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Abstract

Despite the importance of the Newsvendor model, little attention has
been paid to its robustness with respect to the estimation of one of its
inputs, the salvage value. This oversight is inappropriate because we show
that the performance of the Newsvendor model is quite sensitive to the
particular method chosen to estimate the salvage value. We highlight two
reasons for this sensitivity: small errors in the estimate of the salvage value
can lead to a signi…cant pro…t loss and, more interestingly, there exists a
dependence between the estimation method used and the resulting data
obtained. To explain, the ex ante salvage value inputted into the model
determines the order quantity which then results in some ex post observed
salvage value. An estimation method should be evaluated in terms of its
equilibrium performance, i.e., the inputted salvage value equals the expected
observed salvage value. We evaluate several intuitive estimation methods
and …nd that they perform poorly in equilibrium. We also identify an
estimation method that yields the optimal pro…t. We conclude that the
Newsvendor model is robust to errors in the estimation of the salvage value
as long as the proper estimation method is utilized.
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The newsvendor model is certainly among the most important models in operations man-

agement. It is applied in a wide variety of areas: centralized and decentralized supply chain

inventory management (e.g., Shang and Song 2003, Cachon 2003), retail assortment planning

(e.g., van Ryzin and Mahajan, 1999), international operations (e.g., Kouvelis and Gutier-

rez 1997), horizontal competition among …rms facing stochastic demand (e.g., Lippman and

McCardle, 1995), lead time competition (e.g., Li 1992), outsourcing and subcontracting deci-

sions (e.g., Van Mieghem 1999), product and process redesign (Fisher and Raman 1996 and

Lee 1996), and spot markets and inventory control (e.g., Lee and Whang 2002) to name a

few. It is taught in most introductory courses in operations management and it is described

in detail in most operations management text books.

The newsvendor model is not complicated: the only decision is an order quantity, the

purchase cost per unit is !" units are sold during a selling season for a …xed price, #" demand

is stochastic during the selling season with a known distribution, sales are bounded by the

order quantity and left over inventory is salvaged at the end of the season for a …xed salvage

value, $% While there is little uncertainty associated with the cost and price parameters (!

and #)" and there is a substantial literature on how to choose the demand distribution, there

has been surprisingly little research conducted on the remaining input to the model, the

salvage value. In many applications of the model the salvage value is not a …xed amount

received from left over inventory, but rather, it is the output of a clearance pricing decision:

if there is little inventory left at the end of the season, the salvage value is likely to be high (a

small discount is needed with a popular product in short supply) whereas if there is plenty

of inventory at the end of the season, the salvage value is likely to be low (a deep discount

is needed with an unpopular product in ample supply). As a result, it is not clear how

historical data could be used to estimate the salvage value, nor whether the procedure for

estimating the salvage value matters in terms of pro…ts.

This paper studies how a manager should use historical data to estimate the salvage value

when applying the newsvendor model to an actual decision. Besides the stature of this

model in the operations literature, we o¤er three reasons why this is an important research

topic. First, a small error in the salvage value estimate can translate into a signi…cant pro…t

loss, especially if the salvage value is overestimated. This point is illustrated by the data

reported in Table 1 from a simple numerical example: e.g., if demand is gamma distributed,
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the gross margin is 25%, the di¤erence between the production cost and the true salvage is

8% of the sales price, and the coe¢cient of variation is 0.71, then using a salvage value that

is 12% higher than the true salvage value results in a pro…t loss of nearly 60%. In contrast,

using an order quantity that is 12% higher than optimal only results in a 1% pro…t loss.

The well known EOQ model also provides an interesting contrast: using an order quantity

or setup cost that is 12% greater than the true value increases overall costs by only 0.2%

(with either parameter). (See Dobson 1988 for a more detailed discussion of the robustness

of the EOQ model to errors in the input parameter estimates).

Our second reason is that there are several intuitively reasonable methods for evaluating

the salvage value, but they can result in signi…cantly di¤erent estimates, thereby leading to

considerable variation in performance. In other words, there is more than one way to look

at historical data to derive a salvage value, and, due to sensitivity even to small estimation

errors, the estimation technique chosen can have a signi…cant impact on pro…t.

Our third reason, and most interesting one, is that the estimation of the salvage value

cannot be viewed in isolation of the order quantity decision. To explain, consider the

following quote that describes the economics of selling fashion ski apparel faced by Sport

Obermeyer (Hammond and Raman 1994): “...units left over at the end of the season were sold

at a loss that averaged 8% of the wholesale price.” That 8% …gure was most likely determined

with historical data, and it surely depends on how much Sport Obermeyer ordered in the

past. For example, had Sport Obermeyer ordered twice as much as they did, then it is

reasonable to expect that their historical losses would have been higher (they would have

had more parkas to discount). As a result, order quantities determine historical data used

to estimate salvage values, which are used to set future order quantities. (We presume here,

as with Sport Obermeyer, that the newsvendor model is applied over multiple occasions that

are similar in characteristics. For example, clearance pricing decisions are made in the same

manner over successive seasons so a set of seasons can be viewed as a set of independent

application of the newsvendor model to the same problem, just di¤erent realizations of the

stochastic variables in each season.)

This relationship between order quantities, data and estimated salvage values raises several

questions. For a given salvage value estimation procedure is there a stable equilibrium in

terms of inputted salvage values and order quantities? Put into the Sport Obermeyer context,
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if they choose order quantities based on their 8% expected loss, then will they observe in their

future data 8% losses as well? If there exists this salvage value-order quantity equilibrium,

then is it unique, and if unique, then is it optimal? Initial intuition suggests that it should

be: data are used to choose actions and the actions result in similar data, so input data

and actions are consistent. If not optimal, one would suspect that it is nearly optimal. But

in fact, we demonstrate that a substantial pro…t loss can occur even if there is consistency

between the salvage value and the order quantity.

It is important to note that this notion of robustness is di¤erent than one based on

sampling error alone (as in the data in Table 1, or as in Dobson 1988). We evaluate

the performance of each estimation method in the most optimistic scenario that there is no

sampling error, i.e., the evaluated salvage value is assumed to be the salvage value that would

be estimated with an unlimited sample of data. Nevertheless, because of the dependence

between the estimation method and the chosen action, the estimation method can lead to

order quantities that deviate substantially from optimal, thereby causing a signi…cant pro…t

loss. To the best of our knowledge, there has been no other work in inventory theory that

evaluates robustness of an inventory model in this manner.

Although a cavalier implementation of the newsvendor model is not prudent, this does

not mean it is ine¤ective. We provide an estimation procedure that indeed leads to the

optimal solution in equilibrium. Hence, the simple and parsimonious newsvendor model

can be e¤ectively applied in situations with clearance pricing.

The next section provides an example to illustrate our ideas and further motivates this

research. The subsequent section de…nes our model, §3 reviews the related literature, §4

identi…es the optimal procurement quantity, §5 de…nes and analyzes several salvage value

estimation rules, §6 presents some numerical results and the …nal section discusses our results.

1 A motivating example

Suppose a manager wishes to use to the newsvendor model to choose an order quantity for

an item in advance of its selling season. The manager forecasts that demand follows a

gamma distribution with mean 1000 and standard deviation 707. The regular selling price

is # = $200 and the purchase cost per unit is ! = $150% Left over units at the end of the

season are liquated via a markdown that depends on the number of units left over. To
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assess the salvage value the manager looks at historical data of similar items for which the

newsvendor model was used to choose an order quantity and units were salvaged. Table 2

provides & = 10 observations. In each observation the order quantity was 1400 units. The

table provides for the '!" observation the amount of inventory left over at the end of the

regular season, (#" (i.e., the inventory at the start of the clearance period), the total revenue

earned during the clearance period, )# " and the revenue earned per unit, *# = )#+(#. In some

cases the revenue earned per unit in the clearance period is above the purchase cost, $150,

because only a small discount is needed to liquidate the few units in inventory.

How should a manager use these data to estimate a salvage value? Interestingly, we were

unable to …nd any reference that o¤ers a precise method for estimating the salvage value,

nor is there any acknowledgment in the literature that there could be multiple methods

for evaluating the salvage value or that this estimation must be done carefully. All of the

de…nitions we found read like “the salvage value is the amount earned on each unit left over

at the end of the season”. One interpretation of this statement is what we call the average

salvage value: let $̂$ be the salvage value inputted to the newsvendor model, where $̂$ is the

average of the revenue per unit across the observations,

$̂$ =
1

&

%X
#=1

*#%

For the sample in Table 2, $̂$ = $130. However, if the salvage value is 130 then the order

quantity recommended by the newsvendor model is 1254, not 1400 (the order quantity used

to collect the data). Furthermore, the model chooses the order quantity 1400 only if the

inputted salvage value is $135. One might suspect that the di¤erence between the observed

$130 and the required $135 is due to sampling error, but it is not: in these examples the

expected salvage value is $131 when the order quantity is 1400.

The problem with this situation is that our current salvage value-order quantity pair,

f130" 1400g is not in equilibrium: if the salvage value 130 is inputted to the newsvendor
model then the recommended order quantity is not 1400, and if the order quantity 1400 is

chosen then the observed clearance period revenue per unit is not $130. There indeed exists

an equilibrium in our example, f133" 1346g" and it happens to be the unique equilibrium: if
1346 units are ordered then the expected average salvage value is $133, and if $133 is the

inputted salvage value then 1346 units is the order quantity recommended by the newsvendor
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model. But that is where the good news ends: the optimal order quantity is 941 units, and

the pro…t with the equilibrium order quantity is 22% less than the optimal pro…t. Therefore,

even if there is consistency between the inputted salvage value and the observed salvage value,

the performance of the model can be grossly suboptimal. In fact, if the manager were to

use the average salvage value as the input to the newsvendor model, then there is no hope to

reach the optimal order quantity: with an order quantity of 941 units the expected average

salvage value is $157, which is greater than the production cost! Hence, the optimal solution

generates data that leads to infeasible inputs to the newsvendor model.1 We clearly need

to consider other methods for estimating the salvage value.

2 The newsvendor and the clearance pricing models

We de…ne in this section the two models we study. We assume a manager uses the newsven-

dor model to make an order quantity decision and inputs into the model some salvage value

estimated with historical data. The newsvendor model correctly represents reality with only

one exception, the revenue earned per unit on left over inventory is not a …xed value but

rather it is the result of a markdown pricing decision. Therefore, to assess the performance

of the newsvendor model we analyze the “clearance pricing model”, a model that is identical

to the newsvendor model with the exception that it explicitly incorporates the clearance

pricing decision.

In the newsvendor model a …rm purchases , units before a single selling season with

random demand and pays ! per unit. There are no constraints on , (i.e., no capacity

constraint), but only a single procurement is feasible. The selling season is divided into two

periods. In period 1, called the regular season, the retailer sells each unit for #1 - !. In

period 2, the clearance period, the retailer sells all remaining inventory for $ per unit, $ . !%

Let / 2 (0"1] be the realization of demand in period one. Let 0 (¢) be the strictly increasing

1 When teaching the newsvendor model to MBA students we are often asked what should

a manager do if the salvage value is greater than the production cost. The standard answer

is either that this is not possible (at least on an exam question) or the manager should

order more, in which case the salvage value will eventually decrease below the production

cost and then the model applies again. But that is incorrect, as this example indicates.
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and di¤erentiable distribution function of demand and let 1(¢) be the density function. The
objective in the newsvendor model is to choose an order quantity , to maximize expected

pro…t.

We now describe the clearance pricing model, which is almost identical to the newsvendor

model. The di¤erence is that at the start of the clearance period the …rm chooses a clearance

period price, #2, i.e., it is not automatic that all units are salvaged for $ per unit. We assume

#2 · #1" which is reasonable in some situations and de facto imposed by many …rms.
Period 2 demand, 22(#2" /)" is a deterministic function of the clearance price and the

realization of period one demand% 22(#2" /) is a non-negative and di¤erentiable function that

is decreasing in #2. Hence, the inverse demand function exists, #2(32" /)% The assumption

that 22 depends on / is reasonable if total sales are highly correlated with early season

sales, for which there is empirical evidence (Fisher and Raman 1996, and Fisher, Rajaram

and Raman 2001).

Let 32 be period 2 sales. We make the following two technical assumptions: period

2 revenue, 32#2(32" /) is concave in 32 for all /; and #̂2(/) . #1 for all /, where #̂2(/) =

argmax(#222(#2" /))" i.e., the period 2 revenue maximizing price is no larger than the period

1 price. (For expositional simplicity, in all references to concavity we mean strict concavity.)

The …rst assumption ensures the …rm’s pro…t function is well behaved in ,% The second

merely implies markdowns are possible: if #̂2(/) ¸ #1" then in the clearance period the …rm
would always choose #2 = #1 (given the #2 · #1 constraint) because the optimal clearance
price is never less than #̂2.

22(#2" /) is also monotone in / for all #2. While it is natural to think of 22(#2" /)

as an increasing function of / (a product with high regular season demand also has high

clearance period demand), we also allow 422(#2" /)+4/ = 0 (i.e., regular season and the

clearance period demands are independent) and 422(#2" /)+4/ . 0 (i.e., high regular season

demand saturates the market, thereby lowering demand in the clearance period). However,

for tractability, 422(#2" /)+4/ cannot be too negative: we require that / +22(#̂2(/)" /) and

/ +22(#1" /) are increasing in / for all #2 and /. These conditions imply that total demand

across the two periods increase in /.

One form of 22(#2" /) that meets these requirements can be constructed by using a mul-

tiplicative shock 5(/) in combination with a commonly used demand function such as the
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constant elasticity demand function, 22(#2" /) = 5(/)6#
¡&
2 " or the exponential demand func-

tion, 22(#2" /) = 5(/)67¡&'2 for 1+8 . #1. (The condition on 8 with exponential demand

ensures #̂2 . #1%) There is substantial empirical evidence to support both demand forms,

and both have been observed to …t actual data better than linear demand; see Mulhern and

Leone (1991), Hoch, Byung-Do, Montgomery, and Rossi (1995) and Tellis (1988).

In the clearance period the …rm sets #2 to maximize period 2 revenue given the available

inventory, 9(," /)% Without loss of generality, inventory left over at the end of the clearance

period has zero salvage value. The …rm chooses , before the regular season to maximize

expected pro…t.

3 Literature Review

The literature related to this research can be divided into several broad categories: papers

that discuss variations on the newsvendor model; papers on pricing without multiple inven-

tory replenishments; research on multi-period pricing and inventory problems; and research

on the robustness of heuristics, especially as applied to inventory models.

A number of papers enrich the newsvendor model along one or more dimensions. Instead

of a loss function that is linear in the excess inventory, Porteus (1990) considers a loss function

that is quasi-convex in the excess inventory quantity. He provides conditions under which

the objective function is well behaved. We demonstrate that in the clearance pricing model

the loss function is convex. These models assume the non-linear salvage value function is

known and accurate, i.e., there is no discussion of how that function could be estimated or

how sensitive the performance of the model is to that estimation. Petruzzi and Dada (1999)

and Agrawal and Seshadri (2000a) study a newsvendor that chooses both a quantity and a

price, but in both cases the newsvendor chooses the regular season price, not the clearance

price; they assume a …xed salvage value for inventory remaining at the end of the regular

season. In Carr and Lovejoy (2000) the newsvendor also makes multiple decisions, but their

newsvendor chooses which customers to serve (each with its own demand distribution) given

the newsvendor’s …xed capacity. In Dana and Petruzzi (2001) the newsvendor’s demand

depends on the procurement quantity: more inventory leads to a better …ll rate which

increases demand. Hence, their model, like ours, has an interdependence between input

parameters (the forecasted demand distribution) and the action (quantity). They show
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that a unique equilibrium exists if that interdependence is ignored and the procurement

quantity in equilibrium is lower than optimal. In contrast, for several of our salvage value

estimation methods the …rm procures too much in equilibrium and for one of our methods

the …rms procures the correct amount. In addition, they consider a newsvendor that sets

the regular season price and they do not evaluate when the equilibrium leads to a signi…cant

loss in pro…t. The following papers provide other extensions to the newsvendor model that

are not closely related to this work: Eeckhoudt, Gollier and Schlesinger (1995), Lippman

and McCardle (1995), Schweitzer and Cachon (2000), van Mieghem and Rudi (2001).

Hertz and Scha¢r (1960) recognize that the salvage value of clearance inventory depends

on the amount of inventory, but then argue that a constant salvage value is an adequate

approximation. They do not provide a method for estimating that salvage value.

There are several papers that study a two period version of the newsvendor model with

…xed salvage values: Donohue (2000), Fisher and Raman (1996), Fisher, Rajaram and

Raman (2001), Kouvelis and Gutierrez (1997), and Petruzzi and Dada (2001). In each case

the second period allows a second replenishment, which we do not have. With the exception

of Petruzzi and Dada (2001), in each case prices are exogenous. Our model is a special case

of Petruzzi and Dada (2001). However, their focus is on a solution procedure for their more

complex model whereas our focus is on the robustness of the simple newsvendor model.

There are numerous papers that study revenue management and/or markdown pricing:

e.g., Bitran and Mondschein (1997), Bitran, Caldentey and Mondschein (1997), Brumelle

et. al. (1990), Federgruen and Heching (1997), Feng and Gallego (1995), Gallego and van

Ryzin (1994), Monohan, Petruzzi and Zhao (2002) and Smith and Achabal (1998). With the

exception of Brumelle et al. (1990), these papers assume demand is independent across time

whereas we allow for correlation in demand. Furthermore, their focus is on optimization

of a given model without concern for how the model’s inputs are determined or whether a

simple model can provide an optimal solution.

There are a number of papers that study the robustness of heuristics with inventory

models. Dobson (1988) studies the consequence of using incorrect cost parameters due to

estimation errors in the classic EOQ model. Lovejoy (1990) shows that myopic optimal

policies can be optimal or near-optimal in some dynamic inventory models with parameter

adaptive demand processes. Bounds for the (:";) inventory policy when a simplifying
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heuristic is used to choose the order quantity, ;" are provided by Zheng (1992) and later

extended by Axsater (1996), Gallego (1998) and Agrawal and Seshadri (2000b). None of

the mentioned papers considers the interaction between actions and data used to estimate

input values.

In addition to Dana and Petruzzi (2001), there are two other papers that discuss the

consequence of ignoring the interdependence between inputs and actions, albeit in very

di¤erent settings than ours: Armony and Plambeck (2002) consider demand forecasting in

a supply chain in which customers may submit duplicate orders; and Cachon, Terwiesch and

Xu (2002) study assortment planning with consumer search.

Finally, the interplay between estimation and controls is a constant theme in stochastic

optimal control: estimation modules that produce a unique and consistent input for each

realization of the random factor are considered and their existence is assumed. See for

example Bertsekas (2000). In contrast to the newsvendor model in this paper, the optimal

control models are the best representation of reality and what needs to be estimated (the

current state) is well de…ned. Another di¤erence is that we seek the consistency of inputs

and actions at the expectation level rather than for every realization of the random factor.

4 Optimal procurement and clearance pricing

In this section we evaluate the optimal decision in each model, beginning with the newsvendor

model. The newsvendor model expected pro…t is

<(,) = ¡!, + :1(,) + :2(,)

where :((,) is expected revenue in period =,

:1(,) = #1

µ
, ¡

Z )

0

0 (/)>/

¶
Period 2 expected revenue is assumed to be :2(,) = $9(,)"where $ is the …xed salvage value

per unit and 9(,) is expected left over inventory

9(,) =

Z )

0

9(," /)>0 (/) =

Z )

0

0 (/)>/%

where 9(," /) = (, ¡ /)+% The newsvendor model chooses , to maximize <(,)"

, = 0¡1
µ
#1 ¡ !
#1 ¡ $

¶
(1)
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where 0¡1(¢) is the inverse distribution function. From the above we can derive the function
$%(,)" which is the salvage value such that , is the optimal quantity with the newsvendor

model:

$%(,) = #1 ¡ #1 ¡ !
0 (,)

% (2)

Let ,* be the true optimal order quantity (of the clearance pricing model). The newsvendor

model recommends ,* as long as $%(,*) is the inputted salvage value. In other words, there

is nothing that prevents the newsvendor model from …nding the optimal quantity. All that

we need for that to happen is a method for consistently …nding the correct salvage value,

$%(,
*), to input to the model.

In the clearance pricing model there are two decisions, the initial order quantity and a

clearance price function that depends on the amount of inventory at the start of the clearance

period. We derive the optimal policy in three stages. We …rst establish that clearance period

revenue is concave in the remaining inventory. Next, we show there exists three threshold

functions that partition the regular season demand space into four intervals. The clearance

period revenue function depends on which interval the regular season demand realization

falls. Finally, we demonstrate the expected pro…t function is concave.

The period 2 price, #2, is chosen to maximize revenue after observing period 1 demand, /"

and the remaining inventory 9(," /)% Due to the existence of the inverse function, #2(32" /)"

the equivalent decision is to choose the number of units to sell, 32, to maximize revenue.

Let ?̂2(32" /) = 32#2(32" /) be the unconstrained revenue function, which is concave (by our

earlier assumption). Let 3̂2(/) be the unconstrained optimal period 2 sales quantity:

3̂2(/) = argmax
+2
?̂2(32" /)%

The …rm can sell 32 units only if 32 · 9(," /)% Therefore let e?2(9(," /)" /) be the …rm’s
maximum revenue constrained by available inventory:

e?2(9(," /)" /) = max
+2
(?̂2(32" /) : 32 · 9(," /))

From the Maximum Theorem under Convexity (Sundaram 1999, Ch.9), e?2(9(," /)" /) is
concave in 9(," /) because ?̂2(32" /) is concave in 32.

The remaining constraint to consider is #2 · #1. Let ?2(9(," /)" /) be the …rm’s maximum
period 2 revenue given both the #2 · #1 and the 32 · 9(," /) constraints:

?2(9(," /)" /) = minf#19(," /)" e?2(9(," /)" /)g
10



The minimum of two concave functions is concave, so ?2(9(," /)" /) is also concave in 9(," /)%

We now turn to the evaluation of ?2(9(," /)" /). There are four relevant cases for the

second period revenue maximization problem based on the realization of period 1 demand.

In the …rst case period 2 inventory is larger than the unconstrained optimal selling quantity,

9(," /) ¸ 3̂2(/)" which can occur only if 3̂2(/) is …nite. In this case it is optimal in period

2 to sell 3̂2(/) and dispose of the remaining inventory at the end of the clearance period.

De…ne /̂(,) 2 [0" ,] such that /̂(,) = 0 if 9(," 0) . 3̂2(0)" otherwise /̂(,) is the set of / that
satisfy 9(," /) = 3̂2(/)" which can be written as

, ¡ / ¡22(#̂2(/)" /) = 0% (3)

By assumption / +22(#̂2(/)" /) is increasing in /, so (3) demonstrates /̂(,) is unique.

In the second case there is less inventory than needed to maximize the revenue in the

clearance period, 9(," /) . 3̂2(/)% So it is optimal to sell all of the remaining inventory.

To do so the …rm sets the period 2 price to the clearance price, #2(9(," /)" /) as long as

the clearance price does not violate the #2 · #1 constraint. De…ne ~/(,) 2 [0" ,] such that
~/(,) = 0 if 9(," 0) . 22(#1" 0)" otherwise ~/(,) is the set of / that satisfy 9(," /) = 22(#1" /)"

which can be written as

, ¡ / ¡22(#1" /) = 0 (4)

By assumption / ¡22(#1" /) is increasing in /" so (4) demonstrates that ~/(,) - 0 is unique.
Furthermore, if /̂(,) - 0" then a comparison of (3) with (4) reveals ~/(,) - /̂(,) because

22(#1" /) . 22(#̂2(/)" /)%

The third case has / - ~/(,) : the optimal clearance period price is greater than #1, but due

to the #2 · #1 constraint the …rm must settle for #2 = #1. The fourth case has / ¸ , : there
is no inventory left in the clearance period so there is no clearance period pricing decision.

Given that we have established , ¸ ~/(,) ¸ /̂(,) for any ,, the second period revenue is

?2(9(," /)" /) =

8>><>>:
3̂2(/)#2(3̂2" /) 0 · / · /̂(,)

9(," /)#2(9(," /)" /) /̂(,) . / · ~/(,)
9(," /)#1 ~/(,) . / · ,

0 , . /

% (5)

The next step is to identify the optimal quantity. The …rm’s expected pro…t, ¦(,)" equals
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the …rst period’s pro…t plus the revenue from the second period:

¦(,) = ¡!, +?1(,) +?2(,)
= ¡!, + #1

µ
, ¡

Z )

0

0 (/)>/

¶
+

Z )

0

?2(9(," /)" /)>0 (/)

where ?((,) is expected revenue in period =% Note, we use upper and lower case notation

to represent analogous functions in the two models. While :1(,) = ?1(,)" i.e., both models

agree in their evaluation of period 1 revenue, the models may disagree in their evaluation of

period 2 revenue, i.e., :2(,) 6= ?2(,) is possible.
Di¤erentiate ¦(,)2:

4¦(,)

4,
= (#1 ¡ !)¡ #10 (,) +

Z )

0

4?2(9(," /)" /)

49
>0 (/) (6)

and
42¦(,)

4,2
=

Z )

0

42?2(9(," /)" /)

492
>0 (/) +

µ
¡#1 + 4?2(0" ,)

49

¶
1(,) (7)

(Recall that 49(," /)+4, = 1" 9(," ,) = 0 and ?2(9(," ,)" ,) = 0%) The marginal second period

revenue of an extra unit cannot be greater than #1 (due to the #2 · #1 constraint), so the
second term in (7) is nonpositive. Given that ?2(9" /) is concave in 9(," /), the integral in

(7) is also negative. Hence, ¦(,) is concave in ,% As already de…ned, ,* is the unique optimal

procurement quantity. From (6) and (5), ,* is the unique solution to the following

0 = (#1 ¡ !)¡ #10 (,) +
ÃZ ~,())

,̂())

4 (9(," /)#2(9(," /)" /))

4,
>0 (/) +

Z )

~,())

#1>0 (/)

!
(8)

5 Salvage value estimation

This section de…nes and analyzes four methods for estimating the salvage value, $.

5.1 Average salvage value

As de…ned in §1, for one observation the average salvage value, $$(," /), is second period

revenue divided by the number of units left at the end of the …rst period, assuming there are

2 ?2(9" /) may not be di¤erentiable w.r.t. 9 at the break points in its de…nition. For-

mally the following integral needs to be written in three separate pieces so that ?2 is di¤er-

entiable in the ranges of each integral, but we omit that level of detail for brevity.
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units left at the end of the regular season to markdown. We can use the clearance pricing

model to evaluate the expected average salvage value, $$(,) = @[$$(," /)]"

$$(,) =
1

0 (,)

ÃZ ,̂())

0

3̂2(/)#̂2(/)

9(," /)
>0 (/) +

Z ~,())

,̂())

#2(9(," /)" /)>0 (/) +

Z )

~,())

#1>0 (/)

!
(9)

The …rst integral includes outcomes in which only a portion of the inventory is liquidated,

the second integral includes outcomes in which all inventory is sold at the clearing price and

the third integral includes outcomes in which all inventory is sold at below the clearing price.

Let f$¤$" ,¤$g be an equilibrium when the …rm uses $$(,) as the salvage value input to the

newsvendor model: if f$¤$" ,¤$g is an equilibrium then $¤$ = $$(,
¤
$) = $%(,

¤
$)% We wish to

determine whether an equilibrium exists, if so, is it unique, and if so, how does it perform,

i.e., what is the relationship between ,¤$ and ,
* and the relationship between ¦(,¤$) and ¦(,

*).

To help with intuition, Figure 1 displays $%(,) and $$(,) for one example. (The particular

parameter values are not important.) As can be seen in the …gure, an equilibrium exists and

it is unique, i.e., it is the point at which the $%(,) and $$(,) functions intersect. Given that

$%(,) is strictly increasing, existence and uniqueness of f$¤$" ,¤$g would be easy to demonstrate
if $$(,) were strictly decreasing. First thought suggests that $$(,) should be decreasing, i.e.,

the more units ordered the lower is the expected salvage value. But, as is clear from the

…gure, that is not necessarily (or even generally) the case because $$(,) involves a conditional

expectation: if , is quite small and we nevertheless must salvage inventory, then the demand

realization must have been terribly low.

The next theorem proves uniqueness of f$¤$" ,¤$g by demonstrating that $0%(,) - $0$(,) at
any equilibrium. (While it appears in the …gure that $$(,)¡$%(,) is decreasing everywhere,
which is a su¢cient condition for uniqueness, that is a more restrictive condition and it is

not clear it holds in general.)

Theorem 1 With the average salvage value there exists a unique equilibrium, f$¤" ,¤$g" and
,¤$ - ,

*" i.e., the newsvendor model with the average salvage value input procures too much.

Proof: Existence is demonstrated geometrically: $%(,) is a continuous and increasing

function with $%(0) = ¡1 and lim)!1 $%(,) = !; $$(,) is a continuous and non-negative

function with lim)!1 $$(,) = 0; therefore, there exists at least one , such that $%(,) = $$(,)%

From the Poincaré-Hopf index theorem (Vives 1999), there is at most one equilibrium if

A0(,) . 0 for all equilibrium ," where A(,) = $$(,) ¡ $%(,)% De…ne the auxiliary functions,
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($(,) = $$(,)0 (,) and (%(,) = $%(,)0 (,)% Di¤erentiate,

A0(,) =
((0$(,)¡ (0%(,))0 (,)¡ 1(,) (($(,)¡ (% (,))

0 (,)2
%

At an equilibrium ($(,) = (% (,), so A0(,) . 0 at an equilibrium if

(0$(,)¡ (0%(,) . 0% (10)

We have (0%(,) = #11(,)"

(0$(,) = ¡
Z ,̂())

0

3̂2(/)#̂2(/)

9(," /)2
>0 (/) +

Z ~,())

,̂())

4#2(9(," /)" /)

49
>0 (/) + #11(,)%

Therefore, the condition (10) can be written as

¡
Z ,̂())

0

3̂2(/)#̂2(/)

9(," /)2
>0 (/) +

Z ~,())

,̂())

4#2(9(," /)" /)

49
>0 (/) . 0"

which holds because 4#2(9" /)+49 . 0% (Note, (10) does not imply that A0(,) . 0 for all ,%)

Now demonstrate ,¤$ - ,
*. Di¤erentiate the pro…t function,

¦0(,) =

ÃZ ~,())

,̂())

µ
#2(9(," /)" /) + 9(," /)

4#2(9(," /)" /)

49

¶
>0 (/) +

Z )

~,())

#1>0 (/)

!
¡ (%(,)

= ($(,)¡ (%(,) +
Z ~,())

,̂())

9(," /)
4#2(9(," /)" /)

49
>0 (/)¡

Z ,̂())

0

3̂2(/)#̂2(/)

9(," /)
>0 (/)

The sum of the latter two terms is negative if ~/(,) - 0% From (8) it must be that ~/(,*) - 0%

Therefore, ¦0(,*) = 0 implies ($(,*)¡ (%(,*) - 0" which implies A(,*) - 0. Since there is a
unique ,¤$ such that A(,

¤
$) = 0 and A

0(,¤$) . 0" it follows that ,
* . ,¤$%¤

5.2 Marginal salvage value

Given that the newsvendor model is based on a marginal analysis, one might argue that the

marginal salvage value is more appropriate than the average salvage value. To be speci…c,

let $-(," /) be the revenue received from the last unit ordered, i.e., the ,!" unit, assuming

the revenue from that unit is collected in the clearance period. Let $-(,) be the expected

marginal salvage value:

$-(,) = @[$-(," /)] =
1

0 (,)

ÃZ ~,())

,̂())

#2(9(," /)" /)>0 (/) +

Z )

~,())

#1>0 (/)

!
(11)

A comparison of (9) with (11) reveals that $-(,) = $$(,) when /̂(,) = 0" i.e., the marginal

salvage value is identical to the average salvage value when it is always optimal to sell
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all clearance period inventory, as when there is constant elasticity demand, 22(#2" /) =

5(/)6#¡&2 % Hence, in that situation the marginal salvage value is no better than the average

salvage value. However with exponential demand, 22(#2" /) = 5(/)67¡&'2" /̂(,) - 0 is

possible, in which case $-(,) . $$(,)% While Theorem 2 indicates that the marginal salvage

yields better results in those cases, it nevertheless still does not yield the optimal pro…t.

Theorem 2 With the marginal salvage value there exists a unique equilibrium, f$¤-" ,¤-g
and ,¤- - ,*% If ?̂2(32" /) is increasing in 32 (so that it is always optimal to liquidate all
clearance period inventory) then ,¤- = ,

¤
$" otherwise ,

¤
- . ,

¤
$%

Proof: This proof is analogous to Theorem 1, so it is omitted for brevity.¤

5.3 Weighted average salvage value

Neither the average salvage value nor the marginal salvage value are weighted to account

for the number of units that are salvaged, but the weighted average salvage value does. To

be speci…c, let $.(,) be the expected weighted average salvage value, i.e., expected period

2 revenue divided by expected period 2 inventory conditional that there is inventory to

liquidate in period 2:

$.(,) =

1
/ ())

?2(,)
1

/ ())
9(,)

=
?2(,)

9(,)

where

?2(,) =

Z ,̂())

0

3̂2(/)#̂2(/)>0 (/) +

Z ~,())

,̂())

#2(9(," /)" /)9(," /)>0 (/) +

Z )

~,())

#19(," /)>0 (/)%

Because $.(,) is the ratio of two expectations while $$(,) is the expectation of the ratio, the

methods can yield signi…cantly di¤erent results: in the example in §1 the average salvage

value is $130, but the weighted average salvage value is $815" 812+7" 096 = $115% The

weighted average salvage value is closer to the ideal target of $111, but still does not equal

the target. Given that the average salvage value is too high, we can expect the weighted

average salvage value to perform better: the lowest observed salvage values tends to occur

when inventory is highest. Indeed, in our example the weighted salvage value equilibrium

is f$126 " 1162g" which is still not optimal, but generates a 7% pro…t loss instead of the 22%
pro…t loss with the average salvage value.

Analogous to the existence proof for the average salvage value, it can be shown that

there exists a weighted average salvage value equilibrium, f$¤." ,¤.g% Among the scenarios
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considered in the numerical study discussed in the next section we did not …nd a scenario in

which there existed multiple equilibria with the weighted average salvage value. Nevertheless

we are unable to prove (or provide simple conditions for) uniqueness. In all of the scenarios

we report in the numerical study we …nd ,¤. - ,
*, but it is possible to construct pathological

examples in which ,¤. . ,
*%

5.4 Marginal revenue

The three methods discussed so far are simple and intuitive, but they do not generate the

optimal solution as a unique equilibrium. The marginal revenue method does. Let the

salvage value be the marginal revenue, $0(,), where

$0(,) =
1

0 (,)

Z )

0

4?2(9(," /)" /)

49
>0 (/) (12)

=
1

0 (,)

ÃZ ~,())

,̂())

µ
#2(9(," /)" /) + 9(," /)

4#2(9(," /)" /)

4,

¶
>0 (/) +

Z )

~,())

#1>0 (/)

!
The next theorem demonstrates that the optimal solution is indeed an equilibrium with

$0(,), but, more importantly, the optimal solution is the unique equilibrium.

Theorem 3 With the marginal revenue, $0(,)" the unique equilibrium is f$0(,*)" ,*g, i.e.,
$0(,

*) = $%(,
*).

Proof: Existence and uniqueness proofs are analogous to Theorem 1 and omitted for brevity.

De…ne (0(,) = $0(,)0 (,) and (%(,) = $%(,)0 (,)% We have

(0(,)¡ (%(,) =
Z )

0

4?2(9(," /)" /)

49
>0 (/)¡ #10 (,) + (#1 ¡ !) (13)

The solution to (0(,) ¡ (%(,) = 0 is the equilibrium quantity with the marginal revenue

method, denoted ,¤0 % (0(,)¡ (%(,) is identical to ¦0(,) given in (6). Hence ,¤0 = ,*%¤
Interestingly, the marginal revenue is not really a salvage value, i.e., it is not in general

the “per unit amount that can be earned on left over inventory”. Note that $0(,) simpli…es

to

$0(,) = $-(,) +
1

0 (,)

ÃZ ~,())

,̂())

9(," /)
4#2(9(," /)" /)

4,
>0 (/)

!
(14)

Marginal revenue and marginal salvage value concepts coincide only when clearance period

revenue is linear in the amount of left over inventory. But if clearance period revenue is

concave in the amount of left over inventory, then the marginal revenue is less than the
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marginal salvage value. In fact, it is possible that at ,* the …rm discovers that the marginal

salvage value is greater than the purchase cost $-(,*) - ! (which renders the newsvendor

model infeasible), but the marginal revenue is always less than cost at the optimal solution,

$0(,
*) . !%

While evaluating $$(,)" $-(,) and $.(,) from a sample of data requires no explanation,

the evaluation of $0(,) is not straightforward. A conservative estimate is

$̂0(,) =

µ
1

&¡ 1
¶ %¡1X

#=1

)#+1 ¡ )#
(#+1 ¡ (#

assuming the data are sorted such that (( · (# for all = · '. The above is conservative

in the sense that it is biased such that @[$̂0(,)] . $0(,)" but this is prudent given that

the newsvendor model is more sensitive to an overestimation of the salvage value than an

underestimation. Using $̂0(,) with our example we …nd that the marginal revenue with an

order quantity of 1400 is $81, which clearly suggests the order quantity of $1400 is too high.

(Recall, 1400 is optimal only if the salvage value is $135.)

6 Numerical Study

This section reports on a numerical study to assess the magnitude of the performance loss

from using either $$(,)" $-(,) or $.(,) as the salvage value input to the newsvendor model.

We generated 336 scenarios from all combinations of the following parameters:

B = (#¡ !)+# = f0%25" 0%5g >2(#2) = f67¡&'2 " 6#¡&2 g
C+D = f0%25" 0%5" 1%0gg 8 = f1%2" 2%4g
5(/) = f/" Dg '¡1

'¡2¤! = f0%55" 0%60" %%%" 0%85g
where B is the gross margin, C is the standard deviation of regular season demand, and

D is the mean of regular season demand. We assume that 22(#2" /) = 5(/)>2(#2)" so

5(/) = / means regular season and clearance period demands are positively correlated,

whereas 5(/) = D means they are independent. The second period demand function is

either exponential, 67¡&'2 " or constant price elasticity, 6#¡&2 % Tellis (1988) …nds that the 8

parameter generally ranges between 1 and 3 with an average of 2, so we choose f1%2" 2%4g to
represent high and low demand elasticity.

In each scenario we set #1 = 2" D = @[21] = 1000 and the regular season demand follows

a gamma distribution. In each scenario the 6 parameter in the second period demand

function is chosen such that the average salvage value heuristic equilibrium, f$¤$" ,¤$g" yields
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the desired critical ratio. Hence, these scenarios could plausibly be observed if a …rm were

to use the average salvage value.

Table 3 presents summary data on the pro…t performance of the three non-optimal meth-

ods for estimating the salvage value. The average salvage value performs the worst, followed

by the marginal salvage value, and the weighted average salvage value performs well on aver-

age, but its maximum pro…t loss can be substantial (35%). Table 4 indicates that all three

methods order more than the optimal quantity, often by a considerable amount. Figure 2

reveals that the performance of all three methods deteriorates as the critical ratio is increased

or as the gross margin decreases. For example, with a gross margin of 25% and a critical

ratio of 75% (which are similar to the parameters faced by Sport Obermeyer, as reported by

Fisher and Raman, 1996) the average salvage value’s pro…t is 22% lower on average than the

optimal pro…t. Table 5 reveals that the weighted salvage value performs quite well whenever

the clearance period demand is positively correlated with regular season demand, 5(/) = /"

but can perform poorly when clearance period demand is independent of regular season de-

mand, 5(/) = D" and there is signi…cant demand uncertainty. Thus, while the weighted

average salvage value is not optimal, it can be remarkably e¤ective, but, unfortunately, not

always. We conclude that the method by which the salvage value is estimated does have a

signi…cant impact on expected pro…ts.

While our main focus is on the quality of the various performance measures, we were

also curious about the frequency at which the estimated salvage value is greater than cost

at the optimal order quantity. Recall, in our example in §1 at the optimal order quantity

(941 units) the average salvage value is $157 even though the cost per unit is $150. Table

6 reveals that this precarious situation for the newsvendor model is actually quite common

with a low gross margin (25%) and high critical ratios (70% or higher).

7 Discussion

Our main …nding is that the classic newsvendor model should not be implemented in prac-

tice without careful consideration of the estimation of one of its inputs, the salvage value.

We demonstrate that several intuitive estimation procedures lead to signi…cantly poor per-

formance, especially with products that have low gross margins (e.g., 25%), a high critical

ratio (e.g., 75%) and high demand uncertainty (e.g., a coe¢cient of variation above 0.5).
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Furthermore, there can be little evidence to indicate that poor performance is occurring,

i.e., data are consistent with actions and actions are consistent with data. We also pro-

vide an estimation procedure that does lead to the optimal action in equilibrium, thereby

establishing the e¤ectiveness of the newsvendor model in situations with clearance pricing.

This paper is best viewed in terms of work on the robustness of heuristics in other classic

inventory models (e.g., Dobson 1988, Gallego 1998, Zheng 1992): the newsvendor model is

a simpli…ed version of the clearance pricing model and the question is whether this simpli-

…cation deteriorates performance. However, in those other papers the issue of input-action

dependence does not exist.

One might argue that our results are not necessary if a manager is willing to either

directly use the clearance pricing model or is willing to use the newsvendor model with

a non-linear salvage value function. We feel, at least in some situations, that there are

compelling reasons to favor our approach (i.e., implement the newsvendor model with the

salvage value estimated from historical data). To implement the clearance pricing model a

manager must have an estimate of the second period demand function, i.e., we cannot just

assume the manager knows that function with certainty. (This reminds us of the well-known

joke about an engineer, a physicist and an economist stranded on a desert island with only

one can of beans for nourishment and the economist announces “let’s assume we have a can

opener”.) Where will the manager obtain that function? Is it multiplicative or additive?

Does it take a constant elasticity form, an exponential form, or some other form? Surely

there is error in the estimation of that function and that error depends on the chosen order

quantities. So in practice, the implementation of the clearance pricing model does not avoid

the challenge of estimating inputs. The same critique is relevant to the application of the

newsvendor model with a non-linear salvage value function: where does that function come

from? In addition, neither of those approaches provides the simplicity and elegance of the

newsvendor model with a …xed salvage value: it is unlikely the clearance pricing model could

be taught e¤ectively in MBA programs, and in complex settings the newsvendor model is

a more desirable “building block” (i.e., sub-model) than the clearance pricing model due

to its analytical tractability. Finally, we demonstrate that the newsvendor model can be

e¤ectively implemented. Therefore its simplicity need not come with any loss of performance

and its parsimony can prove to be valuable when it is di¢cult to specify the parameters or
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structure of the dynamics of the clearance period.

Another concern with this research could be whether the concept of an equilibrium is even

necessary to evaluate the performance of an estimation method. We believe it is indeed

necessary. Any estimation method that works with historical salvage values to estimate

future salvage values faces the issue that those historical data depend on previous actions.

Hence, there is no way around the dependence between salvage values and actions.

Although we concentrate on the newsvendor model, the issue of input-action dependence

is likely to be relevant in many other models in operations management: e.g., an airline’s

overbooking decision and the observed costs of having customers relinquish their seats are

interdependent; demands for a booking class could depend on which fare classes are open

(Talluri and van Ryzin 2001); and Lariviere and Porteus (1999) demonstrate that a de-

pendence exists between the chosen inventory policy and the estimate of the demand rate

because demand is truncated by available inventory. Although in some cases the input-

action dependence is explicitly considered (as is common with optimal control problems),

our interest is in the performance of simple heuristics that do not explicitly account for this

dependence.

To conclude, we emphasize that a model is not helpful to practitioners if it exists in a

vacuum: while in some settings we are forced to make assumptions about the inputs to our

models, practicing managers must actually use data to estimate inputs. In our opinion,

the concept of input-action dependence and equilibrium is not a mere intellectual curiosity

but rather an important construct for understanding the performance of a model. We have

demonstrated this in the important newsvendor model.

References
Agrawal, V., S. Seshadri. 2000a. Impact of uncertainty and risk aversion on price and order

quantity in the newsvendor problem. Manu. and Service Oper. Mgmt. 2 410-413.

Agrawal, V., S. Seshadri. 2000b. Distribution free bounds for service constrained (;" :)

inventory systems. Naval Research Logistics. 47 635-656.

Armony, M., E. Plambeck. 2002. The impact of duplicate orders on demand estimation and

capacity investment. New York University working paper.

20



Axsater, S. 1996. Using the deterministic EOQ formula in stochastic inventory control.Man-

agement Science. 42. 830-834.

Bertsekas, D.P. 2000. Dynamic Programming and Optimal Control. Belmont, MA. Athena

Scienti…c.

Bitran, G. B., S. V. Mondschein. 1997. Periodic pricing of seasonal products in retailing.

Management Sci. 43 64-79.

Bitran, G. B., R. Caldentey, S. V. Mondschein. 1997. Coordinating clearance markdown

sales of seasonal products in retail chains. Oper. Res. 46 609-624.

Brumelle, S.L., J.I. McGill, T.H. Oum, K.Sawaki, M.W. 1990. Tretheway. Allocation of

airline seats between stochastically dependent demands. Trans. Sci. 24(3): 183-192.

Cachon, G. 2003. Supply chain coordination with contracts. The Handbook of Operations

Research and Management Science: Supply Chain Management. eds. S. Graves, T. de

Kok, Kluwer.

Cachon, G., C. Terwiesch, Yi Xu. 2002. The retail assortment decision in the prescence of

consumer search. University of Pennsylvania working paper.

Carr, S., W. Lovejoy. 2000. The inverse newsvendor problem: choosing an optimal demand

portfolio for capacitated resources. Management Sci. 46 912-927.

Dana Jr., J., N. Petruzzi. 2001. Note: The newsvendor model with endogenous demand.

Management Sci. 47 1488-1497.

Dobson, G. 1988. Sensitivity of the EOQ model to parameter estimates. Oper. Research.

36(4): 570-74.

Donohue, K. 2000. E¢cient supply contracts for fashion goods with forecast updating and

two production modes. Management Sci. 46(11): 1397-1411.

Eeckhoudt, L., C. Gollier, H. Schlesinger. 1995. Risk-averse (and prudent) newsboy. Man-

agement Sci. 41 786-794.

Federgruen, A., A. Heching. 1999. Combined pricing and inventory control under uncertainty.

Oper. Res. 47 454-475.

Feng, Y., G. Gallego. 1995. Optimal starting times for end-of-season sales and optimal stop-

ping times for promotional fares. Management Science. 41(8): 1371-1391.

21



Fisher, M., K. Rajaram, R. Raman. 2001. Optimizing inventory replenishment of retail

fashion products. Manufacturing and Service Operations Management. 3(3): 230-241.

Fisher, M., A. Raman. 1996. Reducing the cost of demand uncertainty through accurate

response to early sales. Oper. Res. 44 87-99.

Gallego, G. 1998. New bounds and heuristics for (;" :) policies. Mgmt. Sci. 44(2): 219-233.

Gallego, G., G. van Ryzin. 1994. Optimal dynamic pricing of inventories with stochastic

demand over …nite horizons. Management Science. 40(8): 999-1020.

Hammond, J.A. Raman. 1994. Sport Obermeyer Ltd. Havard Business School Case 9-695-

022.

Hertz, D. B., K. H. Scha¢r. 1960. A forecasting method for management of seasonal style-

goods inventories. Operations Research. 8(1). 45-52.

Hoch, S., B. Kim, A. Montgomery, P. Rossi. 1995. Determinants of store-level price elasticity.

Journal of Marketing. 13(1). 7-29.

Kouvelis, P., G. Gutierrez. 1994. The newsvendor problem in a global market: optimal cen-

tralized and decentralized control policies for a two-market stochastic inventory system.

Management Sci. 43(5): 571-585.

Lariviere, M., E. Porteus. 1999. Stalking information: Bayesian inventory management with

unobserved lost sales. Management Science. 45(3). 346-363.

Lee, H. 1996. E¤ective inventory and service Management through product and process

redesign. Operations Research. 44(1). 151-159.

Lee, H., S. Whang. 2002. The impact of the secondary market on the supply chain. Manage-

ment Science. 48. 719-731.

Li, L. 1992. The Role of Inventory in Delivery-Time Competition. Management Science, 38

182-197.

Lippman, S., K. McCardle. 1995. The competitive newsboy. Oper. Research. 45. 54-65.

Lovejoy, W. S. 1990. Myopic policies for some inventory models with uncertain demand

distributions. Management Sci. 36 724-738.

Monohan, G., N. Petruzzi, W. Zhao. 2002. The dynamic pricing problem from a newsvendor’s

perspective. University of Illinois at Urbana-Champaign working paper.

22



Mulhern, F., R. Leone. 1991. Implicit price bundling of retail products: a multiproduct

approach to maximizing store pro…tability. Journal of Marketing. 55. 63-76.

Petruzzi, N., M. Dada. 1999. Pricing and the newsvendor problem: A review with extensions.

Oper. Res. 47 183-193.

Petruzzi, N., M. Dada. 2001. Information and inventory recourse for a two-market, price

setting retailer. Manufacturing and Service Oper. Management. 3 242-263.

Porteus, E. 1990. Stochastic inventory theory. Handbooks in Operations Research and Man-

agement Science. eds., D. Heyman and M. Sobel. Amsterdam, North-Holland. Vol 2.

Schweitzer, M., G. Cachon. 2000. Decision bias in the newsvendor problem with a known

demand distribution: experimental evidence. Management Sci. 46 404-420.

Shang, K., J. S. Song. 2003. Newsvendor bounds and heuristic for optimal policies in serial

supply chains. Management Science. 49(5). 618-638.

Smith, S., D. Achabal. 1998. Clearance Pricing and Inventory Policies for Retail Chains.

Management Sci. 44 285-300.

Sundaram, 1999. A First Course in Optimization Theory. Cambridge University Press. Cam-

bridge, UK.

Tellis, G. 1988. The price elasticity of selective demand: a meta analysis of econometric

models of sales. Journal of Marketing Research. 25: 331-341.

Talluri, K., G. van Ryzin. 2001. Revenue management under a general discrete choice model

of consumer behavior. Columbia University working paper.

Van Mieghem, J. 1999. Coordinating investment, production and subcontracting. Manage-

ment Science. 45(7). 954-971.

Van Mieghem, J., N. Rudi. 2002. Newsvendor networks: dynamic inventory management

and capacity investments with discretionary activities. MSOM. 4 313-335.

van Ryzin, G.S. Mahajan. 1999. On the relationship between inventory costs and variety

bene…ts in retail assortments. Management Science. 45(11). 1496-1509.

Vives, X. (1999). Oligopolistic competition: old ideas and new tools. Cambridge, MA, MIT

Press.

Zheng, Y. S. 1992. On properties of stochastic inventory systems. Mgmt Sci. 38 87-103.

23



Table 1:

Coefficient 
of variation δ

Underestimating 
the salvage value 

by δ%

Overestimating 
the salvage 

value by δ%

Under 
ordering 

by δ%

Over 
ordering 

by δ%
1.41 12% 14.2% 302.9% 0.8% 0.9%
0.71 12% 4.4% 59.9% 0.9% 1.0%
0.35 12% 1.7% 18.8% 1.2% 1.5%
1.41 8% 8.0% 38.2% 0.4% 0.4%
0.71 8% 2.4% 8.8% 0.4% 0.4%
0.35 8% 0.9% 3.0% 0.5% 0.6%
1.41 4% 2.6% 5.4% 0.1% 0.1%
0.71 4% 0.7% 1.4% 0.1% 0.1%
0.35 4% 0.3% 0.5% 0.1% 0.2%

Potential profit losses from errors in the salvage value estimate.  
Demand follows a gamma distribution with mean 1000, the 
gross margin and correct salvage value are 1/4th and 2/3rds of 
the retail price respectively.* 

% loss in profit (relative to the optimal profit) from …

* Let q o  be the optimal quantity given the correct salvage value, v , and let 
q ' be the order quantity chosen if the inputed salvage value is (1+δ)v  or (1-
δ)v .  The profit loss is the difference between expected profit (evaluated 

with the newsvendor model) with q o  and q ', reported as a percentage of the 
optimal profit.  

 
 
 
 

Table 2:

Total clearance
period revenue, t j

Salvage revenue 
per unit,

u j  = t j  / y j 

106 21,104                       200
283 49,989                       177
431 63,916                       148
561 74,505                       133
679 83,234                       123
788 90,825                       115
893 97,722                       109
999 104,279                     104

1110 110,919                     100
1247 118,688                     95

Total 7,096           815,182                     

Ten observations from a newsvendor model. (Demand 
has a gamma distribution with mean 1000 and standard 
deviation 707, price is 200, procurement cost is 150 and 
the order quantity is 1400 units.)

Inventory at the start of 
the clearance period,

y j

 



Table 3: Profit loss,  (1 - Π(q *) / Π(q o ))

Salvage value Average
Standard

Deviation Median Minimum Maximum
Average 12.5% 14.2% 6.8% 0.0% 63.3%
Marginal 10.2% 13.1% 5.1% 0.0% 63.3%
Weighted average 2.3% 5.0% 0.5% 0.0% 35.0%

Table 4 : Over order %, (q * / q o  - 1)

Salvage value Average
Standard

Deviation Median Minimum Maximum
Average 27.8% 20.6% 20.8% 1.4% 86.6%
Marginal 24.0% 19.7% 17.6% 0.5% 86.6%
Weighted average 9.6% 10.7% 5.5% 0.3% 49.3%  

 
 
 
 
 

σ / µ x (ξ) d 2 (p 2 ) Average
Standard
deviation Maximum

0.25 ξ e -βp 0.29% 0.31% 1.35%

p - β 0.29% 0.35% 1.45%

µ e -βp 0.67% 0.71% 3.02%

p - β 0.71% 0.85% 3.51%

0.50 ξ e -βp 0.45% 0.49% 2.09%

p - β 0.45% 0.53% 2.18%

µ e -βp 2.27% 2.25% 9.27%

p - β 2.44% 2.78% 11.11%

1.00 ξ e -βp 0.44% 0.49% 1.94%

p - β 0.42% 0.50% 1.98%

µ e -βp 9.35% 7.55% 28.81%

p - β 10.29% 9.72% 35.01%

Weighted average salvage value
Table 5 : Profit loss, 1 - Π(q *) / Π(q o )



Table 6: 

Critical ratio 25% 50%
0.55 0% 0%
0.60 8% 0%
0.65 13% 0%
0.70 29% 0%
0.75 54% 0%
0.80 79% 13%
0.85 100% 50%

Average 40% 9%

Gross Margin

Percentage of scenarios in which the average 
salvage value at the optimal order quantity is 
greater than cost.

 



Figure 1. Average Salvage Value Heuristic Equilibrium
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Figure 2. Average performance of the newsvendor heuristics; m =margin, 

AV  = Average Salvage Value Heuristic, MV  = Marginal Salvage Value Heuristic,
WV =Weighted Average Salvage Value Heuristic  

 


