .

such that Yo + hnvnéEF(xo-+hnun) for all n>0 (i=1,2). Since F

is monotone, we deduce that
2 1 2 1 2
hn <vn Vi ,un-un>

2

= <yy+h vl = (yg+h v2) ,x +h ul - (x,+h ul)> > 0

|
An important class of monotone maps from X to X* is provided by
the subdifferentials of convex functions.
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Definition 3

Let U:X » RU{+=} be a proper convex function. Assume that

U is subdifferentiable at x,. and let pOEEBU(xo) be a subgradient

0

of U at Xg- We shall say that

(20) 32U(x0,p0); = C3U(x,P,)

is the second derivative of U at (xo,po).

Then BZU(x
*
X to X

O,po) is a monotone closed convex process from

Proposition 6

Let V be a proper lower semicontinuous convex function from

*
X to RU{+=} and V its conjugate function. Then

(21) 22V (pgixy) = (3%V(xg,pp)) 7

Furthermore, if qofzazv(xo,po)(uo), then
. . *
(22) 1) D+V(x0)(u0) = <pgy,uy> ii) D,V (po)(qo) = <4yrxg> -

where we set

(V(x0-+hu) - Vi(xg)

D _V(x,) (u,) := lim inf .
+ 0 0 h » 0+ h ,
Proof "7l
*
a) The first equality is straightforward, since 3V is the

inverse of 3V.

b) Since V is convex, upper contingent and Clarke derivatives
coincide. Since q0<EC(3V(x0,pO))(uO), we can associate
with a sequence of elements hn.>0 converging to 0 a se-
quence of elements (un,qn) converging to (uo,qo) such
that Py * hnqn belongs to 8V(x0-+hnun) for all n. We
obtain the inequalities

i) V(x0+hnun) - V(xo) < hn <p0-+hnqn,un>

ii) V(xo) - V(x0+hnun) <-h, <Pyrup”
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from which we deduce formula (22)i). The second formula (22)ii)

is obtained in the same way. a

By taking for function V the indicator of a closed convex

subset, we obtain:

Corollary 1

Let K be a nonempty closed convex subset, Xq belong to K

and Py belong to the normal cone NK(xo) to K at X

If d, belongs to CNK(xo,pO)(uO), then

i) pOENK(xo), uOETK(xo) and <'p0,u0>=0
(23)
ii) D+oK(p0)(q0) = <dyrXg> .

is the support function of K).

(where o
K A

Proposition 7

Let K be a nonempty closed convex subset of a Hilbert space
X and Py belong to the normal cone NK(XO). Let N, denote the
set-valued map x-*NK(x) and T denote the Lipschitz single-valued
map associating to x its best approximation ﬂK(x)GEK by elements
of K. Then the two following statements are equivalent.

b) uOECwK(x0+pO) (u0+q0) .

The same result holds when the Clarke derivative is replaced by

the contingent derivative. .

Proof

We recall that p belongs to the normal cone NK(x) if and
only if x = m, (x+p).

a) Assume that d belongs to CNK(xo,pO)(uO). Let us
consider a sequence of elements (yn,hn)E)(x]§+ converging to

(x0-+p0,0). We set x : = ﬂK(yn), which converges to x, =

nK(x0-+po) and Ppt = Y, ~ X which converges to Po- Then there
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exist sequences of elements u, and q, converging to U and q,

(x +h

K (¥n nun) for all n, i.e.,

such that P + hnqn belongs to N
such that ﬂK(yn) + hnun = ﬂK(yn+-hn(qn+un)) for all n. Hence

u, belongs to Cmy(xq+pg) (uy+qp).

b) Conversely, assume that Uj belongs to CﬂK(xo-+p0)(uo+-qo).

0
Let (xn,pn,hn)fzgraph Ny x R, converge to (x 0). Since

K Olpol
X + p, converges to X + Por there exist sequences of ele-

ments u, and W converging to U, and v, + 9 such that x + hnun==
WK(xn-+pn) + hnun = ﬂK(xn-+pn-+hnwn) for all n. Then q,: =

w_ - u_ converges to u

n n and we deduce that P, + hnqnGENK(xn-+hnun)

0
for all n. Hence d, belongs to CNK(xO,pO)(uO).

.
Corollary 2
Let us consider the set-valued map associating to xezﬂﬁ}
the normal cone N n(x) to ﬂﬁ} at x. Let p0 belong to N Il(xo).
R IR
0 * 0 _0,,.0 *
Then g belongs to CN I#x (P ) (u”) if and only if
IR
+
e L0 0 _
{0} if x; > 0 (and thus, p; = 0)
. 6 if x% =0 p2 <0 and u, ¥ 0
= i i-— i
1 R if xq = 0 pq < 0 and u, = 0
i i i
. 0 _ 0 _ -
{o} if x; =0 p; =0and u, =0
A
Proof
We observe that n(x1,...,xn) = (n(x1),...,n(xn)) where
R,
1(x) = 0 when x < 0 and w(x) = x when x > 0. Since Cm(x)(u) = 0
when x < 0, u when x > 0 and Cm(0) (u) = ¢ when u # 0 and
Cm(0) (0) = 0, we obtain the above corollary.
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3. THE INVERSE FUNCTION THEOREM

We shall extend the usual Inverse Function Theorem for con-
tinuously differentiable single-valued maps to the case of set-

valued maps with closed graph.

We set

d(a,B):

sup inf |ix-yll
XEA yEB

We make precise what we mean by Lipschitz behavior.

Definition 1

Let F be a proper set-valued map from X to Y and (xo,yo)
belong to the graph of F. We say that F_1 is "pseudo-Lipschitz"
around (yo,xo) if there exists a neighborhood W of Yor two
neighborhoods U and V of X UcCcv, and a constant & > 0 such that

i) wyeuw, F'1(y)nu;£¢
(1)

s -1 =1
) Wy .y, €W, d(F (yNU, F oy, )NV) < 2llyg-y,ll .

A

See Rockafellar [8] for a study of these properties.

Theorem 1. Let F be a closed set-valued map from

X to Y and (xo,yo) belong to graph (F). We
assume that

i) both X and Y are finite dimensional

(2) ii) the Clarke derivative CF(xO,yO) of F at (xo,yo)

is surjective (i.e., Im CF(xO,yO) = Y).

Then F~| is pseudo-Lipschitz around (y,,%y) -
A

The same statement is proved in Rockafellar [8] by other methods,

using the properties of Rockafellar [7].
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Before proving this theorem, let us mention a useful
corollary on nonlinear equations "with constraints".

(3) {Find a solution x in K to the equation F(X) = y where

the solution is required to belong to a closed subset K.

Corollary 1

Let F be a map from an open subset § of X and K be a closed
subset of X. Let F|K denote the restriction of F to K.

We posit the following assumptions

i) the dimensions of X and Y are finite
(4) ii) F is continuously differentiable at Xp€0QNK
iii) ¥vey,3ue CK(xo) , the Clarke tangent cone

to K at Xqr solution to VF(xO)u = v

Then

(5) F1 is pseudo-Lipschitz around (y,.x)-

When K is the whole space X, we obtain the usual Inverse Function
Theorem for single-valued maps.

We shall deduce Theorem 1 from a rather general result, which
is a slight modification of a theorem due to Lebourg [1] (see
also Aubin [7]).

Theorem 2. Let F be a closed set-valued map from
a Banach space X to a Banach space Y. Let
(xo,yo)ezgraph (F) be fixed. We assume that
there exist constants a € [0,1[,n>0 and ¢ >0

such that

for all (x,y) €graph(F) satisfying llx-xgl +
ly=yqll <n, for all veyY, there exist uex
and we€Y such that
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i) vEDF(x,y) (u) + w
(6)
ii) lull < cllvl and llwll < allvl
Let us set
n(l-a) -1 -1 c+2a
(7) r: = ——— 8 F : = F N +
3 (1+a+ec) | 0 ¥) ¥ (XO 1-a ¥B)
- - 3 (c+20)
F11(y):= F 1(y) Nlx, + ——— rB .
0 1-0
Then ¥~ | is pseudo-Lipschitz around (y,,x;):
Namely,
. 0 ~1
i) VYEY,+rB , F, (y) # ¢
0
(8) ii) Vy1,yzeyo+rB ,
-1 -1 c+2a
a(Fy (yq)s Fqo(yy) < = llyy -y,

Proof

o)
Let Y4 and Yo belong to the open ball Yo + rB. Assume for

the time that there exists X, satisfying

-1 =1 | . _ ct2o
(9) XxiE€F, (yq): = F (yq) N (x5 +2rB) where &: = 57~ .
This is possible when we take Y1 =Y, and X, = xOE We associ-
: Hy1—y2H
ate with any pe]ﬂy1-y2H,2r] the number c: =
Hy1—y2H-+lo

which satisfies

3”Y1 _y2” 1-a

(10)
2n = e 1+c+a

We apply Ekeland's Theorem (see Ekeland [1] or Aubin [1], p.174)
to the continuous function V defined on the graph of F by

V(XIY) = ”y2 - Y.
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Since it is complete, there exists (x,y) € graph (F) such

that

1) Y=Y ll + e (Ix=x41l + 1 ¥-y41) < lyq=Y,ll
(11)
ii) ¥(x,y)egraph (F), IIy-y,lI <lly-y,l +e(Ix-xlI+ly-yl) .

Inequality (11)i) implies that

— - 1 2n
”X"X.IH + ||y—y1|| < T Ily1 -y2H < 3

Therefore

X 7- 2n - -
1X-xoll + 17-ygll < S+ lxg =%l + lyy =yl

< %? + <c+2a +1) r = 2n + ltatc r = 2n + % =n -

Conseguently, we can apply assumption (6) with v: = y2—§: there
exist u and w satisfying
i)  y,~YE€DF(X,y) (u) +w

(12) |
ii) lull < cHy2'§U and llwll < aHy2-§H .

By the very definition of the contingent derivative DF (X,Y),
we can associate to any ¢ >0 elements he]0,6], uGGEGB and
VGGEGB such that the pair (x,y) defined by

x=1’_<—+hu+hu(,S ’ y=§+h(yz—§)-hw—hv(,S

belongs to the graph of F. Using this pair in ineguality (11)ii),

we obtain
Hy2-§H < (1-h)Hy2-§H + hllwll + he(HuH*—Hy2—§H-+HwH)

+ h((1+€)Hv6H-+€Hu6H) .
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We divide this inequality by h >0 and we let § converge to 0.
We get

Hy2-§H < e(HuH-+Hy2—§H) + (1+e) llwl

Therefore, inequalities (12)ii) imply that

ly =yl < (e(c+1) +a(1+e))lly,-vl .
. 1-a . - - .
Since € < Sri+a ' ve infer that Yy =Y and thus that x is a

solution to the inclusion y2€EF(§); by setting y, = y in in-
equality (11)i), we get

—_ 1 _
Ix-x4l < (= Dllyq=y,Il = 2p < 22 .

= - -1
Therefore, x belongs to F 1(y2)f'\(x1+22rB)CF1 (y2) and thus,

-1 = 1 -
d(x, F7 (v))) < IF-x,0 < (2= Dllymy,l = %o .

By letting p converge to Hy1—y2H, we deduce that

-1
(13) d(x1,F1 (y2)) < ﬂHy1-y2H .

We can always take (x1,y1) = (xo,yo). We thus have proved
that

o _ -1 Lo c+2¢
(18) Vy2€y0+rB,jx2€Fo(y£.-F (yﬁrﬂ@04-7tg-ﬂ9

(because Hy2—y0H <r instead of 2r).

In other words, the set-valued map FO has nonempty images
when y ranges over the open ball Yo * r8. Inequality (13)
implies that

- - -1
A(F- (y) /F (y,)): =  sup d(x,,Fo (y))
0 1 1 2 =1 1771 2
X, €Fp (y1)
c+2q
1‘(1 I|Y1_Y2“
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The proof of the Inverse Function Theorem 1 follows from the

above theorem and the following lemma.

Lemma 1

Let us assume that the spaces X and Y are finite dimensional.

Let (x ) belong to the graph of F. We assume that

0'¥o
(15) the Clarke derivative CF(xO,yo) maps X onto Y.

Then, for all o >0 there exist constant ¢ >0 and n >0 such that

for all (x,y) €graph (F) satisfying
Ix=x4l + lly=y4ll < n
and for all v€Y, there exist u€X and w€Y satisfying

(16) vEDF(x,y)(u) , Hull < clivil and Hwl < clivil .

Proof

Since CF(xo,yo) is a closed convex process, Robinson-Ursescu's

Theorem implies the existence of y >0 such that

(17) YB CCF (x4,y,) (B) .

(See Robinson [2], Ursescu [1].)

Let K = (B x yB) ngraph CF(xO,yo) = (BxyB)N CF(xo,yo)

where CF(XO’YO) is the Clarke tangent cone to the graph F of F

at (xo,yo). The subset K is compact because the spaces X and Y

are finite dimensional.

Since the Clarke tangent cone is the Liminf of the con-

tingent cones:

CF(XOIYO) = N U N (TF(XIY) +0«(BXB))
a>0 n>0 (x,y)GBF(xo,yo;n)
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and since KCZCF(xo,yO) is compact, we deduce that, for all o >0,
there exists n >0 such that for all (uo,vo) ek, (x,y)EBF(xo,yO;n),
we have (uO,VO)GETF(x,y) + a(B xB).

Now, take v in Y. Then Vg = fe% belongs to YB and by (17)

there exists uO<EB such that (uo,vo) belongs to K. Then, for
all (x,y) €Bp(x4,¥4in), there exist u €oB and v, €0B such that

(u -ua,vo-va)EETF(x,y), i.e. such that

0]
Vo €DF (x,Y) (u0 —ua) + v,
We set u: = vl (u,-u ) and w = Ivil v . Then v &EDF(x,y) (1),
: Y 0 o Y o
lull < 1*a vl and liwll < % I+ .

4. CLARKE TANGENT CONE OF AN INVERSE IMAGE

The Inverse Function Theorem allows to prove the formula

-1
(1) CL(xo) N VA(xO) CM(Axo)CZC (x

)
e~y 70

under conditions weaker than the ones in Rockafellar ([4].

Theorem 1. Let X and Y be finite dimensional spaces,
A be a continuously differentiable operator
from an open subset QCX to ¥, LCX and
MCY be closed subsets of X and Y respectively.

We assume that there exists xOGSIHIJﬂA_1(M) such that

(2) VA(XO)CL(XO) - CM(Axo) =Y .

Then

-1

CL(xo)rWVA(xo) (x.) .

C, (Ax,) cC
m(B%0) € Cpp-1 () o .

The theorem follows from a series of lemmas. First, we

introduce the set-valued map F defined by

A(x) - M when x€L
(3) F(x): =
¢ when x€L
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We observe that

{x eL|ax e M+y}

e |
o
I

Lemma 1

Let Yo belong to F(xo). The following conditions are equi-
valent.

a) Vo ECF(xo,yo) (uo)

b) uOGCL(xo) and VOGVA(xo)u0 - CM(Axo—yO)

Consequently, CF(xO,yO) is surjective if and only if

VA(xO)CL(xo) - CM(AXO-yO) =Y

Proof
a) Let us prove that a) implies b). We take sequences
o 13
(xn,zn,hn) €L xMx IR, converging to (xO,AxO-yO,O) . Then Yqi =
A(xn) - z  converges to Yo and, by a) there exist sequences u

and v, converging to U, and vy such that x, + hnunGEL and
A(xn-+hnun)<EM + Yy + hnvn for all n. This implies that U,
belongs to C (xo) and that VA(x,)u,-v, belongs to Cy (Bxg = ¥,)
because woi o= A(xn-+hnun) - A(xn) - v, converges to VA(xo)uo--v0

and because z. + hnwn belongs to M for all n.

b) Conversely, let us show that a) follows from b). We
take seguences (xn,yn,hn)ézgraph (F) XJ§+ converging to (xo,yo,O).
There exists a seguence u, converging to u, such that X, + hnun
belongs to L and, since Axn -y, converges to AxO - Yq in M,
there exists a sequence of elements W converging to VA(xO)uO-vo
and satisfying Axn -y, t hnwnGEM for all n.

Then the sequence of elements v : = A(xn-+hnun) - Axn - vl

n
converges to v, and satisfies Yo t hnvnezF (xn-+hnun) for all n.
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Lemma 2
We posit assumptions of Theorem 1. There exists a neighbor-
hood U0 of Xq in L such that
(4) vxel, ,  d(x,F (0)) < a4, (ax) .
A
Proof
We take Yo = 0 and xOGEF-1(0). The Inverse Function Theorem

implies that F—1 is pseudo-Lipschitz around (O,Xn): then there
exists a neighborhood U of Xgr @ ball of radius r in Y and a
constant 2 > 0 such that

1

0 - -
Yy €ErB, Wx€F 1(y)ﬁu » d(x,F (0)) < 2yl .

We can choose U so small that HA(x)-—A(xO)H < r when X ranges

over U. Any x€LnlU belongs to F—1(A(x)-ﬂM(Ax)) because

12 (x) = my(Ax) ]l < lAx - Ax ll < r

Therefore we know that for all xfEUO: =LnNdu,
a(x,F71(0)) < 2Ax) -my (Ax) -0l = 2d,(ax)
.
Proof of Theorem 1
Let u, belong to CL(xo)fWVA(xO)-1CM(AxO). There exist
a>0 and B >0 such that x + hu, belongs to U,: = Lﬁ(xo+-rB)
when llx-x,ll < o and h < 8. Since F-1(0) = 1”1 (M), we deduce
from the above lemma that
d(x+huO,F_1(0)) ddé(x+huoﬂ
< C
h - h
c dM(Ax+hVA(x0)uo) . . HA(x+hu0)-A(x)—hVA(xo)uOH

h h
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The first term on the right-hand side converges to 0 because
vA(xO)uO belongs to CM(Axo) and the second converges also to 0

because A is continuously differentiable. Hence U, belongs to

c .
r=1(0) (%0’ -

5. REGULARITY OF SOLUTIONS TO CONVEX OPTIMIZATION PROBLEMS

We introduce

i) two finite dimensional spaces X and Y

ii) a linear operator A from X to Y

(1)

iii) two proper lower semicontinuous convex

functions U:X +~ RU{+=} and V:Y¥ + RU{+x}.

We take

i) yOEInt (Dom V - A, DomU)

(2) 0

L * * *
ii) pOEInt (A0 Dom V + Dom U )

%
We recall that the solutions (xo,qO)E)(xY of the optimization

problem
i) U(xo) + V(A0x0+y0) - <p0,x0>
= min (U(x) +V(Agx+y,) = <pgrXx>)
xEX
. * * *
) < ii) U (—A0q0+p0) +V (qo) - <qolY0>

* * *
= min (U (-Agq+py) +V (q) - <q,y4>)
g€y

. * * *
iii) U(xo) + U (—A0q0+p0) + V(A0x0+y0) + Vv (qo)

<p0lx0> + <quYO>
are the solutions to the system of inclusions

) *
i) poeaU(xo) + Byq,
(4)
. . *
ii) yg€ ~Agx, + 3V (qo) .

(See Aubin [2], chapter 10 or Aubin [3], chapter 14.)
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We shall study the behavior of the solutions (xo,qo) to this
system with respect to the parameters Pgr Yy and AO.

For that purpose, let us denote by F_1(p,y,A) the subset

of solutions (x,g) to the problem

i) peEsu(x) + A'g
(5)

*
ii) y€-Ax + 3V (q) .

Let us recall that we denote by 82U(x,p) the Clarke derivative
of the set-valued map x~+ dU(x) at (x,p) where p € 3U(x).

Theorem 1. We posit assumptions (1) and (2). Let (xo,qo)
be a solution of problem (3). We assume that

the monotone closed convex process from X xY
to itself defined by

*

2 *
d U(xo,po-—Aoqo) A,

2 -1
A, ) V(Axo +yo,q0))

is surjective.

Then

(6) F is pseudo-Lipschitz around (po,yo,Ao,xo,qo)-

Furthermore, the derivative of F_1

formula

is defined by the

-1
(7) (8x,8q) eCF (po,yo,Ao; xo,qo)(dp,éy,aA)
if and only if

2 * * -1 *
8x ) U(xo,po-Aoqo) A, Sp - SA "q,
(8) (S

.2
8q -3, (3 V(Ax0+y0,qo)) Sy + SA*x
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For simplicity, we set G(x): = 3U(x), H(y) = 8V(y) so that
- *
H 1(q) = 3V (q).

* *
Let F be the map from Xx ¥ to X x¥x[(X,Y) defined by

(9) (PrY:A) EF(XIq)
if and only if

*
i) peEG(x) + A g

(10) -1
ii) ye-Ax + H

(q) .
We shall characterize the Clarke derivative of F in terms of the
Clarke derivatives of the set-valued maps G and H (or H_1) re-

spectively.

Lemma 1

Let Xqr g be a solution to the system of inclusions

*

1) P €G(xy) + Agay

(11)

ii) ¥y €= Apx, + g ! (o)

The following conditions are equivalent
(12) a) (6p,6Y,6A)‘ECF(XO,qofpo,yorAO)(6x,6q)

) * * *
i) 6p - éAa -qOGECG(xo,pO-AOqO)(Gx) + Aoéq
(12) b)

- -1
ii) S8y + 8A xOGE—Aoéx + CH (qo,y0-+A0X0)(6q)

Proof

a) We prove that (a) implies (b). We choose seguences
. *
(Xn'qn'pﬂ'yﬂ'hn) converging to (xo,qo,po-Aoqo,y04-A0x0,0). By
%
i . = e = 1r! e = ' -
setting An. AO’ P,* Py + Aoqn and Yt Yn onn, we see

that (xn,qn,pn,yn,An,hn) converges to (xo,qo,po,yo,Ao,O).
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Therefore, by (a), there exist seguences of elements Gxn, an,

Gpn, Gyn and GAn converging to &x, &g, Sp, 8y and SA such that

* * *
i) pé + h (8p - Ayéq, - 8A g - hnéAnéqn)ffG (xn + h &x )

-1
' e [ ]
ii) Yo + hn(dyn + Aodxn + 6Anxn + hnéAndxn) €EH (qn+hn6qn)

Hence the system of inclusions (b) holds true.

b) Conversely, let us consider the system of inclusions (b)

and let us prove (a). We choose sequences (xn,qn,yn,pn,An,hn) con-
verging to (xo,qo,yo,po,Ao,O). Then we know that there exist

sequences of elements éxn, éqn, u, and v, converging to §6x, &g,
*

5p - aA*qo - Agdq, Oy + SAx, + A

0 06x fespectively. We set

i) 6An: = S§A, which converges to SA
ii) 8p.: = u_ + 6AT-q + A'Sg + h_6A'S hich
ii P, = Uy q, ndd, *t hy g, which converges
to 6p
iii) S8y : =v_ - 8Ax_ - A _S8x_ - h_O6ASx_, which converges
n n n n n n n
to &x.
Hence

(pn + hnépn,yn + hnayn,An +,hn6A) EF (xn + hndxn,qn + hdqn)

and consequently, inclusion a) holds true.

Hence Theorem 1 follows from the Inverse Function Theorem and

the following Corollary.

Corollary 1

The closed convex process CF(x ,qo;po,yo,AO) is surjective

0
if and only if the closed convex process
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( * *
CG(xy:Pg = Apqp) )

-1
-B, (CH(A0x0-+y0,qO))

is surjective.

Remark

By eliminating g in the system (10), the solutions x are

the solutions to the inclusion
%
(13) pEG(x) + A H(Ax+y)

For studying the behavior of the solutions x to (13) with
respect to the parameters p, vy and A, we introduce the set-
%
valued map E from X to X xY x L(X,Y) defined by

E(x) = {(p,v,B) |pEG(X) + A H(Ax+y)} .

We are tempted to use the Inverse Function Theorem. Unfortunately,
we cannot express the Clarke derivative of E in terms of the
Clarke derivatives of G and H and check its surjectivity under

reasonable conditions.

Then, even if we are interested only in problem (13), we have
to introduce an auxiliary variable g and replace the inclusion (13)

=<

by the ecguivalent system (10).
|

Example 1
We consider a minimization problem with equality constraints,
defined by

i) two finite dimensional spaces X and Y
ii) a linear operator Ao from X to Y

(14)
iii) a lower semicontinuous convex function U from

X to IR.

We take
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i) Yy €-Int (A, DomU)

(15) 0
.. * *
ii) 0 €1Int (Im A0 +Dom U )
Let X be a solution to the minimization problem
i) RgXg = ¥y
(16)
ii) U(xo) = min U(x)

and dy an associated Lagrange multipljer. Assume that

i) A, is surjective

(17)

ii) U is twice continuously differentiable

at X and VZU(XO) is positive-definite.
Then F~| is pseudo-Lipschitz around(O,yolelxolqo)- We set
f
_ 2 -1, % =1

1) J(xg) = (AV7U(x,) Aq)

‘. -1 % .

ii) AS = V2U(x0) 1AOJ(XO), which is a right
(18) < inverse of A

0

L * * *
iii) g® : A€L(X,Y)+A g€X

iv) x®: AE€EL(X,Y) >AxXEY

Then the Clarke derivative of the map FT! ois given by the

formula:
op
+ 2 -1 + *
Sx (1-A0A0)V U(xo) -2y - qu
= 6y
+ *
8q (AO) J(xo) de

SA
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Proof

We apply Theorem 1 to the case when V is the indicator of

2,,% 2% .
{0}. Then 3°V (qO,AOxO-+yO) = 3°V (qO,O) is the constant map
equal to 0. So inclusion (8) can be written
x 1 *
8x VZU(x ) A Sp - 6A g
0 0 0
8qg - A0 0 Sy + <SAx0
+ 2 -1 + *
(1-A0A0)V U(XO) - A Sp - &A 9q
+ %
(AO) J(xo) Sy + §Ax

which yields above formula.

Example 2

We consider the items defined by (14). We set Y: = R
and we take

0
i) yOE-A0 DomU -~ JRE;_l

(19)
.. *_n *
ii) 0 €EInt (AOIR+ +Dom U ) .
Let X be a solution to the minimization problem
i) AOXO + ¥y < 0
(20)
ii) U(xo) = min U(x)
on+y0i0

and g, > 0 be an associated Lagrange multiplier.
0 —

We denote by I1 the set of indexes such that (A0x0-+y0)i_=0.
We posit assumption (17) and

(21) V1€I1 dg; > O

Then F_1 is pseudo-Lipschitz around (O,yO,AO,xo,qo). We write



n _ I4 2 _ ora_ .
i) R = R xIR where 12—{1—1,...,n|1¢11}
.. 2
ii) g = (q1,q2) ' A= (A1,A )
(22) <
L 1.2 -1 1%, =1
iii) J1(x0) = (AOV U(xo) A0 )
. 1+ 2 =1, 1% ‘

Then the Clarke derivative of the set-valued map F_1 at (O,yO,AO)

is given by the inclusion written symbolically

1+ 2 -1 1+ *
ox (1-2a, AV U(xo) -A, ~q5® Sp
1+, * 1
6q, |€ (Ay ") T4 (xy) %,® 8y,
1
qu 0 0 0 GAO
A
Proof
We apply Theorem 1 to the case when V is the indicator
*
Y of the cone -R®. Then V = v is the indicator of WR»
n + n +
-1R IR
+ +
*
and 3V = N n is the normal cone to Hﬂi. We take
R
+
n Cn
-yg€Int (AgDomU + R ) = AjDomU + IR,

(which is the Slater condition).

Then (xo,qo) is a solution to the inclusion

*
i) 0 = VU(x,) + A.qQ
(23) 0 0=0

ii) yOE-ono + N a (qo) .
R
+

The latter condition implies that

(24) <qO,A0xO-+y0> = 0 .
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. n
Since onoi-yoe-dR+, we deduce that
(25) if (Apxgtyg); <0 then gy, =0

Then qg is equal to 0 and we assumed that 995> 0 for all iGEI1.

By Corollary 2.2, an element 8y of CN n(qo,ono-+yo)(6q)

is defined by r
for ifEI1, Gyi =0 and qu is arbitrary
for ieIz, Gyi €IR and qu is equal to 0.
n I I 1 2
Let us write R = R x 1R and g = (@ ,9"°). The domain of
32v* + s R 1 {0} and 89" (g A x. +y.) (5q,.0) =
\Y (qq{ono yo) is 0} and 3% (qo, 0%0o yo) qq ) =
{0} x IR 2. Hence the matrix of second derivatives can be written
symbolically
2 1% 2%
Sp v U(xo) A, A, §x
8Y4 S -A:) 0 0 6q1
5 a2 0 R 0
¥ 0

Then it is surjective if and only of the matrix of linear

operators

from X x IR 1 to itself is surjective. This is the case by
assumption (17). We can even invert the above inclusion ex-
plicitly and we obtain the formula for the Clarke derivative

of the map F_1.
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Example 3
We still consider the items defined by (14) and we consider

a closed convex subset P of Y.

We take
yOEInt (P - A, Dom U)
(26) * *
0 € Int (Aob(P) +Dom U )
where b(P): = {g | sup <qg,y> <+=} is the barrier cone of P. Let
yEP
X~ be a solution to the minimization problem

0

i) AxX,.E€EP-y
(27) 0 0

ii) U(xo) = min U(x)
AXGP-yo

and q, an associated Lagrange multiplier. We posit assumption

(17) and the following assumption on P.

¥y €Y, 2g solution to
(28)

y - J(xo)qGCWP(Ax0+y0+q0) (y + (1 -J(xo))q) .
Then the conclusion of Theorem 1 holds true.

Proof

It is sufficient to check the surjectivity of

*
VZU(x

o) o
-1
A0 CNP(AXO-+y0,pO)
This follows from Proposition 2.7. m

This method, the use of the Inverse Function Theorem for
set-valued maps, can be used to treat more general convex min-

imization problems.
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6. SURJECTIVITY OF CLOSED CONVEX PROCESSES

We denote by K , the negative polar cone of a subset K CX,

%
the closed convex cone of X defined by
- *
(1) K = {peX |¥x €K, <p,x>< 0} .

We set K+ = -K and we recall that K is a closed convex cone if

and only if K = K

Let F be a closed convex process from X to Y (see Rocka-
fellar [2]).

We define the set-valued map F* from Y* to X* by
(2) pEF* (@) =¥(x,y) €graph (F), <p,x>-<q,y> < 0 .
This amounts to saying that
(3) p<EF*(q) < (p,~g) belongs to(graph (Fﬂ-.
Therefore, F* is also a closed convex process.

Definition 1

%
We shall say that the closed convex process F 1is the

transpose of F. A

We observe that F = F**. Since we are interested by the
surjectivity of F, we shall extend to closed convex processes
the theorem stating that a continuous linear operator is sur-
jective if and only if its image is closed and its transpose

is injective.

Proposition 1

A closed convex process F from X to Y is surjective if and
*—
only if its image is closed and F {0} = o.
A
Proof

a) We begin by proving that
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(4) (mE)T = "1 (0)

Indeed, g belongs to (ImF)+ if and only if
¥(x,y) € graph(F) ' <gq,y> > 0
i.e., if and only if
¥ (x,y) €graph(F) , <N,x>-<q,y> < 0 .

*
This amounts to saying that (0,g) belongs to the graph of F ,
*—
i.e., that gq&€F 1(0).

*
b) The image of F is closed if and only if ImF = (F 1(0))+.

*—
The latter set is equal to Y if and only if F 1(0) = {0}.

]
We shall use this result to prove an extension of the Lax-

Milgram Theorem to closed convex processes.

Definition 2

*
We shall say that a set-valued map F from X to X is X-
elliptic if

3 c >0 such that, for any two (xl,yl)EEgraph(F), i=1,2,
(5)
<y "Y2 ,X1-x2> > cllx! - %2112
Lemma 1

The image of an X-elliptic map F with closed graph is closed

and its inverse is single-valued and Lipschitz with constant c-1.

Proof

The fact that . is single-valued follows from (5) by

taking y = y1 = y2, and x,,x, in F_1(y).

Ineguality (5) implies also that
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ey - % <yt -yAnE Y - r A

For proving that Im(F) is closed, let us consider a Cauchy

sequence o0f elements pnfEIan. Let us take x_ in F—1(pn). Since

n
F is X-elliptic, we deduce that

2
cHxn-me < <P, = Pp r X, " Xp> < Hxn-meHpn-pmH
and therefore, that the sequence of elements X, is a Cauchy
sequence. Then the sequence of elements (xn,pn)ezgraph(F) con-
verges to some (x,p), which belongs to the graph of F since the
latter is closed. Hence p belongs to Im(F). We have proved

that it is complete, and thus, closed.

We deduce a surjectivity criterion analogous to the Lax-

Milgram Theorem on X-elliptic continuous linear operators.

Proposition 2

%
Let F be an X-elliptic closed convex process from X to X .
If (DomF) CImF and if the domain of F is closed, then F is
surjective and its inverse is a single-valued Lipschitz map from
%
X to X.

A
Proof
*—

By assumption, F 1(O) = In1F+ (by (4)) is contained in

-(DomF) = -DomF since the domain of F is closed. Let us
*_
pick xofEF 1(O) and choose yofEF(-xo). Since (O,—xo) belongs
to graph (F) , we deduce that <O,x0>-<xo,yo> < 0. Since F is
an X-elliptic process, we deduce that
cllx H2 = cll-x -0H2 < <=x =0,y ,=0> = =<x.,y,> < 0
0 0 - 0 "'40 0’20" —
*—

Hence x, = 0. Therefore, F 1(O) is equal to {0}. Since ImF

is closed by Lemma 1, Proposition 1 implies that F is surjective.
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Corollary 1

Any X-elliptic closed convex process F whose domain is X
is surjective and F-1 is a single-valued Lipschitz map from X
%
to X .

Corollary 2 (Lax-Milgram)

*
Any X-elliptic continuous linear operator from X to X 1is

an isomorphism.
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