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Abstract

(onsider the set of tasks that are partially ordered by precedence
constraints, The tasks are to be sequenced so that a given objective
function will assume its optimal value over the set of feasible
solutions. A subset of tasks is called feasible, if for every task in
the subset, all of its predecessors are also in the subset. We present
an efficient dynamic programming solution to the problem, when the
constrainina partial order has a dimension <2. This is done by
Aefinina a "compact" labeling scheme and a very efficient enumerative
orocedure for all the feasible subsets. In this process a new

characterization is given for 2-dimensional partial orders.



SINGLE. MACHINE SCHEDULING

WTTH PRFCFDFNCE CONSTRAINTS OF DIMENSIONS <2

Consider the set of n jobs to be secuenced for processing by a single
machine. The possible seduences mav be restricted by precedence constraints
represented by a agiven acyclic digraph G = (V,A) where each node i e V
corresoonds to one of the n tasks and the arc (i,J) ¢ A means that i is a
oredecessor of i. (If i is a predecessor of j we willlalso use the notation
i<i.)) These constraints reaquire that a given job i mav not be processed until
after the processina of all its predecessors has been finished and assume that
i ijs available for processing at any time thereafter. A subset S Ev is
called feasible if for everv i e S all the predecessors of i are also in S..
Fach task i € V has a aiven processing time c(i) and the finishing time of the
i-th dob in a seduence is the sum of the processing times of the first i jobs
in the secuence. Let a(i,t) be the cost incurred bv job i if it finished at
time t, and assume that a(i,t) is non-neaative and nondecreasing in t. We
assume that this cost is additive i.e. the cost associated with a given
feasible seauence is the sum of ;:he costs of the jobs in this seaquence. (Such
a function is e.a. the tardiness or weiahted tardiness, but many other satisfy
these aeneral conditions.) The objective is to find an optimal sequenie of
the n dobs which satisfies the precedence constraints and for which the total
cost incurred is minimal.

Raker and Schrage [2] described a dynamic programming algorithm for the
oroblem which outverformed all previously known algorithms on their set of
test orohlems. Burns and Steiner [3] gave some motivations why this algorithm
is so effective and presented a modified version of the algorithm for the
special case when G is a series-parallel diaravh. This modified algorithm
used a "compwact" labelina scheme by assignina the non-negative integers to

feasihle subsets in such a way that each of the labels generated belongs to



exactlv one of the feasible subsets. In this paper we show that by performing
the labelina in the "right" seauence the "compactness" property of the
labelina can he extended to the class of all precedence graphs with
"dimension” less than or equal to two. In addition we show that no further
extension of the labelina is possible, without violating the compactness
requirement, in fact if the laheling is compact, the precedence graph has to
have dimension <2. This provides a new characterization of partial orders
with Aimension less than or eaqual to two. We also define a new family of 2-
dimensional diqraphs (WGSP) which properly contains the class of general
series-parallel diaqraphs. Using the compact labeling scheme we present a
modified version of the Avnamic orogramming algorithm requiring O(Kn) time and
O(K) soace, where R is the number of feasible subsets in the precedence graph.
These bounds of course are still exponential (K can be as large as 2"), but
thev are the best obtained so far and in manv cases K is substantially smaller
than 20 fcf. 21.

1. m™e Oriainal. Dvnamic Proarammina Algorithm [2]

For a feasible subset S C V let us define the followina:

c(8) = the sum of the processina times of the tasks in S.

R(S) the set of tasks in S with no successor in S.

f(s)

the cost of the minimum cost sequence of tasks in S.
Then otwiouslv the followina DP recursion is valid:

£() = min {£(S\{i}) + a(i,c(S)) | for all i € R(S)}

T™o minimize the computer storage recquired and to provide cuick access to
the f(S) values in the DP tables, Raker and Schrage [2] defined the following
Takelina scheme for the precedence araph:

Tet L(i) be the label assianed to each i € V; b(i) = the sum of labels of

nreviouslv laheled tasks that are predecessors of i; a(i) = the sum of

labels of previously labeled tasks that are successors of i; t(i) = the



sum of labels of all tasks labeled prior to i.
Ten the labelina can be done bv the following algorithm:

Tet t(i) = a(i)

b(i) = 0 for all i € W,

For 1 =1 to n:

let L(§) = t(i) - a(i) - b(i) +

let b(d) = b(4) + L(i) for every i which has not been labeled yet and i<j
let a(j) = a(j) + L(i) for everv i which has not been labeled vet and
<i.

let t(i+l) = t(i) + L(i) and if i = n t(V) = L(V) = (i) + L(i).
Next 1i.
The labelina scheme can be extended to subsets of V by

T(8) = ) L(i) for every SC V.
ies -

Raker and Schrage have proved that independent of the order of labeling, for
everv feasible subset S € V the label L(S) unicuelv helongs to S, in the sense
that there is no other feasible subset with the same label. In other words
the labelina scheme represents a mavpina of the feasible subsets into the set
of integers between O and L(V). We say that this mapping is compact if for
anv integer k (0 < k <L(V)) there is a féasible subset S € V such that
L(S,) = k. We define in general the compact labeling of a digraph:

T.et G = (V,A) be an acvclic directed graph on V = {1,2,...,n}. Let G
denote the subaraph of G induced by the vertices fl,2,...,k} (1<k<n). We
sav that an assianment of labels L(1), L(2),...,L(n) to the vertices of G is a
compact labeling of G if and only if for every k (1 < k < n) z L(i) = the
numher of nonemotv feasible subsets in Gy. =4

In the NP algorithm the label L(S) is used to address the feasible subset
2 and the asscciated £(S) value. This means that the storage requirements of

the aloorithm are vproportional to the highest label (address) used, which is

T.(\), Therefore the storadge requirements for the DP table highly depend on



how close the labelina scheme can get to a compact mapping, i.e., how small
L{N can be for a given vprecedence graph G = (V,A). Baker and Schrage provide
statistics on this for their fairlv extensive test problem set and also give a
simple example for which the mapping is not compact. They also discuss
briefly how the order of labeling the vertices may affect the L(V) value, and
mention that in their computer implementation of the algorithm, the tasks were
numbered in such an order that the task labeled next was the one that would
receive the smailest label if added next. This requires the calculation of a
label possibly for everv unlabeled node before one can select the next node to
be labeled and it will not necessarily result in a compact labeling. In (3]
Rurns and Steiner replaced this selection rule by a simpler one which resulted
in a compact labeling for aeneral series-parallel graphs. It was also shown
that this seaquencina rule cannot be extended to non-series-parallel graphs
without violating the compactness property. In the following development we
Aefine a new sedquencing rule, which results in a compact labeling for all
precedence gravhs with dimension <2.

| Another component of the DP algorithm, which facilitates the use of the
™P recursion, is an enumerative pﬁocedure in which all the feasible subsets S
are enumerated in such an order that S \ {i} is enumerated before S for all
i € R(S) and SC V. Baker and Schrage use for this a standard binary coding
procedure. In the subsequent development we show how the labels could be used
for a more efficient enumeration scheme.

2. The Labeling of Precedence Relations of Dimension < 2.

Pirst we introduce some definitions and known results necessary to
understand the develorment which follows these.
Anv directed acyclic aqraph G = (V,A) induces a partial order < on its

vertex set Vbhvu < v, u,v e V iff there is a directed path from u to v in G.



The transitive closure of G is the directed acyclic graph G = (V,Al), for
which A © A; and whenever there is a directed path from u to v in G,
(u,v) € Ay An arc (u,v) of G is called redundant if there is a directed path
from u to v in G that does not include the arc (u,v). The transitive
reduction of G is the unique directed acyclic qraph which contains no
redundant arcs and has the same transitive closure as G.

If we consider a set of precedence constraints represented by the directed
acyclic araph G = (V,A), this always induces a unigue partial order P on V,
and if we define Gy = (V,Ay) s.t. for anv u,v ¢ Vu <« v iff (u,v) ¢ Aq, then
Gy is the transitive closure of G. We will say that P induces G;. For any
directed grach G = (V,A) let-é = (V,Z;) be its undirected version and let G be
the complementary araph of C: (E-‘.C = (V,Z-\C), where the undirected edge
(X,v) ¢ AC iff (X,¥) Z A). BAn undirected graph G = (V,E\) is called a
comparability graph if there exists a transitive orientation of its edges,
i.e., there exists a directed version of é, G = (V,A) in which if (u,v) € A
and (v,w) € A then (u,w) e A also holds for every u,v,we V.

A partial order on V is called a total order if any two elements of V are
comparable. Szpilrajn showed [1l] that any partial order is extendable into a
total order, and any partial order can be defined as the intersection of
several total orders expressed as binary relations. For example, if we
consider the partial order induced bv the digraph G of Figure 1 on the set
v = {1,2,3,4}, then the diaraphs Gy and G induce total orders on V, which are
extensions of the ovartial order. Considering these orders as binary
relations, G induces the relationships R = {(1,3), 2,3), (2,4 }, Gl induces
Ry = {a,2), 1,3, 1,49, (2,3), (2,4), (3,4)} and G, induces Ry = {(2,9),
(2,1), (2,3), (4,1), (4,3), (1,3)}. Clearly R = Ry N R,.

Dushnik and Miller [5] defined the dimension of a partial order P as the

minimum number of total orders such that their intersection is P. Let us



Aenote this number by dim P. According to this the dimension of the partial
order induced by the digraph G of Figure 1 is 2. They have also proved the
followina theorem.
Theorem 1: Let the partial order P induce the digraph G. Then dim P < 2 if
and only if G° is a comparability graph.

Now let us consider = = (T1r Tpecerm™y)r @ permutation of the numbers
),2,...,n and let n'l(i), denoted shortly by 1r1-"1, be the position in T where
-1 .4

3
etc.) We can construct an undirected qraph G[r] from m in the following way:

the number i can be found. (E.a., if = = (3,1,4,2), themrzl =3, ,

the vertices Qf G[r] are the integer numbers, 1,2,...,n and two vertices are
joined by an edge if the larger one of them (as numbers) is to the left of the
smaller one in m . The grach a[n] corresponding to the above permutation T is
shown in Figure 2. An undirected graph G is called a permutation graph if
there exists a permutation m such that G is isomorphic to Glr]. (Denoted by
T = Gl). A
Fven, Lempel and Pnueli [6] proved the following:
Theorem 2: An undirected arach G is a permutation graph if and only if G and
GC both are comparability graphs.
Combininag theorems 1 and 2 we get the following:
Theorem 3: Iet P be a partial order with an induced digraph G, then dim P < 2
iff G is a permutation graph.
In view of the above theorems to determine for a partial order P whether
dim P < 2, or edquivalently whether (for its induced digraph G) G is a
permutation araph, it is sufficient to check whether G€ is transitively
orientable. Golumbic (7] has studied this problem and described a polynomial
time algorithm, which answers this question and finds a permutation ™ such
that G is jisomorphic to G[7] whenever G is a permutation graph. If we direct

GIT] so that each edge is directed towards its larger end point, when



considering the vertices of G [x] as integer numbers, and denote this directed
araph by G[nl then G = G[n also holds. The permutation = defines a sequence
of the vertices of G, which leads to a compact labeling of the feasible
subsets:
Theorem 4: ILet G = (V,A) be a directed acyclic graph representing the partial
order P for which dim P < 2. Assume there exists a permutation m of the nodes
of G such that G[n] £ G*, where G* is the transitive closure of G. Further
assume (without the loss of generality) that the nodes of G have been numbered
so that the i-th node corresponds to i in 7w . (0 < i < |v]).

If the nodes of G are labeled in order of increasing i, using the Baker-

Schrage labeling formulae, then the resulting labeling is compact.

Proof: By induction on the number of nodes.

For |Vl = 1 or 2 the proof is obvious by simple enumeration.
Hypothesis: Let us assume that for any graph with the above properties on
less than n nodes (n > 2) the labeling is compact, and let |V| = n. Since
there is a one-to-one correspondence hetween the nodes of G and the integer
numbers between 1 and n, we will refer to these nodes by using the
corresponding integer numbers. Let us define the following subsets of nodes:

S = 11,2,.00,k} l1<k<n

= {4|4 precedes k in G} l1<k<n

s)
~
|

%2

—Sk_l\Pk 2<k<n
We assumed that the labeling occurs in the order 1,2,...,n. This clearly
means that if § ¢ Py => j e Sk-1r because of the direction rule for G(r].
Aoplving the Baker-Schrage formulae in this order it follows immediately that
a(k) = 0 for everv k (1<k<n) and that L(k) = £(k) - b(k)+l = LQk) + 1

Let us consider the induced subgraphs Gy = (SkrsA) of G*. It is clear
that each of these subgraphs represents a partial order with dimension less

than or equal to two, and the permutation wlk induced by mon Sy is such that



Gk = Glrlk]. The labeling L of G is clearly a labeling of each of the Gk=-s
and it satisfies the assumptions of the theorem. To prove the theorem we
shall prove that the labeling L is a unique, compact labeling for each of the
araphs C (1<k<n and Gp = G*). This is clearly true for Gy and Gy and
suopose it is true for Gy, Gopjeee/Gp_3- BY this hypothesis the number of non-
empty . feasible subset of G _, is L(S,_j)+ The uniqueness of the labeling on
the feasible subsets follows from the following two observations:

1. If n is an element of any feasible subset T, then L(T) > L(n) +
L(Pp) = L(Op) + L(PL)+1 = L(Sn_l)+l. Hence no feasible subset
containing n has the same label of any feasible subset of Gh1.

2. IfT) and T, are different feasible subsets of G,, each containing
n, then L(T) # L(T,). Otherwise, we would have L(Ty \ {n}) =
L(T5 \ {n}) contradictina the compactness of the labeling on Gp.;.

For the compactness of the labeling on Gp it remains to prove that there are
orecisely L(S,) = L(Sh_1) + L(Q,)+l feasible subsets in Gj.
™ is a feasible subset of G, containing n iff T = {n} Up, UR, where R = § or
R is a feasible subset of G*(on,A). Thus it suffices to prove that L(Qp) is
precisely the numbe? of non-empty feasible subsets of G*(Qn,A). We shall go
further, hy showina that L restricted to O, is a compact labeling. For this
we note the following two facts about the permutation w:

i) all elements of Q, precede n in 7 .

ii) n precedes all elements of P, in .
Therefore if j € O, and i ¢ Sﬁ_lfﬂ P, then i has precedence over j in G.
- Hence all elements of P,, which are labeled before j are predecessors of j.
Thus L(4) = t(3) - b(i) + 1 = [£(§) - L(S35-1 N Pp)] - [b(§) - L(S§-1 N Pp)]
+ 1 proves that the labels L(j) (j ¢ Op) are exactly the labels we would get
if we applied the labelina scheme to the permutation graph G*(Qn,A). We can

clearly apply the original inductive hypothesis to this graph, and so the



compactness of L on G* (0nrA) follows.

As an example for performing the labeling calculations for a permutation
gravh in the order defined by the permutation, consider the graph shown in
Fiqure 3. The labeling calculations are summarized in Table I. Since the
total sum of the labels L(V) = 9, the graph has precisely 9 non-empty feasible
subsets.

In [3] it was proved that labeling the nodes of a series-parallel digraph
bv the Baker-Schrage formulae will result in a compact labeling, if this was
done in a marticular sequence, defined there. Since the transitive closure of
everv series-varallel grach represents a partial order of dimension < 2 (see
[91) theorem 4 defines a new compact labeling sequence for series-parallel
araovhs and also extends the compactness property beyond this class. Series-
rarallel araphs ha've a forbidden subgraph characterization (cf. [9]). Baker,
Pishburn and Roberts [1] have shown however that a forbidden subgraph -
characterization is impossible for precedence graphs of dimension 2. In the
followina we identifvy a class of 2-dimensional precedence graphs which
oroperlv contains the class of series-parallel digraphs.

Consider the diaravh G shown in Fiqure 3. The subgraph of G induced by
{2,3,4,5} is the forbidden subgraph for series-parallel graphs, while the
subargaoh induced by {1,3,4,6} is what is known as a directed Wheatstone bridge
[41. G is a permutation graph which is not series-parallel.

Definition WMSP (Wheatstone Minimal Series-Parallel):

i) The directed acyclic ararh having a single vertex and no arc is WMSP.

ii)  The directed acvclic graph G[r] shown in Figure 2 is WMSP.

iii) If Gy = (V1,A7) and Gy = (V2,Ay) are WMSP, V] NV, = &, then either
one of the following directed acyclic graphs is WMSP too:
a) Parallel Camosition: GD = (V] UVy, A U Ay)

b) Series Composition: Gg = (V] UVp, &) UAZ U (0] x I)):
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where 07 is the set of exit nodes in G; and I in the set of

entry nodes in G,.
Definition WGSP (Wheatstone General Series-Parallel): A directed acyclic
gravh is WGSP iff its transitive reduction is WMSP.
Theorem 5: If Gy = (V1,A1) is the transitive closure of a WGSP graph, P; is
the partial order induced by Gy then dim P; < 2 or equivalently 51
is a permutation graph.

Proof: Bv induction on the number of nodes n = |V1

. Forn=1,2,3 it is

clear that G must be a GSP graph, therefore dim Py < 2.

For n =4 a) if Gy is the graph G[r] shown on Figure 2 (or isomorphic to it)
then it was shown earlier that its undirected version G[r] is a
permutation graph, i.e., by theorem 3, dim P <2

b) if Gy is not isomorphic to the qraph G[r] of Figure 2, then it
is clear that Gy is series-parallel implying dim P; < 2.

Hypothesis: Assume that the theorem is true for.any WGSP graph on less than n

nodes. (n > 4)

Let Gy = (V7,A;) be a WGSP graph on n nodes.

a) If Gy is the parallel composition of two WGSP graphs G, = (V,,A5) and

Gy = (v3,A3) let the partial orders induced by G, and Gs be P, and Py resp.

By the inductive hvpothesis dim Py < 2 and dim P3 < 2. As a result of the

parallel composition the nodes of G, and Gy are incomparable in Py. So if R%

and R% are two total orders s.t. R']g' Qa R?é = P, and R% and R32, are two total

orders s.t. Rsl(\ R% = P5 then we can define two total orders on Vy:
R% ={(x,v) | (x,9) ¢ R% or (%X,v) ¢ R% or x e Vp and ye V3}
.R% ={(xv) | xv) ¢ R% or (x,9) ¢ R% or x e V3 and ye Vsl
It is clear that R%ﬂ R12 = P implving dim Py £ 2.
b) If Gy is the series composition of two WGSP graphs Gy = (V,A3) and

G3 = (V3,A3).
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Let the partial orders induced by G; and G3 be P, and P3 resp. By the
inductive hypothesis we have dim P; < 2 and dim P53 < 2. As a result of the
series composition the nodes of G, are all predecessors of every node in Gs.

If R% and R.% are two total orders s.t. R]é N R% =P, and R]§ and R% are total

orders s.t. R% N R% = P3 then we can define the following total orders on Vj:

R% {xy) | &9 ¢ RJZ- or (X,Y) ¢ R]j or xe Vyand y € V3}

R% v | &y e R% or (X,y) e R23 or x¢€ Vo and y € V3}
It is clear that R]]- N R% = Py implying dim Py < 2._
As an illustration we show one WGSP graph on Figure 4. A somewhat 'loose’
definition for the class WGSP could be that its members are GSP graphs with
certain nodes substituted by Wheatstone bridges.

A natural question to ask is whether the compactness of the Baker-Schrage
lahelina system can be extended further to partial orders (precedence graphs)
with hicher dimension than two. The answer for this is negative, actually the
fact that the Baker-Schrage formulae result in a compact labeling implies that
the partial order has a dimension < 2. The first proof of this is due to J.B.
Orlin [10]. 1In the following we present the proof of a stronger result, but
first we have to review the concepts of basic feasible subsets and basic
camlements due to Held, Karp and Shareshian [8].

Let P be a partial order €« on V = {1,2,...,n}. (In the following
develooment we alwavs assume that i « j implies i < j.) Let us define the
basic feasible subsets in P by By = {i]i=k or i < k} for k > 0 and let B( be
the empty set. These basic feasible sets determine the sets 1'530, T31,..., TBn,
called the basic complements by ék ={ili<kand i ,éék}. Each ék induces a
partial order, which is the restriction of P to the elements of By. If we
consider those feasible subsets S in P which contain k as their highest

numbered element and the feasible subsets R in the induced partial order on

ﬁk, then there is a one-to-one correspondence between S and Rby S = R U Bg.
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From this follows the following theorem:

Theorem 6 [8]: [P] = ? [Bi], where [X] denotes the number of feasible
subsets (including the emézg set) in the partial order induced by the set X.
Lemma 7. Let P be a partial order < on V = {1,2,...,n} as above and let
G = (V,A) be the digraph induced by P. Let L(l), L(2),...,L(n) be a labeling
of the vertices of G. Then this labeling is a compact labeling of G if and
only if

L(k) = [By] for every 1 < k < n (1)
Proof: In one direction the proof is obvious by Theorem 6. For the other
direction we use an induction on n, the number of elements. For n =1 the
only non-empty feasible subset in G = G is {l} so L(l) = 1, on the other hand
ﬁl =@, so [ﬁl] = 1 implying. (1).
Bypothesis: ILet us assume that for any partial order on less than n elements
if U is a compact labeling then (1) is also true. Let us consider then the
partial order P on n elements and let P _; be the partial order induced on
fl,2,...,n-l}. It is clear that the basic complements 150, -Bl,..., En—l and

the partial orders induced by them are identical in P and P,_1. Therefore by

Theorem 6
n n-1 _ _
Pl =] B =1 B+ By = [Pyl + [Byl. (2)
i=0 i=0
It is clear that if L(1), L(2) ,e.., L(n) is a compact labeling of P then L(1l),
n-1
L(2) eesr L(n-1) is a compact labeling of Pp_y, [Pp_1] =1 + Z L(i) and by
i=1

the inductive hypothesis we have L(k) = [ﬁk] for 1 <k < n-l. On the other
hand [P] =1 + er L(i) from which it follows by (2) that L(n) = [l-Bn] is also
true, thus provi:mc-zlthe lemma.

Theorem 8: Let P be a partial order « onV = {1,2,...,n} and let G = (V,A) be

the digrach induced by P. Assume that the Baker-Schrage labeling formulae
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result in a campact labeling L(1), L(2),..., L(n) for G, then

(i) dimpPp < 2

(ii) any compact labeling of G can be generated by the Baker-Schrage

formulae.

Proof: We define the following "incomparability" relationship on the elements
of V: we say that il|j (read i is incomparable to j) iff i < j but i is
unrelated to § in P. || is not a transitive relationship in general, but in
view of theorem 1 if || is transitive then dim P < 2.

Consider the basic complements ék in P. Since L(1l),ee., L(n) is a
compact labeling, by Lemma 7 we have L(k) = []-3k] forl<k<n. Each ék with
the relation < is itself a partially ordered set. We define the basic
feasible subsets (Cyj) and the basic complements (éki) in these posets: For
each k (L <k <n) and i € B, (i.e., i]|k) let

Cki={fl|Aj=iorj €1§kand'j<i}.

E};i = {39 <1i, e By and § £ Cp;} and let Cpy = Cpg = 9
It is clear that Cy; =By N\Bj and Cpj = B, N Bj. Thus applying theorem 6 to
the poset ék we get

Bl = [Ceol + L [Ceil =1+ 1 (B NBy (3)
ilfk illk

Consider a feasible subset S in the poset ék N éi' where i||k, and let us
"extend" S into éi bv e(S) = {jlj €ESor je éi and there exists an £ € S such
that § < ¢ in B;l. It is clear that e(S) is a feasible subset in B;. We
claim that e is a mappina of the feasible subsets in ék N l-3i into the set of
feasible subsets in Ei. To prove this, assume the contrary, i.e., there exist
two different feasible subsets Sy and S5 in ék N éi for which e(S;) = e(Sj).
Without the loss of aenerality we can assume that there is a j e S1 \ Sy, for
this i however j ¢ e(S;) and j £ e(Sy)r a contradiction. From this it follows
that [ﬁk N 1-3]-_] < [}_3]-_] for every i,k if i||k. Substituting this into (3) we

aet
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Bl =1+ . @®AB;] <1+ ) [By (4)
ke ife Y =T Tt

Let us assume that By N B; C B;, i.e., there exists aj ¢ By \ By. This
means that jl|i, i| |k but 4 < k, i.e., the relation || is not transitive. In
other words B, N B; = B; for every i||k if and only if the relation || is
transitive. Furthermore if TBk N B; € Bj, we also have (B, N B;] < [By], since
if we consider the smallest (as a number) j ¢ I-Bi \ TBk and a subset S' c .Bi
with highest index i and feasible in éi' then clearly there is no feasible
subset S in Ry N éi for which e(S) = S'. In summary [By N B;] = [B4] for
everv il|k if and only if the relation || is transitive, i.e., dim P < 2.

Rased on Lemma 7 we must have L(j) = ['Bj] for every j € V and
substituting this into (4) we get

L(k) <1+ L(i), (3)
il Ik

and equality holds in (5) only if dim P < 2. It is clear that L(k) =
1+ . Z L(i) for every ke V is identical to the Bake'r-Schrage labeling
formﬂy;, thus proving the theorem.

Besides resulting in a compact labeling for 2-dimensional precedence
aravhs, the Baker-Schrage labeling scheme uniquely assigns labels to all th(-;
feasible subsets, moreover this happens in an additive fashion, i.e., if Sqs
Sy SC V are feasible subsets for which S = S1U Sy and S NSy = @ then for
their labels we have L(S) = L(S;) + L(Sp). This enables us to define a simple
alagorithm that could be used to identify the feasible subset S such that L(S)
= k for a given integer k (1 < k < L(V)).

Algorithm DFCODE
g

ntol

Tet S

For i
If k > £(i) then S = S U{i} and k = k-L(i)

Next i
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Theorem 9: Let us assume that the 2-dimensional precedence graph G = (V,A)
has been compactlv labeled by the Baker-Schrage formulae. Then for any given
integer k (1 <k <L(M) thé Algorithm DECODE identifies the unique feasible
subset S in G for which L(S) = k in O(n) times and O(n) space.
Proof: Consider the vertex n which was labeled last. If ne S, then by the
feasibility of S all predecessors of n must be in S too, i.e.,

L(S) > L(n) + b(n) = £t(n) - b(n) -am) +1+b(n =tn +1, (6)
where the first equality follows from the labeling formulae and the second
equality follows from a(i) = 0 (1 < i < n), since we assumed that i < j
imolies i < j for any pair i,j.

On the other hand if n is not in S, then

L(S) < L(l) + L(2) + ... + L(n-1) = t(n) (7)
Comparing (6) and (7) we get that S contains n if and only if k > t(n) and
using this argument in an inductive fashion for the induced subgraphs G_;,
Gp—pre++s Gy Droves the correctness of the decoding algorithm.

Since the only information we need to store for DECODE are the labels
L(1), £(i) (1 = 1,2,...,n) the algorithm requires O0(n) space indeed. The O(n)
time requirement is obvious.

3. The Modified Dynamic Programming Algorithm

Consider a sequencing problem with sequencing function f and with
precedence aranh G = (V,A) of dimension < 2. Assume that g is a permutation
for which ¢ 2 G[1] and the graph G has been compactly labeled by the Baker-
Schrage formulae. We redefine the DP algorithm for this problem.

Aloorithm DYNPRO

For k =1 to L(V)

Let S=0, R(S) =@, c(S) =0, j =n+l

For i=ntol

If k > t(i) then S = S U {i}, k = k=L (i) and c(S) = c(S) + P;
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otherwise do to next i
1f 'rr1-"l < 4 then R(S) = R(S) U {i} and § = n;l
Next i

£(S) = min {£(8 \ {i}) + a(i,c(8)) | i ¢ R(S)} and let i* be the index,

where the minimum is obtained.

Store £(S) and i* under the address L(S).

Next k.

Theorem 10: The Algorithm DYNPRO solves the above defined sequencing problem
in O(Rn) time and O(K) space, where K is the number of feasible subsets in the
precedence graph G.

Proof: Since the labeling formulae assign a compact labeling to G, K = L(V).
The Alaorithm DECODE is used in DYNPRO to identify the feasible subsets, so
based on Theorem 8, this will require O(Kn) time and O(n) space. Within the
same loop we use the bermutation m to identify the set R(S). The correctness
of this method follows from the following argument: For any i,ke Vi < k if
and only if i < k and ﬁl > wEl. Therefore if we identify the elements of
R(S) in their decreasing seaquence (as numbers), at any point a vertex i is in
R(S) if and onlv if for every k assigned to R(S) up to this point wi'l < 1rk'l.
Since j is used in the algorithm to store min Trk'l for these k € R(S), this
proves that DYNPRO will indeed identify R(S) li<n the same loop as S, and this
aqain reauires no more than O(Kn) time and O(n) space.

To calculate £(S) for one S by the dynamic programming recursion clearly
requires at most O(n) time and O(l) space, and to do this for all feasible S
reduires then O(Kn) time and O(l) space. For each S we store £(S) and i* e ]
which is the last vertex in the optimal sequence for .S, therefore the DP
tables reaquire O(K) space.

Once f (V) has been calculated, we can get the optimal sequence, where

this value is obtained, by putting the i* belonging to S = V in the last
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available position and repeating this for S \ {i*} until we reach the empty
set. Tis proves the theorem.

There are special situations where we may be interested only in finding
the optimal value f(V) but not the optimal sequence. In this case we need not
store the vertices i* in the above algorithm. Furthermore if Lp.. =
max {L(i)]i € v}, for the DP recursion the f(S-{i}) values for any S and
i € R(S) must be stored in one of the Lnax @ddresses immediately preceding the
address L(S), therefore at any point in the algorithm we need to refer back to
at most L., different locations in the DP table. 1In this case the space

requirements of the algorithm can be reduced to O(Lpgy + D).
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i b(i) L(1i) t (1)
1 0 1 0
2 1 1 1
3 1 2 2
4 4 1 4
5 3 3 5
6 8 1 8

Total Sum of labels 9
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