Going Bunkers: The Joint Route Selection and Refueling Problem

Omar Besbes* Sergei Savin'

University of Pennsylvania Columbia University

November 1, 2008

To appear in Manufacturing € Service Operations Management

Abstract

Managing shipping vessel profitability is a central problem in marine transportation. We
consider two commonly used types of vessels, “liners” (ships whose routes are fixed in advance)
and “trampers” (ships for which future route components are selected based on available ship-
ping jobs) and formulate a vessel profit maximization problem as a stochastic dynamic program.
For liner vessels, the profit maximization reduces to the problem of minimizing refueling costs
over a given route subject to random fuel prices and limited vessel fuel capacity. Under mild
assumptions about the stochastic dynamics of fuel prices at different ports, we provide a char-
acterization of the structural properties of the optimal liner refueling policies. For trampers,
the vessel profit maximization combines refueling decisions and route selection which adds a
combinatorial aspect to the problem. We characterize the optimal policy in special cases where:
i) prices are constant through time and do not differ across ports, and i) prices are constant
through time and differ across ports. The structure of the optimal policy in such special cases
yields insights on the complexity of the problem and also guides the construction of heuristics

for the general problem setting.

1 Introduction

Water transportation is an important component of the U.S. transportation industry, accounting for
more than $23 billion dollars in revenues according to the U.S. Economic Census (2002). The Marine
Transportation System National Advisory Council (2000) estimates that the marine import-export
trade alone accounts for nearly 7% of the U.S. gross domestic product. In recent years, increased
competition and global downturn in the shipping industry have been putting downward pressure

on the revenues of shipping companies, while increased safety regulations and fuel prices continued
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to increase companies’ operating costs. The changing economic environment has prompted many
companies to abandon a “status quo” complacency and search for new ways to maintain and

optimize their profitability.

A typical marine transportation company operates a fleet of ships which belong to one of two
broad groups. Liners are vessels that follow the same cyclical route comprised of a string of ports,
while trampers are vessels-for-hire for which the next destination is selected according to the set of
available transportation jobs. The fundamental “routing” distinction between these two groups of
vessels translates into important differences in how liners and trampers are managed. A liner brings
in a steady stream of revenues, and a major managerial challenge is to minimize its refueling costs
given a limited vessel fuel capacity and unknown future fuel prices. A tramper, on the other hand,
has a choice of ports it visits in the future, and, thus, can control both its revenues and refueling
costs. Both types of vessels use “bunkers,” a by-product of the oil refining process, as a fuel - and
the bunkers’ prices are highly unpredictable and can exhibit significant variation across the ports
on the same date. Note that vessels typically also use diesel oil for auxiliary power and while such

a component could be included in the model, we do not consider it to keep the exposition clear.

In the present paper, we propose a model for bunkers price dynamics in conjunction with a novel
model which describes a single-vessel profit optimization problem. In the case of a liner, the
profit optimization reduces to minimizing the refueling costs. We formulate this problem as a
long term average stochastic dynamic program where the decisions are the refueling amounts at
each port the vessel visits on its fixed route. In the presence of random fuel prices, this problem
becomes a variant of the stochastic capacitated inventory management problem, whose solution is
shown to be a capacity-adjusted state-dependent buy-up-to policy. For a tramper, the refueling
dynamic programming problem is blended with combinatorial optimization of the vessel’s route.
For a static (deterministic or stochastic) routing policy, the tramper problem reduces to a liner
instance, but the addition of dynamic routing significantly complicates the analysis of optimal
profit management policies. The fact that refueling and routing decisions are interconnected makes
the tramper problem unique since it cannot be reduced to classes of problems analyzed in the
stochastic routing literature (we return to this point in the next section). In particular, in general
a tramper cannot ignore bunkers prices when selecting a route to maximize profitability significant
as price differences among ports located in the same region might exist. For example, on November
30, 2007, the following bunkers prices (per metric ton) were recorded for a few ports in North and
Central America: $473 (Philadelphia), $445 (Houston), $521 (Los Angeles), $460 (Panama).

The main contributions of the present work can be summarized as follows:

1. We develop a new modeling framework to analyze a single-vessel profit optimization problem

as a blend of combinatorial route selection and dynamic programming refueling problems in



the presence of stochastic revenues and fuel prices.

2. For vessels which follow a static routing policy (liners), we show that the optimal refueling
policy is of the buy-up-to form (Proposition 1) and that the value of the buy-up-to level
necessarily belongs to a finite, potentially small set. Under additional assumptions on the
stochastic monotonicity of the underlying fuel price processes, we also establish monotonicity

properties of the optimal buy-up-to levels (Proposition 2).

3. For vessels which combine refueling with route selection (trampers), we demonstrate that, in
the general case, while the optimal refueling quantities need not be monotone in on-board
inventory, the optimal post-refueling inventory levels are (Proposition 3). In addition, we
investigate several special cases of the tramper problem. In particular, in the case when the
bunkers prices are constant across time and equal across ports, we show that the problem can
be reduced to one of finding the best profit-to-time ratio cycle on a network of ports. Also,
in the case when the bunkers prices are constant across time but differ across ports, we show
that the solution forms a cycle in a generalized location-inventory space (Proposition 4). In
addition, we investigate the impact of vessel capacity (Proposition 5) and price stochasticity

on optimal routing polices.

4. Based on the above results, we develop heuristics for the general case of the tramper problem

and derive performance bounds for those (Propositions 6 and 7).

Our analysis of the vessel profit optimization problem includes further modeling of the stochastic
fuel prices in which, at each port, the influence of global oil price dynamics is augmented by the

contribution of the local Markovian demand-supply dynamics.

Our paper is organized as follows. The next section provides a review of related work. Section 3
introduces our vessel profit maximization model. Section 4 is devoted to modeling of the stochastic
dynamics of bunkers prices. The special case of liners is analyzed in Section 5, while Section 6

focuses on trampers. We conclude by discussing possible future research directions for our work.

2 Review of Related Work

Traditional marine fleet management research literature outlines a hierarchy of vessel management
problems (Christiansen et al. 2004, Christiansen et al. 2005). At the top of the hierarchy are the
models which study strategic, long-term decisions, such as fleet sizing and route design (Dantzig
and Fulkerson 1954, Richetta et al. 1997, Imai and Rivera 2001, Cho and Perakis 1996). On a
more tactical level, fleet management models focus on routing and scheduling of a fixed number of

vessels. In particular, existing papers on liner operations exclusively focus on deterministic models



of fleet deployment and cargo booking (Perakis and Jaramillo 1991, Powell and Perakis 1997). In
the context of airlines, linear programming formulations for fuel management have been proposed
in the literature (where prices are taken to be constant over time). See, e.g., Darnell and Loflin
(1977) and Stroup and Wollmer (1992) and references therein. These studies relate to the liner
study presented here, as the route of the flights is fixed. While it is natural to take prices to be
constant over the horizon of a route given the short time elapsed between each stop in the context
of airlines, stochasticity of prices plays a more important role in the context of marine shipping

and is explicitly taken into account in our liner formulation.

In its most general form, profit maximization at the vessel level represents a blend of combinato-
rial optimization (route selection) and stochastic dynamic programming (minimization of refueling

costs).

The problem of controlling refueling costs is related to a number of papers on inventory management
in the presence of random prices. In the first paper in this area, Kalymon (1971) generalizes the
classical inventory model by Scarf (1960) (formulated for the setting with convex holding and
shortage costs and a setup cost) by allowing product prices to follow a non-stationary Markov
process. In the finite-horizon setting, the optimal replenishment policy in period n is shown to be
of the (s,(p), Sn(p)) form, where p is the realized product price in that period. Song and Zipkin
(1993) consider a continuous time infinite-horizon inventory model where the product demand
rate varies in a Markov-modulated fashion with an underlying “state-of-the-world” variable: if the
“world” is in state i, the demand is assumed to follow a Poisson process with rate ;. Under the
assumptions of full demand backlogging, stochastic leadtimes, and convex ordering and holding
costs the optimality of a state-dependent base-stock policy (without the order setup cost) and of
(sn(2), Sp(7)) policy (with the setup cost) is established. This framework was extended by Ozekici
and Parlar (1999) to include the influence of the Markovian random environmental process on
the demand, supply and cost parameters. An interesting variant of the random-price setting is
analyzed in Moinzadeh (1997) where a continuous-time infinite-horizon setting is used to study an
inventory problem with fixed price discounts offered at random times. The price-dependent two-bin
(R, s,Q) replenishment and stocking policy is employed: when the deal is offered, an (s,s + Q)
replenishment rule is used, while when the inventory is completely depleted, the order of R < s+ @
units is placed. While for a fixed vessel route, the refueling cost minimization problem resembles
classical inventory replenishment problems with random prices and deterministic demand values,
two features distinguish it from the variants studied in the literature: the finite fuel capacity of
a vessel and the availability of the entire set of prices at all ports at any point in time. In other
words, we deal with a capacitated inventory problem for which the state information is a vector
of fuel prices which includes the price “now” as well as indicators for future prices (at all ports in

the network). The presence of geographical dependence of prices is an aspect that is specific to



the problem we analyze and has not, to the best of our knowledge, been studied in the inventory

management literature.

The stochastic nature of future potential rewards places route selection into the same class of
problems as, for example, the stochastic vehicle routing problem. However, an important distinction
of the routing aspect of the problem under consideration from the classical stochastic vehicle routing
literature resides in the the formulation itself. In our setting, the objective of the decision-maker
is to maximize the long-term average profits with constraints coming into play only through the
refueling decisions. In contrast, the typical stochastic vehicle routing problem consists of minimizing
the total cost of a travel plan such that each node in the network is visited at least once, with
potential side constraints. We refer the reader to Gendreau et al. (1995) for a review of stochastic

vehicle routing.

An important observation is that the tramper problem, in the absence of refueling and in the
special case of deterministic rewards, actually reduces to the problem of finding the cycle with
highest revenue per unit of time over a network, which was studied in Dantzig et al. (1956). We
build on this connection to understand the structure of optimal policies in the presence of refueling

decisions.

Finally, we mention that our price model describes the evolution of bunkers prices in terms of the
dynamics of two independent Markov chains. Our approach to modeling bunkers prices is related
in spirit to the work of Hamilton (1989) which incorporates Markovian “regime changes” into the
dynamics of energy prices. We also refer the reader to Hamilton and Susmel (1994), Either and

Mount (1998) and Noel (2007a,b) for more recent applications of this approach.

3 Optimizing Vessel Profits: The Model

We consider a vessel with fuel capacity C' (measured, e.g., in metric tons (mts)) traveling through
a network of N nodes, each representing a port. Since a day is a natural time unit in our setting,
we use a discrete-time formulation for the vessel profit optimization problem. Each node in the
network of ports is assumed to be connected to any other node by an arc. We use N' = {1,2,..., N}
to denote the set of all nodes, and A = {(4,7) : i € N, 7 € N'} to denote the set of arcs connecting
the nodes in N. On the complete graph (N, A) we define the following set of measures:

1. d = {dij > 0|(4,j) € A} and T = {7 € Z4|(4,j) € A} are the amount of fuel (e.g., in mts)
and the time (in days), respectively, required to travel through the arcs of A.

2. For each node ¢ € N, the set O(i) = {j : (4,7) € A,di; < C} denotes nodes which are

“reachable” from 4 without stopping at any other port. Without loss of generality, we assume



that the capacity of the vessel is such that any two nodes ¢ € N and j € N \ O(i) are
connected by a finite set of arcs, i.e., that there exists a finite set of nodes i1, ..., 73 such that

i1 € O(1),i2 € O(i1), ..., J € O(ipr) for some M > 1.

3. For each time period t = 1,2, ..., the set of rewards associated with shipping contracts on
every arc (i,j) € A is denoted as r(t) = {r;;(t)|(¢,5) € A}. The reward r;;(t) associated
with traveling on a given arc (i,j) € A at time period ¢ is assumed to be a realization of a
non-negative bounded discrete i.i.d. random variable with a static probability distribution
pij (r) =Prob(r;;(t) = r). In our analysis, we assume that each shipping contract is associated
with a single arc (7, ) - an assumption valid for a large majority of contracts we observed in

practice.

4. For each time period t = 1,2, ..., the set of fuel prices for all ports is denoted as P(t) =
{P;(t)|i € N'}. We assume that for any time period ¢ and for any port i € N the price P;(t)
can only take one of the L values {P(l), e P(L)}. In addition, we assume that the vector of
prices P(t) follows a Markov process such that any price state can be reached from any other

price state with a positive probability in a finite number of transitions.

Consider a vessel arriving at time ¢ to port ¢ with fuel inventory I and observing the values of
fuel prices P and rewards r. Let a stationary unichain policy = : (¢, I,P,r) — (j,q) denote
the choice of the next port to visit j € N\ {i}! and the refueling amount q € Q (i,5,1) :=
{ql¢ >0,d;j <T+q<C}. Let V[ (i,1,P,r) be the total expected profit earned in the next k
port-to-port transitions under a stationary policy =, and let ¢ (i,1,P,r) be the expected time

associated with these k transitions. In our analysis we use the long-run expected profit per unit of

. (VF(i,1,P,1)
A= 1 kA7) 1
ki%(t%(z’,[,P,r)) (1)

time

as an optimization criterion for the vessel. Note that since we assume the travel times between ports
to be deterministic, the analysis we conduct uses the standard approaches for semi-Markov decision
processes as outlined in Bertsekas (2000). Clearly, under the assumptions on the reachability of
nodes and on the reward and price dynamics presented above, the limit in (1) is well-defined, and
its value is independent of the initial state. Following Bertsekas (2000), we can express the Bellman

equation for A as

h(i,I,P,r)
— (=g o (<Pt Bepy [ (1T ra- P )])) @)

Note that here, we assume that the ship never idles at a port. While this is typical of most practical settings,

allowing for idling is possible at the expense of additional notation.



where h (i, I,P,r) is a function defined on the state space of the problem with & (i, Ip, Po,r9) =0
for some (arbitrarily chosen) state (ig, Iy, Po, o), and P'|P denotes that the expectation with
respect to P’ (the vector of prices observed 7;; units of time after P is observed) taken conditional

on the value of P.

The outer maximization operator in (2) represents the routing decision, while the inner maximiza-
tion operator corresponds to the refueling decision. For simplicity, we assume that the refueling is

instantaneous.

The formulation as well as the analytical results to be presented are valid for any Markovian model
for the fuel price dynamics, except when explicitly stated otherwise. In the next section, to finalize
the specification of the model, we develop a particular fuel price model and estimate its parameters
using actual pricing data for 18 ports for the period of January-June 2005. This model will then be
used in our numerical experiments. We return to the analysis of the liner and tramper’s problems

in Sections 5 and 6, respectively.

4 Modeling Stochastic Dynamics of Bunkers Fuel Prices

In practice, selecting an appropriate price dynamics model is a challenging task due to strong time
and geographical correlations in bunkers prices. In our analysis, we have selected the general form
of the Markov process {P(t) : ¢ > 0} based on the following two fundamental features of the
bunkers price dynamics identified by practitioners. On the one hand, the main, global driver of the
bunkers fuel prices on a given day is crude oil price?. This dependence stems from the fact that
the bunkers fuel is a by-product of the oil refining process. In addition to this global effect, on the
level of a particular port, the bunkers price is also influenced by the interactions between supply
of and demand for the fuel. This local supply effect is believed to be weaker than the global crude

oil price effect.

Below we propose a model of bunkers price dynamics which incorporates the two effects just men-
tioned. Let Py(t) denote the spot price of crude oil (in $ per barrel) in period ¢. Then, the bunkers

fuel price P;(t) (in $ per metric ton) at location ¢ in period ¢ is described as follows:
Pi(t) = yPo(t) + ou(t) + €(t), (3)

where v is a constant, «;(t) are Markov processes independent of Py and independent across
ports, each with m possible states, and ¢;(¢) is a stationary random variable with Ele;(¢)] = 0,

E[e2(t)] = 02 < oo for all i and t. We also assume that all ¢;(¢) are independent across time

2The two main types of crude oil which are typically used by traders as indicators for the bunkers prices are Brent
(traded on London’s Intercontinental Exchange) and WTI (Western Texas Intermediate, traded on the New York

Mercantile Exchange).



and across ports (and of Py and «;’s). Introducing a dependence on oil price in model (3) follows
the established pricing models for other products of oil refining process, such as gasoline or home
heating oil (Borenstein et al. 1997, Asche et al. 2003, Kaufmann and Laskowski 2005); the intro-
duction of location-dependent terms «; and €; are important additions. The interpretation of the
model (3) is as follows: v represents a global price-adjustment factor, «; are local (geographical)
supply correction factors for the bunkers prices and €;(t) are geographical adjustments due to other
factors. The role of the oil price, and, thus, the presence of v in (3) is straightforward in models
of any oil-based products. The necessity to use €;(t) term stems from the presence of unexpected
and potentially short-lived local factors such as sudden surge of the demand for bunkers due to
unanticipated arrival of several tramper vessels at a particular port. On the other hand, the «;
terms stand to represent the potentially longer-term effects on the bunkers price stemming from
juxtaposition of global changes in the state of oil-refining industry and local demand and supply
conditions (the evolution of the a;’s is related to the “regime changes” of Hamilton (1989)). At
any port, we describe the Markovian dynamics of the local supply correction factors using a simple
2-state form: «; is assumed to take “high” values when the fuel supply at the port is constrained
and “low” otherwise; i.e. «;, ¢ = 1,...,IN can have two possible states: ozii = A; & 6;, where A;
plays the role of the average price premium/discount over the value of vPy(t) associated with port
i, and §; characterizes the amplitude of the price response at port i to the changes in the local
demand-supply balance. The transitions between these two supply states are described at port ¢ by
a local “inertia” parameter 7);, which stands for the probability for the local supply state to remain
unchanged on the next day. Thus, if the port ¢ is in state A; 4+ d; on some day, it will remain in the
state A; + d; on the next day with probability 7; and transfer to the state A; — §; with probability
1—m;. We note that according to (3) the state of the price system in period ¢ is described by 2N +1
values: the oil price Py(t), the set of local supply corrections a, and the perturbation vector €. The
motivation for including the “inertia” terms into the pricing model (3) is illustrated in Figure 1
which plots actual bunkers prices observed in 3 large ports, Rotterdam, Houston and Singapore,

during the period January-June 2005 (the total of 98 bunkers trading days).

We observe that, in addition to the general common price trend and to the random daily shocks,
the bunkers prices for these 3 ports exhibit an absolute ranking with some longer-term stability.
For example, for the first 10 or so trading days, the price ranking of 3 ports, from highest to lowest,
is Houston-Singapore-Rotterdam. After that, the ranking becomes, almost uninterruptedly for the
next 30 days, Singapore-Houston-Rotterdam. For the next 5 or so days, the ranking is Singapore-
Rotterdam-Houston. After that, almost uninterruptedly, the Singapore-Houston-Rotterdam rank-
ing is restored. The “inertial” Markovian structure of the local supply correction terms «; helps to

model such behavior.

Bunkers pricing data is not publicly available and shipping companies resort to specialized firms
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Figure 1: Bunker prices in 3 world’s largest ports, January-June 2005 (98 bunkers fuel trading
days).

for historical worldwide pricing information. We obtained pricing information from such a firm in
the form of actual prices for N = 18 ports for the period of January-June 2005 (k = 98 trading

days). A spreadsheet with price information is enclosed as a part of an online appendix.

The details of the parameter estimation procedure for model (3) are provided in Appendix B.
The value of the parameter « representing a conversion factor between the time average of the oil
price expressed in $/bbl and the time-and-location average of bunkers prices expressed in $/mts
is estimated as 4.43, and the values of other parameter estimates for three of the world largest
ports Rotterdam, Houston, and Singapore, as well as some descriptive statistics for all ports are
presented in Table 1. Note that, as Table 1 indicates, the expected price premia/discounts A; vary
substantially over the geographical locations: from a deep expected discount of $31.6 (observed at
the port of Antwerp, Belgium), to a heavy premium of $34.0 (observed at the port of Yokohama,
Japan). Yet, these expected values do not tell the entire story: the amplitudes of the Markovian
local supply corrections are around $30, decisively influencing the resulting price ranking of ports.
Finally, very high estimates for n; indicating extreme “stickiness” of the local supply corrections
are largely due to a 2-state nature of the Markovian supply correction model and high values of
the amplitudes of supply corrections: note that the transition between A; 4+ ¢; and A; — §; prices
involves a price change of 24;, or, on average, of $57. Clearly, a reasonable model should predict

that such dramatic price changes happen very infrequently in order to produce reasonable values



for the average price change due to “jumps” between local supply states. For example, the average
“inertia” coefficient equal to 0.98 and the average ¢ equal to $28.6 correspond to equivalent daily
price change of (1 —0.98) x 2 x $28.6 = $1.04. An increase in a number of modeled possible
states for the local bunkers supply chain will result in a reduction in the estimates for the “inertia”

coefficients associated with each state.

Parameter | Rotterdam | Houston | Singapore | Max (all ports) | Min (all ports) | Mean (all ports)
A, $/mts —28.4 —134 —0.42 34.0 -31.6 0
J, §/mts 29.7 31.7 30.8 31.7 24.6 28.6
n 0.99 0.93 0.99 0.99 0.93 0.98
o, $/mts 14.8 13.9 14.2 18.1 10.9 14.2
5 0.50 0.44 0.46 0.61 0.38 0.50

Table 1: Parameters of the bunkers fuel price dynamics.

In order to fully characterize the proposed model (3), we turn attention to the last remaining element
of the stochastic dynamics of bunkers prices, namely, the stochastic dynamics of crude oil prices.
The earlier literature on the subject (Brennan and Schwartz 1985, Paddock et al. 1988, Smith and
McCardle 1998) has established the geometric Brownian motion (GBM), in both continuous and
discretized versions, as a standard for the description of the crude-oil dynamics. In the discretized
version of the GBM model the relative changes in the oil prices for any two consecutive days are
assumed to be i.i.d. normal random variables:

Py(t+1)— Py (t)
Py (t)

~ N (po, 00) - (4)

More recently, however, a number of studies (Laughton and Jacoby 1995, Cortazar and Schwartz
1994, Dixit and Pindyck 1994, Smith and McCardle 1999) have argued that the unlimited asymp-
totic variance associated with the GBM model may not be a good descriptor of actual price dynam-
ics. As an alternative, these studies suggested to use mean-reverting processes, such as an AR(1)

process

Po(t+1) = APy(t) + (1 = N) Py + £o(t), (5)

where ]30 is the long-term price level to which oil prices “revert”, and e¢(¢), t = 0,1, ... are i.i.d.
normal random variables. By analyzing the actual crude oil data for the period January-June 2005
(see the estimation details in Appendix B), we have found that the mean-reverting model provides
a better description of the crude oil price dynamics. It is this model that we use in our numerical

studies.
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5 The Case of a Liner

The fixed-route feature of a liner trajectory simplifies the analysis of the vessel profit management

problem (2) and allows one to characterize optimal refueling policies.

5.1 Structural Properties of the Optimal Refueling Policies

For a liner, at each port i the destination j € O(3) is known and fixed. We let 5% (i) =4 and 5 (4)
denote the k' port visited when starting at port 3. With a slight abuse of notation, we let j(i)

denote 5V (7). Similarly, we let d*)(i) denote the consumption needed for the next k ports, i.e.,

k—1
AN (@) = Y djm iyjonsn iy

m=0
When the route is fixed, the revenue stream is known and is unaffected by the refueling decisions
of the firm. In this context, the objective of the firm is to minimize the long run average fuel

costs along the sequence of ports visited. If we let p denote the optimal cost per unit of time, the

Bellman equation can be written as follows
w (i, I,P)

= i it (Pt B[ (0T o))

where w (i, I, P) is a function defined on the state space of the problem with w (ig, In, Pg) = 0 for

some (arbitrarily chosen) state (ig, {o, Po).

The following result summarizes structural properties of the optimal cost function and the optimal

refueling policy:

Proposition 1 a) the function w (i,1,P) associated with the optimal cost is a convex function of

fuel inventory I,

b) there exists a price-dependent function S (i, P) taking values in [di,j(i)7 C’] such that an optimal
refueling policy is given by:

Q" (i,1,P) = (S(i,P) — I)" (7)

¢) the function S (i,P) takes values in B(i), where B(i) = {dW (i) : 1 = 1,2,...,1*(i)} U {C}, with
1*(i) = max{k : d¥ (i) < C}.

Proposition 1b) describes a capacitated version of the base-stock inventory policy and admits a
straightforward interpretation. On the one hand, when refueling is necessary at port i (correspond-

ing to I < d;j=(;)), it should be performed up to the level equal to S (i, P (¢)). On the other hand,

3Note that as stated, any liner has to travel through a cycle in the network of ports. The analysis easily extends
to a case where the liner follows any repeated route (not necessarily a cycle in the network of ports) at the expense

of additional notation.

11



if there is enough fuel to get to the next port j*(i), i.e. I > d;j«(;), the refueling at i should be
done if and only if S (i, P (t)) > I. By Proposition 1c), the optimal buy-up-to level belongs to the
set B(7); in other words, whenever bunkers are purchased, they are purchased to either arrive at
one of the next ports on the route with exactly zero inventory, or they are purchased to fill up the
tank up to capacity. This property allows one to restrict the set of possible values for S(i, P) when

searching for an optimal policy.

Proposition 1 describes the structure of the optimal refueling policy for any general Markovian
price process {P(¢) : t > 0}. Sharper characterization of the properties of the capacity-adjusted
fuel-up-to levels S (i, P (t)) is possible for specific models of the Markovian price dynamics. For
example, based on the structure of the fuel pricing dynamics described in (3) in Section 4, one
can analyze the properties of the fuel-up-to-levels S (i, Py, €, &) (note that since the values of the
local supply correction terms «; are assumed to be observable, expressing the state of the system
in terms of the prices P is equivalent to specifying the values of corrections €). In particular, let
F(Py(t+1)|FPo(t)) denote the CDF of the oil price in period ¢+ 1 given that the oil price in period
t is Py(t). Consider the following assumptions on the shape of F':

Assumption 1 (Crude oil price dynamics)

i) F(Py(t+ 1)|Py(t)) is a non-increasing function of Py(t) for any Po(t + 1).

i) Po(t) — E(Py(t +t')|Py(t)) is a non-decreasing function of Py(t) for all ¢/ > 0.

Assumption 1 can be rationalized as follows. Let Py(t + 1)|Fo(t) be the (random) oil price in
period ¢t + 1 given that in period ¢ the oil price is Py(t). Then, Assumption 1 (i) states that
Py(t+1)|Py(t) = Py stochastically dominates Py(t + 1)|Py(t) = Pr, for all P, < Ppy. In particular,
it implies that the conditional expectation E(Py(t+ 1)|Py(t)) is a non-decreasing function of Py(t).
At the same time, Assumption 1 (i7) limits the rate at which this conditional expectation grows
as a function of Py(t). Note that both the mean-reverting model as well as GBM model with
non-positive drift satisfy this Assumption. Assumption 1 serves as a sufficient condition for the

monotonicity of the fuel-up-to levels S (i, Py, €, ):

Proposition 2 Suppose that bunkers fuel prices evolve according to (3). Then the fuel-up-to level
S (i, Py, €, ) is a mon-increasing function of €; (or equivalently P; for fized Py and ). If, in
addition, Assumption 1 holds, then the fuel-up-to level S (i, Py, €, ) is a non-increasing function
of Py for fized € and a.

In particular, we note that under Assumption 1, when the local supply corrections are constant
across time, the values of the «;’s do not influence the monotonicity of the optimal fuel-up-to levels.
However, when Assumption 1 is not satisfied, it is easy to find examples where the monotonicity

of the fuel-up-to levels as functions of the oil price Py breaks down.

In Appendix C, we illustrate numerically the properties of the optimal fuel-up-to levels described in
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Propositions 1 and 2 as well as the performance of simple heuristics, which require more moderate

computational effort.

6 The Case of a Tramper

In this section we consider a profit maximization problem for a vessel whose route can be dynam-
ically adjusted based on the set of available shipping jobs and the set of observed fuel prices. In
particular, we focus on the case of a so-called “spot tramper”, for which the set of available jobs
becomes known only after the completion of a previous shipping job, upon arrival at a discharge

port, and which reflects the practice of several tramper companies we collaborated with.

The case of a tramper vessel is far more complex and less amenable to analysis due to the addi-
tional routing decision that needs to be made at every port. Section 6.1 illustrates some of the
complications that arise in the context of the tramper problem when contrasting it to the liner.
Section 6.2 analyzes the tramper problem in various special cases where either the optimal solu-
tion can be characterized or simple policies can be shown to be near-optimal. Based on the latter
analysis, Section 6.3 develops potential heuristics for the general tramper problem and illustrates

their performance.

6.1 Optimal Refueling Decisions: Monotonicity Properties

Below, we re-express the Bellman equation given in (2) as

h(i,I,P,r) = i — At + D, (I,P)), 8
(Zv ) ,I') jrenOa()z{) (Tj TJ + Z]( )) ( )
where

yep= g (P s (TP W)]) o

with Q (¢,7,1) = {q|¢ > 0,d;; <I+q < C}. Note that while concavity of h with respect to in-
ventory is preserved under the transformation on the right-hand side of (9), the combinatorial
nature of the route selection problem in (8) breaks this concavity down. This, in turn, affects the
monotonicity properties of the optimal refueling policies.

One can derive sensitivity properties for the optimal refueling values. In particular, assume that
while in port ¢, node j is selected as the next destination, and let

q*(i,7,1,P) = min (arg max (—Piq +Ep/py [h <j, I+q— dij,P,,r,)D>
q€Q(i,j,I)

be the smallest optimal refueling quantity in this case. Then,

Proposition 3 I + ¢*(i,7,1,P) is a non-decreasing function of I for anyi =1,....,N, j € O(i),

and for any current price vector P.
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While the monotonicity of the fuel-up-to level with respect to the on-board inventory is to be
expected, it may be possible for the refueling quantity itself to be non-monotone due to the influence

that the routing decisions exert on the refueling process.

6.2 Optimal and Near-Optimal Solution Structure: Special Cases

An important feature of the tramper problem is, in general, a strong interaction between the routing
and the refueling decisions. Indeed, the latter decisions need not decouple in the general case and
the fact that they are selected jointly presents unique challenges. In this section, we develop an
understanding of the solution structure in various special cases. This will highlight how various
features of the tramper problem, independently of each other, create complex interactions between
refueling and routing decisions. We focus on three key features associated with the tramper problem:
i) price heterogeneity (across ports); i) price stochasticity; and ii) vessel capacity constraint. We
will illustrate how each of these features introduces strong interactions between the refueling and
routing decisions. In addition to these insights, the analysis of the special cases will also be the

basis for the development of heuristics with reduced computational requirements in Section 6.3.

In order to analyze the various impacts of the model features above, we will start from a base case
where all the features mentioned above are absent and then study the impact of adding one of those
features. In particular, our base case will be a variant of the vessel profit management problem
(2) with deterministic reward values r, deterministic, constant (across time) and uniform (across
ports) fuel prices, i.e., P, = P.,i € N for some common value P,. In addition, we assume that
the consumption between ports and corresponding travel times are proportional, i.e., that for all

(i,5) € A, dij = v for some v > 0.

6.2.1 The Base Case: Deterministic Uniform Fuel Prices

In the base case, prices are equal across all ports and constant, and hence, without loss of generality,
one can restrict attention to policies where the firm replenishes the exact amount required to reach
the port it selects to travel to next. Under any such policy, the fuel on board upon arrival at a
port will always be exactly zero and it is possible to associate a profit with each arc (i,5) € A as
follows:

0;j = rij — Pedsj.

Based on the above, the tramper problem in the base case reduces to that of finding the cycle that
maximizes the profit per unit of time in the network (N, .A) where crossing arc (4, j) earns 6;; units
of profit and requires 7;; days. This maximum profit-to-time ratio problem has been analyzed in
the literature; see Dantzig et al. (1966) for an early reference. When 6;; are integers, Ahuja et al.

(1993, Section 5.7) describe a binary search algorithm to find the optimal revenue per unit of time,
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AP, The algorithm uses the fact that AP € [~Omax, Omax), Where Opax = max {|0;;] : (i,7) € A}. At
a high level, the algorithm follows a sequence of iterations and after each such iteration, one is able
to halve the interval of possible values for the optimal profit per unit of time. Each iteration starts
with an interval of possible values [y, 7i] and concludes whether AP > (p +7)/2, AP < (u+7)/2,
or \P = (u+7)/2. In the two first cases, one is able to restrict attention in the next iteration
to an interval with half the length of the one one started with while in the last case, one has the
found the optimal profit per unit of time. At each iteration, one considers a network (N,.A) with
arc measures _

Oij = 05 — =5 Tii»
and applies a a shortest path label correcting algorithm to detect the existence or non-existence of
a negative length cycle. If a negative length cycle exists, then AP < (u +71)/2; if all cycles have
positive length, then AP > (u 4 72)/2; and if a zero length cycle exists, then A” = (u + )/2 and
the cycle found is optimal in the original problem.
Overall, if Typin = min {7; : (¢,7) € A}, it is possible to show that O(log(Tminfmax)) iterations will
suffice to find the optimal profit per unit of time and the associated cycle.
In the base case, refueling decisions are trivial and the optimal solution dictates to follow a cycle
in the space of port locations. In particular, it is straightforward to establish that the cycles that
maximize revenues and profits coincide. In that sense, the refueling and routing decisions are

decoupled.

As highlighted in the introduction, an important feature associated with many networks of ports is
that prices differ across ports. Next, we analyze how the structure of an optimal solution changes

in the presence of price heterogeneity.

6.2.2 Deterministic Non-Uniform Fuel Prices

In this section, we assume again that prices are deterministic but we turn attention to the more
general case in which prices differ across ports. Note that, while in the case of uniform prices the
long-term optimal trajectory of a tramper is always a cycle on the graph (N,.A), in the present
case, the optimal trajectory need not be, in general, a cycle in the location space. However, as
we show below, one can build on the analysis of the previous section to search for an optimal
solution in the case of non-uniform prices, which can still be represented as a cycle, but in a
generalized, location-inventory space. In the analysis below, it is convenient to introduce the
following notation. Let N := N'®7T denote the set of possible location-inventory combination pairs
and let A = {(2,7)) : 2 £ 2,2,7 € N } denote the set of all possible arcs connecting different
elements of A'. A node z defines both a geographical location and an inventory position and hence

moving from a node z = (i, 1) to a node 2’ = (¢, I') implies that the ship purchases I' — I + d;;» at
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price P; at node . Note that (A, /T) defines a complete graph built on N x (C' 4 1) nodes. For any
z=(i,1) e N,let O(2) :={z' = (I',I') : ' € O(i),I — dsy < I' < C — dy} denote the set of nodes
in 2/ = (i/,I') € N reachable in one transition from z. For each arc (z,2) belonging to A, we can

introduce the following measure

gz,z’ =1y — B(I' = I +dyy), (10)
that fully characterizes the profit contribution earned when moving from z = (i, ) to 2’ = (¢, I').
In addition, we let 7, . = 7 for any (z,2') € A. Consider a cycle C on (/\7 , .Z) consisting of the
nodes z1 = (i1, 1), z2 = (i2, I2), ..., 2 = (ig, Ix), 21, where k is a positive integer, and let
k—1
Oci= Oyt D Oupirs (11)

m=1
k—1

TC = ;zk,zl + Z 7A:zm,zm-»,-p (12)

m=1
be the accumulated profit and the travel time associated with the cycle C, respectively. Then the

profit per unit of time associated with C is given by
R
=7

The next result provides a generalization of the location connectivity assumption for (N, A) intro-

Ac (13)

duced in Section 3 and recasts the deterministic tramper problem as a problem of finding the cycle

with maximum profit per unit of time on the network (A, A).

Proposition 4 a) Suppose that any two nodes i € N and j € N\ O(i) can be connected by a finite
set of arcs in A. Consider any cycle C : z1 = (i1, 11), z2 = (i2,I2),..., 2zt = (ix, Ix), 21 in (/\N/', VZ)
and any node z € /\7, z ¢ C. Then any point in the cycle is reachable from z in a finite number of

transitions.

b) For any point z € N and any point z; on a cycle C, let P(z,z) denote a path from z to z;
with the smallest number of transitions. Further, let F(z) = (ip(z),Ir(2)) denote the follower of
point z on P(z,z;), where ip(z) € N is the location of the next point and Ip(z) is the inventory
level corresponding to F(z). Let C* : zf = (i],17), 25 = (43,13), 2 = (i}, 1), 2¥ be the cycle
that achieves the highest profit per unit of time g« on the network (/\7, .Z) Then, when at point
z=(i,I) € /\7, the optimal policy for the tramper problem is given by

¢

b1y, fz=zp,m=1..,k—1,
J*(z) = i, if 2= 2, (14)
[ ir(2), if z & {2]..., 2.},
(It digs 1 ifr=zlm=1,. k-1,
q(z) = I +dig: — 1, if z =z}, (15)
\ Ip(2) +d; i) — 1, if z ¢ {z}..., %},
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and A = A¢x.

The proof of part a) of Proposition 4 is contained in the Appendix and provides an explicit method
of reaching any point in the cycle z;, i = 1,...,k from any other point z. The result of part
b) of Proposition 4 indicates that, under deterministic assumptions, a tramper should get to the
“optimal” cycle C* as fast as possible and then remain on it. Under such a policy, the profit values
earned before the tramper reaches the cycle C* do not contribute to the long-run value of the profit

per unit of time - thus, the key element of the optimal location-refueling policy is the cycle C*.

In order to find the optimal cycle C*, the binary search algorithm discussed in the context of the
base case can be adapted to the case of the expanded network (ﬂ/ , .Z) The optimal solution is
now a cycle in the generalized location-inventory space. The need to search for cycles beyond the

location space is a consequence of the presence of different prices across ports.

6.2.3 Stochastic Uniform Prices

In this section, we analyze the impact of price stochasticity on the optimal solution structure. We
assume that prices are uniform across all ports but that the common price P, is stochastic. We
illustrate through an example that the optimal solution need not be a cycle in the space of locations

as in the base case.

Example 1: Consider a setting with three ports. Suppose that r1o = 791 = ro3 = r30 = $20, 000
and T3 = r31 = $34,000, 710 = 701 = 1, 793 = 739 = 1, 713 = 731 = 2, d12 = do1 = 100 mts,
dos = d3o = 100 mts, di13 = d3; = 200 mts, C' = 1,000 mts. Suppose also that the price P. can
only take two values Py, = $50 and Py = $100, and that the transition probability matrix is given
by [0.1,0.9;0.9,0.1]. Note that when P, is equal to the time average of these two prices, $75, the
optimal routing reduces to the cycle (1,3). When P. follows the two-value stochastic dynamics
described above, the routing decisions, when in ports 1 and 3, become conditional on the state of
the system (Table 2). In particular, when in port 3, the optimality of “go to port 1” decision now
depends on either the observed price being low, or, if it is high, on the value of the on-board fuel
inventory being also high enough to eliminate the need for refueling in the near future; in the cases
when the fuel price is high and the need for refueling is strong, the best routing decision is to go
to port 2. Since the problem data is symmetric, a similar routing policy applies when the vessel is

in port 1.

As our example indicates, even in the absence of price dispersion across ports, a modest degree of
stochasticity in fuel prices creates, in general, a substantial degree of complexity in optimal routing

decisions, strongly coupling routing and refueling decisions.

17



Next port when in port 3
On-Board Fuel Inventory (in 100’s of mts) |0 | 1|2 |34 |56 |7|8]|9]10
Fuel Price = Py 2121211111111
Fuel Price = Pp, 1|1 f1f{1f1frjrj1rj1]1

Table 2: Optimal routing decision at port 3 as function of the fuel price and on-board fuel inventory

6.2.4 Coupling Between Routing and Refueling Decisions: The Role of Capacity

In this section we investigate the role of another factor, vessel capacity, on the coupling between

routing and refueling decisions. We focus on the case of deterministic but non-uniform fuel prices.

Let C) be the cycle that maximizes revenues per unit of time (in the location space), where
the revenues accumulated over a cycle are given by the sum of the rewards over that cycle. Let
C) iy g, im, i1, d = max(; jyed dij and imin = argmin;en{F;}. We suppose that C' > d.
Consider the policy 7, that separates refueling and routing decisions as follows: it follows the
cycle C(") until the reserve of fuel on board minus the fuel needed to reach the next port I — d;;r
drops below d. When this occurs, the vessel travels to port imin, replenishes up to C, and travels
k=1,..,m} and
Toey = D ity dijiv1 + di s i + iy i - More formally, the policy can be defined as follows:

back to ¢ and resumes following the route of the cycle. Let m* =argmin{d

1k ytmin?

Ty i3 =i € {1, 02,y im} \ {ime= ],
i1, i 5 = dpe and dmin = e,
J(z) = imin,  Af © = G, 2 imin 7 ime, and T < oy — dipn i (16)
i1, A © =G, 2 min # Ime, and T 2> Toey = dipy i
T if i & {i1,...,im},
[ (dii,, — DY, if i =iy € {1,992, o, im} \ {ime }
(di e iipin — D)T0 0=, 2 Gnin # G, and I < Ipey — i iy s
g (z) = 0, if & = Gy, 22 Gmin 7 Gme, and T > Togy — dipin i s (17)
(dig, . —I)7T, if i ¢ {i1, ., tm} U {imint,
c—1, if i = dmin,

\
The next result establishes the near-optimality of this policy in cases where the capacity is large
relative to the maximum fuel consumption required for a single inter-port transition. In particular,

define
. maX(iyj)eA dz‘j
C
as the proportion of the total capacity needed for the most fuel-consuming inter-port transition.

We have the following result.

4We adopt the convention that 4,,41 refers to i; to simplify notation.
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Proposition 5 Let AP > 0 be the optimal profit per unit of time. Suppose that C > Iory. Then,

the long run profit per unit of time associated with the policy o, )\ﬂc satisfies:

(r)’?

>\7TC(T) > 1—4C
D = T-2

(18)

Hence, as ¢ converges to zero, one can essentially decouple refueling and routing decisions. Having
¢ “small” corresponds to a tramper operating in a region with a high number of ports that are
close to each other. This would be the case for a tramper restricting its operation to a small region
of the world, such as e.g., the Mediterranean. For ¢ = 1/8, one can lower bound the ratio of the

profit of the propsed policy to the optimal profit by 2/3 and for ( = 1/12, by 4/5.

6.3 Heuristic Profit Management Policies and Their Performance

In practice, even small-size instances of the dynamic program (8)-(9) are often computationally
intractable. In particular, it is nearly impossible to solve such a problem to optimality for a
network with more than 3 ports since the size of the state space grows exponentially with the
number of ports. In such a setting, developing heuristics with lower computational requirements

becomes critical.

In addition, as illustrated in the previous section, the resulting optimal profit management poli-
cies may take a complex and nonintuitive form in the general case. This section focuses on the
development of insights on the optimal policy and of two potential heuristic profit management

policies.

6.3.1 The Optimal Location Cycle and the Optimal Location-Inventory Cycle Heuris-

tics

The first profit management heuristic policy uses the approach described in section 6.2.1 to decouple
the routing and refueling decisions. For any port i € N/, let P; denote the smallest value that the
price at port ¢ can take and let P = min;en P;. The heuristic proceeds in two steps. In the
first step, it is assumed that all fuel prices are constant over time and equal to a common value
P, = P and all arc rewards are constant equal to their expectation; using this simplification, the
profit maximizing location cycle is determined. In the second step, the optimal refueling policy is
determined for a liner following that location cycle. We refer to this heuristic as the “OLC” for
Optimal Location Cycle. In summary, the OLC heuristic tackles the combinatorial nature of the
dynamic routing decisions by separating them from the refueling decisions. It is important to note
that the OLC heuristic still requires to solve a liner problem over a given cycle, which might imply

significant computational requirements if the cycle has a large number of ports.
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Below, we provide a bound for the performance of the OLC heuristic. For any arc (i,7) € A, let
7i; denote the largest possible value of the reward on arc (7, 7). In addition, let S¢ denote the set

of all cycles in the location space (N, .A) and define

A, — Fii — Blril),
T (f?)aé“{ T'ij [TZJ I}
By = max{EwlP] - P}

_ 2ijec !

W = max —m>——,

CeSc D ;. jyec Tij

s

p = max Z(z,])ec J

CeSc Y (i jyec Tid
where E, corresponds to the expectation with respect to the steady-state distribution of prices.

Proposition 6 Let \* and Aorc denote the profit per unit of time values achieved by an optimal

policy and by the OLC heuristic, respectively. Then

N = dorc SwA, + PA,. (19)

The bound presented in Proposition 6 is sum of two components. Each of the components is the
product of two terms where the first one, w (respectively p) depends exclusively on the charac-
teristics of the network of ports. A, represents the influence of the stochastic nature of rewards
while A, represents the influence of the price heterogeneity across ports. Note that the bound
(19) emphasizes the near-optimality of the OLC heuristic in settings where rewards are mildly
stochastic and where prices do not significantly differ across ports, i.e., where A, and A, are small
compared to the average values of rewards and prices, respectively. It is also important to note that
the decoupling between routing and refueling followed by this heuristic implies that when there is
significant price heterogeneity across ports (even if prices are constant across time), ones runs the
risk of “missing” the ports where fuel is sold at particularly low prices, which might have severe

impacts on performance.

The second heuristic policy we consider is based on the analysis conducted for the deterministic
case in section 6.2.2. In particular, consider the maximum profit-to-time ratio cycle in the network
(N, A) with profits

0, = Elriv] — Boo[B](I' — I + d;ir). (20)

Let moric denote the policy which leads the vessel through this location-inventory cycle and let
Poric denote the subset of stationary policies that form cycles in the location-inventory network.
The analysis performed in section 6.2.2 implies that for the general stochastic tramper problem,
moLic achieves the highest possible long-term average profit among all policies in Poric. In sum-

mary, the optimal location-inventory cycle policy (OLIC) captures both the heterogeneity in prices
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as well as the combination of route selection with refueling decisions but ignores stochastic varia-
tions of prices and rewards. Note that this feature of the OLIC policy is in contrast with the OLC

heuristic that captures price stochasticity across the ports it visits.

Below, we provide a bound for the performance of the OLIC heuristic. In addition to the notation
introduced above, let §C’ denote the set of all cycles in the location-inventory space (/\7 , VZ) and
define

p = max(Ex[P] - P)

_ > (znec
O = max —————,
CeSc Z(z,z’)EC Tiy!
~ Z(z,z’)ec dii'
p = max —————

CeSc Z(z,z’)EC Tig!

Proposition 7 Let \* and A\orjo denote the profit per unit of time values achieved by an optimal

policy and by the OLIC heuristic, respectively. Then
X = Noric < BA, + PA,. (21)

Note that the bound (21) emphasizes the near-optimality of the OLIC heuristic in mildly stochastic
settings, i.e., where A, and Ap are small compared to the average values of rewards and prices,
respectively. Contrasting the OLIC and OLC heuristics, one observes that the former captures
price heterogeneity across ports and is not exposed to the risk of potentially ignoring ports where
fuel is sold at a discount; this is reflected in the performance bounds through the dependence on
Ap for the OLIC heuristic (which is driven exclusively by price stochasticity) as opposed to A, for
OLC heuristic (which is driven by price heterogeneity).

While we will restrict attention to the two heuristics presented above, it is worth noting that the
analysis of section 6.2.4 can be a basis for the development of additional heuristics, where one
could determine a cycle that maximizes average accumulated rewards per unit of time and then

only deviate from such a cycle to replenish at ports where fuel prices are heavily discounted.

6.3.2 Comparing the Performance of the Heuristics

In this section we report the results of a numerical study designed to gain insights on the optimal
policy and the performance of the two heuristics. The problem setting for our numerical study is
designed to test heuristics in a real-life setting representing a tramper traversing a small network
of 3 ports. The choice of a small size network for testing purposes is dictated by the computational
challenges associated with obtaining the optimal policies for problems with more than three ports

(the heuristics can be applied to real-life problems with a larger number of ports). For example, a
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simple problem instance with four ports, 15 crude oil price levels, 10 possible fuel inventory levels,
2 levels of local Markovian price corrections at each port, 2 levels of local iid price corrections, and
2 revenue levels on each arc has 38,400 states. Such a problem instance takes several days to solve
using our tool of choice, Mathematica (it takes around 10 hours to solve a typical tramper problem

with 3 ports.)

We consider a tramper with capacity of 6000 mts operating between the ports of Houston (port
1), Rotterdam (port 2) and Abidjan (port 3). Figures 2 and 3 show a schematic representation
of the distances between these ports expressed in nautical miles and of the corresponding network
parameters, respectively. We note that the distances between the ports are calculated assuming
that the tramper follows the standard inter-port trajectories passing through the so-called “junction
points” as specified by the National Imagery and Mapping Agency (2001). For example, in the
case of a travel between Rotterdam and Houston, a tramper vessel would pass from Rotterdam to
the junction point at Ile de Ouessant, then to the junction point at Great South Banks, followed
by the junction point at the Straits of Florida, and, finally, by the port of Houston, resulting in
a travel distance of 5009 nautical miles. The travel times and fuel consumption values for the
trips between ports were calculated using the typical average travel speed of 15 nautical miles per
hour and the typical average fuel consumption rate of 75 mts per day. The resulting travel time
values were rounded to the nearest day and the resulting fuel consumption values - to the nearest
multiple of 200 mts. Note that we assume, for the sake of simplicity, that the travel times and the
fuel consumption values are symmetric, i.e., 7;; = 7;; and d;; = dj; for all 4,5 = 1,2,3, ¢ # j. In

summary, the fuel consumptions and travel times between the 3 ports are given by

0 1000 1200 0 14 15
d=|1000 0 80 |, 7=]14 0 11 |. (22)
1200 800 0 15 11 0

To reduce the computational effort, we assume that the ship can only replenish fuel in multiples of
200 mts. We use the price dynamics model outlined in (3) and the parameter estimation procedure
described in Appendix B. As before, the value of the parameter 4 representing a conversion factor
between the time average of the oil price expressed in $/bbl and the time-and-location average of
bunkers prices expressed in $/mts is estimated as 4.43, and the values of other parameter estimates

are presented in Table 3.

We observe that, as Table 3 indicates, the port of Rotterdam has, on average, a pronounced price
advantage over the other two ports, while refueling at Abidjan is, in general, undesirable. As in
the liner case, the dynamics of oil price Py are described by (B9) in Appendix B. This parameter
combination results in Markovian price dynamics under which the high degree of inertia in price
values and high variance in supply corrections allow for various orderings of prices among the three

ports to be realized. We use a simple form for random price correction terms by assuming that &;
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Rotterdam, Netherlands

Ile de Ouessant, France

Great South Banks

3375

Houston, USA

Abidjan, Ivory Coast

Figure 2: Schematic geographical representation of the distances between ports (in nautical miles).

2: Rotterdam, Netherlands

1: Houston, USA

3: Abidjan, Ivory Coast

Figure 3: Travel times and fuel consumption values for ports.
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Parameter | Houston (Port 1) | Rotterdam (Port 2) | Abidjan (Port 3)
A, §/mts —13.42 —28.44 9.62
9, $/mts 31.71 29.72 19.21
n 0.93 0.99 0.90
o, $/mts 13.94 14.83 11.91

Table 3: Parameters of the fuel price dynamics for the ports of Houston, Rotterdam and Abidjan.

at port i takes two values, +o;, w.p. 0.5 for each value. The oil price dynamics is taken to follow
the mean-reverting model (B9) with o9 = 1.25, A = 0.96, PP = 46 and Pa* = 62.

In practice, the revenues associated with transporting cargo between ports are established in the
process of negotiations, their exact values being closely guarded commercial information. In our

numerical study, we assume a simple setting with constant revenue matrix

0 72 713
r=|m 0 13 |, (23)

r31 r32 0

where r;;, i # j are taken to be proportional to the distances between ports, 7;; = k;jd;j, with
kij being the parameters that we varied. We take k12 = k21 = K13 = K31 = K23 = K32 = 250 as
the base scenario for our study. Note that for such values of revenue parameters the profit rate
generated by the optimal tramper policy turns out to be $794/day, a very modest amount roughly
corresponding to the price of 4 metric tons of fuel, or less than 5% of typical daily fuel cost. Thus,
the base scenario value of revenue parameters corresponds to a reasonable lower bound on revenues

which guarantee profitability.

In our numerical study we have used a standard value iteration approach to solve the tramper
dynamic program. Table 4 illustrates the optimal route selection decisions for the base scenario in
the states with Py = $54 and zero on-board fuel inventory. In this table we have used a short-hand
notation “£d; £o;” to denote the price state P; = vPy+ A; £6; £0; at the “current” port i = 1,2, 3,
(i.e., at the port where the routing decision is made) and “+0;” to denote the price state at other
ports.

As Table 4 shows, the resolution of a trade-off between low fuel prices and high revenue values
often takes an intuitive form. For example, when in Houston, the choice between higher revenue
rate associated with the Houston-Abidjan link and cheaper fuel in Rotterdam is resolved as follows:
when the fuel price in Houston is at its lowest possible level, immediate refueling allows the tramper
to benefit from the revenue advantage of going to Abidjan; on the other hand, when the fuel price in
Houston is at its highest possible level, the prospective of cheaper refueling in Rotterdam outweighs

the revenue considerations. For the intermediate values of fuel prices at Houston, the trade-off
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Next Port at Houston Price at Houston
Prices at Rotterdam and Abidjan —01 — 01 +01 — o1 —01 + 01 +01 + o1
(—d2, —03) Abidjan | Rotterdam | Rotterdam | Rotterdam
(—02,+03) Abidjan | Rotterdam | Rotterdam | Rotterdam
(402, —03) Abidjan | Rotterdam | Abidjan | Rotterdam
(402, +93) Abidjan | Rotterdam | Abidjan | Rotterdam
Next Port at Rotterdam Price at Rotterdam
Prices at Houston and Abidjan —09 — 09 +09 — 09 —09 + 09 +0d9 + o9
(=61, —03) Abidjan Houston Abidjan Houston
(=01, +03) Abidjan Houston Abidjan Houston
(401, —93) Abidjan Houston Abidjan Houston
(401, +93) Abidjan Houston Abidjan Houston
Next Port at Abidjan Price at Abidjan
Prices at Houston and Rotterdam | —d3 — o3 +d3 — o3 —03 + 03 443 + o3
(=61, —02) Rotterdam | Rotterdam | Rotterdam | Rotterdam
(=01, +d2) Houston Houston Houston Houston
(461, —02) Rotterdam | Rotterdam | Rotterdam | Rotterdam
(+01,+02) Houston Houston Houston | Rotterdam

Table 4: Optimal route selection decisions for the base scenario in the states with Py = $54 and

zero on-board fuel inventory.

becomes more subtle: Rotterdam is preferred unless the price in Houston is cheap enough to make
immediate refueling in Houston more advantageous than the later refueling in Rotterdam, and,
thus, to allow the routing decision to be based solely on revenue rate consideration. The subtlety
of such a trade-off is clearly illustrated in the optimal routing decisions when in Abidjan: while in
the majority of cases the next-port-to-visit is decided based on the basis of the expected fuel price,
in the setting where the prices at both Houston and Rotterdam are expected to remain high, the
situation is “too close to call” without accounting for the fuel price in Abidjan itself. In particular,
as the last line of the Table 4 indicates, the slight expected price advantage of Rotterdam is canceled
out by a slight revenue rate advantage associated with Abidjan-Houston link, unless the price in

Abidjan is at its highest level as well.

In our numerical study we consider four different variations of the base scenario, each varia-
tion designed to emphasize the influence of a particular location cycle within the 3-port network

we consider. In particular, in the first variation of the base scenario we increase the revenue

values associated with Houston-Rotterdam-Houston routing cycle by considering k12 = ko1 =
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K12 = Ko1 eonc | Locations visited: OLC | eoric | Locations visited: OLIC
250 3.1 (1,2) 51.5 (1,3,2)
275 0.0 (1,2) 37.8 (1,2)
300 0.0 (1,2) 28.7 (1,2)
325 0.0 (1,2) 23.1 (1,2)
350 0.0 (1,2) 194 (1,2)
K13 = K31 eonc | Locations visited: OLC | eoric | Locations visited: OLIC
250 3.1 (1,2) 51.5 (1,3,2)
275 13.1 (1,3) 24.1 (1,3)
300 3.6 (1,3) 28.7 (1,3)
325 0.0 (1,3) 12.1 (1,3)
350 0.0 (1,3) 6.8 (1,3)
Koz = K32 eonc | Locations visited: OLC | eoric | Locations visited: OLIC
250 3.1 (1,2) 51.5 (1,3,2)
275 0.0 (2,3) 29.7 (2,3)
300 0.0 (2,3) 22.1 (2,3)
325 0.0 (2,3) 17.7 (2,3)
350 0.0 (2,3) 14.7 (2,3)
K12 = K93 = k31 | €oLc | Locations visited: OLC | eoric | Locations visited: OLIC
250 3.1 (1,2) 51.5 (1,3,2)
275 0.9 (1,2,3) 37.2 (1,2,3)
300 0.4 (1,2,3) 28.9 (1,2,3)
325 0.2 (1,2,3) 24.0 (1,2,3)
350 0.1 (1,2,3) 20.7 (1,2,3)

Table 5: Relative performance gaps between the optimal policy and the “optimal location cycle”

(eoLc = (Popt — AOLC)/Aopt % 100%) and the “optimal location-inventory cycle” (g0 =

(Aopt = AOLIC)/Aopt % 100%) heuristics.

250,275, ...,350 (the rest of revenue values remain at their base scenario values). Similarly, the
second variation raises the importance of Houston-Abidjan-Houston routing cycle by setting k13 =
k31 = 250,275, ...,350. The third and forth settings emphasize Rotterdam-Abidjan-Rotterdam and
Houston-Rotterdam-Abidjan-Houston routing cycle by setting ko3 = k3o = 250,275, ...,350 and
Kl2 = ko3 = k31 = 250,275, ...,350, respectively. Note that in the latter case, the rewards on
arcs are not anymore symmetric. The relative performance of the two heuristic profit manage-

ment approaches defined above (optimal location cycle and optimal location-inventory cycle) under
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these four problem variations is illustrated in Table 5. As we can see, both heuristics “latch on”
the appropriate route in the majority of cases we studied. The optimal location cycle heuristic
exhibits a very robust performance across all the problem instances - with the worst-case relative
performance gap of 13.1%. However, the best location-inventory cycle heuristic falls far behind
in its performance even in cases when the location component of the location-inventory cycle is
properly identified. Such inadequate performance is to be expected in settings where the stochas-
ticity of the fuel prices is pronounced and the failure to capitalize on the optimal re-fueling policies
significantly hinders the profit generation process. Indeed, the OLC heuristic adopts an optimal
(state-dependent) refueling policy over the cycle that it selected while the OLIC heuristic refuels
according to what is prescribed by the location-inventory cycle, independently of current price
realizations. At the same time, it is also important to note that the cases with particularly high
values of the relative performance gap stem from the low-profitability settings (i.e., where )‘opt is

small) in which we test the heuristics.

7 Summary and Future Work

In this study we have developed a profit optimization model for a marine shipping company which
owns a fleet of liners (vessels with fixed route) and trampers (vessels for which the route can be
selected in a dynamic fashion). A model was also proposed for the dynamics of bunkers prices and
was calibrated using the actual pricing data for a network of 18 ports for a period of 6 months. For
the liner case, we formulate the vessel refueling problem as a long-term average stochastic dynamic
program and prove that the optimal refueling policy has a capacitated price-dependent buy-up-to
form. The monotonicity of the optimal fuel-up-to levels is established under additional assumptions
on the stochastic properties of the fuel price dynamics. In the tramper case, the task of refueling
is blended with a combinatorial route selection. We develop insights based on several special cases
that allow one to isolate the impact of the features associated with this problem: heterogeneity of
prices across ports, stochasticity of prices, and capacity constraints.

The single-vessel approach developed in this paper can serve as a good initial step to optimizing
fleet profits. At the same time, real business settings are often characterized by the presence of
volume refueling discounts which can only be fully exploited using more than one vessel. Thus,
the development of multiple-vessel profit management models represents a challenging research

direction which will be of immediate interest to practitioners.
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Appendices for “Going Bunkers: The Joint Route Se-
lection and Refueling Problem”

A  Proofs

Proof of Proposition 1

We establish the result using value iteration. We introduce a modified system to obtain an equiv-
alent discrete-time average cost problem (see Bertsekas(2000)). We let 5 denote a constant in
(0, min; 75;)), w (i, 1, P) = w (i, I,P) /B and P = Pi /7). In addition, we let v(; 1 py ;. pry(u) de-
note the transition probability from a state (i, I, P) to a state (j,I’, P’) under a given replenishment
decision u. We now define v(; 1.p) j,r.p(u) = (8/7iju))Va.1.p),,rp)(w) for (4,1, P) # (j,1',P’)
and v 1 py,i,r,p)(w) = 1 — (B/7ij4)), and let Ep/p denote the expectation under v. Then p and w
satisfy

W LP)=—p+ min (EHEMP [@ (j(i)JJr q- dij(z‘)vP/ﬂ) :

and the optimal policies are identical for both problems. Now, relative value iteration is guaranteed
to converge to the solution of the Bellman equation since the modified system is aperiodic (cf. Prop
4.3.1 in Bertsekas(2000)). We let wy denote the sequence of functions obtained through relative
value iteration. The recursion takes the following form:
@per (5, L,P) =  min (ﬁ-qHE , [z’ﬁk (j ), I+q—di ,P’)D
a@LP) = i (Pt Bep ©) 9

_ qu(iIOr,l]i‘Eo),Io) (ﬁo,iq + Ep’mo [@k (j(z'o), Io + q — digj(io) P’)D ., (A1)

where (ig, Ip) is an arbitrary location/inventory state. We have

Jlim @ (i,1,P) =@ (i, I, P), (A2)
p=Jim i (Poa+ Bep, [ (o) To+ = dijo. P)])- - (49)

We next show that if wy, (i, I, P) is a piecewise linear convex function with respect to I with changes
of slope that belong to B(%), then so is wiy1 (3, I, P).

Suppose that wy, (¢, I, P) is a piecewise linear convex function with respect to I with changes of slope
that belong to B(i). Consider equation (A1) defining w1 (4, I, P), the second term is independent

of I and hence we need only focus on the first term. Define

g(i,1,P) := i (B-q +Epp [wk <J (@), I +q — dij), P )D
= —PI+ dij(?%rylgc (f (i,y,P)). (A5)



Since Wy (j(i),y, P') is piecewise linear convex in y with changes of slopes in B(j(4)), fi (i,y,P)
is piecewise linear convex (with respect to y) with changes of slope in the set {b + dijiiy + b €
B(j(7)), b+ dij) < C} = B(i). Let y;(i, P) denote a minimizer in (A5); it is possible to select it
such that it occurs at a slope change, i.e., y; (i, P) € B(7). We then have
9(i,1,P)
= B, P) = I + By | (5(0), T + (i P) = I)F = diggap, P
= I <yl P)} |PilwiCi P) = 1) + Bpyp | (3(0), 916 P) = digeo P') ||
FUI > yi (i, P} B [ (3(0), 1 — diji P ) | (A6)
In the expression above, the first term is clearly piecewise linear with changes of slope contained in
B(1) since y; (i, P) € B(i). Now the same holds for the second term by the assumption on wy. We

deduce that g (i, -, P) is piecewise linear with changes of slope contained in B(i). Next, we check

that g(i, -, P) is convex.

g(Z>I+ 17P) —g(i,I,P)
L {I4+1 <y PP
FUT 41> i P} By [ (5(0), T +1 = dijio, P') = @ (6). T = dijay, P') | (A7)
For I < yi(i,P) — 1, the right-hand-side above reduces to the constant —P,. For I > v (i, P),
the right-hand-side above reduces to wy (j(z’), I+1—d;ja), P/> — W (j(z’), I —d;je, PI> which is
non-decreasing by the convexity assumption on wy. In order to establish convexity of g (i, I, P),

we are only left to check that
qup {@k (j(i),y};(i,P) +1- dij(i)>P,> — wy, <j(i)»yZ(i>P) - dz‘j(z‘);P/ﬂ > —F;,
which can be rewritten as
e (i g6, P) + 1L, P) — fi (i, 91 (4, P), P) = 0.

The latter is clearly true since f is minimized at y; (i, P). We conclude that g (4,1, P) is a piece-
wise linear convex function with changes of slope contained in B(i), which in turn implies that

Wky1 (7, I, P) is a piecewise linear convex function with changes of slope contained in B(7).

We have hence established that the value iteration step preserves the convexity and piecewise
linearity (with slope changes in B(7)) properties. This implies that that the limit function w is a

piecewise linear convex function with respect to I, with changes of slope contained in B(i).

Returning to Bellman’s equation for the modified system, the optimal policy solves

i (B [550.10- 000, w



An argument similar to the one provided above establishes that the optimal policy is of the order-up-
to type. There exist location and price dependent levels S (i, P) such that ¢* (i, I,P) = (S (i, P) —
I)*. In addition, those can be chosen so that S (i, P) € B(4). This concludes the proof. [J

Proof of Proposition 2

Consider again the value iteration procedure detailed in (A1) in the proof of Proposition 1. Define

fk (lv Y, PO? €, a) = Niy + EP(’)|P0,e’,oz’|oz ['&jk (J(Z)v Yy — dzy(z)v P6> 6,7 a/)] ) (Ag)

where Py, €, and o’ denote the crude oil price, the local price disturbance vector and the demand-

supply state vector at the time the liner arrives at port j*(¢). For all 0 <y < C — 1, let
Ak(’i,y,P(),E,a) = fk(iay+17P07€7a)_fk(iay7P07€7a)‘ (A]-O)

We have that

ﬁ)/k-‘rl(iajv P(),E,OL) = (Idmin)< <C(fk('iay7P07€aa)) - PRI (All)
maxi\ 1, i5* () SYsS

Now, relax the lower bound constraint to d;j(;), and let S, (i, o, €, «) be an optimal fuel-up-to
level (i.e. the solution of ming, ., <y<C fr(i,y, Py, €, ¢)). Note that wy, is convex in I and hence so
is fr(3,y, Po, €, ) as a function of y. This implies that at S, (i, Py, €, ), the following conditions
need to be satisfied

Ag(i, Sk (i, Po, €, @), Po, ;) > 0 if djjuyy < Sy (i, Po,e, ) < C —1
Ak(’ivskz(i7po7€7a) - 17P07€7a) < 0if dz]*(z) +1< Sk(iaPUaeva) <C. (A12)

Now, the fuel-up-to level S, (i, Py, €, o) is non-increasing in ¢; if Ag(4,y, Po, €, &) is non-decreasing
in €;. The latter is clearly satisfied, since
Ak(l, Y, POa €, Oé)
= P+ EPO/|P0,€/,OLI|OL [{Bk (](7')7 Yy— dzy(z)a P(;’ 6/7 Oé,) - wk (](Z)a y+1-— dzj(z)> P6> 6,7 Oé/)]
+Ep 1 pye el [Tk (50)sy — dijiiys Por € 0!) — @ (i), y + 1 — dijay, Py €,@)]  (A13)
5| Poe ol loe |WE \J\2), Y 1j(), £05 € E\JL),Y i5(3)> 105 € >
and the second term does not depend on ;.

We now turn to the dependence on Py. The fuel-up-to level S, (i, Py, €, &) is non-increasing in Py if
Ay (i,y, Po, €, @) is non-decreasing in Py. Suppose the relative value iteration algorithm is started
with wp(-) = 0 for all states, then the condition is satisfied at stage k = 0. Suppose that it is also
satisfied up to the stage k. At stage k+ 1, we have for all I < C —1,

wi+1 (4, I, Py, €, )

= E(Sk(l, P(), €, a) — I)+ + ]EP(S‘P(),G’,aqa [wk(]*(Z), I + (Sk(l, PO, €, a) — I)+ — dzj*(z)? P(I), GI, o/) (,A].4>
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and
Ak+1(iala P07€7a)
= —PB1{I < 5,(i, Py e, )}
+1{I > Sk(l.,PO, €, a)}EP6|PO’€/’a/|a [@k(.]*(@),l + (Sk(l, P(), €, a) — I)+ — d”*(l) + 1, P(;’ 6/7 al)
_{Ek(j*('i)aj + (Sk(l’ Py,€,00) — I)+ - dij*(l')’ Pé’ 6/7 a/)}’
= —ﬁll{l S Sk(’b, P(), €, a)} + 1{] > Sk(’i,Po, €, a)}EP6|P0,€/,a/|a [Ak(l, I— dl]*(1)7 P(), €, a)
— _E + 1{[ > Sk(i,Po, €, a)} [ﬁl + IEP6|P076’7Q’|Q [Ak(l,[ — dij*(i)a P(), 6,&)” . (A15)
Let j = j*(i) and k = j*(j*(i)), Py = Py(t), P} = Py(t + ;) and Py = Py(t + 7ij + 7j%). Using the
(A15), we have
é; + EPé|Pg,e’,a’|a |:Ak3+]. (’L, I— dZ]*(z)7 Py, €, a)}
= ]AD; —+ EP6|P0,€I,OLI|01 [—.ﬁ; + 1{] > Sk('L, P(), €, a)} [—ﬁ]:: -+ EP6’|P6,€",OL"|OL’ [Ak(l, I — djk‘7 P(l), €, a’)”
= YPy+a; +¢€
+EP6|PO76'70/|0¢ [—’yPé — Oé; - 6; + 1{[ > Sk(j, P(l), 6/, a/)} |:P]é + EP(;I|P6,€”
— A+B,

[Ak(i, I — dji, Pl e, a’)”

’all Ial

A = AP - EP6|P0 [POIH + o — Ea’|a[a;'] + €,
B = Epype e LI > Sy, Py d o)} [ﬁ,g + By o o [Ak(i,l . djk,P(’),e,a/)} } (A16)

We first analyze the term B. ]3,:: + EPIIIP, & oo [Ak(i,f — djk,Pé,e,a/)} is non-decreasing in
o 1£0€ >

Py by the induction hypothesis and note that this expression is non-negative on the domain

{1 > S, (i, R,P,)} (by the optimality condition). The induction hypothesis also implies that

S,.(i, Py, €', ') is non-increasing in Py and hence 1{I > S, (i, P}, €', a’)} is non-decreasing in Fj.

We deduce that the product term within the outer expectation is non-decreasing in Pj. Assumption

1 (i) (the stochastic ordering of prices) now implies that B is non-decreasing in FPy.

Turning to A, one notes that the term [Py — Epy|p, [F]] is non-decreasing in Py by Assumption 1

(ii). We deduce that Agy1(7,y, Po, €, ) is non-decreasing in Py . This is in turn implies that the

property is satisfied in the limit and the result follows. [

Proof of Proposition 3

Let I’ > I, both in [0, C]. By definition of ¢*(i,j, I, P), we have

q*(l,],I,P):—I—len arg max (_PiQ+EP’|Pr’ |:h <.j7y_dij7Pl7rl>}) ’
yeQ(i,j.1) ’
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where @(i,j, I)={yly > 1,d;j <y < C} and y is the fuel-up-to level. Now, we have
I+4q"(i,5,1,P)

= min (arg yerc%l(??](‘,l) (—Pz-q + EP’|P7r’ [h (j, Y — d;j, Pl, rlﬂ ))

< min (arg yegﬁm (—Pz-q +Eprp [h (j, y—dij, P, r)]))
= I'+q"(i, 51, P), (A17)

where the inequality follows from the fact that I’ > I. Hence, I + ¢}(3,j, I, P) is a non-decreasing
function of 1. [J

Proof of Proposition 4

a) Consider without loss of generality the point z; = (i1, I1). Recall that, according to our assump-
tions, 41 is reachable from 4 in a finite number transitions. Consider a vessel making such transitions
while buying the minimum possible amount of fuel necessary for such a trip. Let I fo) denote the

level of fuel inventory that a vessel has when arriving at ¢;. Note that such inventory level need

not be equal to I;. If Ifo) < I3, then moving from (i1, Ifo))

feasible, since Iy —d;» < Io < C'—d;,;, implies 150) —dji, < Io < C—d;;,. Now, one can move from

to za = (i2, I2) in a single transition is

(i2,I2) to (i1, 1) in a finite number of steps by following the cycle and the result follows. Suppose,
on the other hand, that I §0) > [1. Observe that on the cycle, the purchased quantity of fuel at the
node z; is given by q;, 4,y = 41 +diy i, — I, L =1,... k, where ig 1y = i1, [41 = I1. Let m* be the
maximum integer m > 1 such that 150) —Zﬁzl diyip,y > I, where iy, for n > k is defined as iy, mod -
Starting at (z’l,IfO)), consider the path that purchases no fuel until arriving at ¢,,«. Such policy
is feasible by definition of m*. Then, at i,,+, the inventory LS‘Q) satisfies 1) < Ipry1—d

m Tm*tm* 41"

While 4,,,+, consider the purchase of I« 1 —d; ., 17(,22 > 0 units of fuel. Then a vessel arrives

* 41 -
at (im=+1, Im=+1) and can now reach (i1, ;) in a finite number of steps by following the cycle.
b) This part just indicates how to reach the optimal cycle in the location-inventory space.

O

Proof of Proposition 5

Consider the revenue maximizing cycle C("). Let

m
k = \‘(C - dim*,imin - dim*aimin)/ Z dzﬂ“l’lJ )
i=1

and note that k > 1 since C' > I(). The associated profit per unit of time corresponding to my()

is given by

k> Ggyect Tig = Pin | K 265 cc Qg + i imnin + Biggin i

A =
k Z(Z,j)GC(T) Tij + Tim* imin + Timinaim*

Ta(r)




Z('LJ)EC(T) [TZ] lem d’l]] + k szm [dzm* 7imin + d’lm““ m*]
Z(%])EC(T) T’L] + k [ i’m* 7i'm2'n + Ti’mi"’im/*jl ‘

Note that AP is upper bounded by the optimal profits in a system where all prices are set at Ppin,

and that in such a system, the vessel maximizes profits by following C(") (see Section 6.2.1). Hence

/\ﬂ'c(r) > Z(z,])ec(r) [TZ] - szmdlj] + k ‘Pimin [dim* Yimin =+ diminvim*] Z(’L,j)ec(r) Tij
AP >y Tig + KT T imin + Timinsie] > G)ee [Tij = P dij]
Z(l,])ec(r) [TZ] szlndlj] + k 7vnmn [dim* Jimin + diminvim*] Z(Z,j)ec(r) Tij
Z(Z7J)EC("') [T'L] lelnd ] Z(l,j)EC(T) TZ] + kjil [Tlm*ﬂmzn + Timinyim*]
—1
Z 1 + kil Tli* + Ti*l
2 (i.j)ect Tij
d; +d;

Z 1— k™ 1 % imin Urmin bm*

Z( ,J)ec) dz]

Note that C > kZ(i yec ) dij + [d;
We deduce that

+d; . i .] and hence (1/C)k>

Tmin,tm (Z,_])EC(T) d’Lj S 1-— 2C

T * stmin

AW)>1_ 20 _1-4¢
N T 1-20 1-2

This concludes the proof. [J
Proof of Proposition 6

Let A denote the optimal profit per unit of time in a system where for all i € N, the price at
port i is constant equal to P and for all arcs (,5) € N, the rewards are constant and equal to
7ij. Let C denote the optimal (location) cycle corresponding to A. We have A > \* implying that
N = oo < A — Aorc- Below, we upper bound the A — AOLC-

Consider a system where all the fuel prices are set at P. = P and rewards are set at their steady-sate
expectations and note in such a system, the optimal cycle to follow is the one followed by the OLC
heuristic. Let us denote this cycle by Corc. In particular, the profit per unit of time associated
with this cycle in this system is no less than the profit per unit of time generated when following
C and

Z(ivj)ECOLC Elrij] — Pedij Z(i,j)eé Elri;] — Peds;
Z(i,j)ECOLc Tij B Z( i,j)eC Tii
DigecTii — Ldij Y jec(Tij — Blryg])
2(i.j)ec Tis 2 i.j)ec Tid
< e — Blry))
p— A _—
Z(Z j)ec Tii
A sl
o o Ztigeed 5
Z(z §)eC Tij



Now, in the true system, consider the policy that follows the cycle Corc and replenishes at each

port the exact amount necessary to reach the next port on the cycle. Its performance is given by

Z(ivj)ECOLC Elrij] — Eoo[P;]di;

Z(iaj)ECOLC Tij

i

and is dominated by the performance of the OLC heuristic as the latter follows the same route but

optimizes the refueling amounts. Hence

Z(ivj)ECOLC Elrij] — Boo[Fi]di;

AoLc >
Z(i:j)ECOLc Tij
_ Ztij)ecore Blril = Pdij Yiijrecor BoolPil — P)di
Z(i’j)ECOLC Tij Z(i’j)ECOLC Tij
> A wA, — 2 (ij)ecorc (BoolBi] — P)dij

Z(ivj)GCOLC Tij
> A—wA, — PA.

This completes the proof. [J

Proof of Proposition 7

Let A denote the optimal profit per unit of time in a system where for all i € N, the price at port
i is constant equal to P; and for all arcs (,j) € NV, the rewards are constant and equal to 7;;. Let
C denote the optimal (location-inventory) cycle corresponding to A. We have A > \* implying that
N = dornic < A — Moric. Below, we upper bound the A — AOLC-

Consider a system where all the fuel prices and rewards are set at their steady-sate expectations
and note in such a system, A\porsc is the optimal profit per unit of time. In particular, Aor;c is no

less than the long-run profit per unit of time generated when following C and

Z(Z,z’)eéE[rii'] — Bo[P](I" = I + djir)

AoLic = Z(m,)e & T
 DeeeeTi B =T+ di) 30, neo(Tir — Blrir]) + (Boo[P] — By)(I' — I + diwr)
Z(zyz’)eé Tid! Z(z,z')eé Tii!
_ s > e nyec(Tivr — Blrig]) + (Boo[B] — By)(I" = I + dir)
Z(z,z/)eé !
S Ao Z(z,z')eé 1 A _ Z(z,z')eé dii'g
B D2z e Tiit ' 22 (2 e Tt
> A—TA, —pA,.

This yields the result. [



B Estimation Details of the Fuel Pricing Model

Below we describe how we used the actual pricing data to estimate the parameters associated with
the price model (3). Let k£ denote the number of price observations (days) and let PZI; denote the
price at port i =1, ..., N onday j = 1, ..., k. The corresponding price of crude oil on day j =1, ..., k

is denoted as P(’fj. Define
N k&

> P
gh= (B1)

ND R
j=1

Note that in our model we assume that Zf\il A; = 0, so that we get 4% — v as k — oo almost
surely. Similarly, define
k k
k k
DB DR

A j=1 =1 .
AF = - — Ak i =1, N, (B2)

and note that Af — A; as k — oo almost surely. Further, let

==k ~ L. .
Py=P:—4"Py — A i=1,..,N,j=1,..k (B3)

denote the deviation of the fuel price at port ¢ = 1,..., N on day j = 1,...,k from the “average”
behavior. If the fuel price dynamics is described by the model (3), the “trajectory” of ?Z is a
result of juxtaposition of two independent, mean-zero processes: a two-state Markov process with
amplitude J; and inertia parameter 7; and the stationary process with standard deviation ¢;. Given
the state information for the port-specific Markov chains were not available to us, we estimated the
remaining price dynamics parameters employing the following simple approach. Assuming that o;
is substantially smaller than ¢§;, we can estimate the value of n; as the fraction of days on which

the sign of ?fj coincides with the sign of ?ﬁ o1t

k —k —k —=k =k
PijPij—1t PijPi,j,l‘
—k =k
o 2 PijPi,j—1’

~ _J -
0y = P yi=1,..,N. (B4)

The adequacy of this assumption is confirmed post-factum by the values shown in Table 1. In turn,

the values of §; and o; are estimated as

—=k

Z ‘P"

ij

ok = %z =1,..,N, (B5)




and

k
> (Pl &)
gk =\ = i=1,..,N. (B6)
k1

In our numerical analysis we use the parameter estimates obtained from the prices for N = 18
ports for the period of January-June 2005 (k = 98 trading days). Thus, in total, 18 x 98 = 1764
(N x k) pricing data points were used to estimate 4 x N + 1 =4 x 18 + 1 = 73 parameters of our

bunkers pricing model.

Due to the absence of the port-specific information on the realized states of the Markov chains «,
we could not provide reliable confidence intervals for the parameter estimates in Table 1. However,
in order to get a sense of the goodness-of-fit for our model, we have also calculated the resulting
R? value for our model as well as R? value for a simpler model of bunkers price dynamics, which
ignored the time dynamics of the local supply corrections to bunkers prices, replacing them by
port-dependent constants (P;(t) = yPy(t) + A; +€;(t), where A; is constant). The R? for our model
turned out to be 0.68 as compared to 0.35 for the simplified model. Clearly, the presence of the
Markov term « accounts for a significant fraction of the explanatory power of our model. As the
value v = 4.43 indicates, the oil-price-related component «yPy(t) is responsible for the bulk of the
bunkers price value: for the average crude oil price over the period of January-June 2005, $51.4,
its contribution is $227.7. On a given day at a given port, this contribution accounts for about
80% — 90% of the total bunker price.

We now turn attention to the estimation of the dynamics of the crude oil prices. Below we use
the actual WTI crude oil prices for the period of January-June 2005 to fit both models described
in (4) and (5). Figure Bl shows the histogram of actual relative daily changes in oil prices for
this period along with the plot of the PDF of the corresponding best-fit normal random variable
(o = 0.00, o9 = 0.03). The goodness-of-fit test measures for this model are: Anderson-Darling,
AD = 0.8089, Kolmogorov-Smirnov, KS = 0.1106, and Chi-Square, x? = 27.04.

The fit for the mean-reverting model,
Py(t+1) = APy(t) + (1 = NPy + &o(t), €0(t) ~ N (0,00), (B7)

with A = 0.96, ﬁo = $55.5, and o9 = $1.25, illustrated in Figure B2, is near-perfect (R? = 0.91,
significance of F' = 0, 95% CI for the slope value A is [0.90,1.02]). The goodness-of-fit values
measures for the normal distribution of error terms for this model (AD = 0.7076, K.S = 0.1055,
x? = 20.75) indicate a somewhat better fit than that for the GBM model.

Based on these estimation results, we have selected the mean-reverting model to represent stochastic
crude oil price dynamics. In addition to the goodness-of-fit arguments, computational arguments

also favor selecting mean-reverting dynamics over those of a GBM model since the former allow
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Figure B1l: Histograms of actual and best-fit normal relative daily crude oil price changes for

January-June 2005.

Best-Fit
¢ Actual
P(t+1),$
60
55 -
50 |-
45 |
40 | | : |
40 45 50 55 60

P0 (t)1$

Figure B2: Actual and best-fit mean-reverting values of the crude-oil prices for January-June 2005.
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the use of a finite number of prices for describing the state of the system in the dynamic program

(2). Indeed, since the limiting variance of the mean-reverting process (B7),

(1.25)

00 19.92, (BS)

Jim (Var{Py (1)) =

is finite (as opposed to the corresponding value for the GBM process), we can use the finite-
state approximation to represent this process. Consider the “limiting” value of the mean-reverting
process (B7), limi—o (E[Py (t)]) = 55.5. Since the limiting value of the standard deviation of
Py(t) from this level, v/19.92 = 4.46, we can limit our attention to the “2 deviations” price interval
[55.5 — 2 x 4.46,55.5 + 2 x 4.46], or, rounding, to [46,62]%. Noting that since according to (B7),
the conditional distribution of Py(f + 1) is normal with mean 0.96FPy(t) + (1 — 0.96) x 55.5 and
standard deviation of o9 = 1.25, we can use a standard discretization procedure to approximate
this continuous distribution by a discrete one defined on the interval [P3?, P with PF™ = 46
and P = 62 as follows. Letting, for any P, f1(P) = [P+ 0.5 — (APy(t) + (1 = A) ]30)]051 and
f-(P)=[P—-05—(APy(t)+(1—X) ﬁo)]ao_l, we define

1-@(f-(P)), b= R,
Prob (Po(t +1) = P[Po(t)) = { @ (f+(P)) — @ (f-(P)), B <P <P, (B9)
@ (f(P), P = Py,

2
where A\ = 0.96, ®(x) = e~ T dt is the standard normal CDF, and Py(t) € [Py, P3rax] .

1 T
7=

C Numerical Study of the Liner Case: Fuel-up-to Levels and

Heuristic Policies.

Below we report the results of a numerical study designed to provide insights on the influence of
various problem parameters as well as to test the performance of possible heuristics. We start by

introducing the data that pertains to the network of ports and to the liner vessel.

C.1 Network and Vessel Data

We consider an example of a liner with fuel capacity of 3000 metric tons (mts) that operates
between the following ports: Santa Marta in Colombia, Moin in Costa Rica, Castilla in Honduras,
Port Everglades in Florida and Wilmington in Delaware. According to the time which has to be

spent in each port (which includes, e.g., the time associated with the loading/unloading activities),

In May of 2008, the crude oil has crossed a $120/bbl barrier. This development underscores a precarious nature

of the process of forecasting the crude oil prices, and suggests frequent recalibration of the forecasting models.
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the ship can only replenish fuel at Wilmington (port 1) or Moin (port 2). The approximate fuel
consumption for the trip from Wilmington to Moin and from Moin to Wilmington are given by 400
mts and 600 mts, respectively, and the time associated with any of the two trips is approximately 5
days. Note that the two one-way consumption values differ as the respective one-way routes include

different stops.

Based on the above description, we model the network for the liner under consideration as consisting
of N = 2 ports, with the following parameters: 719 = 71 = 5, di2 = 400 mts and dz; = 600 mts.

To simplify computations, we assume that the liner can only replenish fuel by multiples of 200 mts.

In our numerical study we use (3) as the model bunkers price dynamics with parameters estimated
using (B1)-(B6). The base-case values of the price parameters for the ports of Wilmington and

Moin are shown in Table B1.

Parameter | Wilmington | Moin
A, $/mts 0.0 -1.7
9, §/mts 29.2 25.8

i 0.99 0.97

o, $/mts 14.4 14.3

Table B1: Parameters of the bunkers fuel price dynamics for the ports of Wilmington and Moin.

We use a simple form for random price correction terms by assuming that e; at port ¢ takes two
values, +0;, w.p. 0.5 for each value. The oil price dynamics is taken to follow the mean-reverting
model (B9) with og = 1.25, A = 0.96, Pi"" = 46 and P® = 62. In summary, the state space of

the resulting dynamic program contains 4352 states.

For the base-case values of problem parameters, the optimal value of the expected daily fuel cost,
obtained by solving the DP (6), is $21,400 per day. As an illustration of the optimal refueling
policy, Figure B1 shows the optimal fuel-up-to-levels as functions of the oil price in the “low price

corrections” states with «; = A; — 6;, ¢, = —oy, ¢ =WIL, MOL

In this case, MOI is the more expensive port out of the two for any oil price level, and the refuel-
up-to levels for MOI do not exceed those for WIL. In addition, those levels naturally exhibit drops
from “fuel-up-to-capacity” at both ports when the oil price is at its lowest (Py = 46) to “single
roundtrip” refueling at either port when the oil price cannot be any higher (Py = 62). Note that
even for the highest oil price level the negative price corrections ¢; = —a;, i =WIL, MOI make it

beneficial to move from “refuel as little as possible” to “single roundtrip” decisions at both ports.
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Figure B1l: Base-case scenario: critical refueling indices S (i, Py) for ¢ =WIL, MOI, and Py =
46, ,62 (Ozi = Al - (S,L', g = —0y, 1 :WIL, MOI)

C.2 Fuel-up-to Levels: Sensitivity Properties

In order to understand how the refueling decisions depend on the parameters of the bunkers price
dynamics, we would like to deviate from the base-case by exploring a wider range of problem
settings. In particular, we first consider a variant of our problem for which the bunkers prices at
both ports at any point in time are completely determined by the value of the oil price at that
point in time (i.e., the case with dwir, = dmor = owiL, = omor = 0, while the rest of the parameters
are set at their base-case values). The resulting values of the critical refueling indices S (i, Pp) for
i =WIL and ¢ =MOI and for Py = [46,62] are shown in Figure B2. In this case, opposite to what
we observed in the base-case setting, WIL is the more expensive port out of the two for any price
level, and the refuel-up-to levels for WIL do not exceed those for MOI. As in the base scenario,
those levels exhibit sharp drops from “fuel-up-to-capacity” at both ports when the oil price is at

its lowest to “refuel as little as possible” at either port when the oil price is at its highest.

Figure B3 shows how the critical refueling indices observed in the previous “zero-case” scenario
change when the daily adjustment factor ewry, is introduced (with the base-case value ow, =
14.4). Note that the degeneracy of the base-case S (WIL) curve from Figure B2 is lifted and the
refueling indices for WIL “split” into two curves, one below (corresponding to ewyr, = 14.4) and one
above (corresponding to ewyr, = —14.4) the base-case curve. Such split is expected in the view of
higher-than-average (lower-than-average) prices in WIL corresponding to the lower (higher) curve.

Another interesting feature depicted on Figure B3 is “lowering” of the critical index curve for MOI:
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Figure B2: Critical refueling indices S (i, Py) for ¢ =WIL, MOI and Py = 46,...,62 (§; = 0; = 0,
i =WIL, MOI).

for example, when Py = 51, it is optimal when in MOI to fuel-up-to the level corresponding to one
round trip instead of up to vessel’s capacity. Such a change reflects the decreased attractiveness
of MOI as a port of purchase in presence of newly-found occasional bargain at WIL whenever

ewir, = —14.4.

Figure B4 probes the effects of the presence of the supply correction at WIL. In this example the
amplitude dwrr, of the WIL supply correction is set at the base-case value of 29.2. Note that an
important difference between the critical index curves in this case and those of Figure B3 is the
splitting off of the MOI curve corresponding to the states with “high” WIL prices from the curve
corresponding the “low” WIL prices. While in the case of random price corrections depicted in
Figure B3 the value of correction observed at WIL does not influence refueling decision made at
the same time in MOI, this is not the case when such price corrections follow high-inertia Markov
pattern: a “high” price observed at WIL at the time of MOI refueling decision has 99% chance
of remaining “high” when the vessel arrives at WIL, thus raising the refueling level at MOI, as in
the case of Py = 53. Similarly, a “low” WIL price has 99% chance of remaining “high” when the
vessel arrives at WIL, thus lowering the refueling level at MOI, as in the case of Py = 53. Note
that this argument remains valid only if the inertia coefficient nwir, is above 0.5 - i.e., if observed
“high” price makes the “high” price more likely to be observed next day. When nwir, drops below
0.5, the argument is reversed: “high” price today makes “low” price more likely tomorrow. This

case is illustrated in Figure B5 where nwir, = 0.01: the MOI curves corresponding to “high” and
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Figure B3: Critical refueling indices S (i, Py) for i =WIL, MOI, ow, = 14.4, and Py = 46, ...,62

(owir, = dmor = omor = 0).

“low” WIL prices are, naturally, reversed as compared to Figure B4.

C.3 Numerical Results on Heuristic Policies

In our numerical study we also investigated the impact of the variations in the values of the local
supply correction parameters, the local supply inertias and daily adjustment factor volatilities on
the optimal cost performance. In addition we tested the performance of several heuristics that
could serve as alternatives to the optimal policy in cases where the dynamic program (6) is too
large to solve to optimality. For that purpose, we computed the long-run average daily cost u™

associated with each of the following five policies®:

1. p°P' - the value of the optimal policy.

2. 1M - the value of the policy defined as follows: whenever in Wilmington, buy up to 400 mts
and whenever in Moin, buy up to 600 mts. Note that this policy only buys the fuel necessary

to get to the next location; in that sense, it is fully myopic.

3. u™MW _ the value of the policy defined as follows: whenever in Wilmington, buy up to 1000
mts and whenever in Moin, buy up to 600 mts. Note that when using this policy, the shipping

5Note that while in the previous section we have analyzed the properties of the finite-horizon problem, here we

focus on the long-run expected cost per day, as this profit measure is independent of initial conditions.
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Figure B4: Critical refueling indices S (i, Py, awir,) for i = WIL,MOI, owi, = 29.2, and Py =

46, ...,62 (owiL = dmor = omor = 0).
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Figure B5: Critical refueling indices S (¢, Py, apmwrr) for i = WIL, MOI, dwir, = 29.2, nwir, = 0.01,

and PO = 46, ...,62 (UWIL = 51\/[01 = OMOI — 0)
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company effectively only purchases fuel at Wilmington after the first cycle.

4. MM _ the value of the policy defined as follows: whenever in Wilmington, buy up to 400 mts
and whenever in Moin, buy up to 1000 mts. Note that when using this policy, the shipping

company, after the first cycle, only purchases fuel at Moin.

5. 1P - the value of the “certainty equivalence” policy: at each stage, the policy is computed

assuming that the prices will stay constant at their current levels for all future periods.

For each policy 7, we define the associated optimality ratio as: R™ = (u™ — u°Pt)/u°Pt. Note that
currently, the marine shipping company always purchases fuel in Wilmington and thus, essentially,

follows the policy m# =MW.

First, we have computed the optimality ratios for four heuristic policies for the base-case scenario
described in Section 4 and Table B1. The “certainty equivalence” heuristic CE exhibits the best
performance with the daily expected cost of $22,397 per day (as compared with the optimal value
of $21,400/day) and the optimality ratio of R°F = 4.66%. Other heuristics show the following
performances: RM = 13.68%, RMW = 13.87%, RMM = 13.56%. Strong performance of the CE
heuristic is helped by a high values of nwi, and mvor and, thus, by high inertia exhibited by
differences in prices in Wilmington and Moin. In the remainder of the Section we investigate
the effects of some of parameters of the bunkers price dynamics on the performance of the above

heuristic policies.

The effect of the supply correction amplitude dwir,. In order to isolate the effects of the
corrections due to supply availability, we first assume that ow, = omor = 0, i.e., that there is no
daily random correction in addition to the supply correction. Also, we assume that dyror = 0 and
analyze the performance of the policies outlined above as dwrr, is varied. Throughout, nwrr, is set to
0.99 reflecting a base-case level inertia in the balance of demand and supply factors at Wilmington.
Note that in this setting, the fuel prices at Moin are exclusively driven by the oil price Py while

the prices at Wilmington are driven by both Py and the supply correction awrir,.

SwiL | RM(%) | RMWY(%) | RMM(%) | R°F(%)
0 2.87 3.30 2.58 2.58
10 4.36 4.71 4.13 2.23
20 6.73 7.00 6.56 2.32
30 9.40 9.57 9.28 2.54

Table B2: Relative performance of heuristics as a function of dwrr, (owiL, = omor = 0, dmor = 0).

As the results of Table B2 indicate, the performances of all the heuristics tend to degrade as dwir,

increases. While the optimality ratio for the policies M, MW and MM degrades from approximately
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3% when dwrr, = 0 to about 10% when dwir, = 30, the performance of CE is quite robust and the
error does not go above 2.6% - the effect which, as in the base scenario, is largely due to strong

inertia of local supply corrections to bunkers prices.

The effect of the supply correction inertia nwi. As in the previous setting, we use owi, =
omor = 0 and dyior = 0. We now fix dwir, at its base-case value of 29.2 and analyze how the relative
performance of the heuristics is influenced by changes in the value of nwrr,. As before, the prices at
Moin are exclusively driven by the oil price Py while the prices at Wilmington are driven by both

Py and the supply correction awyir..

nwi | BM(%) | BMW (%) | RMM(%) | RP(%)
0.1 | 1070 | 1117 | 1039 | 4.41
0.5 | 1094 | 1140 | 1063 | 4.13
0.6 | 1094 | 1140 | 1063 | 4.13
0.7 | 10.94 | 1140 | 1063 | 4.12
0.8 | 1093 | 1139 | 1062 | 4.08
0.9 | 1070 | 1117 | 1039 | 3.93

Table B3: Relative performance of heuristics as a function of nwir, (dwiL, = 29.2, owiL, = omor = 0,
5MOI e O)

In Table B3, we observe that changes in nwrr, have overall small effects on the performance of the
four heuristics. However, it is interesting to note that the results presented confirm the intuition
about the CE heuristic. As nwir, increases, the supply correction awy, varies in a relatively slow
fashion, which improves the performance of the CE heuristic. This is what we observe in the last
column of Table B3.

The effect of volatility characterized by owi, omor, dwir, dmor. In Table B4, we assume
owiL = dmor = 0, set owi, = omor, and analyze the performance of the four policies as the value of
owrir is increased. Note that in this setting, the prices at Moin and Wilmington are driven by the
oil price Py and a daily random correction in the absence of any supply corrections. On the other
hand, in Table B5, we fix the values of nwir, and mor at their base-case levels of 0.99 and 0.97,
respectively, set ¥ = dwir, = dmor = owir, = omor and analyze the performance of the heuristics as

the value y is increased.

The results of Table B4 indicate that all heuristics have comparable performances. However, Table
B5 identifies the CE heuristic as the best performer. This performance advantage stems from the
fact that the CE heuristic is able to exploit high values of dwrr, = dmor combined with high inertia

of the local supply correction factors.
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owr | BM(%) | BMW (%) | RMM(%) | ROE(%)
5 3.30 3.47 3.12 2.92
10 5.93 6.11 5.74 5.54
15 8.85 9.03 8.65 8.44
20 11.96 12.15 11.76 11.54

Table B4: Relative performance of heuristics as a function of ow, = omor (dwir, = dmor = 0).

RM(%) | RMW (%) | RMM(%) | ROE(%)
5 4.10 4.26 3.91 2.56
10 7.66 7.84 7.47 4.80
15 11.60 11.79 11.40 7.34
20 | 15.88 16.09 15.68 10.09

Table B5: Relative performance of heuristics as a function of y = owi, = omor = dwiL = dmMmor

(nwir, = 0.99, nvor = 0.97).
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