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Abstract

We study how consumers with waiting cost disutility choose between two congested services
of unknown service value. Consumers observe an imperfect private signal indicating which
service facility may provide better service value, as well as the queue lengths at the service
facilities before making their choice. If more consumers choose the same service facility because
of their private information, longer queues will form at that facility and indicate higher quality.
On the other hand, a long queue also implies more waiting time. We characterize the equilibrium
queue-joining behavior of arriving consumers, and the extent of their learning from the queue
information in the presence of such positive and negative externalities. We find that when the
arrival rates are low, utility-maximizing rational consumers herd and join the longer queue,
ignoring any contrary private information. We show that even when consumers treat queues
as independently evolving, herd behavior persists with consumers joining longer queues above
a threshold queue difference. However, if the consumers seek to minimize ex-post regret when
making their decisions, herd behavior may be dampened.
Keywords: Herd Behavior, Queueing Games, Learning, Regret, Bounded Rationality.

1. Introduction

The quality of a service is often difficult to assess when consumers have to choose between two

comparable service facilities (such as restaurants). Consumers may have some information about

which service is better from previous experiences with similar services, advice from friends or col-

leagues, etc. This private information alone may not be sufficient for some less-informed consumers

to make their decision. With no other information available to them upon arrival to the market,

these consumers may be influenced in their decision-making by the length of the queue in front

of each service facility. Their decision problem is complicated: On one hand, consumers prefer

joining the service facility with the shorter queue as the expected waiting costs will be lower. On

the other hand, they may be attracted to the service facility with the longer queue, inferring that
1The authors would like to thank Krishnan Anand, Sushil Bikhchandani, Gerard Cachon, Marshall Fisher, Noah

Gans, Steve Graves, Serguei Netessine, Alan Scheller-Wolf, Assaf Zeevi and the participants at the MSOM Service
Operations SIG Conference, University of Maryland, DOTM Colloquium at UCLA for their comments and suggestions
on the paper.
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better-informed consumers in the line have ‘voted with their feet’ and find it worthwhile to wait for

the service. The latter, follow-the-crowd behavior has been widely touted in the popular literature

as collective wisdom (Surowiecki 2005).

As consumer decisions upon arrival depend on queue lengths, and because queue lengths de-

pend on this decision-making, the arrival rate at each service facility needs to be determined in

equilibrium. While many of us have probably faced a situation in which we let our choice between

two comparable restaurants depend on the crowd waiting at the restaurants, little is known, about

how congestion and delay sensitivity impact consumers’ perceived service value in general. Becker

(1991) studies a model in which consumers choose between two restaurants based on the congestion

levels at those restaurants. Becker’s explanation is static and is based on consumption externalities

in which consumers derive a higher utility from dining at crowded places. In contrast, our approach

explains the decisions of consumers based on learning.

Our paper presents a model of queue choice behavior when consumers face positive information

externalities and negative waiting cost externalities. In addition, since some consumers may have

more precise information than other consumers, our model explores the impact of heterogeneity

in consumers’ private information on their decision making. We consider queue joining behavior

under different behavioral assumptions: First, we model consumers as rational Bayesian agents.

Next, we relax the rationality assumption and consider agents who make specific boundedly rational

decisions. Finally, we consider the choice behavior of regret minimizing consumers. For analytical

tractability, we assume limited waiting space in front of the service facilities.

Hassin and Haviv (2002) provide a comprehensive survey of the literature dealing with the

queue joining behavior of consumers at service facilities in queuing systems. In this literature,

consumers are rational decision makers. The papers have focused on minimizing waiting costs;

Whinston (1977), for example, shows that when the service process is exponentially distributed

at identical servers, joining shorter queues minimizes the expected waiting costs. Further, in this

literature, there is no uncertainty about the expected service quality at each server. There is no

update based on service choices of previous consumers in the system.

Our paper is related to the research on sequential decisions of rational Bayesian agents who

learn from others (analyzed in Section 3). Bikhchandani, Hirshleifer and Welch (1992) and Banerjee

(1992) model how informational cascades occur when a series of actors make a decision that is

observed by others, in which every subsequent actor, based on the observations of others’ actions,

makes the same choice independent of her private signal. Chamley (2004) provides a comprehensive
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survey on herding literature in economics. Callander and Horner (2009) consider information

externalities in a market where consumers are either fully informed or uninformed, with no waiting

costs. Veeraraghavan and Debo (2009) focus on how informational externalities emerge due to

imperfect signals by analyzing a queue choice model without any waiting costs, and without any

externalities due to blocking. While the above papers explicitly model the information structure,

none of them incorporate negative externalities due to congestion. A working paper by Debo et al.

(2007) is an exception. However, they only look at a single-queue model in which the consumers

decide whether to join or balk a queue after observing previous decisions. To allow for a study

of longer queue joining behavior under waiting cost externalities, we model two service facilities

alongside one another, which requires us to solve the underlying finite two-dimensional birth and

death processes.

We will show that to determine the equilibrium, rational consumers would need to solve for the

stationary probabilities for the underlying 2-dimensional birth and death process, for a multitude

of candidate strategies. Given the computational effort required in the characterization of the equi-

librium, it is likely that consumers make boundedly rational decisions due to cognitive constraints.

A stream of literature in economics originating from the seminal paper by Simon (1955) explores

bounded rationality in problems where complexity may be an issue. Our queue choice model based

on queue independence, is a specific behavioral assumption motivated by the discussions in Rubin-

stein (1998) on how consumers may adopt simplifying approaches to restricting or manipulating

the information they use.

Finally, we also examine consumer decisions under regret in congestion-prone environments

(in Section 4). Regret theory (Bell 1982, Loomes and Sugden 1982) explains deviations from the

expected utility theory for decisions under uncertainty. Regret refers to the ex post comparison be-

tween chosen alternative and the optimal alternative. Consumers minimize their anticipated regret

or disappointment from not choosing the ex post optimal alternative (the better service facility),

instead of maximizing their ex ante expected utility. Thus regret is an ex ante examination of ex

post outcomes. For instance, in Schweitzer and Cachon (2000), the decision-makers in newsvendor

settings try to minimize regret by choosing quantities that reduce ex post “errors”.

The main objective of this paper is to explore how consumer choice and learning emerge in

congestion-prone environments. We summarize some of our main observations:

1. We show that the rational Bayesian consumers join the longer queue when the arrival rates

are low compared to the service rate. This is a somewhat intriguing result. In other words, long

3



queues are more informative about the service value when service rates are much higher than arrival

rates because the waiting space constraints and stochastic departures do not contaminate the extent

of learning from other consumers.

2. We show that the equilibrium queue joining strategy of rational Bayesian consumers can be

complex. We find that consumers may avoid empty queues, and join a longer queue despite incurring

additional waiting costs. When both queues are non-empty, the longer queue joining behavior

occurs when one queue is sufficiently more crowded than the other (i.e., the queue-difference is

large enough), and when the market is sufficiently crowded (i.e., roughly when the sum of the

queue lengths is high enough). Intriguingly, rational Bayesian consumers may ignore their private

information, and join the shorter, non-empty queue (i.e., they buck the trend) when the market is

not crowded.

3. If consumers deviate are not Bayesian and treat the queues as two independent entities

(i.e., simplifications in calculating the stationary probabilities), we find that longer queue joining

behavior is even more pervasive. It persists at all arrival rates. The longer queue joining behavior

is of threshold type, i.e., the consumers join the longer queue when the queue difference is above a

certain threshold.

4. Finally, if a consumer minimizes the expected ex post regret from choosing a queue, the

longer queue joining behavior persists. We find that the expected regret minimizing strategy is

identical to the equilibrium strategy of rational Bayesian agents. However, if consumers minimize

the worst case regret (the minimax criterion of Savage (1951)), they always join the shorter queue

at all states.

2. Model

The game: We consider a game in which consumers arrive sequentially according to a Poisson

process with arrival rate λ to a market with two servers. In front of each server, a queue whose

length is at most N (including the consumer in service) can be formed.

The service: The exact service value of the two facilities, (V1, V2), is the same for all consumers,

but unknown. It is the net utility of obtaining the service. Its joint distribution, F (v1, v2) over

[v, v] × [v, v] with v < v ∈ R is common knowledge. Let f(v1, v2) be the density function of the

distribution of the valuations. We make no further distributional assumption on f(·) except that it

is symmetric and continuous. Service time at both servers is exponentially distributed with mean
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τ . Agents incur a waiting cost per unit of time that they are in the system: c ≥ 0. We define traffic

intensity as ρ = λτ . The arrival rate can be arbitrarily different compared to the service rate, i.e.,

0 < ρ <∞.

The consumer information: Upon arrival to the market, all consumers observe the queue length

in front of each service facility; n = (n1, n2) ∈ N , {0, · · · , N} × {0, · · · , N}. All consumers also

receive a private signal s ∈ S = {1, 2}. This signal is an indicator of which service facility provides

the highest value in the market.

The market consists of two consumer classes. The class to which a particular consumer belongs

is private information to the consumer. Class 1 consumers are perfectly informed about which

server provides better value. Let α represent the fraction of such consumers, who are henceforth

referred to as fully informed consumers, or simply, informed consumers. For informed consumers,

Pr(s = 1 | V1 > V2) = Pr(s = 2 | V1 < V2) = 1. Consumers do not know the exact values of

(V1, V2) but know whether V1 > V2 or V1 < V2. Our conclusions can be generalized for markets

with multiple classes where the most informed consumers are also imperfectly informed.

The rest of the market is composed of Class 2 consumers or less-informed consumers, who

receive a signal s ∈ S such that: Pr(s = 1 | V1 > V2) = Pr(s = 2 | V1 < V2) = g ∈ [1/2, 1), meaning

that if the true state is that server i provides a better value than server j, each less-informed

consumer receives a signal s = i (s = j) with probability g (1− g). We will refer to the parameter

g as signal strength. The classes reflect the fact that some consumers have better information than

others. Thus, even though each consumer knows her own signal strength, she does not know the

signal strengths of other consumers, and knows only its distribution.

Consider any consumer that arrives at the market. Let A = {0, 1, 2} be the set of possible

actions that the consumer can take upon arrival; 1 represents joining server 1, 2 represents joining

server 2, and 0 represents the consumer being blocked due to buffer constraints.

Let V+ = E[V1|V1 > V2](= E[V2|V2 > V1]) and V− = E[V2|V1 > V2](= E[V1|V2 > V1]) be

updated valuations of the better and worse service facilities in the market, conditional on one of

them being better than the other, and their difference be ∆ = V+ − V−. We assume no balking,

jockeying or reneging in the queues. We focus on the selection between two service providers, and

therefore assume the expected valuations are such that V− > Ncτ . In other words, the expected

service value of the low-quality service facility is larger than the expected waiting costs when there

are N − 1 consumers in the queue. The no-balking condition allows us to ignore strategies that

involve balking in the action space of consumers and focus on the key phenomenon of interest: the
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equilibrium queue selection behavior – when and why consumers join longer queues instead of

joining queues that have lower waiting times.

Let σjk(s,n) be the strategy of consumer j of class k ∈ {1, 2}. σjk(s,n) = a denotes that consumer

j of class k joins queue a after observing state n and signal s. As each server can contain N

consumers, all arriving consumers are blocked if there is no waiting space, i.e. ∀k, s σjk(s, (N,N)) =

0. In other words, no waiting consumer is ‘bumped’ to accommodate another. The consumers

differ only in their private information (which is unidentifiable), and not in their service priority.

When one queue is full and there is waiting space available in the other queue, consumers join the

other queue, even if it provides lower valuation than the blocked queue, since the net utility from

the second queue is positive. Therefore, the actions are σjk(s, (n,N)) = 1 and σjk(s, (N,n)) = 2 (for

n ∈ {0, ..., N − 1}, ∀ k ∈ {1, 2}, and ∀j). These actions represent consumers joining the queue of a

competing service facility when their preferred server is full. As a result, we need to determine the

equilibrium consumer actions for the set of states N , {0, · · · , N − 1} × {0, · · · , N − 1}. Since all

consumers within a class are homogeneous ex ante, we consider symmetric strategies within each

class (and allow for varying strategies across different classes); σjk = σk for all consumers j in each

class k. We can now formally define herding in our context.

Definition 1. A consumer of class k “herds” (at state n), when she ignores her signal and joins

the longer queue, i.e. given n1 > n2, σk(s,n) = 1 for s ∈ {1, 2} and for n1 < n2, σk(s,n) = 2 for

s ∈ {1, 2}

Hence with our definition, when a consumer herds, she may observe a signal pointing to the

shorter queue and yet join the longer queue. First, note that the strategy of the fully informed

(Class 1) consumers σ1(s,n) can immediately be completely specified for all of the decision-making

criteria that we study in this paper. Since their signal is perfectly informative, they join the queue

corresponding to the signal (if there is space) as long as the additional expected utility at the better

server is greater than any additional expected waiting cost incurred. For example, if the signal is

1, σ1(1,n) = 1 as long as V+ − c(n1 + 1)τ > V− − c(n2 + 1)τ or ∆ > c(n1 − n2)τ . Otherwise,

they join the shorter queue. Since the informed consumers’ strategy is fully specified, we focus

on the less-informed (Class 2) consumers’ strategy. Hence, throughout the paper, we suppress the

strategies of the informed consumers, and address only the less-informed consumers. For notational

convenience, when the less-informed consumers follow the strategy σ2 = σ, we will use σ to denote

the strategies of all consumers in the market. In the following section, we model the strategies of

the less-informed consumers as rational Bayesian agents.
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3. Rational Bayesian Consumers

Consider a consumer j and fix the strategy of all consumers j′ 6= j at σ′. Denote consumer j’s

belief of the service value upon observing n as f (v1, v2 | n, σ′). After observing (n, s), a randomly

arriving less-informed consumer updates her prior expected service value for both service facilities:

E
(
Vi | n, s;σ′

)
=
∫ v

v

∫ v

v
vif
(
v1, v2 | n,s;σ′

)
dv2dv1, i ∈ {1, 2} .

Let BR (σ′) be the best response of a consumer to some σ′. Then, σ ∈ BR (σ′) if and only if for

i ∈ {1, 2} and all n ∈ N :

E
(
Vi | n, s;σ′

)
− cniτ > E

(
V−i | n, s;σ′

)
− cn−iτ ⇒ σ(s,n) = i. (1)

Now, we can define conditions for a pure strategy Markov Perfect Bayesian equilibrium (Fudenberg

and Tirole 1991, Maskin and Tirole 2001):

Definition 2 (Rational Bayesian Consumers). A strategy σ∗ is a pure strategy stationary Markov

Perfect Bayesian equilibrium if, σ∗ ∈ BR (σ∗), and f (v1, v2 | n, s;σ∗) is defined by Bayes’ rule for

any n that is reached on the equilibrium path with a positive probability.

We are now ready to characterize the equilibrium strategies of all consumers, i.e., we characterize

σ∗ based on the long-run probability distributions of the queue states. For a given strategy vector

σ, let πi (n, σ) be the long run probability that the system state is n conditional on Vi > V−i,

with −i denoting 2 (1) if i = 1 (2), and σ representing the consumer’s strategy. Using the PASTA

property (Wolff 1982), πi (n, σ) is also the probability that any randomly arriving consumer sees

state n, conditional on Vi > V−i. From Bayes’ Theorem, the updated density of the service value

is:

f (v1, v2 | n, s;σ) =


g(s)

D(n,s,σ)πi (n, σ) f (v1, v2) v1 > v2

1−g(s)
D(n,s,σ)π−i (n, σ) f (v1, v2) o/w

(2)

where g (1) = g, g (2) = 1− g, and D(n, s, σ) is a normalization constant such that

D(n, s, σ) = g (s)πi (n, σ)
∫ v

v

∫ v1

v
f (v1, v2) dv2dv1 + (1− g (s))π−i (n, σ)

∫ v

v

∫ v

v1

f (v1, v2) dv2dv1.

Given the consumer actions at each state in the system, the probabilities of the system being in

the state πi (n;σ) can be derived. Let l (n;σ) , π1(n;σ)
π2(n;σ) denote the ratio of the probability of seeing
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state n when server 1 is better than server 2 to the probability of seeing state n when server 2 is

better than server 1. In each state n ∈ N , an equilibrium action pair needs to be determined for

each consumer.

Lemma 1. For a given l (n;σ), assume that n1 > n2, then for a less-informed consumer:


σ(s,n) = 1 ⇔ g

1−g
∆+(n1−n2)cτ
∆−(n1−n2)cτ < l (n;σ) (L)

σ(s,n) = s ⇔ 1−g
g

∆+(n1−n2)cτ
∆−(n1−n2)cτ < l (n;σ) < g

1−g
∆+(n1−n2)cτ
∆−(n1−n2)cτ (F )

σ(s,n) = 2 ⇔ l (n;σ) < 1−g
g

∆+(n1−n2)cτ
∆−(n1−n2)cτ (S)

Lemma 1 summarizes the conditions for the equilibrium actions at a state, given the signal

strength and waiting costs. When the first condition is satisfied, the consumer herds (See Definition

1; even if the private signal points to the shortest queue, i.e., s = 2, the consumer will join the

longer queue, i.e., σ(s,n) = 1.). In the middle condition, the consumer follows her signal, and when

the third condition is satisfied, the consumer follows the shorter queue irrespective of her signal. In

what follows, we examine the conditions under which a consumer will herd. Consider a consumer

arriving at n (with n1 > n2). Suppose all arriving consumers follow some strategy σ.

If server 1 is better, the observation n occurs with probability π1(n;σ). (i) With probability g,

the consumer observes the correct signal 1. Since the signal points to the longer queue, there is no

additional utility in ignoring the signal and following the longer queue. (ii) On the other hand, she

could see an ‘incorrect’ signal with probability 1− g. The additional marginal utility from herding

is (V+ − c(n1 + 1)τ) − (V− − (n2 + 1)cτ). Therefore, the ex-ante expected additional utility from

ignoring the signal and joining the longer queue at state n is π1(n;σ)(1− g)(∆− c(n1 − n2)τ).

In the alternate case server 2 is better (i.e., the longer queue is at inferior server). Then, the

observation of state n occurs with probability π2(n;σ). (i) The consumer sees incorrect signal 1

(same as the longer queue) with probability (1− g). Therefore, there is no additional disutility in

joining the longer queue (over following the signal). (ii) However, with probability g, the consumer

sees a correct signal 2. By ignoring the signal and joining the longer queue, she will suffer an

additional disutility of V+ − c(n2 + 1)τ − (V− − c(n1 + 1)τ). Therefore, the expected additional

disutility from joining the longer queue at n is gπ2(n;σ)(∆ + c(n1 − n2)τ).

A rational consumer always joins the longer queue when π1(n;σ)(1 − g)(∆ − c(n1 − n2)τ) >

π2(n;σ)g(∆ + c(n1 − n2)τ) or simply when, l (n;σ) > g
1−g

∆+c(n1−n2)τ
∆−c(n1−n2)τ . Equipped with Lemma 1,

we obtain the equilibrium strategy when the queues are equal in length.
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Corollary 2. We have σ∗(s, (n, n)) = s for all n ∈ {0, ..., N − 1}: when the queue lengths are

identical, the equilibrium action is to follow one’s private signal.

Corollary 2 states that consumers follow their private signals when they observe that the queue

lengths are equal (i.e. n1 = n2). This is intuitive: a less-informed consumer obtains no additional

information about relative service value when queue lengths are equal. In general, characterizing an

equilibrium strategy analytically is very difficult. We will begin our analysis of rational consumers

by considering queues with small buffers in sections §3.1 and §3.2, and examine the behavior of

consumers when buffers are large in §3.3.

3.1 Analysis: the case of small queue buffers N = 2

In this section, we limit the waiting space in front of each of the service facilities to two (i.e.

N = 2). When one queue is full, the consumers join the other queue and at (2, 2), they are

blocked from joining. From Corollary 2, the consumers follow their signal at states (n, n) with

0 ≤ n ≤ 1. As a result, the only actions that need to be specified in equilibrium are at states

(1, 0) and (0, 1). Since the servers are symmetric and are indistinguishable ex ante, the equilibrium

action will also be symmetric at states (1, 0) and (0, 1). We thus focus on the only state for

which the equilibrium action needs to be determined, and introduce the following notation: σF

indicates that σ(s, (1, 0)) = s, ∀s ∈ {1, 2}, i.e., consumers follow their signal; σS indicates that

σ(s, (1, 0)) = 2 ∀s ∈ {1, 2}, i.e., consumers always join the shorter queue (ignoring their private

signal); and σL indicates that σ(s, (1, 0)) = 1 ∀s ∈ {1, 2}, i.e. consumers join the longer queue,

ignoring their private signal (i.e., consumers herd). We focus on ∆ > cτ since when ∆ < cτ ,

consumers always join the shorter queue (See Lemma C1 in Appendix C.). Proposition 3 provides

a special case when the less-informed consumers are fully uninformed (i.e. g = 1/2).

Proposition 3. The equilibrium strategy for the uninformed consumers (g = 1/2) is as follows.

1. σS is an equilibrium (i) ∀ρ > 0 when α∆ < cτ < ∆, (ii) ∀ρ ∈ (ρ̂,∞) when cτ ≤ α∆.

2. σL is an equilibrium (i) ∀ρ ∈ (ρ, ρ) when α∆ < cτ < α̂∆, (where α < α̂) (ii) ∀ρ ∈ (0, ρ] when

cτ ≤ α∆.

For sufficiently low waiting costs, i.e. when cτ < α∆ (where α denotes the fraction of informed

customers), the less-informed consumers herd (i.e., σL is an equilibrium) when the traffic intensity

is lower than a threshold, ρ (see Proposition 3.2(ii)). When the waiting cost is higher (i.e., α∆ <
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Figure 1: Likelihood ratios lL, lS (under strategies σS and σL respectively) are plotted again ρ on
the x-axis using thick and dotted curves respectively. The threshold is indicated by horizontal line.
Applying Lemma 1, the equilibrium strategies are shown by arrow marks. For instance, Lemma 1
requires lL to be higher than the threshold. This occurs for ρ less than the right-most vertical dotted
line which denotes (ρ = ρ). Thus, the joining the longer queue σL is in equilibrium for low arrival
rates (i.e. for ρ ∈ (0, ρ]).

cτ < α̂∆), they herd at intermediate traffic intensities. As the traffic intensity increases, consumers

are more likely to see full buffers, but are also more likely to rationalize that consumers joined a

certain queue either because the other queue was blocked, or because it was too costly to wait at

the alternative queue. In Figure 1, we illustrate the region of longer-queue joining by plotting the

likelihood ratios at (1, 0), (i.e, lS and lL under strategies σS and σL respectively), as a function of

λ and ∆+cτ
∆−cτ .

Extent of Learning: To measure the extent of learning, we first examine the expected valuation

of a server to consumers in a system that does not make queue lengths publicly available. Based

on her private signal s, the expected value from a server i ∈ {1, 2} is E (Vi|s) ∀s ∈ {1, 2}. Since the

informed consumers are perfectly informed, we focus on uninformed consumers (i.e. g = 1/2, as in

Proposition 3). For the uninformed consumers, based on the private information alone, the expected

valuation from either server for the uninformed consumer is (V+ +V−)/2 (regardless of their private

signal). Suppose that the queue lengths are made available to the consumer on arrival. We focus

on the state (1, 0). Up on arrival, the expected waiting costs are identical for both informed and

uninformed consumers (in this case, 2cτ at the longer queue). We now characterize how much the

expected valuation from the longer queue changes for an uninformed consumer. Let the change in

expected valuation from the prior valuation, for a consumer with signal s at queue i, be denoted by
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Vq(i, s,n, σ), when all consumers play a strategy σ. Hence, Vq(i, s,n, σ) = E(Vi|n, s, σ)−(V++V−)/2

for uninformed consumers with g = 1/2. In Proposition 4, we characterize the extent of learning

due to the revelation of queue length information by specifying Vq(1, s,n, σ).

Proposition 4. Given consumer strategy σ at state (1, 0), Vq(1, s, (1, 0), σ) =
(
l(1,0;σ)−1
l(1,0;σ)+1

)
∆
2 , ∀ s ∈

{1, 2}. For any α > 0, ∃ρ > 0 such that ∀ρ ∈ [0, ρ] Vq(1, s, (1, 0), σL) ≥ α∆/2 = maxρ≥0{Vq(1, s, (1, 0), σS)}, ∀s ∈

{1, 2}.

If consumers follow σS the maximal additional valuation is bounded at α∆/2. However Propo-

sition 4 shows that when consumers herd, the queue lengths are more informative at low traffic

intensities. Since the additional information from the queue lengths is beneficial for everyone, this

causes consumers to play σL in equilibrium at low traffic intensities.

Now we expand the analysis from the special case in Proposition 3 to the case when the less-

informed consumers have a signal strength g ∈ [1/2, 1). It can be seen that informed consumers will

always follow their signal (also see discussion following Definition 1). The less-informed consumers

adopt an equilibrium strategy characterized by the conditions in Lemma 1. Proposition 5 sheds

more light on the market conditions when the less-informed consumers herd and the extent of

learning when they herd.

Proposition 5. There exist c and ρ, such that ∀ ρ < ρ and c < c, for the less-informed con-

sumers, (i) σL is in equilibrium, (ii) Vq(1, 2, (1, 0), σL) = ∆g(1−g)(lL−1)
(g+lL(1−g)) ≥ Vq(1, 1, (1, 0), σL) =

∆g(1−g)(lL−1)
(glL+(1−g)) ≥ maxρ∈[0,ρ]{Vq(1, 1, (1, 0), σL), Vq(1, 1, (1, 0), σS)}.

Proposition 5(i) generalizes the findings about the relationship between herding and arrival

rates made in Proposition 3, which was only valid for uninformed consumers (i.e., g = 1/2). In

equilibrium, the less-informed consumers, herd at low arrival rates for sufficiently low waiting costs,

and they expect an increased value from observing queue information, especially when they see an

opposite signal to a longer queue. The results from Proposition 4 are generalized for g > 1/2 in

Proposition 5(ii), i.e., when consumers herd, the additional valuation gained from the longer queue

is high at low arrival rates.

3.2 Analysis: the case of small queue buffers N = 3

We increase buffer size to N = 3 in this section, and note that σ(s, (n, 3)) = 1 and σ(s, (3, n)) = 2

for n ∈ {0, 1, 2}: When one queue is full, the consumers join the other queue. At (3, 3) they

are all blocked. From Corollary 2, consumers follow their signal when queue lengths are equal.

11



As a result, we examine states: {(1, 0), (2, 1), (2, 0)} and {(0, 1), (1, 2), (0, 2)}. Since we focus on

symmetric equilibrium strategies, we can limit our attention to the three states (1, 0), (2, 1), (2, 0).

As a shortcut in notation, we indicate an equilibrium strategy by σXYZ, with X, Y, Z ∈ {F,L,S}

being the strategy at {(1, 0), (2, 1), (2, 0)} (and symmetrically at {(0, 1), (1, 2), (0, 2)}), respectively.

The equilibrium strategies are specified by Lemma 1.

We rewrite the likelihood ratio conditions established in Lemma 1 for each of the 27 possible

pure strategy equilibria as a function of ρ, such that:


l (1) < lLYZ

(1,0)

l (1) < lFYZ
(1,0) < l (1)

lSYZ
(1,0) < l (1)

,


l (1) < lXLZ

(2,1)

l (1) < lXFZ
(2,1) < l (1)

lXSZ
(2,1) < l (1)

and


l (2) < lXYL

(2,0)

l (2) < lXYF
(2,0) < l (2)

lXYS
(2,0) < l (2)

(3)

with lXYZ
n = l

(
n;σXYZ

)
, l (n) = g

1−g
∆+ncτ
∆−ncτ and l (n) = 1−g

g
∆+ncτ
∆−ncτ . We can see that σXYZ is an

equilibrium strategy if the conditions in Equation (3) are satisfied. In states (1, 0) and (2, 1), the

difference in queue lengths is 1, hence, under Lemma 1, l (1) and l (1) determine the equilibrium

condition. l (2) and l (2) determine the equilibrium condition in (2, 0).

l(2)

l(1)

l(2)

l(1)

l
(2,0)

FFF

l
(2,1)

FFF

l
(1,0)

FFF

σ
FFF

l
(2,0)

FFL

σ
FFL

l
(2,1)

FFL

l
(1,0)

FFL

l(2)

l(1)

l(2)

l(1)

Figure 2: The existence of equilibrium strategies σFFF (left panel) and σFFL (right panel) over ρ
(x-axis) are shown for g = 0.7 and c = 0.1. In each subplot, the likelihood ratio functions at three
states (1, 0), (2, 1), (2, 0) are shown. In the right plot, we note that lFFL(2,1) and lFFL(1,0) are less than l(1)
for all traffic intensities. They satisfy ‘Follow the queue’ conditions for left and middle columns
in Equation (3) and thus consumers follow their signals at (1, 0) and (2, 1) for all ρ. Finally,
lFFL(2,0) > l(2) for ρ left of the vertical line, therefore customer follow the longer queue at (2, 0).
Therefore, for small traffic intensities, σFFL is in equilibrium. Thus customer herding occurs at
traffic intensities bounded by arrow marks in the right panel.

In Figure 2, we address the strategies σFFF (left panel) and σFFL (right panel). We focus on

12



the longer queue joining behavior at state (2, 0) and find that herding occurs at low arrival rates.

Herding is also more pronounced at (2, 0) than at (2, 1) or (1, 0) despite the higher waiting costs.

The consumer avoids the empty queue and joins the longer queue even if her private signal points

to the empty queue. In section 3.3, we will see that herd behavior persists for larger state spaces.

We extend the analysis to non-linear waiting costs and asymmetric buffers in §3.4.

3.3 Analysis for Larger Queue Buffers

In this section, we show that herd behavior continues to occur at low traffic intensity for large

buffer sizes. Determining an equilibrium strategy for a large state space is a complex problem

requiring both the determination of equilibrium strategies of consumers in the queue and the

calculation of long-run probabilities at each state. In normal-form games, showing the existence

of a Nash equilibrium with a specific structure (such as herding at some state) is an NP-complete

problem (Gilboa and Zemel, 1989). To characterize the equilibrium for our problem, we also have to

calculate stationary probabilities for a multitude of candidate strategies. However, the expressions

for steady state probabilities of 2-D birth and death process are not known even under specific

strategies such as join-the-shortest-queue at all states (Halfin 1985). Steady state probabilities

of quasi birth and death processes are of non-product form, and can only be calculated using

numerical approaches such as matrix-geometric methods (Neuts 1981). Therefore, we determine

an equilibrium strategy profile (within some precision limits) by means of an iterative process that

utilizes a regenerative theory based approach (Grassmann et al. 1985). This iterative procedure

and related computational issues are described in Appendix A.

For the sake of brevity, we present a representative set of computations, and summarize our

observations. In Figures 3 and 4, we show the equilibrium results for N = 20, and indicate the

states at which the less-informed consumers always join the longer queue (i.e., herd) by L, join the

shorter queue by S and follow their signal by F . Given N = 20, there are 441 possible states out

of which equilibrium actions need to be determined in 380 states (excluding diagonal and upper

boundaries). In each state, consumers may either follow their signal, herd, or join the shortest

queue. This gives rise to 3380 ' 10181 possible equilibrium profiles. As we move from Figure 3 to

Figure 4, we increase the fraction of informed consumers in the market α. Within each figure, we

first increase λ, and then increase strength of the signal, g.

Based on the analytical insights of the previous sections, we examine the state dependent

strategies adopted in equilibrium: (i) As the signals get stronger, the consumers follow their pri-

13
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Figure 3: The equilibrium actions when N = 20. In all figures, x- and y- axes are queue lengths of
queue 1 and 2 respectively. For all the figures α = 0.25, V+ = 14, V− = 4, ∆ = 10 and c = 0.15. As
we move from the left to the middle, ρ increases. Then, moving from the middle figure to the right,
g increases. In the figures (a) ρ = 0.70, g = 0.75 , (b) ρ = 0.90, g = 0.75 and (c), ρ = 0.90, g = 0.99.
At each state in each plot, we denote the longer queue joining (herding) strategy by L, shorter queue
joining strategy by S, and following one’s signal by F . We denote the consumer being blocked from
one (or both) of the queues by B. Observe the dagger-shaped equilibrium queue joining strategy.
Note that the longer queue joining occurs when the difference between the queue lengths and the
sum of the queue lengths both exceed some thresholds.

vate signals at more states, evident as we move from the left to the right panel in both figures.

(ii) Following Proposition 5, as the fraction of informed consumers α increases, the less-informed

consumers herd at more states (observed by comparing the corresponding panels in Figures 3 and

4). (iii) Proposition 5(i) continues to hold. The herd behavior is more pronounced when the arrival

rates are low, evident from comparing the two adjacent panels on the left in Figures 3 and 4. (iv)

Finally, when one queue is empty, the consumers join the other non-empty queue (as in Becker

(1991), Veeraraghavan and Debo (2009)), even though they incur higher waiting costs, i.e., herd

behavior persists. In fact at (8, 0), in Figure 3(a), applying the learning results from Section 3.1, we

find that the updated value of the longer queue reaches 13.98 which is slightly less than V+(= 14)

(i.e., the conditional value of the better server is almost fully learned at the observation of the state

(8, 0)). Hence, empty queues persist.

Notice the ‘dagger-like’ structure of the equilibrium in Figure 3 on the left and the middle panels:

not only do consumers follow their private information when the queue lengths are comparable (as

is intuitive from Lemma 1), but they also follow their private information at intermediate crowd

size i.e., roughly when the sum of the queue lengths is not too large or small.

Consider state (5, 1) in Figure 3 (left panel). When the crowd in the market (i.e. the total

number of consumers in the market) is low, the less-informed consumers always follow the shorter
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Figure 4: The equilibrium actions when N = 20. In all figures, x- and y- axes are queue lengths
of queue 1 and 2 respectively. The scheme and notations are the same as in Figure 3, except that
the fraction of informed consumers is higher in the market in this Figure. Specifically: α = 0.60,
∆ = 10 and c = 0.15. For figures (a) ρ = 0.70, g = 0.75 , (b) ρ = 0.90, g = 0.75, and (c)
ρ = 0.90, g = 0.99.

queue. This is not just due to lower waiting costs. Suppose a less-informed consumer observes

signal 1. If she were to use only her private signal in updating the service value, she would join

the longer queue, since E[V1|1] − (n1 + 1)cτ − (E[V2|1] − (n2 + 1)cτ) = (2g − 1)∆ − cτ(n1 − n2).

Suppose the consumer saw signal 1; In our numerical example, the expected values from server 1

and server 2 (based on private signals alone) are 11.5 and 6.5 respectively. If the consumer used

queue length information only to process waiting costs, the net values at the servers 1 and 2 are

10.6(= 11.5 − 6 × 0.15 × 1) and 6.2(= 6.5 − 2 × 0.15 × 1) respectively (using c = 0.15, τ = 1).

Therefore, based on private signals and waiting costs alone, the consumer would join the longer

queue.

However, observe that the less-informed consumers join the shorter queue (regardless of their

signal). Based on the extent of learning results in §3.1, we can calculate the additional valuation

gained on the availability of queue length information. Based on observation of state (5,1), for

a consumer who observed signal 1, the Vq(1, 1, (5, 1), σ∗) = −4.31 and Vq(2, 1, (5, 1), σ∗) = +4.31

where σ∗ is the equilibrium strategy. As a result, the expected values from servers 1 and 2, change

to 7.19 and 10.81 respectively. Thus, the supposedly informed minority in the shorter queue is

considered more informative than other consumers in the longer queue. Observe from the figure

that the less-informed consumer never joins the empty queue instead of a non-empty queue, however

the informed consumer will always join the better queue. Thus at (5,1), given the small crowd in

the market, there is a significantly increased likelihood of an informed consumer being present at

the shorter queue, with no informed consumers at the longer queue. As a consequence, the less-

15



informed consumer could join the shorter queue. She ignores her signal and joins the shorter queue

due to the updating derived from queue lengths. This finding, that rational Bayesian consumers

‘buck the trend,’ is surprising.

Consider now the state (18, 1) in Figure 3 (left panel). For a less-informed consumer who

observes the signal 2, the Vq(1, 2, (18, 1), σ∗) = +6.57 and Vq(2, 2, (18, 1), σ∗) = −6.57. This is

because when the crowd in the market is large, the conditional probability of having a few informed

consumers in the market is high. Further, the crowd is asymmetrically distributed between the

facilities, the longer queue is more likely to have those perfectly informed consumers. At that state,

the valuation change due to the queue information causes the less-informed consumers to overcome

their private information and herd. These actions make the joining strategy pattern look like a

dagger.

To conclude, herd behavior is more pronounced at lower traffic intensities than at higher traffic

intensities, even for large buffer sizes. This generalizes the findings from Section §3.1. We note

that herd behavior is also dependent on the crowd: we observe that herd behavior may not occur

in small crowds that are asymmetrically distributed. Instead, the less-informed consumers buck

the trend and follow the minority. In the following section §3.4, we show that our findings hold for

non-linear waiting costs and asymmetric buffer sizes.

3.4 Extensions: Non-linear Waiting Costs and Asymmetric Buffers

We first extend our findings to non-linear waiting costs. Second, we analyze asymmetric large buffer

sizes, and show that our findings continue to hold.

Non-linear Waiting Costs: We consider non-linear waiting costs, specifically a quadratic cost

of type c(nτ)2 where n is the queue length. We note that the conditions for the rational strategies

described in Lemma 1 remain identical except that (n1−n2)cτ is modified to c((n1+1)2−(n2+1)2)τ2.

For small buffers, we observe that the analysis under non-linear waiting costs lead to the same

conclusions. For N = 3, under non-linear waiting costs, the likelihood ratio conditions in Equation

(3) becomes


l (3) < lLYZ

(1,0)

l (3) < lFYZ
(1,0) < l (3)

lSYZ
(1,0) < l (3)

,


l (5) < lXLZ

(2,1)

l (5) < lXFZ
(2,1) < l (5)

lXSZ
(2,1) < l (5)

and


l (8) < lXYL

(2,0)

l (8) < lXYF
(2,0) < l (8)

lXYS
(2,0) < l (8)

(4)
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For instance, when we consider herding at (2, 0) under non-linear costs, l (2) and l (2) in the

linear cost case increase to l (8) and l (8) respectively (since n1− n2 = 2 becomes (n1 + 1)2− (n2 +

1)2 = 8). This results in an upward shift of the horizontal line in Figure 2. Again, herd behavior

occurs at low arrival rates.
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Figure 5: The equilibrium actions under nonlinear costs when N = 20. The parameters are the
same as Figure 3.

The same conclusions hold for higher buffer sizes with non-linear costs. In Figure 5, we report

experiments with non-linear waiting costs. Much of the queue choice observed for linear costs

continues to hold (herding at low arrival rates, ‘dagger’-type equilibrium queue joining, etc.). Higher

wait costs cause some additional effects. Consumers may not herd at some states (in which they

chose the longer queue under linear waiting costs) since the quality information from the queue

lengths may not be sufficient to overcome the higher wait cost. Therefore, we see consumers

following their signals in more states. Since the likelihood functions are non-monotone (as seen in

Figure 2), we observe the same non-threshold queue choice behavior that we described earlier.

Asymmetric Buffer Sizes: We show that herd behavior is observed for asymmetric buffer sizes.

First, we consider small buffer sizes to derive analytical results (similar to the §3.1) by examining a

small buffer (N1 = 2, N2 = 1). For the sake of brevity, the results and the discussion are relegated

to Technical Appendix D. Again, we find that consumer herd behavior exists at low arrival rates

for sufficiently low waiting costs.

We extend our analysis to large asymmetric buffers (reported in Figure 6). Observe that (i)

herding persists at low arrival rates, (ii) an asymmetric ‘dagger’-type queue joining behavior is

present (i.e. herd behavior depends on the crowd in the market, and how this crowd is distributed

between the facilities). Finally, we find that queue joining behavior is largely asymmetric: con-

sumers may not follow their signal when queue lengths are equal.
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Figure 6: The equilibrium actions when buffer sizes N1 = 25 and N2 = 20. In all figures, x- and
y- axes are queue lengths of queue 1 and 2 respectively. The scheme and parameters are the same
as Figure 3. The longer queue and the shorter queue joining actions are indicated by L and S
respectively.

3.5 Decision Making: Independent Queues

In our model with rational Bayesian consumers, the main difficulty that consumers face is one of

calculating best responses over a precisely imputed steady state distribution, with finite cognitive

resources. The closed form solutions for steady state probabilities do not exist even for specific

cases such as, join-the-shortest-queue at all states (Kingman 1961, Halfin 1985). Showing the

existence of a Nash equilibrium with a specific structure (such as herding at some state) is an NP-

complete problem (Gilboa and Zemel, 1989). The hardness result suggests real consumers may face

significant difficulty in calculating the equilibrium. Thus, we analyze a context where the agents

may deviate from rational decisions because of the complexity of their decision problem. Motivated

by above reasons, we study the equilibrium outcome of a specific behavioral assumption made by

boundedly rational consumers in our queue choice context. (For detailed development of bounded

rationality, please refer to Rubinstein (1998) or the quantal choice framework propounded by Luce

(1959)).

Our specific behavioral assumption is as follows: as computing the joint probability distribu-

tion of the two-dimensional queuing system is a complex and critical task that rational Bayesian

consumers face, we relax the rationality assumption by letting the consumers calculate the joint

probabilities as being created by two independent queues with finite buffers. Specifically, our con-

sumers derive the steady state probabilities by treating the queues as two independent M/M/1/N

queues, assuming that all other consumers follow their signals. The service process and buffer sizes

of these two queues are common knowledge. Recall that the strategies of the informed consumers

are fully specified and are independent of the steady state probabilities. We can thus explore some

specific strategies of the less-informed consumers.
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Let qi,j(n, σ) be the probability that queue i is at state n ∈ {0, 1, . . . , N} conditional on Vj > V−j

when such consumers adopt strategy σ. For arrival rates, we impose that the consumers calculate

the steady state of a single queue as if all other consumers follow their private information (which

we denote by σ′). Thus, the joint probability distribution becomes: πi ((n1, n2), σ′) = qi,i(n1, σ
′) ·

q−i,i(n2, σ
′)∀ i = 1, 2. All other specifics of the model remain identical to the discussion in Section

2. The updated density function (described in Equation 2) and expected valuation change to,

f ′
(
v1, v2 | n, s;σ′

)
=


g(s)

D(n,s,σ)qi,i(n1, σ
′) · q−i,i(n2, σ

′)f (v1, v2) vi > v−i
1−g(s)
D(n,s,σ)qi,−i(n1, σ

′) · q−i,−i(n2, σ
′)f (v1, v2) o/w

E′
(
Vi | n,s;σ′

)
=

∫ v

v

∫ v

v
vif
′ (v1, v2 | n,s;σ′

)
dv2dv1, i ∈ {1, 2}

The best response strategies σb for consumers deviating from rational behavior can be identified

by applying Equation (1), with E replaced by E′. Then, σb ∈ BR (σ′) if and only if for i ∈ {1, 2}

and all n ∈ N : E′ (Vi | n, s;σ′)− cniτ > E′ (V−i | n, s;σ′)− cn−iτ ⇒ σb(s,n) = i.

Definition 3 (Independent Queues). A strategy σb is a best response strategy for consumers con-

sidering queues as independent if, σb ∈ BR (σ′) and f (v1, v2 | n,s;σ′) for any n reached with

probability qi,j(n, σ′) ∀i, j ∈ {1, 2} under the strategy σ′.

Now we apply Definition 3 to calculate consumer strategy based on independent queues.

Proposition 6. When consumers treat the queues as independent, ∀ρ > 0, i ∈ {1, 2} and ni−n−i >

b1, σb(s,n) = i ∀s ∈ {1, 2} for b1 such that ((α+ g(1− α))/(1− g)(1− α))b1−1 = (g/(1− g))(∆ +

b1cτ)/(∆−b1cτ). If the queue length difference is greater than b1, the less-informed consumers join

the longer queue. Otherwise, they follow their signal.

Proposition 6 specifies that the queue choice of consumers depends only on the difference be-

tween queue lengths. Herd behavior still exists. However, the key difference is that herd behavior

persists at all arrival rates. This is because the less-informed consumers assume that all of the

other consumers are following their private signals at all states. For any ρ, the queue information

is strong since the queue length at any server is interpreted as the number of people with that

signal. Thus, for any less-informed consumer, the queue length difference at some threshold, being

a collection of additional private signals, is sufficient to overcome any contrary private signal she

may possess. Consumers join the longer queue as long as the queue difference between the two

queues exceeds a threshold b1. When the queue length difference is below this threshold, consumers
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follow their own signal. (It should be noted that, σb(s,n) 6= σ′(s,n). Further, the resulting steady

state distribution would be inconsistent with the assumed distribution, i.e., πi(n, σb) 6= πi(n, σ′)).

Such consumers (mistakenly) over-attribute higher value to longer queues.

Extent of Learning: As in Section 3.1, we can derive the change in expected valuation for a con-

sumer, who observes queue information (n1, n2). For an uninformed consumer (g = 1/2), the addi-

tional information (from the longer queue) on observing state n is Vq(1, s,n, σb) = (∆/2) l(n,σ
b)−1

l(n,σb)+1
=(

∆
2

) (1+α)n1−n2−(1−α)n1−n2

(1+α)n1−n2+(1−α)n1−n2
. For instance, an uninformed consumer arriving at (11, 10) would see an

increased valuation of α∆/2. This is intuitive; since the consumer expects at least α fraction of all

consumers to be in the better queue, and she knows that the rest of the consumers are uninformed.

The additional valuation gained by a less-informed consumers with private signal s (with

strength g > 1/2) by observing a queue i, on observing state n is Vq(i, s,n, σb). It can be shown

that (using the likelihood ratios for each state in the expressions in Proposition 5) for the longer

queue, the extent of learning is concave increasing in the queue difference |n1− n2|. This is consis-

tent with the threshold joining policy observed in equilibrium when consumers treat the queue as

being independent.

Given the notion that queue length observation provides additional ‘sampling’ of private signals,

it is not surprising that the ‘dagger’-type equilibrium observed for rational consumers disappears.

For instance, in Figure 3 (left panel), a rational consumer follows her own signal at (12, 1) but

herds at (11, 0), but a consumer under our behavioral consideration would follow identical actions

at both states, since her optimal actions are based only on the queue difference and not on the

total crowd in the market at the state in which she arrives. Finally, the threshold herding behavior

under our behavior consideration continues to exist even when the buffers are asymmetric. The

results and related discussions can be found in the Technical Appendix.

4. Regret Minimizing Consumers

In this section, we examine consumers who use decision making criteria other than utility max-

imization when making their choice, such as minimizing expected regret or the worst-case regret.

Regret can be understood from the following example. For instance, let vA, vB be the net value of

services from two firms A and B such that vA > vB (but unknown to consumers). The consumer

chooses firm B, and realizes ex post that the alternative was worse, and regrets not choosing firm

A. The regret from choosing firm B is vA − vB, which equals the expected value that a consumer
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would have gained by choosing firm A. There is no regret if firm A is chosen. Thus regret is a

measure of what could have been.

Consider the decision of any consumer arriving at the market and observing state n = (n1, n2).

The consumer has two possible actions at n ∈ N (join queue 1 or queue 2). Suppose the consumer

chooses a queue that is revealed to be worse (ex post). The regret this consumer anticipates from a

certain choice is the additional expected utility (over all possible realizations) that she would have

enjoyed ex post if she had made the alternate (better) choice.

Let j denote the better server, i.e. j = arg max{V1, V2}. Consider a consumer who arrives at

some state n ∈ N and sees a signal s ∈ {1, 2}. Let R(i|n, j, s) denote the consumer conditional

regret. In our context, R(i|n, j, s) = max{0, (E[V−i|Vj > V−j ] − cτ(n−i + 1)) − (E[Vi|Vj > V−j ] −

cτ(ni + 1))} ∀ i, j, s ∈ {1, 2}. Then, the expected regret from choosing a queue i at a state n

when seeing a signal s is ER(i|n, s) = R(i|n, 1, s) Pr(V1 > V2|n, s) + R(i|n, 2, s) Pr(V1 < V2|n, s).

The maximum regret from choosing a queue i at a state n when seeing a signal s is MR(i|n, s) =

maxj∈{1,2}R(i|n, j, s).

Let amr(s,n), aer(s,n) ∈ {1, 2} be the actions that minimize the maximum regret and expected

regret respectively for a consumer ∀n ∈ N , s ∈ {1, 2}. Then,

amr(s,n) = arg min
i∈{1,2}

{MR(i|n, s)} and aer(s,n) = arg min
i∈{1,2}

{ER(i|n, s)}.

In the following definition, we characterize the regret minimizing queue selection behavior.

Definition 4. (a. Minimize Expected Regret). The strategy σer(s,n) is an expected regret-

minimizing pure strategy equilibrium if σer(s,n) ∈ arg mini∈{1,2}{ER(i|n, s)} and f (v1, v2 | n, s;σer)

is defined for any n that is reached on the equilibrium path with a positive probability.

(b. Minimax Regret). A strategy σmr(s,n) minimizes the worst case regret, if σmr(s,n) ∈

arg mini∈{1,2}{MR(i|n, s)} for all n ∈ N .

Consumers who are perfectly informed always choose the server that provides the highest value

net of waiting costs, and have no ex post regret. However, the less-informed consumers need to

infer quality information from the queue lengths to decide on their regret minimizing strategy.

Proposition 7 captures the behavior of the less-informed consumers.

Proposition 7. (i) For n ∈ N and s ∈ {1, 2}, σer(s,n) = σ∗(s,n). The queue joining strategies

of expected regret minimizing consumers and rational (utility-maximizing) consumers are identical.
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(ii) Consumers who minimize the worst case regret always join the shorter queue, σmr(s,n) = i

if ni < n−i for i = 1, 2. When the queue lengths are equal, consumers are indifferent between the

queues.

Proposition 7(i) shows that herd behavior persists under the expected regret minimizing cri-

terion: this finding under a different decision-making approach lends robustness to herd behavior

we found under rational Bayesian decision-making approach. Herd behavior continues to persist at

low traffic intensity, when consumers minimize expected regret. It is interesting to note that herd

behavior is diminished only when consumers minimize the worst case regret. While herding may

often lead a consumer to a server with higher value, it may also lead her to the worst disutility,

when a consumer joins the longest queue that ex post turns out to have the worst service value.

The consumer would then regret not having chosen a better server that was also less congested.

Thus, an ex ante examination of the worst case outcomes, leads to a tempered herd behavior. In

particular, the minimax regret criterion eliminates herd behavior. In addition, this behavior is

independent of the steady state probability distributions.

Modeling consumers as agents who minimize their maximum regret allows us to model consumer

decisions when the cognitive costs of utility maximizing behavior are high. Furthermore, modeling

minimax regret decouples the decision making process from the evaluation of steady state distribu-

tion: at every state, regardless of the probability of reaching that state, the consumer evaluates her

action based on the regret she anticipates from choosing that action and rejecting the alternatives.

With this additional tractability, we find that herd behavior persists in markets with partially un-

observable queues (For the sake of brevity, the discussion on the persistence of herd behavior in

partially observable queues is deferred to Technical Appendix E.). Finally, Proposition 7(ii) applies

as well to convex waiting costs since the shorter queue is more appealing under increased costs (i.e.,

the threshold for herd behavior increases under convex waiting costs).

5. Conclusions

Many service performance models assume that consumers make decisions about which service to

select in a ‘vacuum’. In reality, a consumer’s decision is influenced by what they observe in other

decision-makers around them, and those decisions are manifested through queues. In this paper, we

built a model of the choice behavior of consumers when facing congested queues and informational

uncertainty. We examined different decision making perspectives on herd behavior in queues under
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rationality and regret.

Our paper integrates negative waiting cost externalities due to queueing and positive external-

ities due to herding behavior, thus bridging both queueing and herding theories in service choice.

We use three cognitive models to understand the queue choice of consumers in congestion-prone

environments with quality uncertainty, when consumers are (i) rational Bayesian agents, (ii) agents

who ignore queue length dependencies, and (iii) regret minimizing agents.

We established that the rate at which the consumers arrive to the market greatly influences the

service they choose. Holding the arrival rates equal in two markets, herding occurs in a market

where service rates are fast rather than in a market where service rates are slow. With fast service,

long queues are more salient than with slow service. In fact, we find that high traffic intensity

with slow service reduces herding behavior in finite buffers. In general, queue joining behavior may

be complex. In the case of rational Bayesian or expected regret minimizing consumers, a typical

queue joining pattern that emerges is the following: consumers use both the size of the crowd in

the market relative to the buffer size and the relative allocation of the crowd between the queues

in making their queue selection. For instance, rational Bayesian consumers may ‘buck the trend’

when they see a small crowd, because they impute that the minority waiting in the shorter queue

are more informed than the rest. However, if consumers treat the queues as independent queues,

they herd according to a threshold policy that depends only on the difference in queue lengths.

When consumers minimize the worst case regret, there is no herding and consumers always join

the shorter queue.

Our model makes some predictive hypotheses related to how consumers make their choices. An

exploration (empirical or experimental) of queue joining behavior along the lines of Schweitzer and

Cachon (2000) could reveal how consumers make such tradeoffs in real life. While the research

on bounded rationality is rich (for instance, see Su (2008) for bounded rationality in newsvendor

models), there is a paucity of theoretical and empirical research on boundedly rational decision

making in queues. A way to test for bounded rationality would be to check if consumers, in real

settings, ignore the size of the crowd when making their decision about which queue to join.

When consumers choose a queue in order to minimize their maximum regret, we note that

they join the shorter queue at all states. Thus we find that the classical approach to minimize the

expected waiting times (ignoring the service value) is consistent with minimax regret action (when

service values are unknown). One hypothesis would be that consumers join shorter queues because

they minimize their worst case regret, since the information on service value is usually limited.
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When a consumer considers buying a product or service of whose quality she is completely

uninformed, she will often herd and wait to consume the service after others. This is consistent

with rational utility maximization. On the other hand, regret minimizing consumers may choose

the less congested service. Thus, studying consumer choices in congested environments would help

firms and researchers identify the nature of the decision models that consumers use to arrive at

their decisions.

Appendix A: Computational Issues

We determine the equilibrium strategy profile through the iterative process described in the Table
below.

Step 0: Construct an initial strategy profile σ=σ0 based on the input parameters.
Step 1: For the given strategy profile σ, calculate the steady state probabilities

π1(n, σ) and π2(n, σ).a

Step 2: Once the stationary probabilities for profile σ are available, a new profile σnew is
constructed by using rational strategy profile derived from the result of Lemma 1.

Step 3: Check convergence criteria.b If satisfied, stop. The equilibrium strategy profile
is σnew. Else repeat Step 1 with σ = σnew.

aWe utilize the regenerative theory based approach (due to Grassmann et al. (1985)) to calculate the stationary
vector of the two dimensional birth and death process where simple schemes such as Gaussian elimination fail to
converge well. The likelihood ratios l(n, σ) are then calculated using the derived steady state probabilities.

bThe convergence criteria employed was that the maximum difference between corresponding steady state proba-
bilities at any state between successive iterations was less than 10−5.

Figure A1: Procedure for the determination of an equilibrium strategy profile for a given g, α, and
N .

Our iterative procedure in Table A1 (for the rational Bayesian consumer model) concludes
in several minutes on a PC with 2.4Ghz Intel processor, under our convergence criteria, for dif-
ferent parameter settings, and for different choice of initial strategies. In many cases, the exact
equilibrium strategy is found. However, we believe, in worst cases, for exact convergence, the
procedure may take exponential time. Recent literature demonstrates that the problem of finding
just one Nash equilibrium of a finite normal-form game is PPAD-complete (Papadimitriou 2008).
PPAD stands for Polynomial Parity Argument (Directed case). For every normal form game with
countable strategies Nash equilibrium is guaranteed to exist, whereas in many typical NP-complete
problems, the solution sought may or may not exist. To address this difference, an appropriate
class of complexity needs to be considered. The complexity class PPAD relates Nash to a host
of computational problems with guaranteed existence of solutions. Many problems belonging to
the PPAD class are known to be intractable. See Papadimitriou (2008) for a formal definition of
PPAD-completeness, and examples of problem instances that belong to this class.

Establishing the computational complexity of finding Nash Equilibria for various games remains
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one of the “most important concrete open questions” in theoretical computer science (Papadimitriou
2008). In fact, the standard method for finding Nash equilibrium in bimatrix games called the
Lemke-Howson Algorithm (Lemke and Howson 1964) has recently been shown to take exponential
number of steps in some cases (Savani and von Stengel 2001). Our simple procedure is also specific
to the problem at hand. Still, converging to the exact equilibrium strategy may take an exponential
number of iterations in some cases. Since our main focus is on understanding properties of consumer
choice behavior in queue settings, establishing computational complexity is beyond the scope of
this paper. It may indeed be that our game could be solved efficiently computationally.

Appendix B: Market Share Impact of Herd Behavior

In this appendix, we study the impact of herd behavior on the market share of the better server.
W.l.o.g, let server 1 be better than server 2. Consider a market with α fraction of informed
consumers and (1−α) fraction of uninformed consumers (with signal strength g = 1/2). When the
consumers select a server based on their private information only, the arrival rates at servers 1 and
2 are λ(α + (1 − α)(1/2)) and λ(1 − α)(1/2) respectively. We consider the market in Section 3.1.
Consider the following markets:
1. Ma: The uninformed consumers herd in this market.
2. Mb: All consumers follow their signals.
3. Market where all consumers follow their signal (but there is no blocking from either queue).
For instance, if all consumers chose the server according to their private signal and no one is blocked,
the market share of the better firm would be m. Let m = α + (1 − α)(1/2) measures the total
“private information” in the market. Let λ∗1 (Mi) and λ∗2 (Mi) be the equilibrium arrival rates to
the better server (server 1) and the inferior server (2) in a market i. We write down the equilibrium
market shares of the better server, and plot them in Figure B1.

MarketShare(server1) = (λ∗1 (Mi))/(λ∗1 (Mi) + λ∗2 (Mi)) ∀i ∈ {a, b}

Note that the market share of the better service facility in a market with queueing delays can exceed
its market share achieved in a market without any queueing externalities m. This shows that the
market share of a service facility improves in a market with congestion externalities. Also, note
that market share improvement for the better server occurs at low arrival rates. The managerial
implications suggest that (a) the better server should have much higher capacity than rate of
arrivals (to trigger herd behavior), and (b) the better server has an incentive to let differentially-
informed consumers communicate their private information (imperfectly) through their actions.
What information should a firm share to improve revenues is a non-trivial question. This is because
the a high quality firm will have different incentives from a low quality firm in a market where
consumers are imperfectly informed. Both firms can influence the information in the market by
signaling (by adjusting service rates, for instance). Such a signaling game is considered in Debo
and Veeraraghavan (2010).
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Figure B1: Market share as a function of the arrival rate in different markets. The parameters are
m = α+ 1

2 (1− α) = 0.825 and c = 0.1. The horizontal line represents the high quality firm market
share without any blocking effects. The dotted curve shows the market share of the firm when all
customers follow their signal, with blocking effects (Market Mb). The thick curve shows the market
share under herd behavior with blocking (Market Ma). The figure shows that the better firm gains
significant market share in equilibrium (due to herding), compared to the case when there is no
herding.

Appendix C: Proofs

Proof. of Lemma 1: For the sake of notational convenience, let us define φ =
(

g
1−g

)
. Furthermore,

from the definition of V+ and V−, we have that:

E (V1 | n, 1) =
φl (n)V+ + V−
φl (n) + 1

and E (V2 | n, 1) =
φl (n)V− + V+

φl (n) + 1
.

Thus, the agent joins queue 1 on signal 1 (on signal 2) if:

φl (n)V+ + V−
φl (n) + 1

− φl (n)V− + V+

φl (n) + 1
> (n1 − n2) cτ ⇔ φl (n1, n2) >

∆ + (n1 − n2) cτ
∆− (n1 − n2) cτ

⇒ σ(1,n) = 1

V− + l(n)
φ V+

1 + l(n)
φ

−
V+ + l(n)

φ V−

1 + l(n)
φ

> (n1 − n2) cτ ⇔ l (n1, n2)
φ

>
∆ + (n1 − n2) cτ
∆− (n1 − n2) cτ

⇒ σ(2,n) = 1.

If following signal 1 is rational in state (n1, n2) then following signal 2 is rational in state (n2, n1):

1
φl (n1, n2)

<
∆ + (n2 − n1) cτ
∆− (n2 − n1) cτ

⇒ l (n2, n1)
φ

<
∆ + (n2 − n1) cτ
∆− (n2 − n1) cτ

,

from which follows that following signal 2 is rational in state (n2, n1). As the service rates are
equal, we have that: l (0, 0) = l (1, 1) = 1. As (φV+ + V−)/(φ+ 1)− (V+ + φV−)/(φ+ 1) = ∆ > 0,
it follows that σ(s, (0, 0)) = σ(s, (1, 1)) = s, i.e. agents follow their signal when the queue lengths
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are equal, provided that positive utility can be obtained from joining φV++V−
φ+1 > cτ . Therefore,

σ(s,n) = 1 ⇔ g
1−g

∆+(n1−n2)cτ
∆−(n1−n2)cτ < l (n;σ) (L)

σ(s,n) = s ⇔ 1−g
g

∆+(n1−n2)cτ
∆−(n1−n2)cτ < l (n;σ) < g

1−g
∆+(n1−n2)cτ
∆−(n1−n2)cτ (F )

σ(s,n) = 2 ⇔ l (n;σ) < 1−g
g

∆+(n1−n2)cτ
∆−(n1−n2)cτ (S) .

Proof. of Corollary 2: Symmetric strategies of consumers implies 1−g
g ≤ l(n, n) = 1. Applying

Lemma 1, less-informed consumers follow their signal.

Lemma C1. All consumers join the shorter queue when ∆ < cτ .

Lemma C2. When ∆ > cτ : the likelihood ratios lLand lS at (1, 0) have the following properties:

1. limρ→0 l
L = limρ→0 l

S = 1+α
1−α > 1

2. lS is decreasing in ρ for all α and limρ→∞ l
S = 1.

3. lL is unimodal in ρ over ρ ∈ [0,∞) for any α and achieves the maximum lLmax = maxρ>0 l
L.

Further, limρ→∞ l
L = 1. Clearly lLmax ≥ 1+α

1−α .

4. The likelihood ratios can be ranked as follows: lL ≥ lS ≥ 1 for all ρ, α.

Proof. of Lemmas C1 and C2: Deferred to the Technical appendix.

Proof. of Proposition 3:

Proposition 3(1.):

(i) When α∆ < cτ < ∆. Since, α∆ < cτ , we have α < cτ
∆ . Therefore, 1+α

1−α <
∆+cτ
∆−cτ . From item (2)

in Lemma C2 we have lS decreasing in ρ for all α > 0. Also, from item 1, limρ→0l
S(α, ρ) = 1+α

1−α .

Hence, we have lS(α, ρ) <
(

1+α
1−α

)
for all ρ > 0. Since, 1+α

1−α <
∆+cτ
∆−cτ , we have lS(α, ρ) < ∆+cτ

∆−cτ ∀ ρ > 0.
Therefore, σ∗ = σS ∀ ρ > 0.
(ii) We have cτ < α∆, which implies that ∆+cτ

∆−cτ < 1+α
1−α . Since limρ→0l

S(α, ρ) = 1+α
1−α and we

have lS decreasing in ρ for all α > 0, there exists a unique ρ such that lS(α, ρ) = ∆+cτ
∆−cτ . Then,

lS(α, ρ) ≤ ∆+cτ
∆−cτ for all ρ ≥ ρ̂. Therefore, for all ρ ∈ (ρ̂,∞), lS(α, ρ) < ∆+cτ

∆−cτ , and from Lemma 1,
σS is in equilibrium for ρ ∈ (ρ̂,∞).
Proposition 3(2.):

(i) Proving ∀ρ ∈ (ρ, ρ) when α∆ < cτ < α̂∆ (where α < α̂). Given, α∆ < cτ we have ∆+cτ
∆−cτ >

1+α
1−α .

From Lemma C2 item 3, recall that lL(α, ρ) is unimodal and reaches a maximum at some ρmax.
lL(α, ρ) is continuous and increasing in [0, ρmax(α)], and lL(α, ρ) is continuous and decreasing in
[ρmax(α),∞). Also, limρ→0l

L(α, ρ) = 1+α
1−α > 1 and limρ→∞l

L(α, ρ) = 1.
Therefore applying Rolle’s theorem, there are two points ρ, ρ such that lL(α, ρ) = lL(α, ρ) =(

∆+cτ
∆−cτ

)
(> 1+α

1−α). Therefore, lL(α, ρ) >
(

∆+cτ
∆−cτ

)
for ρ ∈ [ρ, ρ]. Finally, for ∀ρ, lL(α, ρmax) >

lL(α, ρ). Hence, for ρ ∈ [ρ, ρ], we have, lL(α, ρmax) >
(

∆+cτ
∆−cτ

)
which implies, cτ < lLmax−1

lLmax+1
, α̂.
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Hence, for lL(α, ρ) ≥
(

∆+cτ
∆−cτ

)
for ρ ∈ [ρ, ρ] when α∆ < cτ < α̂∆. Applying the result of Lemma

1, we have σ∗ = σL for ρ ∈ (ρ, ρ).
(ii) ∀ρ ∈ (0, ρ] when cτ ≤ α∆. When cτ ≤ α∆, we have lL(α, ρ) is continuous and increasing
in the interval [0, ρmax(α)], and lL(α, ρ) is continuous and decreasing in the interval [ρmax(α),∞).
Also, limρ→0 l

L(α, ρ) = 1+α
1−α > 1 and limρ→∞ l

L(α, ρ) = 1. Hence, lL(α, ρ) > 1+α
1−α for all ρ ∈ (0, ρ).

When cτ ≤ α∆, we have < 1+α
1−α ≥

(
∆+cτ
∆−cτ

)
. This gives, lL(α, ρ) >

(
∆+cτ
∆−cτ

)
for all ρ ∈ (0, ρ). Hence,

σ∗ = σL for ρ ∈ (0, ρ).

Proof. of Proposition 4: Without loss of generality, let n1 > n2. The expected valuation from
queues based on private signals, (before observing the queue lengths) for uninformed consumer is:

E (V1|1) = (V+ + V−)/2 and E (V2|1) = (V+ + V−)/2.

On observation of state the state n = (1, 0), and based on strategy σ, the updated values for the
queues is as follows

E (V1|1;σ) =
V+l (n, σ) + V−
l (n, σ) + 1

and E (V2|1;σ) =
V−l (n, σ) + V+

l (n, σ) + 1
.

The additional valuation for an uninformed consumer at the longer queue (at state (1,0)) is

Vq(1, s, (1, 0), σ) = E (V1|1;σ)− E (V1|1) =
(
V+l (n, σ) + V−
l (n, σ) + 1

)
− V+ + V−

2
=
l ((1, 0), σ)− 1
l ((1, 0), σ) + 1

(∆/2) ∀s ∈ {1, 2}.

Solving for steady state probabilities, we get

Vq(1, s,n, σL) =
α∆
2

(
16.+ 36ρ+ 30ρ2 + 2ρ2α+ 11ρ3

16 + 8ρα+ 28ρ+ 10ρ2α+ 28ρ2 + 2ρ2α2 + 3ρ3α+ 20ρ3 + 6ρ4

)
∀s ∈ {1, 2} and

Vq(1, s,n, σS) =
α∆
2

(
16 + 36ρ+ 34ρ2 + 11ρ3 − 2ρ2α

16 + 44ρ− 8ρα− 10ρ2α+ 48ρ2 − 3ρ3α+ 26ρ3 + 6ρ4 + 2ρ2α2

)
∀s ∈ {1, 2}

Similar to the analysis in the proof of Lemma C2, we can show that for s ∈ {1, 2},

1. limρ→0 Vq(1, s,n, σL) = limρ→0 Vq(1, s,n, σS) = α∆
2 > 0.

2. Vq(1, s,n, σS) is decreasing in ρ ≥ 0 for all α and limρ→∞ Vq(1, s,n, σS) = 0.

3. Vq(1, s,n, σL) is unimodal in ρ ∈ [0,∞) for any α and achieves the maximum at some ρ =
ρmax. Further, limρ→∞ Vq(1, s,n, σL) = 0. Clearly at ρ = ρmax, Vq(1, s,n, σL) ≥ α∆

2 .

4. Vq(1, s,n, σL) ≥ Vq(1, s,n, σS) for all ρ, α.

Using items 1 and 2, we know that maxρ≥0{Vq(1, s,n, σS)} = (α∆/2). Then using item 3 it
follows that there exists a ρ such that Vq(1, s,n, σL) ≥ (α∆/2) ∀ρ ∈ [0, ρ].
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Proof. of Proposition 5: Let lXY represent the likelihood ratio at state 1 where X,Y (X,Y ∈
{L, S, F}) where represents the strategies of consumer class 1, 2 respectively. It is straightforward
to show that the informed consumers always follow their signal since lFY <∞(= 1

1−1
∆+cτ
∆−cτ ) for any

less-informed consumer strategy Y . For simplicity, let us represent the likelihood ratios at with
strategies Y by lY . (i.e. simply, lFF becomes lF ). Let us consider the likelihood ratio under the
strategy (F,L). lL = N(g, α, ρ)/D(g, α, ρ) where

N(g, α, ρ) = −16g − 16α+ 16αg − 28gρ− 36αλ+ 28gλα− 20ρ2g + 20ρ2αg − 4αρ2g +

4α2ρ2g − 4ρ2 − 28αρ2 − 4α2ρ2 − 8ρ3g − 6ρ3 − 11αρ3 + 8ρ3αg − 3ρ4 and

D(g, α, ρ) = −28ρ− 16− 3ρ4 − 14ρ3 − 16ρ2αg + 11αρ3 + 32αρ2 + 36αρ

−8ρα− 24ρ2 + 16g − 3ρ3α− 12ρ2α− 4α2ρ2g − 4αρ2g + 4α2ρ2g − 4

α2ρ2 + 4ρ2α2 + 16α− 16αg + 28gρ+ 20ρ2g + 8ρ3g − 8ρ3αg − 28gρα.

For the less-informed consumers to join the longer queue, we require lL > g
1−g

∆+cτ
∆−cτ . Since lL is

decreasing and
(

α+(1−α)g
1−α−(1−α)g

)
> g

1−g , we have lL > g
1−g

∆+cτ
∆−cτ for all ρ ∈ [0, ρ∗) for some ρ∗ such

that lL(g, α, ρ∗) = ∆+cτ
∆−cτ

g
1−g . (By continuity, ∃η∗ such that ρ ≤ ρ∗ for ∆+cτ

∆−cτ > η∗. Therefore, the
less-informed consumers do not join the longer-queue for any ∆+cτ

∆−cτ > η∗, i.e., for any c > c∗).
Hence the less-informed consumers join the longer queue, when waiting costs are lower than some
c∗ and for all ρ less than ρ∗.
For the second part,

Vq(1, s,n, σ) = E (V1|s;σ)− E (V1|s) ,

Vq(1, 1,n, σL) =
glLV+(1− g)V−
glL + (1− g)

− gV+ + (1− g)V−
glL + (1− g)

= g(1− g)∆
(lL − 1)

(glL + (1− g))
,

Vq(1, 2,n, σL) =
gV+(1− g)lLV+

g + lL(1− g)
− gV− + (1− g)V+

glL + (1− g)
= g(1− g)∆

(lL − 1)
(g + lL(1− g))

.

Similarly, for the additional valuation learned from the shorter queue (Vq(2, s,n, σ)), s ∈ {1, 2},

Vq(2, 1,n, σL) = g(1− g)∆
(1− lL)

(glL + (1− g))
and Vq(2, 2,n, σL) = g(1− g)∆

(lL − 1)
(g + lL(1− g))

. (5)

Using an approach similar to Lemma C2 and the above steps, we can show that lL > lF > lS for
ρ < ρ which concludes the proof.

Proof. of Proposition 6: The consumers impose the following simplification in their beliefs: The
fully informed consumers choose the better queue, and less-informed consumers follow their signal
(of strength g). They compute qi,j(n, σ′) where σ′ = {(σk)|σk(s,n) = s, k ∈ {1, 2}}, and qi,j(n, σ′)
is the steady state probability of state n in queue i when Vj > V−j . This implies that, under σ′,
when V1 > V2, fraction α + (1 − α)g consumers join queue 1 and the rest join queue 2. Similarly,

29



when V2 > V1, fraction α+(1−α)g join queue 2. Let g′ = α+g(1−α). Then 1−g′ = (1−g)(1−α).

Then we have, q1,1(n, σ′) = q1,1(n, σ′) =
(g′ρ)n1(1− g′ρ)
(1− (g′ρ)N+1)

and

q1,2(n, σ′) = q2,1(n, σ′) =
((1− g′)ρ)n2(1− (1− g′)ρ)

(1− ((1− g′)ρ)N+1)

Without loss of generality let n1 ≥ n2. Then for all (n1, n2) ∈ N ,

π1(n1, n2) = q1,1(n1, σ
′) · q2,1(n2, σ

′) and π2(n1, n2) = q1,2(n1, σ
′) · q2,2(n2, σ

′)

l(n1, n2) =
π1(n1, n2)
π2(n1, n2)

= (
g′

1− g′
)n1−n2 = (

α+ g(1− α)
(1− g)(1− α)

)n1−n2 .

Applying the above result to Lemma 1, we find that the queue joining policy is of threshold type.
Let b1 = (n1 − n2) be the solution to ( α+g(1−α)

(1−g)(1−α))(n1 − n2) = g(∆+(n1−n2)cτ)
(1−g)(∆−(n1−n2)cτ) . It follows that

when n1 − n2 ≥ b1, consumers always join the longer queue. When the queue length difference is
less than b1, they follow their own private signal. When α = 0, the above expression for b1 simplifies
to ( g

1−g )b1−1 = ∆+b1cτ
∆−b1cτ .

Proof. of Proposition 7:

Suppose a less-informed consumer arrives to find the queue lengths to be (n1, n2). For sake of
simplicity, let high value service be vh = max{V1, V2} and low value service be vl = max{V1, V2}.
Suppose the consumer chooses queue i (which is revealed to be worse ex post). We denote the
regret from a choice i as R(i). Regret is the additional expected utility she would have enjoyed
if she had made the alternate (better) choice. Let R(i|n, j, s) ∀ n ∈ N , j, s ∈ {1, 2} denote the
conditional regret a consumer that expects at state n, when her private signal is s and j denotes the
better server. In our context, R(i|n, j, s) = max{0, (E[V−i|s, Vj > V−j ]−cτ(n−i+1))−(E[Vi|s, Vj >
V−j ]− cτ(ni + 1))} ∀ i,n ∈ N , s ∈ {1, 2}, j = {1, 2}.

We now examine possible regret realizations (conditional on the state of the market), when a
consumer chooses a queue i: (i) Service i is better and has a shorter queue (no regret). (ii) Service
i is better, but the queue was longer. However, the higher value of the service was more than
the additional waiting costs (no regret). (iii) Service i is better, but the queue was longer. Thus
additional waiting costs negate any benefits from high service value. The regret is (E[V−i|Vi >
V−i]− cτ(n−i + 1))− (E[Vi|Vi > V−i]− cτ(ni + 1)). (iv) Service i is worse and had a longer queue.
The regret is (E[V−i|Vi < V−i]− cτ(n−i + 1))− (E[Vi|Vi < V−i]− cτ(ni + 1)). (v) Service i is worse
but also has a shorter queue. However, the waiting costs savings cannot make up for low value.
The regret is (E[V−i|Vi < V−i]− cτ(n−i + 1))− (E[Vi|Vi < V−i]− cτ(ni + 1)). (vi) Service i is worse
and has a shorter queue, but the lower waiting costs compensated for the lower service value (no
regret).

Note: For sake of analytical convenience, we first prove the result for minimax regret, and then
analyze expected regret.
Minimax Regret: The maximum regret in the context of two observable queues for any consumer
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is, MR(i|n, s) = maxj∈{1,2}{R(i|n, j, s)}. Let amr(s,n) ∈ {1, 2} be the action that minimizes the
maximum regret ∀s ∈ {1, 2}, ∀k, i.e.,

amr(s,n) = arg min
i∈{1,2}

{ max
j∈{1,2}

R(i|n, j, s)}∀k.

Considering cases (i) through (vi) above, we have

amr(s,n) = arg min
i∈{1,2}

{max{0, 0, V− − cτ(n−i + 1)− (V+ − cτ(ni + 1)),

V+ − cτ(n−i + 1)− (V− − cτ(ni + 1)), V+ − cτ(n−i + 1)− (V− − cτ(ni + 1)), 0}}

= arg min
i∈{1,2}

{max{0,−∆− c(n−i − ni)τ,∆− c(n−i − ni)τ}}

Without loss of generality, let n1 > n2. First we examine MR(1|n, s). Note that only cases (ii),
(iii) and (iv) apply.

MR(1|n, s) = max{0,−∆− c(n2 − n1)τ,∆− c(n2 − n1)τ} = (∆ + c(n1 − n2)τ)

Similarly, we examine the regret from choosing the shorter queue: MR(2|n, s) . Note that only the
cases (i), (v) and (vi) apply.

MR(2|n, s) = max{0,∆− c(n1 − n2)τ, 0} = max{0,∆− c(n1 − n2)τ}

Since (∆ + c(n1 − n2)τ) > max{0,∆ − c(n1 − n2)τ}, a consumer applies the minimax criterion
and will always choose queue 2 when n1 > n2. Thus, when consumers minimizing max regret
criterion will always join the shorter queue. They are indifferent between the queues when the two
queue lengths are equal. Therefore, minimizing maximum regret leads to the shorter queue joining
behavior.
Minimize Expected Regret:

Let aer(s,n) be the action that minimizes expected regret for a consumer arriving at n with signal
s ∈ {1, 2}, i.e., aer(s,n) = arg mini∈{1,2}ER(i|n, s)

Without loss of generality, let us consider n1 > n2. First, we note that in case (iii) need not be
considered, since the queue is so long as to be insufficient to overcome the additional value, from a
better queue. So, consumers will always join the shorter queue when ∆ − (n1 − n2)cτ < 0. Now,
we focus our attention on ∆− (n1 − n2)cτ .

ER(i|n, s) = R(i|n, 1, s) Pr[V1 > V2|n, s] +R(i|n, 2, s) Pr[V1 < V2|n, s]

= R(i|n, 1, s)Pr[n, s|V1 > V2]
Pr[n, s]

+R(i|n, 2, s)Pr[n, s|V1 < V2]
Pr[n, s]

.

ER(1|n, 1) =
(∆ + (n1 − n2)cτ)(1− g)π2(n)

gπ1(n) + (1− g)π2(n)
and ER(2|n, 1) =

(∆− (n1 − n2)cτ)gπ1(n)
gπ1(n) + (1− g)π2(n)

,
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ER(1|n, 2) =
(∆ + (n1 − n2)cτ)gπ2(n)

(1− g)π1(n) + gπ2(n)
and ER(2|n, 2) =

(∆− (n1 − n2)cτ)(1− g)π1(n)
(1− g)π1(n) + gπ2(n)

.

For a consumer to join the queue 1 at a state n, regardless of signal s, we need,
(∆ + (n1 − n2)cτ)(1− g)π2(n) < (∆− (n1 − n2)cτ)gπ1(n) and
(∆ + (n1 − n2)cτ)gπ2(n) < (∆− (n1 − n2)cτ)(1− g)π1(n), which gives,

l(n) >
(

g

1− g

)(
∆ + c(n1 − n2)τ
∆− c(n1 − n2)τ

)
.

Thus for given l (n;σ), assume that n1 > n2, and let σer(s,n) = i denote that the consumer joins
the queue i after observing state n to minimize regret (i.e. aer(s,n) = i).

σer(s,n) = 1 ⇔ g
1−g

∆+(n1−n2)cτ
∆−(n1−n2)cτ < l (n;σ) (L)

σer(s,n) = s ⇔ 1−g
g

∆+(n1−n2)cτ
∆−(n1−n2)cτ < l (n;σ) < g

1−g
∆+(n1−n2)cτ
∆−(n1−n2)cτ (F )

σer(s,n) = 2 ⇔ l (n;σ) < 1−g
g

∆+(n1−n2)cτ
∆−(n1−n2)cτ (S)

This condition is identical to the one derived in Lemma 1 for utility maximizing consumers. Finally,
the results can be shown to hold for asymmetric buffers in the same fashion.
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Online Appendix for
Herding in Queues with Waiting Costs: Rationality and Regret

Lemma T3. All consumers join the shorter queue when ∆ < cτ .

Proof. We establish that all consumers join the shorter queue when ∆ < cτ . This result helps us
focus on the case when ∆ > cτ , when consumers could possibly join the longer queue.

To join the longer queue (server 1), the consumer must have

E(V1|1;σ )− 2cτ> E(V2|1;σ )− cτ

V+l
L (n, σL) + V−
lL (n, σL) + 1

− 2cτ >
V−l

L (n, σL) + V+

lL (n, σL) + 1
− cτ

lL (n, σL)− 1
lL (n, σL) + 1

>
cτ

∆
Since ∆ = V+ − V−

When ∆ > cτ σ∗ = σL ⇔ lL (n, σL) >
∆ + cτ

∆− cτ
(6)

∆ < cτ σ∗ = σL ⇔ lL (n, σL) <
∆ + cτ

∆− cτ
(7)

Since lL
(
n, σL

)
> 0 and ∆+cτ

∆−cτ < 0 when ∆ < cτ , therefore σ∗ 6= σL when ∆ < cτ.

Similarly, the consumer joins the shorter queue when,

E(V1|1;σ )− 2cτ < E(V2|1;σ )− cτ

lS (n, σS)− 1
lS (n, σS) + 1

<
cτ

∆

when ∆ > cτ σ∗ = σS ⇔ lS (n, σS) <
∆ + cτ

∆− cτ

∆ < cτ σ∗ = σS ⇔ lS (n, σS) >
∆ + cτ

∆− cτ
> 0 (8)

The consumer always joins the shorter queue when ∆ < cτ .

Lemma T4. When ∆ > cτ : the likelihood ratios lLand lS at (1, 0) have the following properties:

1. limρ→0 l
L = limρ→0 l

S = 1+α
1−α > 1

2. lS is decreasing in ρ for all α and limρ→∞ l
S = 1.

3. lL is unimodal in ρ over ρ ∈ [0,∞) for any α and achieves the maximum lLmax = maxρ>0 l
L.

Further, limρ→∞ l
L = 1. Clearly lLmax ≥ 1+α

1−α .

4. The likelihood ratios can be ranked as follows: lL ≥ lS ≥ 1 for all ρ, α.

Proof. First, let ∆ > cτ.
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For a given strategy σ, let πi (n, σ) be the long run probability that the system state is n

conditional on Vi > V−i. We write out the steady state balance equations for all states when
V1 > V2.

λπ1(0, 0) = (1/τ)(π1(1, 0) + π1(0,1))

2(1/τ)π1(2, 2) = λ(π1(1, 2) + π1(2, 1))

(2(1/τ) + λ)π1(2, 1) = λ((1/2)(1− α) + α))π1(1, 1) + λπ1(2, 0) + (1/τ)π1(2, 2)

(2(1/τ) + λ)π1(1, 2) = λ(1/2)(1− α)π1(1, 1) + λπ1(0, 2) + (1/τ)π1(2, 2)

(λ+ (1/τ))π1(0, 1) = (1/2)(1− α)λπ1(0, 0) + (1/τ)π1(1, 1) + (1/τ)π1(0, 2)

(λ+ (1/τ))π1(1, 0) = ((1/2)(1− α) + α)λπ1(0, 0) + (1/τ)π1(1, 1) + (1/τ)π1(2, 0)

(λ+ (1/τ))π1(2, 0) = (Λ1 + αλ)π1(1, 0) + (1/τ)π1(2, 1)

(λ+ (1/τ))π1(0, 2) = Λ′1π1(0, 1) + (1/τ)π1(1, 2)

(λ+ 2(1/τ))π1(1, 1) = ((1− α)λ− Λ1)π1(1, 0) + (λ− Λ′1)π1(0, 1) + (1/τ)(π1(1, 2) + π1(2, 1))

In the system of equations, we use Λ1 and Λ′1 to denote the rate of consumers who arrive
and choose to join the longer queue at 1 = (1, 0) and 1′ = (0, 1), respectively. Therefore, if all
uninformed consumers join the longer queue, we have Λ1 = Λ′1 = (1−α)λ and when all uninformed
consumers join the shorter queue, we have Λ1 = Λ′1 = 0.

A similar set of equations can be written for the case when V2 > V1. Solving for the steady
state probabilities, we obtain the following likelihood ratios, after inserting ρ = λτ .

lL (α, ρ) = l
(
1;σL

)
=

π1(1, 0)
π2(1, 0)

(Λ1 = Λ′1 = (1− α)λ)

=
(3ρ4 + 10ρ3 + 7ρ3α+ 8 + 20ρ2α+ 2α2ρ2 + 14ρ2 + 22αρ+ 14ρ+ 8α)

(3ρ4 + 10ρ3 − 4ρ3α+ 8 + 14ρ2 − 10ρ2α+ 14ρ− 14αρ− 8α)

lS(α, ρ) = l(1;σS) =
π1(1, 0)
π2(1, 0)

(Λ1 = Λ′1 = 0)

=
3ρ4 + 13ρ3 + 4ρ3α+ 8 + 24ρ2 + 12ρ2α+ 22ρ+ 14αρ+ 8α

(3ρ4 + 13ρ3 − 7ρ3α+ 8 + 24ρ2 + 2α2ρ2 − 22ρ2α− 22αρ+ 22ρ− 8α)

1. limρ→0 l
L(α, ρ) = limρ→0 l

S(α, ρ) = 1+α
1−α > 1. It is easy to note that

lim
ρ→0

lL(α, ρ) = lim
ρ→0

(3ρ4 + 10ρ3 + 7ρ3α+ 8 + 20ρ2α+ 2α2ρ2 + 14ρ2 + 22αρ+ 14ρ+ 8α)
(3ρ4 + 10ρ3 − 4ρ3α+ 8 + 14ρ2 − 10ρ2α+ 14ρ− 14αρ− 8α)

=
(1 + α)
(1− α)

.

lim
ρ→0

lS(α, ρ) = lim
ρ→0

3ρ4 + 13ρ3 + 4ρ3α+ 8 + 24ρ2 + 12ρ2α+ 22ρ+ 14αρ+ 8α
(3ρ4 + 13ρ3 − 7ρ3α+ 8 + 24ρ2 + 2α2ρ2 − 22ρ2α− 22αρ+ 22ρ− 8α)

=
(1 + α)
(1− α)

.
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2. lS(α, ρ) is decreasing in ρ for all α.

dlS(α, ρ)
dρ

=

[
128ρα2−33ρ6α− 204ρ5α− 502ρ4α− 64α+ 64α2−644ρ3α+ +72ρ2α2

−476ρ2α− 224ρα+ 12ρ5α2+22ρ4α2+8ρ4α3+20ρ3α2−28ρ2α3−32ρα3

]
(3ρ4 + 13ρ3 + 8− 7ρ3α+ 24ρ2 + 2ρ2α2 − 22ρ2α− 22ρα+ 22ρ− 8α)2

< 0 ∀α ∈ [0, 1].

3. lL(α, ρ) is unimodal in ρ over [0,∞) and reaches its maximum at some ρ = ρmax (α) > 0.

dlL(α, ρ)
dρ

=

[
−128ρα2−33ρ6α− 180ρ5α− 470ρ4α+ 64α− 64α2−604ρ3α

−104ρ2α2−300ρ2α+ 32ρα− 12ρ5α2−10ρ4α2+8ρ4α3−20ρ3α2−28ρ2α3−32ρα3

]
(3ρ4 + 10ρ3 − 4ρ3α+ 8.0 + 14ρ2 − 10ρ2α+ 14ρ− 14ρα− 8α)2

=
G(α, ρ)

(3ρ4 + 10ρ3 − 4ρ3α+ 8.0 + 14ρ2 − 10ρ2α+ 14ρ− 14ρα− 8α)2

Since (3ρ4 +10ρ3−4ρ3α+8.0+14ρ2−10ρ2α+14ρ−14ρα−8α)2 > 0 the roots of the numerator
provides the extremum point of the function lL(α, ρ). Rearranging the numerator, we have

G(α, ρ) = −33αρ6 − α(180 + 12α)ρ5 − α(470 + 10α+ 8α2)ρ4 − α(604 + 20α)ρ3

− α(300 + 104α+ 28α2)ρ2 − 32α(α2 + 4α− 1)ρ+ 64α(1− α)

First, note that G(α, ρ) is a continuous and differentiable polynomial in ρ. Inspecting the
coefficients, we note that all coefficients are less than zero for ρi ∀ i = 2, . . . , 6 and for α > 0. The
coefficient for ρ0 is non negative for α ∈ [0, 1]. The coefficient for ρ is −32α(α2 + 4α− 1) which is
zero when α = (

√
5 − 2) (and negative for α > (

√
5 − 2), positive for α < (

√
5 − 2)). Therefore,

inspecting the sequence of coefficients of the polynomial beginning from the highest degree, there is
only one sign change for any 0 < α < 1. The sign changes from positive to negative when progressing
from the coefficient of ρ to the coefficient of the constant term (ρ0), when (

√
5 − 2) < α < 1 and

changes sign from positive to negative ρ2 to ρ when α < (
√

5 − 2) and from ρ2 to constant when
α = (

√
5 − 2). Applying Descartes’ rule of signs, the polynomial G(α, ρ) has at most one root in

the region ρ ∈ (0,∞). Therefore lL
(
1;σL

)
has at most one extremum in ρ ∈ (0,∞). We have to

show that the extremum always exists and that it is a maximum.
First, we note that lL(α, ρ) is continuous and differentiable everywhere in the interval [0,∞).

Consider the derivatives of the likelihood function at the extreme ends, limρ→0
dlS(1,σS)

dρ and limρ→∞
dlS(1,σS)

dρ .

lim
ρ→0

dlL(α, ρ)
dρ

= lim
ρ→0

[
−33αρ6−α(180 + 12α)ρ5−α(470 + 10α+ 8α2)ρ4−α(604 + 20α)ρ3

−α(300 + 104α+ 28α2)ρ2−32α(α2+4α− 1)ρ+ 64α(1− α)

]
(3ρ4 + 10ρ3 − 4ρ3α+ 8 + 14ρ2 − 10ρ2α+ 14ρ− 14ρα− 8α)2

=
64α(1− α)
64(1− α)2

=
α

1− α
> 0 ∀ α ∈ (0, 1]

3



lim
ρ→∞

dlL(α, ρ)
dρ

= lim
ρ→∞

[
−33αρ6−α(180 + 12α)ρ5−α(470 + 10α+ 8α2)ρ4−α(604 + 20α)ρ3

−α(300 + 104α+ 28α2)ρ2−32α(α2+4α− 1)ρ+ 64α(1− α)

]
(3ρ4 + 10ρ3 − 4ρ3α+ 8 + 14ρ2 − 10ρ2α+ 14ρ− 14ρα− 8α)2

< 0 ∀ α ∈ (0, 1].

Since dlL(α,ρ)
dρ is continuous and differentiable in ρ ∈ [0,∞) we have dlL(α,ρ)

dρ = 0 at some c ∈ (0,∞).

Therefore applying Rolle’s Theorem, we show that there is at least one point where dlL(α,ρ)
dρ = 0.

Hence, lL(α, ρ) is unimodal in ρ over [0,∞) and reaches a maximum at some ρ = ρmax (α) ∈ (0,∞).
4. First, let Dl(α, ρ) and DS(α, ρ) be the denominators in the expressions of lL(α, ρ), lS (α, ρ).

We will consider the difference between the likelihood expressions.

DS(α, ρ) = 3ρ4 + 13ρ3 − 7ρ3α+ 24ρ2 − 22ρ2α+ 2α2ρ2 + 22ρ− 22αρ+ 8− 8α

= (3ρ4 + 10ρ3 − 4ρ3α+ 14ρ2 − 10ρ2α+ 14ρ(1− α) + 8(1− α) + 3ρ3(1− α) + 2ρ2(5− 6α+ α2)

= DL(α, ρ) + 3ρ3(1− α) + 2ρ2(5− 6α+ α2)

Now consider the likelihood ratios.

lL(α, ρ) =
(3ρ4 + 10ρ3 + 7ρ3α+ 14ρ2 + 20ρ2α+ 2α2ρ2 + 14ρ+ 22αρ+ 8 + 8α)

(3ρ4 + 10ρ3 − 4ρ3α+ 8 + 14ρ2 − 10ρ2α+ 14ρ− 14αρ− 8α)
=
NL(α, ρ)
DL(α, ρ)

.

lS(α, ρ) =
3ρ4 + 13ρ3 + 4ρ3α+ 8 + 24ρ2 + 12ρ2α+ 22ρ+ 14αρ+ 8α

(3ρ4 + 13ρ3 − 7ρ3α+ 8 + 24ρ2 + 2α2ρ2 − 22ρ2α− 22αρ+ 22ρ− 8α)
=
NS(α, ρ)
DS(α, ρ)

.

lL(α, ρ)− lS(α, ρ) =

[
−1ρα(21ρ5α− 21ρ5 − 160ρ4 − 440ρ3 + 160ρ4α+ 440ρ3α

+592ρ2α− 592ρ2 − 416ρ+ 416ρα− 128 + 4ρ3α2 − 4ρ3α3 + 128α)

]
DL(α, ρ)DS(α, ρ)

=

ρα

[
21ρ5(1− α) + 160ρ4(1− α) + 440ρ3(1− α) + 592ρ2(1− α)

+416ρ(1− α) + 128(1− α) + 4ρ3α2(1− α)

]
DS(α, ρ)DL(α, ρ)

≥ 0

For lL (α, ρ) > 1, we need

(3ρ4 + 10ρ3 + 7ρ3α+ 8 + 20ρ2α+ 2α2ρ2 + 14ρ2 + 22αρ+ 14ρ+ 8α)
(3ρ4 + 10ρ3 − 4ρ3α+ 8 + 14ρ2 − 10ρ2α+ 14ρ− 14αρ− 8α)

> 1

7ρ3α+ 20ρ2α+ 2α2ρ2 + 22αρ > −4ρ3α− 10ρ2α− 14αρ which is true.

Similarly we have lS(α, ρ) > 1∀α, ρ.
Therefore lL(α, ρ) ≥ lS(α, ρ) ≥ 1 for all α ∈ [0, 1].
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Appendix D: Strategies with Asymmetric buffers

In this section, we analyze herd behavior in queues with asymmetric buffers. There are α informed
consumers in the market and the fraction (1− α) are consumers with signal strength g ∈ [1/2, 1).
Specifically, we examine small buffers with N1 = 2 and N2 = 1. Following the model specifications,
the strategies at all states except (0, 0) and (1, 0) are immediately specified. We provide equilibrium
results when consumers follow their signals at (0, 0). Note that Corollary 2 may not hold under
asymmetric demand buffers. Nevertheless we noted, for our analysis, the less-informed consumers
never joined any server with probability 1 (i.e. always join server 1). Due to brevity, we only
present the results for consumers following their private signals at (0, 0).

Using the steps similar to Lemma C2, we write the steady state balance equations, and de-
rive the likelihood ratios for different strategies at the state (1, 0). Using notations as before, let
lL(α, ρ, g), lF (α, ρ, g), lS(α, ρ, g) denote the likelihood ratios under the strategies σL, σF , σS at the
state.

We find lL(α, ρ, g) = NL(α,ρ,g)
DL(α,ρ,g) , lF (α, ρ, g) = NF (α,ρ,g)

DF (α,ρ,g) , and lS(α, ρ, g) = NS(α,ρ,g)
DS(α,ρ,g) such that,

NL(α, ρ, g) = (2ρ2 + 2ρ+ 3αρ− 3ρgα+ 3ρg − 4αg + 4α+ 4g)(4ρ4 + 9ρ3 + 9ρ− 2ρ3α+ 12ρ2 − 2ρ3g

+2gρ+ ρ5 + 2ρ2g2 + ρ3g2 − 4ρ2g2α− 2ρ3g2α+ 2ρ2g2α2 + ρ3g2α2 + ρ3α2 − 2ρ2α

+2ρ2α2 + 2ρα+ 4− 4ρ2gα2 + 6ρ2gα− 2ρ3α2g + 4ρ3αg − 2ρ2g − 2gρα)

DL(α, ρ, g) = (4ρ4 + 8ρ3 + 11ρ+ 12ρ2 − 2gρ+ ρ5 + 2ρ2g2 + ρ3g2 − 4ρ2g2α− 2ρ3g2α+ 2ρ2g2α2

+ρ3g2α2 + ρ3α2 − 2ρ2α+ 2ρ2α2 − 2ρα+ 4− 4ρ2gα2 + 6ρ2gα− 2ρ3α2g + 2ρ3αg − 2ρ2g + 2gρα)

(2ρ2 + 5ρ− 3αρ+ 3ρgα− 3ρg − 4α+ 4αg + 4− 4g)

NF (α, ρ, g) = (−4gα+ 4g + 4α+ 2ρ+ 3αρ− 3ρgα+ 3ρg + 2ρ2)(−2αρ2 + 2αρ+ 4 + 9ρ+ 12ρ2 + 9ρ3 + 4ρ4

+ρ5 + 4αρ2g − 2gρ2 − 1ρ3g − 2ρ3α+ 2ρ3gα+ α2ρ3 − 1α2ρ3g + 2α2ρ2 − 2α2ρ2g)

DF (α, ρ, g) = (2αρ2 + ρ3g + 4 + 9ρ+ 10ρ2 + 8ρ3 + 4ρ4 + ρ5 − 2αρ2g − 1ρ3gα+ 2gρ2 + ρ3α)

(−4α+ 4gα+ 4− 4g + 5ρ− 3αρ+ 3ρgα− 3ρg + 2ρ2)

NS(α, ρ, g) = (−4gα+ 4g + 4α− 2ρ− 3αρ− 3ρgα+ 3ρg + 2ρ2)(4 + 11ρ+ 12ρ2 + 8ρ3 + 4ρ4 + ρ5)

DS(α, ρ, g) = (α2ρ3 − 2αρ+ 2α2ρ2 − 2αρ2 + 4 + 11ρ+ 12ρ2 + 8ρ3 + 4ρ4

+ρ5 − α2ρ3g + ρ3gα− 2α2ρ2g + 2αρ2g)(−4α+ 4gα+ 4− 4g + 5ρ− 3αρ+ 3ρgα− 3ρg + 2ρ2)

Following the same process as in Lemma C2, we can show that lL(α, ρ, g) is decreasing in ρ and
as limρ→0 l

L(α, ρ, g) = 1+α
1−α . So, many of the properties of the likelihood ratio curves derived for

the symmetric case continue to hold. In particular, we can show that for any given g, the likelihood
ratio lL is decreasing in ρ. This indicates for cτ ≤ α∆, there exist ρ, so that joining the longer
queue always is an equilibrium strategy when ρ ∈ (0, ρ). This property is illustrated in Figure D1.
Also, note from Figure D1, longer queue joining strategy is in equilibrium for low arrival rates.
Assuming Independent Queues: Asymmetric Case: Let N1, N2 be the buffer sizes, and let
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Figure D1: Likelihood ratio curves lL, lS (under strategies σS and σL respectively) are represented
by thick, dotted curves respectively. The threshold ∆+cτ

∆−cτ is indicated by the thick horizontal line.
The longer-queue joining equilibrium strategy is shown by arrow marks. The heterogenous market
with parameters ∆ = 1, c = 0.3, α = 0.25 and g = 0.75 is shown. Notice that even for asymmetric
buffers, joining the longer queue σL is in equilibrium for low arrival rates, and at higher arrival
rates, consumers join the shorter queue.

N1 > N2 Then we have,

qi,j(n, σ′) =
(g′ρ)n1(1− g′ρ)
(1− (g′ρ)Ni+1)

j = i

=
((1− g′)ρ)n2(1− (1− g′)ρ)

(1− ((1− g′)ρ)Ni+1)
j 6= i

Without loss of generality let N1 ≥ N2. Then for all (n1, n2) ∈ N ,

π1(n1, n2) = q1,1(n1, σ
′) · q2,1(n2, σ

′)

=
(g′ρ)n1(1− g′ρ)
(1− (g′ρ)N1+1)

((1− g′)ρ)n2(1− (1− g′)ρ)
(1− ((1− g′)ρ)N2+1)

π2(n1, n2) = q1,2(n1, σ
′) · q2,2(n2, σ

′)

=
((1− g′)ρ)n1(1− (1− g′)ρ)

(1− ((1− g′)ρ)N1+1)
(g′ρ)n2(1− g′ρ)
(1− (g′ρ)N2+1)

lasym(n1, n2) =
π1(n1, n2)
π2(n1, n2)

= (
g′

1− g′
)n1−n2

= (
α+ g(1− α)

(1− g)(1− α)
)n1−n2

[
(1− ((1− g′)ρ)N1+1)(1− (g′ρ)N2+1)

(1− (g′ρ)N1+1)1− (1− ((1− g′)ρ)N2+1)

]
> (

α+ g(1− α)
(1− g)(1− α)

)n1−n2 .

Therefore, we can show that herding occurs at more states (conditional on n1 > n2) given N1 > N2.
The threshold basym1 that satisfies (lasym(n1, n2))b

asym
1 = g(∆+b1cτ)

(1−g)(∆−b1cτ) is such that basym1 < b1 when
n1 > n2, and basym1 < b1 when n2 > n1.
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Appendix E: Markets with Partial Observability

We now analyze the herd behavior in partially observable markets. In our two-server market, one
queue length is observed, and the other queue remains unobserved. This might occur in the case of
consumers observing the congestion at the restaurant they pass first. They might use the congestion
at the restaurant in deciding to dine there, or decide to go to another restaurant down the street.
Suppose that all consumers arriving at the market observed the queue length at server 1, while the
queue at server 2 remains unobserved. Some consumers decide to join queue 1 depending on the
length of the queue, and the rest balk from queue 1 and join the other queue that is unobservable.

Proposition E5. When consumers minimize the worst case regret, they join the observable queue
when its length, n is less than a threshold n̂ such that ρn̂+2 = n̂

n̂+1 , and join the unobservable queue
otherwise.

Proof. of Proposition E5:

Suppose a consumer arrives at the market and observes the queue length to be n, and assumes
(rationally) the equilibrium queue arrival rate at the other unobservable queue is λe. Let 1 be
the observable queue. The consumer minimizes regret instead of maximizing expected utility. Let
R(i|n1, s)∀ i, s ∈ {1, 2}, n1 ∈ N represent the worst case regret of the consumer with signal s who
joins queue i, when she observes the queue length to be n1. Let ρe = λeτ .
Therefore, maxR(1|n1, s, V1 > V2) = max{0, (V+ − cτ/(1− ρe))− (V− − (n1 + 1)cτ)}.
Similarly, maxR(2|n1, s, V1 > V2) = max{0, (V+ − (n1 + 1)cτ) − (V− − cτ/(1 − ρe))}. Again, let
amr(s, n) ∈ {1, 2} be the action that minimizes maximum regret at a state n when seeing signal s.

amr(s, n1) = arg min
{1,2}

{maxR(1),maxR(2)}

= arg min
{1,2}

{max{0, (V+ − cτ/(1− ρe))− (V− − (n1 + 1)cτ)},

max{0, (V+ − (n1 + 1)cτ)− (V− − cτ/(1− ρe))}

= arg min
{1,2}

{(V+ − V−)− (cτ/(1− ρe)− (n1 + 1)cτ), (V+ − V−)− ((n1 + 1)cτ − (cτ/(1− ρe)))}

= arg min
{1,2}

{−(cτ/(1− ρe)− (n1 + 1)cτ),−((n1 + 1)cτ − cτ/(1− ρe))}.

= arg max
{1,2}

{(cτ/(1− ρe)− (n1 + 1)cτ), ((n1 + 1)cτ − cτ/(1− ρe))}.

This implies that the consumer chooses to join queue 1, if n1 ≤ n̂ = (1/(1 − ρe)) − 1, otherwise
she joins queue 2, which has expected equilibrium arrival rate of λe (regardless of the signal). We
assume that the indifferent consumer chooses the observable queue.
We now solve for the equilibrium arrival rate λe. Note that the volume of consumers arriving to
queue 2 is identical to the rate of consumers who balked from queue 1. Therefore λe = λPr[n1 =
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n̂+ 1]. Plugging in the expression for n̂ and using M/M/1/N queue expressions, we have

λe = λ
ρn̂+1

1− ρn̂+2
.

n̂ =
1

1− (ρ ρn̂+1

1−ρn̂+2 ))
− 1

=
1− ρn̂+2

1− 2ρn̂+2
− 1

⇒ ρn̂+2 =
n̂

n̂+ 1
.

Proposition E5 indicates that consumers join the first server below a threshold queue length,
based on the expected equilibrium queue length at the unobservable queue. The worst case regret
occurs when consumers join a long queue at server 1 and then find out ex post that server 2 is
the better server, and was also not as congested as the first server when they arrived. In general,
it appears that when consumers minimize worst case regret, the herd behavior observed under
rational consumer decision making persists, but may not be as pronounced.
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