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Effective Heuristics For Capacitated Production
Planning with Multi-Period Production and Demand

With Forecast Band Refinement

Abstract

In this paper we extend forecast band evolution and capacitated production
modelling studied by Kaminsky and Swaminathan (2001) to the multi-period de-
mand case. In their model, forecasts of discrete demand for any period are modelled
as bands, defined by lower and upper bounds on demand, such that future fore-
casts lie within the current band. We develop heuristics which utilize knowledge of
demand forecast evolution to make production decisions in capacitated production
planning environments. In our computational study, we explore the efficiency of
our heuristics, and also explore the impact of seasonality in demand and availability
of information updates.
Keywords: Forecast Evolution, Production Planning, Discrete Demand, Capacity,
Heuristics, Information Updates.

1 Introduction

As increasing competition has forced firms to operate their supply chains more efficiently,

the need for improved forecasts has become clear. Indeed, firms have increasingly devoted

resources to improving the quality of forecasts within the supply chain (Lee et al. 1997).

These resources can be used in many ways. Subjective forecasts can be improved, for

example, with improved sales force composites and more detailed customer surveys, or

by soliciting the opinions of more experts. Objective forecasts can be improved, for

example, by collecting more data and developing more detailed causal models. As a

result, it is becoming more important to develop models and techniques which assist

managers in determining the best places to focus their forecast improvement efforts,

and which enable firms to make effective use of these forecasts in production planning.

Clearly, any approach should account for the following facts about forecasts:

• Forecasts are typically wrong.

• A good forecast is more than a single number.

• The longer the forecast horizon is, the more wrong the forecast typically is.
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In addition, in a capacitated production environment, there may not be enough produc-

tion capacity to wait for the forecast of a particular event to improve as that event gets

closer.

Motivated by examples in the electronics industry, Kaminsky and Swaminathan

(2001) present a model in which forecasts are represented by a series of bands, encom-

passing both optimistic and pessimistic forecasts, which are updated each period as new

information arrives. In particular, this forecast evolution model is defined by an upper

and a lower bound on possible demand, which is called a band. As time moves forward,

subsequent forecasts have a smaller range between the upper and lower bounds, or a

smaller band (representing a better forecast), and are contained within the band defined

by earlier forecasts. This models a forecasting process which gets refined over time as

new information arrives. The manufacturing firm utilizing this forecast has a fixed ca-

pacity in each period and needs to decide how much to produce in each period, taking

into account expected production, holding, salvage and stock-out costs. Kaminsky and

Swaminathan (2001) explore the case with a single terminal demand and develop effective

heuristics for the problem. In this paper, we consider the case where demand can occur

in every period, develop alternative heuristics which fit this multi-period demand model,

and computationally test their effectiveness. We also consider the impact on the system

of improved forecast updates, capacity availability, and seasonality in demand.

The paper is organized as follows: In Section 2 we present related literature. In

Section 3 we present the model, properties and our heuristics. In Section 4, we present

our computational results and insights, and we conclude in Section 5.

2 Related Literature

Forecast evolution models have been studied by several researchers in the past. Hausman

(1969) studies the problem in which improved forecasts are available before each deci-

sion stage, and he models the evolution of forecasts as a quasi Markovian or Markovian

system. He suggests modeling a series of ratios of successive forecasts as independent

lognormal variates and presents a dynamic programming formulation. Hausman and Pe-
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terson (1972) consider a single capacity constrained multi-product system with terminal

demand with the forecasts for total sales following a lognormal model. They formu-

late the problem as a dynamic program and provide heuristics for solving the problem.

Heath and Jackson (1994) introduce a martingale model for forecast evolution (MMFE)

and present simulation results. Gullu (1996) considers a special case of the MMFE model

and shows that in a capacitated environment the system performs better when one pe-

riod demand forecast is utilized than when it is not. More recently, Toktay and Wein

(2001) consider an MMFE model and characterize effective policies under heavy traffic

assumptions for a capacitated single server.

Bayesian models for forecast updates in a inventory setting were first studied by Scarf

(1959). Azoury (1985) extends some of Scarf’s results. Bitran et al. (1986) study a ter-

minal demand model for style goods under capacity restrictions and Bayesian forecast

updates, where each of the product families is produced one period before the realiza-

tion of demand. They present a stochastic mixed integer programming formulation and

provide a decomposition scheme and bounds on the optimal solution. Fisher and Raman

(1996) consider a similar two period problem from the fashion goods industry where

the manufacturer needs to determine production quantities in two periods, with lower

production costs in the first period but improved forecast information available in the

second. Agarwal et al. (1999) consider a similar problem but analyze capacity outsourc-

ing issues. Nurani et al. (1994) consider uncapacitated inventory problems with forecast

updates and analyze the effectiveness of myopic heuristics. Lee and Whang (1998) study

the postponement problem and identify additional benefits of postponement that are

realized due to resolution of uncertainty of demands up to the point of postponement.

Gurnani and Tang (1998) consider the benefits of updated demand forecast in a two

period problem under uncertain costs. There are a variety of other papers that study

capacitated non-stationary inventory problems; Swaminathan and Tayur (2001) discuss

these papers, and provide an extensive review of other inventory models used for tactical

production planning.

As mentioned above, Kaminsky and Swaminathan (2001) introduce a forecast evo-

lution process based on bands, in which the range of possible demand is completely
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contained within a forecast band. This band, defined by upper and lower bounds, cap-

tures many of the important elements of real world forecast revisions, and in particular,

the concept of improved information over time (Buckley et al. 1995). It is to be noted

that earlier papers such as Bitran et. al. (1986) and Hausman and Peterson (1972)

consider forecast evolutions which get updated and refined over time. The former cap-

tures it through the standard deviation from the actual demand and the latter captures

it through the relative uncertainty in the forecast. The band model differs in that it

restricts the future demand forecasts using a hard limit on the lower and upper bounds.

In the discrete demand case, this allows one to simplify the capacitated production plan-

ning problem and develop effective solution approaches. In this paper, we use the forecast

band model, but we generalize this to the multi-period case, where demand can occur in

every period.

3 Basic Model

3.1 Forecast Evolution and Production Model

In this section we present the forecast evolution model. We assume that demand is

discrete, and number time periods in reverse order, so that when we say time t, we mean

that t periods remain. Period 1 is the final period. Some notation follows:

• aj
l : the minimum possible demand for period j forecast in period l;

• wj
l : width of the forecast for demand in period j given that we are in period l;

• F j
t (at+1): probability distribution of aj

t in the interval [aj
t+1, a

j
t+1 + wj

t+1 − wj
t ];

• αj
t : known reduction in width of forecast; wj

t = wj
t+1 − αj

t

• xt: on-hand inventory at the start of period t;

• qt: production quantity in period t;

• C: production capacity in each period;
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• π: per unit penalty cost for demand not met;

• c: per unit cost of production;

• h: per unit holding cost incurred on inventory held at the end of any period;

• s(< c): per unit salvage cost for each unit remaining after demand is met;

• Ik = (ak−1
k , wk−1

k , ak−2
k , wk−2

k , ..., a1
k, w

1
k): information available at the end of period

k;

• Vt(xt, It+1): expected optimal cost incurred with t periods to go, where xt is the

inventory on hand, and It+1 denotes the information available at the start of period

t;

In the forecast evolution model, given that we are at the end of period t, we know

that demand in period j can only take on discrete values on the interval [aj
t , a

j
t + wj

t ]. In

addition, each period the range of possible demand gets smaller in a way consistent with

the process described above. That is, wj
t = wj

t+1−αj
t , where each αj

t ≥ 0,∀t are such that

wj
j ≥ 0. The final demand aj

j is defined on the discrete interval [aj
j+1, a

j
j+1 + wj

j+1] with

a probability distribution Fj(a
j
j+1). This forecast evolution process captures the above

two assumptions: (1) the forecast gets tighter as one gets closer to demand since wj
t is

increasing in t − j, and (2) the future forecast are contained in the current range since

aj
t−1 lies in the range [aj

t , a
j
t + wj

t −wj
t−1]. Note that Ft(a

j
t+1) allows us to model changes

in distribution over time, and αj
t provides the ability to model the different points of

time at which major or minor updates in forecast may be obtained. A firm that obtains

all the forecast updates very close to the selling season will have αj
t = 0 for values of t

further away from j , and a high value for αj
t for values of t very close to j. Note that we

assume that the progression of wj
t is known, whereas the progression of aj

t is probabilistic.

This models a situation in which the firm has a good understanding of when additional

information will be obtained (for example, a trade show), but doesn’t know a priori what

that information will be.

We assume that demand occurs every period, and that the manufacturer can produce

between 0 and C units each period. We consider a T period finite horizon model, in
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which demand can occur in each of the periods. Periods are numbered backwards; T is

the first period, and the last period is 1. The objective is to minimize the expected total

cost during the finite horizon; at each period a production decision needs to made. More

specifically, the order of events in each period t is as follows:

1. the production decision qt is made

2. demand at
t is realized from the range [at

t+1, a
t
t+1+wt

t+1] with probability distribution

F j
t (at+1)

3. the forecasts for each subsequent period i, ai
t are realized from the range [ai

t+1, a
i
t+1+

wi
t+1] with probability distribution F i

t (at+1)

4. holding and penalty costs are charged

Let Vt(x, It+1) denote the optimal cost to go function with t periods remaining in the

horizon when the on-hand inventory is x and the information available is It. We assume

that all unmet demand is back ordered. Then,

Vt(x, It+1) = min
0≤qt≤C

E{qtc + h(x + qt − ξt)
+ + π(ξt − x− qt)

+ + Vt−1(x + qt − ξt, It)}

and

V1(x, I2) = min
0≤q1≤C

E{q1c + (h + s)(x + q1 − ξ1)
+ + π(ξ1 − x− q1)

+}

The expectation E is with respect to all possible realization of demand in the current

period, and all possible values of It. It is clear that this problem is quite challenging. It

is a non-stationary inventory problem with capacity restrictions and forecast evolution.

A threshold policy is optimal if the optimal cost to go function is convex, which in the

discrete case reduces to showing increasing first differences. We will now show that the

one period and t period objectives have increasing first differences.
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Lemma 3.1 Let L(y, I) = cy + Eξ{(h + s)(y − ξ)+ + (π)(ξ − y)+}. Then L(y + 2, I)−
L(y + 1, I) ≥ L(y + 1, I)− L(y, I).

Proof. Let L̂(y, ξ) = cy + {(h + s)(y − ξ)+ + (π)(ξ − y)+}.

When ξ ≥ y + 2 then L̂(y + 2, ξ) − L̂(y + 1, ξ) = L̂(y + 1, ξ) − L̂(y, ξ) = c − π. When

ξ ≤ y then L̂(y + 2, ξ)− L̂(y + 1, ξ) = L̂(y + 1, ξ)− L̂(y, ξ) = c + (h+ s). When ξ = y + 1

then L̂(y + 2, ξ)− L̂(y + 1, ξ) = c + h + s and L̂(y + 1, ξ)− L̂(y, ξ) = c− π. Therefore,

(L̂(y + 2, ξ)− L̂(y + 1, ξ))− (L̂(y + 1, ξ)− L̂(y, ξ)) ≥ 0 ∀ ξ

Thus, L(y + 2, I)− L(y + 1, I) ≥ L(y + 1, I)− L(y, I).

Theorem 3.2 V1(x + 2, I2)− V1(x + 1, I2) ≥ V1(x + 1, I2)− V1(x, I2) ∀x, I2.

Proof. V1(x, I2) = min0≤qt≤C E{qtc + (h + s)(x + qt − ξt)
+ + π(ξt − x − qt)

+} = −cx +

minx≤y≤x+C E{cy + (h + s)(y − ξt)
+ + π(ξt − y)+} = −cx + minx≤y≤x+C L(y, I2)

Let g = arg min L(y, I2). There are five cases for possible values of g.

Case (1): g ≤ x. In this case, V1(x+2, I2)−V1(x+1, I2) = −c+L(x+2, I2)−L(x+1, I2)

and V1(x + 1, I2) − V1(x, I2) = −c + L(x + 1, I2) − L(x, I2). From Lemma 3.1 we know

that V1(x + 2, I2)− V1(x + 1, I2) ≥ V1(x + 1, I2)− V1(x, I2).

Case (2): g = x+1. In this case, V1(x+2, I2)−V1(x+1, I2) = −c+L(x+2, I2)−L(x+1, I2)

and V1(x + 1, I2) − V1(x, I2) = −c. Since g = x + 1 is the minimal point and L is

convex (increasing first differences), we know that L(x + 2, I2) ≥ L(x + 1, I2) therefore

V1(x + 2, I2)− V1(x + 1, I2) ≥ V1(x + 1, I2)− V1(x, I2).

Case (3): g = x+C +1. In this case, V1(x+2, I2)−V1(x+1, I2) = −c and V1(x+1, I2)−
V1(x, I2) = −c+L(x+C +1, I2)−L(x+C, I2). Since g = x+C +1 is the minimal point

and L is convex (increasing first differences), we know that L(x+C, I2) ≥ L(x+C+1, I2)

therefore V1(x + 2, I2)− V1(x + 1, I2) ≥ V1(x + 1, I2)− V1(x, I2).
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Case (4): g ≥ x + C + 2. In this case, V1(x + 2, I2) − V1(x + 1, I2) = −c + L(x + C +

2, I2)−L(x+C +1, I2) and V1(x+1, I2)−V1(x, I2) = −c+L(x+C +1, I2)−L(x+C, I2).

From Lemma 3.1 therefore, V1(x + 2, I2)− V1(x + 1, I2) ≥ V1(x + 1, I2)− V1(x, I2).

Case (5): x + 2 ≤ g ≤ x + C. In this case, V1(x + 2, I2) − V1(x + 1, I2) = −c and

V1(x+1, I2)−V1(x, I2) = −c therefore V1(x+2, I2)−V1(x+1, I2) ≥ V1(x+1, I2)−V1(x, I2).

Thus V1(x + 2, I2)− V1(x + 1, I2) ≥ V1(x + 1, I2)− V1(x, I2) ∀x, I2.

With Theorem 3.2, we have shown that with one period objective function V1(x, I2)

has increasing differences and therefore a threshold policy is optimal. Next, we show this

is true any Vt(x, It+1).

Theorem 3.3 Vt(x + 2, It+1)− Vt(x + 1, It+1) ≥ Vt(x + 1, It+1)− Vt(x, It+1)∀ x, It+1.

Proof. We will show this by induction. Clearly from Theorem 3.2 we know that the

relationship is true for t = 1. Let us assume that it is true for t− 1 and we will prove it

for t. Let G(y, I) = cy + Eξ{(h)(y − ξ)+ + (π)(ξ − y)+}.

Vt(x, It+1) = min
0≤qt≤C

E{qtc + h(x + qt − ξt)
+ + π(ξt − x− qt)

+ + Vt−1(x + qt − ξt, It)}

= −cx + min
x≤y≤x+C

{G(y, It+1) + EVt(y − ξt, It)}

Note that G(y, I) is identical to L(y, I) excepting that the holding cost is changed from

h+s to h. It can be easily shown that G(y+2, I)−G(y+1, I) ≥ G(y+1, I)−G(y, I) similar

to Lemma 3.1. Vt−1(y− ξt, It−1) had increasing differences (by the induction hypothesis)

so T (y) = G(y, It+1) + EVt(y − ξt, It) has increasing differences. Let g = arg min T (y).

There are five cases, for each possible value of g.

Case (1): g ≤ x. In this case, Vt(x + 2, It+1)− Vt(x + 1, It+1) = −c + T (x + 2)− T (x + 1)

and Vt(x + 1, It+1) − Vt(x, It+1) = −c + T (x + 1) − T (x). Therefore, Vt(x + 2, It+1) −
Vt(x + 1, It+1) ≥ Vt(x + 1, It+1)− Vt(x, It+1).

Case (2): g = x+1. In this case, Vt(x+2, It+1)−Vt(x+1, It+1) = −c+T (x+2)−T (x+1)

and Vt(x + 1, It+1) − Vt(x, It+1) = −c. Since g = x + 1 is the minimal point and T
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is convex (increasing first differences), we know that T (x + 2) ≥ T (x + 1) therefore

Vt(x + 2, It+1)− Vt(x + 1, It+1) ≥ Vt(x + 1, It+1)− Vt(x, It+1).

Case (3): g = x + C + 1. In this case, Vt(x + 2, It+1) − Vt(x + 1, It+1) = −c and

Vt(x+1, It+1)−Vt(x, It+1) == −c+T (x+C +1)−T (x+C). Since g = x+C +1 is the

minimal point and T is convex (increasing first differences), we know that T (x + C) ≥
L(x + C + 1) therefore Vt(x + 2, It+1)− Vt(x + 1, It+1) ≥ Vt(x + 1, It+1)− Vt(x, It+1).

Case (4): g ≥ x + C + 2. In this case, Vt(x + 2, It+1) − Vt(x + 1, It+1) = −c + T (x +

C + 2)− T (x + C + 1) and Vt(x + 1, It+1)− Vt(x, It+1) = −c + T (x + C + 1)− T (x + C).

Therefore, Vt(x + 2, It+1)− Vt(x + 1, It+1) ≥ Vt(x + 1, It+1)− Vt(x, It+1).

Case (5): x + 2 ≤ g ≤ x + C. In this case, Vt(x + 2, It+1) − Vt(x + 1, It+1) = −c and

Vt(x+1, It+1)−Vt(x, It+1) = −c therefore Vt(x+2, It+1)−Vt(x+1, It+1) ≥ Vt(x+1, It+1)−
Vt(x, It+1).

Vt(x + 2, It+1)−Vt(x + 1, It+1) ≥ Vt(x + 1, It+1)−Vt(x, It+1)∀x, It+1 follows by induction.

Corollary 3.4 For every period t there exists a threshold level y∗t (It+1) such that it is

optimal to produce in period t if xt ≤ y∗t (It+1) and to not produce if xt > y∗t (It+1).

As the state space for this problem is very large, optimally solving the dynamic

programming recursion for this model is very complex and time intensive. We are thus

motivated to consider a variety of heuristics for this problem in order to handle realistic

size problems.

3.2 Heuristics

We consider three heuristics for this model. In particular, the first two heuristics involve

reduction of the state space by simplification of the model in various ways. The final

heuristic, motivated by the heuristics in Kaminsky and Swaminathan (2001), as well

as approaches first proposed by Morton and Pentico (1995), solves a series of related
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single period uncapacitated problems, and then uses this information to make production

decisions.

• H1: Solving the problem optimally for some small number of periods

in the future. We solve the P period finite horizon problem optimally given

It+1 (that is, ignoring forecast evolution), where P << T . Note that a myopic

approach is a special case of this heuristic where only one period is considered, and

that salvage cost is added only if the final period is being considered.

• H2: Solving the problem for lower and upper bounds for a limited time

horizon. In this heuristic, we assume that the demands in future periods are

deterministic, fixed at the lower bounds or upper bounds, and find the optimal

production for this (deterministic) system for P ′ periods, where P ′ < T . Note that

since this deterministic problem is easier to solve than the stochastic problem, the

H2 horizon P ′ can be longer than the H1 horizon P. In Heuristic H2l, if we are

at time t, we fix demand at time l ≤ t at al
t, while heuristic H2u fixes demand at

al
t + wl

t. As in Heuristic H1, salvage cost is added only if the final period is being

considered.

• H3: Solving the non-stationary problem without capacity constraints

and extrapolating. Kaminsky and Swaminathan (2001) solve the terminal de-

mand version of this problem by first solving an uncapacitated single period prob-

lem, and then adapting that solution to the multi-period capacitated production

model. Conceptually, they do this “spreading the manufacturing backwards” so

that the desired inventory can be manufactured in the presence of capacity con-

straints. In this heuristic H3, we use a similar approach.

Of course, one difficulty in doing this is that the uncapacitated problem is challeng-

ing to solve. Fortunately, Morton and Pentico (1995) develop a heuristic which they

computationally demonstrate produces very good solutions to the uncapacitated

multi-period nonstationary stochastic inventory problem. This heuristic works by

solving this multi-period problem as if it is a single period problem with demand

equal to the cumulative remaining demand, and adjusted holding costs.
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In our heuristic H3, we combine this idea of “spreading back” production from

Kaminsky and Swaminathan (2001), with a modified version of the Morton and

Pentico heuristic.

First, we present our modified version of the Morton and Pentico heuristic. Recall

that this heuristic is based on solving a modified single period problem. Now,

let Φt1 be the cumulative distribution of demand over the periods from t to 1

inclusive, assuming that the distribution in each subsequent period is conditional

only on It (that is, without forecast evolution, as in heuristic H1). Then the

optimal inventory level for a single period model with modified holding costs, the

cumulative demand, and maximum production equal to the total available capacity,

is calculated. Specifically, the inventory level is calculated in two ways:

ȳm
t1 = arg min

0≤y≤TC
Edt1{cy + (h− s)(y − dt1)

+ + (βπ)(dt1 − y)−}

where dt1 is distributed according to Φt1. Also, the one period myopic inventory

level is calculated

ȳm
t = arg min

0≤y≤TC
Edt{cy + (h)(y − dt)

+ + (βπ)(dt − y)−} t > 1

and

ȳm
1 = arg min

0≤y≤TC
Ed1{cy + (h− s)(y − d1)

+ + (π)(d1 − y)−}

where dt is distributed according to Φt. Observe that shortages in this period also

impact costs in later periods, as demand is backlogged. Therefore, we multiply the

penalty cost by a factor β to account for its impact on future periods. To determine

β, we first determine the load factor λ as follows:

λ = min{2, max{1, ym
t

.8tC
}}

which represents the approximate fraction of 80 % of remaining capacity which

will be required, bounded by one on the low end and two on the high end. If this

remaining capacity is tight, back order will be more damaging in the long run.

We then determine the penalty multiplier β by multiplying the load factor by the

number of periods remaining, bounded on the low end by two:

β = min{λt, 2}
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Following Morton and Pentico’s EOS heuristic, we next take the uncapacitated

order-up-to level to be:

ȳt = min{ȳm
t1 , ȳ

m
t }

Of course, the production schedule suggested by this heuristic will typically be in-

feasible for the capacitated problem. We thus need to move some of the production

earlier where necessary to account for these capacity constraints. We detail this

approach, heuristic H3, below.

Suppose we are in period t. We implement the following procedure to determine

the order up to level in this period. First, we calculate ȳi, i = t, t − 1, ..., 1 as

described above for the uncapacitated case, using the appropriate demand distri-

butions and convolutions, assuming that demand doesn’t continue to evolve, but is

instead distributed in future periods based on the current bands. Next, we adjust

these order-up-to levels to account for the capacity constraint using the following

procedure:

1. Calculate ȳi, i = t, t− 1, ..., 1 as described above.

2. New levels are determined recursively (from 1 to t) using the following for-

mulation:

yj = min{C, ȳj +
j−1∑
i=1

(ȳi − yi)}, j = 1, 2, ..., t− 1

yt = min{C, ȳj +
j−1∑
i=1

(ȳi − yi)− xt}

Note that although this approach calculates a series of yi values, these have to

be recalculated for each t since the distribution and starting inventory changes as

information is updated.

4 Computational Study

We present the results of computational studies, in which we tested our heuristics under

different settings, and explored the benefits of improving forecasts earlier in the time
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horizon. We use the following parameters for our computational study:

Time Horizon: In order to test the effectiveness of our heuristics we compare heuristic

solutions to the optimal solution. For these tests we use a four period time horizon, the

largest time horizon for which our problem can practically be solved to optimality. For

additional tests in which use only our heuristics, we utilize a 24 period time horizon.

Cost Parameters: We use production cost c = 50, penalty π = 75, 150, 250, salvage

s = 0, 10, 25, 45 and holding cost h = 0, 2, 4, 8, 12 in the study, to determine the effect

of relatively high and low penalty, salvage, and holding costs (similar to Morton and

Pentico 1995).

Demand: We assume that demand in period t is uniformly distributed on the interval

[at
t, w

t
t]. We set initial demand and forecast updates so that final demand has a width of

5. We set the initial width equal to a quantity no larger than 11, and less if there is not

enough time to reduce the width to 5. Thus, for 4 period time horizons, we set the w

values as follows:

w4
5 = 5, w3

5 = 6, w2
5 = 7, w1

5 = 8

Similarly, for 24 period horizons, we set initial w values as follows:

w24
25 = 5, w23

25 = 6, w22
25 = 7, w21

20 = 8, w20
25 = 9, w19

25 = 10

and for the remaining values

w18
25 = 11, i = 1, 2, ..., 18.

In order to reduce the bands to the appropriate value in time, we set α’s as follows.

For the 4 period horizon:

αt
l = 1, t = 1, 2, 3, l = t + 1, ..., 4

with remaining α’s set to 0.

For the 24 period horizon:

αt
l = 1, t = 1, 2, ..., 18, l = t + 1, t + 2, ..., t + 6
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αt
l = 1, t = 19, 20, ..., 23, l = t + 1, ...t + (24− t)

with remaining α’s set to 0.

All that remains is to set the values for the at values. Recall that the at values

represent a lower bound on demand, and thus can be set to simulate stationary demand,

as well as a variety of seasonal demand variation. For the four period time horizon, we

consider the following three cases.

• the BASE case: at
5 = 4, t = 1, 2, 3, 4.

• the MODERATELY SEASONAL case: at
5 = 5, t = 1, 3, and at

5 = 3, t = 2, 4.

• the SEASONAL case: at
5 = 8, t = 1, 3, and at

5 = 0, t = 2, 4.

Similarly, for the 24 period time horizon, we consider the following three cases:

• the BASE case: at
25 = 4, t = 1, 2, ..., 24

• the MODERATELY SEASONAL case: at
25 = 5, t = 1, 2, 3, 4, 9, 10, 11, 12, 17, 18, 19, 20,

and at
25 = 3, t = 5, 6, 7, 8, 13, 14, 15, 16, 21, 22, 23, 24.

• the SEASONAL case:at
25 = 8, t = 1, 2, 3, 4, 9, 10, 11, 12, 17, 18, 19, 20, and at

25 =

0, t = 5, 6, 7, 8, 13, 14, 15, 16, 21, 22, 23, 24.

Capacity: We examine three capacity cases, HIGH:C = 13,MEDIUM:C = 9,LOW:C =

7. To understand these capacity values, compare them to the at + wt values for the dif-

ferent scenarios described above.

4.1 Performance of the Heuristics

We tested the effectiveness of the heuristics for two different time horizons. For the four

period horizon, we compared heuristics and the optimal solution for all combinations

of the parameters listed above. Each parameter combination was tested through five

simulation runs. In the simulation runs, at each period, the ordering decision was made
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based on the algorithm, and then random demand and forecast updates were realized.

In addition, we compared the four heuristics (without the optimal solution) for all of the

combinations of the parameters listed above for a twenty four period time horizon, using

the same simulation-based approach. In all cases, the horizon for heuristic H1 was three

periods. For the four period problems, heuristics H2l, H2u and H3 were solved for all

periods. For the 24 period problems, heuristics H2l and H2u were calculated using a

six period horizon.

We find that for the 4 period problems (542 in all), H1 and H3 perform very well, with

average objective values of 0.008% and 0.12% over the optimal strategy respectively, while

H2u was on average 1.14% worse than the optimal strategy. H2l performs rather poorly,

averaging 95.46% worse than the optimal strategy (see Table 1). It is not surprising that

for a four period problem solving the three period horizon optimally, (H1) is likely to be

very close to the overall optimal solution. On the other hand, by producing to meet the

lower bound in the demand, H2l can be quite ineffective since the penalty cost is much

higher than the holding cost. Also not surprisingly, the more sophisticated H3 heuristic

which extrapolates production based on an unconstrained heuristic performs very well.

We also find that H2l, H2u and H3 run much faster than H1 (see Table 1, where times

are seconds on a Pentium III-800 computer).

H1 H2l H2u H3
Average Error 0.008% 95.46% 1.14% 0.12%
Average Time 0.22 0.004 0.004 0.009

Table 1: Average error and running times for H1, H2l, H2u and H3 for the four period
problems.

For the problem with 24 periods, computing the optimal strategy was unrealistic in

terms of time and memory constraints. As a result, we compare the average cost incurred

by the heuristics across the 1620 problem instances that we tested. We find that H2u

and H3 perform significantly better than H1 and H2l. All the heuristic run within a

reasonable amount of time even for these longer horizon problems (see Table 2). This

suggests that heuristic H2u and H3 are efficient and effective even when the number of

periods is high. When we compare these two heuristics, we see their performance is quite
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similar, with H2u having a slightly better average performance in the 24 period case,

although H3 actually performs slightly better than H2u in about 64% of the experiments.

H1 H2l H2u H3
Average Error 43469 62126 35797 36000
Average Time 2.98 2.23 2.16 2.24

Table 2: Average error and running times for H1, H2l, H2u and H3 for the four period
problems.

4.2 Forecast Updates, Capacity, and Seasonality

In this series of experiments, we evaluated the value of the timing of forecast information

updates. We modelled the information updates in the forecast process by changing the

width of the forecast band from period to period. We consider EARLY INFORMA-

TION, INTERMEDIATE INFORMATION and LATE INFORMATION models. In the

EARLY (INTERMEDIATE, LATE) INFORMATION case the band width reduces more

per period in the first few (middle, last few) periods respectively, although in all cases,

the bands decrease from their initial width to a width of 5. For example, for EARLY

INFORMATION, all α’s except for the final six before the demand period are 0. The

final six α′s are represented by the vector (321000). Similarly, the INTERMEDIATE and

LATE INFORMATION cases are represented by (111111) and (000123) respectively. The

INTERMEDIATE CASE is detailed above. Presumably the firm has to invest in better

forecasting systems in order to obtain the refined updates earlier in the horizon. We do

not consider such costs in our analysis but only focus on the benefits. Further, we also

consider three levels of seasonality as indicated earlier which to an extent reflects the

correlation in the demand across successive periods. We summarize our insights below:

• Unsurprisingly, total costs increase with increase in penalty and holding costs and

costs decrease with increase in capacity.

• In general, increase in seasonality increases total costs when capacity is high. For

example, based on the optimal solutions to the instances with 4 periods, in Table
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3 we see a slight increase in cost when capacity is high. This is not always the case

when capacity is tighter. For example, in the optimal solutions to the 4 period

instances, when the capacity is medium (C=9) the cost first decreases and then

increases and when capacity is tight (C=7) the costs decrease with seasonality.

We observed similar results with other data sets. Apparently, higher seasonality

provides a form of negative correlation, and the benefits of negative correlation are

more dramatic when capacity is lower.

Capacity = 7 Capacity = 9 Capacity = 13
Base Seasonal 1762 1464 1434

Intermediate Seasonal 1695 1453 1434
High Seasonal 1574 1466 1436

Table 3: Effect of Capacity and Seasonality when h = 4, p = 75, c = 50, s = 10 for the
four period problem.

• We observe that obtaining information updates earlier is beneficial in most cases

and we also find that the marginal benefit of obtaining earlier information is lower

under higher capacity. For example, in Table 4 we observe this for an instance with

24 periods, when when h = 4, p = 75, c = 50, s = 10, when heuristic H3 is used.

We see similar results for other instances and heuristics. Intuitively, obtaining

earlier updates enables the firm to plan production more effectively. However, this

is crucial only when the firm has limited capacity. When the firm has a large

capacity base it has the ability to adequately respond to abrupt changes in the

demand process, and hence the value of earlier information is minimal.

Capacity = 7 Capacity = 9 Capacity = 13
Early Update 42596 11986 11712

Intermediate Update 44186 12737 11821
Late Update 46210 13387 11969

Table 4: Effect of Capacity and Information Updates when h = 4, p = 75, c = 50, s = 10
for the 24 period problem under intermediate seasonality.

• Interestingly, there are cases when obtaining early updates is not necessarily ben-
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Capacity = 7 Capacity = 9 Capacity = 13
Early Update 35383 12321 12597

Intermediate Update 36988 12375 11725
Late Update 38902 12654 11898

Table 5: Effect of Capacity and Information Updates when h = 4, p = 75, c = 50, s = 10
for the 24 period problem under high seasonality.

eficial. For example, consider the case in which capacity is high (C = 13) demand

is highly seasonal, as in Table 5. This can be explained by observing that early in-

formation is less precise when seasonality is high, and when capacity is high, there

is a chance of overreaction to early information updates. When capacity is lower,

overreaction is constrained by available capacity.

5 Conclusions

We present a model that captures forecast evolution information while making produc-

tion decisions in a capacitated environment. We consider a forecast evolution model

which is defined by a band (with upper and lower bounds) that captures the uncertainty

in the forecast. As time moves forward, we assume the next forecast has a smaller width

(representing a better forecast), and that the new band can lie anywhere inside the old

band. This models a forecasting process which gets refined over time as new information

arrives. We consider a manufacturing firm utilizing this forecast which has a fixed ca-

pacity in each period and needs to decide in which periods it should produce in order to

meet demand in each period, taking into account expected production, holding, salvage

and stock-out costs. We prove the existence of inventory threshold levels in each period

below which the firm should produce and above which it should not. We develop several

heuristics, based on either reducing the size of the dynamic programming state space,

or on solving a series of uncapacitated problems, and then modifying the solutions for

the capacitated case. Our computational study shows that several of these heuristics are

very effective.

We empirically observe that early information updates in the forecasting process
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generally leads to decreased costs, although this is most dramatic when capacity is tight.

Indeed, when capacity is high and demand is highly seasonal, over-reactions to early

information updates may be detrimental to system performance. We also observe that

in this model, increases in seasonality lead to increases in total costs when capacity is

high, but may actually lead to decreased costs when capacity is tight. Finally, we find

that the marginal benefit of earlier information is lower when capacity is high.

There are certain limitations in the model we present in this paper. First, we assume

that forecasts get better or at least are as good in future periods. Although this assump-

tion is reasonable under most conditions there may be situations where this condition

may be violated. Second, we present a model where only one product is being produced

in a capacitated setting. A multi-product system would be more appropriate in a general

setting; it will be more complex to handle, however.
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