
MANUFACTURING & SERVICE OPERATIONS MANAGEMENT
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 1523-4614 |eissn 1526-5498 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Collaboration and Multitasking in Networks:
Architectures, Bottlenecks and Capacity

Itai Gurvich
Kellogg School of Management, i-gurvich@kellogg.northwestern.edu,

Jan A. Van Mieghem
Kellogg School of Management, vanmieghem@kellogg.northwestern.edu,

Motivated by the trend towards more collaboration in work flows, we study networks where some activ-

ities require the simultaneous processing by multiple types of multitasking human resources. Collaboration

imposes constraints on the capacity of the process because multitasking resources have to be simultaneously

at the right place. We introduce the notions of collaboration architecture and unavoidable bottleneck idle-

ness (UBI) to study the maximal throughput or capacity of such networks. Collaboration and multitasking

introduce synchronization requirements that may inflict unavoidable idleness of the bottleneck resources:

even when the network is continuously busy (processing at capacity), bottleneck resources can never be fully

utilized. The conventional approach that equates network capacity with bottleneck capacity is then incorrect

because the network capacity is below that of the bottlenecks. In fact, the gap between the two can grow

linearly with the number of collaborative activities.

Our main result is that networks with nested collaboration architectures have no unavoidable bottleneck

idleness. Then, regardless of the processing times of the various activities, the standard bottleneck procedure

correctly identifies the network capacity. We also prove necessity in the sense that, for any non-nested

architecture, there are values of processing times for which unavoidable idleness persists.

The fundamental tradeoff between collaboration and capacity does not disappear in multi-server networks

and has important ramifications to service-system staffing. Yet, even in multi-server networks, a nested

collaboration architecture still guarantees that the bottleneck capacity is achievable. Finally, simultaneous

collaboration, as a process constraint, may limit the benefits of flexibility. We study the interplay of flexibility

and unavoidable idleness and offer remedies derived from collaboration architectures.

Key words : simultaneous collaboration, multitasking, architecture, work flow design, organizational design,

capacity, stability, flexibility, control, priorities, bottlenecks

History :

1. Introduction

Motivated by the prevalence of collaborative processing in services, we study how simultaneous

collaboration and multitasking impact capacity. By simultaneous collaboration we mean that some

activities require the simultaneous processing by multiple types of resources. Discharging a patient,

for example, may require the presence of both a doctor and a nurse. Multitasking means that a

resource performs multiple activities. Multitasking is equivalent to resource sharing, which means

that multiple activities require the same resource. A doctor, for example, may be required for

1

Gurvich and Van Mieghem: Collaboration in Networks
2 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

a1 a2 a3

r1, r2 r1 r2

Figure 1 A basic collaboration (BC) network where two resources collaborate on the first activity.

both patient diagnosis and for patient discharge. Simultaneous collaboration imposes constraints

on the capacity of the process because multitasking resources have to be simultaneously at the

right place. The effects of these resource-synchronization requirements are more pronounced in

human operated settings in which resources cannot be “split”. An emergency room doctor may split

her time between multiple activities—spending x% of her time in one activity and the remaining

(100−x)% in another—and she may switch between the activities frequently, yet she cannot process

both activities at the same time (which may, in this example, require her physical presence in two

distinct locations).

The conventional approach for computing the capacity of a processing network follows three

steps: (i) compute the capacity of each resource; (ii) identify the bottleneck resources—these are

the resources with the smallest capacity. Steps (i) and (ii) have been formalized through a linear

program that is called the static planning problem (SPP); see Harrison (2002). Finally, step (iii)

of the conventional approach equates the network capacity with the bottleneck capacity.

In the presence of collaboration and resource sharing, however, the network capacity can be

strictly smaller than the bottleneck capacity. Indeed, it is intuitively clear that synchronization

constraints may lead to capacity losses. Given the simplicity and ubiquity of the traditional bot-

tleneck approach, it is important to know when it is valid: when does bottleneck analysis yield

the correct network capacity? This paper proffers some explicit and constructive answers to those

questions for flow systems where some activities require multiple resources. Two simple examples

serve well to set the ground for the general development in our paper.

Consider the basic collaboration (BC) network in Figure 1 with three activities a1, a2 and a3

and two resources r1 and r2. The resources co-process a1, namely they both have to be present

for a unit of flow to be processed, and both resources are shared among multiple activities. The

average processing time of activity i∈ {1,2,3} is mi.

Conventional bottleneck analysis considers each resource in isolation: for resource i working in

isolation, the maximal number of customers it could serve per unit of time would be 1/(m1 +mi+1).

This maximal throughput is called the resource capacity and is denoted by:

Capacity of resource i is λi = (m1 +mi+1)
−1. (1)

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 3

Resource i is a bottleneck if it has the lowest resource capacity:

Resource k is a bottleneck ⇔ λk ≤ λj for all j 6= k. (2)

In the example, resource 1 is the bottleneck if m2 > m3 and resource 2 is the bottleneck if the

reverse holds. They are both bottlenecks if m2 = m3. The network capacity cannot exceed the

capacity of the bottleneck resource(s):

λBN = min
i
λi = min

{
(m1 +m2)

−1, (m1 +m3)
−1} . (3)

Conventionally, one equates network capacity with bottleneck capacity but this can be incorrect:

A first observation is that, in the presence of collaboration, one must be careful about the

prioritization policy even in the simplest of networks. To see this, assume first that both resources

give priority to their individual tasks: whenever resource i has work available for activity i+ 1,

the resource prioritizes that work (in contrast, say, to prioritizing work in activity 1). The central

observation here is that under this policy the total number of jobs in the system is identical to

that in a single server queue with service time equal to the sum of the three activity times so that

the maximal throughput or network capacity λnet is

λnet = (m1 +m2 +m3)
−1 <λBN. (4)

This can be easily argued through a sample path argument. Let {tj} be the consecutive customer

arrival times and {(σj1, σ
j
2, σ

j
3), j ≥ 0} be the corresponding service time triplets (customer j spends

requires σj1 of service in activity 1, σj2 in activity 2 etc.). Let us assume that the system starts at

time t0 = 0 with 0 jobs in the system and consider the first customer to arrive, say at time t1.

Then, both resources will start working on this customer at time t1. They will finish working on

this customer at time t1 + σ1
1 at which time (due to the priorities) r1 will move to process this

customer at a2. Once r1 finishes at time t1 + σ1
1 + σ1

2, r2 will start processing this customer at

a3. Only then will the two resources be available to process the next arrival at a1 (note that the

resource will not switch to a1 even if there are arrivals before t1 + σ1
1 + σ1

2 + σ1
3). Continuing this

way, one sees that the jth to arrive (let its arrival time be tj and its waiting time in the first queue

be wj) departs at time tj +wj +σj1 +σj2 +σj3. The process behaves as if there were a single server

processing sequentially each customer unit through the steps a1, a2 and a3.

We find then that (i) the queue count grows without bound even with an inflow rate below

the bottleneck capacity; and that (ii) under this prioritization scheme, collaboration results in a

Gurvich and Van Mieghem: Collaboration in Networks
4 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

a1 a2 a3

r1, r2 r2,r3 r3,r1

Figure 2 The BC+ network: the BC network augmented with a third collaborative resource.

capacity loss: If mi ≡ 1/2, the maximal throughput drops to 2/3< 1 : in the long run, both resources

are only utilized 66 2
3
% and are forced to idle 33 1

3
% even though customers are waiting for service.

In this basic collaboration example the reason for the significant capacity loss is not the required

collaboration in itself but rather the prioritization policy that introduces idleness. In the BC

network, under the priority policy we discussed, a resource (r1 or r2) will remain idle frequently

when there are jobs waiting in a1. Indeed, per our sample path discussion above, for each and

every job, r2 must be idle while r1 is processing a customer in a2 and r1 must be idle while r2 is

processing this customer in a3. Informally at this stage we can say that there is avoidable idleness

in the system if resources remain idle even if there are jobs waiting in queues that they serve AND

if there exist a policy that could avoid this idleness.

A possible resolution to avoid idleness in the BC network is to prioritize the collaborative work in

activity a1. Under a preemptive version of that policy, if any customers wait at a1, both resources

will process them. Thus, in the sample path discussion above, if customer 2 arrives before customer

1 completed processing in all activities, both resources move to a1 as soon they are available.

Preemptively prioritizing the collaborative work eliminates avoidable idleness thereby maximizing

the throughput in the BC network and achieving the bottleneck capacity.

In this example, then, the bottleneck analysis is valid – there is a policy under which bottleneck

idleness is avoided so that the network capacity is equal to the bottleneck capacity. There are

collaboration architectures that inherently introduce unavoidable bottleneck idleness (UBI) and for

which collaboration comes at a capacity loss relative to the bottleneck capacity. Figure 2 augments

the BC network with a third collaborative resource r3. The bottleneck capacity is

λBN = min
i
λi = min

{
(m1 +m2)

−1, (m2 +m3)
−1, (m3 +m1)

−1} . (5)

Regardless of the prioritization policy, however, the collaboration architecture inherently forces at

least one resource to be idle at any time. Consider, as before, the case where mi ≡ 1/2. All three

resources have equal workload and are bottlenecks with λBN = 1. However, the collaboration archi-

tecture prevents any parallel processing; i.e., no activities can be simultaneously executed. Under

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 5

no policy can the total queues be smaller than in a single server queue with service time equal to the

sum of the three activity times and, consequently, the associated maximal throughput λnet equals

(4). Thus, each bottleneck resource is at most 2/3 utilized and features 1/3 unavoidable idleness

due to the specific collaboration architecture. This phenomenon is driven by three requirements

that, in combination, create unavoidable bottleneck idleness: simultaneous collaboration by multi-

tasking resources that cannot be split. Collaboration, multitasking, or non-splitting in isolation do

not create a capacity loss, but in combination their effect is significant.

Assume next the “multi-server” case where we have two units of each of the resource types

1,2 and 3. Then, the bottleneck capacity is 2 and it is now achievable. Indeed, we can split each

resource type and dedicate one unit of each resource to each of its activities thus breaking the

collaboration need (and removing its implications). But this is very particular to these numbers

(i.e, to mi ≡ 1/2) and even for this simple network there are processing times for which having

multiple-units of each resource cannot remove the unavoidable bottleneck idleness.

We make the following contributions in the paper:

(1) Formalizing unavoidable bottleneck idleness (UBI): Collaboration introduces UBI meaning

that bottlenecks can never be fully utilized. The conventional bottleneck approach (SPP) then

overestimates the network capacity. We formulate an augmented linear program (SPPC - see (13)

on p. 12) that takes into account processing conflicts and that correctly calculates network capacity.

UBI captures the gap between the bottleneck capacity, as calculated by the SPP, and the network

capacity, as derived by the SPPC. We show that this gap can grow linearly with the number of

collaborative activities.

(2) Architectures of collaboration: We introduce a notion of architecture of collaboration that is

characterized by the way resources are assigned to activities. We subsequently identify classes of

architectures, namely nested architectures, for which we prove that UBI is always 0. For these archi-

tectures collaboration comes at no capacity loss (provided an appropriate policy is used) and the

network capacity equals the bottleneck capacity. This simple architectural condition characterizes

when the conventional bottleneck approach is correct.

Collaboration architectures can be nested, weakly non-nested, or strongly non-nested. Nested

and weakly non-nested architectures never feature unavoidable idleness (i.e., UBI = 0). Strongly

non-nested architectures can have unavoidable idleness (UBI > 0) for certain arrival and service-

time parameter values.

The existence of UBI is intimately linked to integrality gaps in integer and linear programming.

Indeed, our proofs build on relating the architectures of collaboration to the algebraic structure of

the linear program that defines bottleneck capacity.

Gurvich and Van Mieghem: Collaboration in Networks
6 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

(3) Collaboration and scale: We show that UBI is not a “small-number issue:” it does not dis-

appear in large systems that have multiple units of each resource type. Nested collaboration archi-

tectures guarantee that multiserver networks feature no unavoidable bottleneck idleness. This fact

has ramifications for the staffing of service systems with collaboration.

(4) Flexibility and unavoidable idleness: Flexibility is expected to increase network capacity by

shifting some work from bottleneck resources to non-bottlenecks. Simultaneous collaboration can,

however, limit the benefits of flexibility: in most cases, unavoidable bottleneck idleness remains

unavoidable when flexibility is introduced. In some cases flexibility brings no increase to the net-

work capacity despite improvement promised by the bottleneck analysis. Extending our previous

results, we provide conditions on the architecture that guarantees that UBI equal zero and, in

particular, that the expected benefit of flexibility can be materialized despite the synchronization

requirements. We draw some implications to flexibility investments: simple rules of thumb that can

help distinguish between “problematic” and “safe” flexibility investments.

We end this introduction by pointing out important connections to existing literature. The

dynamic control of processing networks that feature “simultaneous possession of non-splittable

resources” with the objective of maximizing throughput has been studied by, for example, Tassiulas

and Ephremides (1992), Dai and Lin (2005) and Jiang and Walrand (2010). The control literature

takes the network capacity (as captured by the SPPC) as its departure point and studies how to

achieve this maximal throughput through dynamic control. That stream of literature allows for a

variety of processing constraints—collaboration being only one such possible constraint—and seeks

to optimally control the network to achieve the network capacity or to optimize various refined

performance metrics. The literature on (generalized) switches and on max-weight policies is in this

spirit; see e.g. Stolyar (2004), Shah and Wischik (2012). While less applicable to human operated

processes, simultaneous possession of splittable resources appears in the context of bandwidth

sharing; see e.g. Massoulie and Roberts (2000).

We do not consider general constraints; we specifically are interested in collaboration and resource

sharing. The question we address is when, and why, structural properties of the collaboration

architecture result in a gap between the network capacity and the bottleneck capacity.

Simultaneous resource requirements also appear in project management, specifically Resource

Constrained Project Scheduling (see e.g. Herroelen et al. (1998), Brucker et al. (1999)), machine

scheduling and loss networks. Embedded in processing networks—and indeed in the concept

“capacity”—is the repetitive nature of activities and hence “flow.” While the BC and BC+ net-

works are fundamentally different from a capacity point of view, the project management literature

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 7

would be indifferent between the two. With all service times equal to 1 hour, the BC and BC+

network both take 3 hours to complete a “project” that consists of activities 1, 2 and 3 with

the precedence relation 1→ 2→ 3. The same observations apply to the scheduling of machines to

optimize flow time for a finite list of jobs as studied, e.g., by Dobson and Karmarkar (1989).

Loss networks feature a stream of arrivals that may require simultaneous access to multiple

so-called “links” (the equivalent of resources in our setting) for their transmission. If not all the

required links are available at the moment of arrival, the arriving unit is lost. Loss networks, by

definition, do not have buffers. In our setting, if resources 1 and 2 in the BC network are busy with

activities 2 and 3, an arriving job is not lost even though the resources are not available in activity

1. We can place the arriving unit in “inventory” and process it later. This would be not be the case

in a loss network: the lack of buffers/storage leads to a very different behavior of throughput. Yet,

also here the underlying resource-to-activity mapping (what we call the collaboration architecture)

plays a facilitating role; see e.g. Kelly (1991), Zachary and Ziedins (1999) and the references therein.

Recent attention has been devoted to collaboration from the viewpoint of team dynamics and

incentives for collaboration; see e.g. Roels et al. (2010) and the references therein. We do not model

such issues in this work.

Finally, our paper studies the validity of capacity analysis for collaborative networks based on

conventional bottleneck analysis. Other settings where a “naive” view of capacity falls short of

capturing reality are studied, for example, in Bassamboo et al. (2010) and Chan et al. (2014) or in

the context of closed queueing networks see Haviv (2013, Chapter 10). In a supply chain context,

Graves and Tomlin (2003) observe that the total shortfall as computed by considering each stage

of the supply chain in isolation may underestimate the total network (i.e, multi-stage supply chain)

shortfall. Their observation is similar in spirit to ours: considering each stage or each resource in

isolation may underestimate network losses. Their paper focuses on the shortfall (unmet demand)

in a single-period problem while ours focuses on the loss in network capacity (maximal sustainable

throughput) in a dynamic processing network.

In contrast to the work cited above, we limit our attention to deterministic or “fluid”analysis of

the stochastic system. Our objective is to study the impact of collaboration and resource sharing

on network capacity by relating to bottleneck analysis and network topology (the collaboration

architecture). Dynamic control of stochastic systems is postponed as future work; see §7.

Some of the answers we provide in this paper are sufficiently simple to bring to the class-

room. Indeed, two well-known cases that are widely used to teach capacity—“Pizza-Pazza” by

Gurvich and Van Mieghem: Collaboration in Networks
8 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Van Mieghem (2008) and “Weight Solutions Clinic - Bariatric Surgery” by Chopra and Savaskan-

Ebert (2013)—feature simultaneous collaboration and resource sharing. Smart students invariably

question whether bottleneck analysis is correct or whether timing conflicts would create losses. Our

theory provides a simple tool to show in both cases that the network capacity does equal the bot-

tleneck capacity (regardless of processing times) because both networks have nested collaboration

architectures and thus are guaranteed to exhibit no unavoidable idleness.

2. Network Notation and Graphic Conventions

We introduce some notation to facilitate the discussion of general networks. There is a set K =

{1, . . . ,K} of resources and a set I = {1, . . . , I} of activities. Following standard terminology we

introduce the K × I resource-activity incidence matrix A where Aki = 1 if resource k is required

for activity i, and Aki = 0 otherwise. The distinguishing feature of collaborative networks is that A

has at least one column (activity) with multiple 1’s (collaborative resources). The distinguishing

feature of resource sharing is that at least one row (resource) has multiple 1’s.

For i∈ I, we let R({i}) be the set of resources required for activity i (i.e, k ∈R({i}) if Aki = 1).

More generally, R(A) is the set of resources required for some activity in the set A⊆I: k ∈R(A)

if k ∈R({i}) for some i∈A. In this paper we assume that each activity is associated with a single

buffer: there are I buffers. To avoid trivialities we assume that each resource is required for at least

one activity so that R(I) =K. We let S(i, j) be the set of resources shared by activities i and j:

S(i, j) =R({i})∩R({j}).

Each of the buffers can have exogenous arrivals. Let α= (α1, . . . , αI) be the rates of exogenous

arrivals where αi = 0 if there are no exogenous arrivals to buffer i. We assume that there exists

at least one i with αi > 0 (the network is open – it has exogenous arrivals). The routing in the

network is assumed to be Markovian with a routing matrix P so that Pkl is the probability that a

customer is routed to buffer l upon its completion of service at activity k. The matrix P ′ denotes

the transpose of P . To ensure that our queueing network is open, the matrix P (and, in turn, P ′)

is assumed to have spectral radius less than 1. The matrix

Q= (1−P ′)−1 = 1 +P ′+ (P ′)2 + (P ′)3 + · · · ,

where (P ′)n denotes the nth power of P ′, is then well defined and the jth element of

λ=Qα,

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 9

is interpreted as the rate of arrivals to activity j if all service times were 0. Informally, if the

network can sustain the exogenous arrival rate vector α then one expects that, in the long run, λi

will be the input (and also the output) rate in activity i. Again, to avoid trivialities we assume

that λ is a strictly positive vector. Finally, the service time in activity i has a mean mi.

The probabilistic properties of the arrival, service and routing processes are immaterial for this

paper. We refer to (α,P,A,m) as the network primitives. It is an established fact that under simple

independence assumptions and assuming finite means for the various variables, a deterministic

“fluid” model is a powerful tool to characterize capacity and throughput; see e.g. Dai (1999).

Our setup is reminiscent of the traditional multi-class queueing network setting; see e.g. Williams

(1998). Yet, it is different in terms of what can be referred to as a station here. In the typical mul-

ticlass setting where each activity is performed by a single resource, a station typically corresponds

to a resource performing a set of activities. That representation can be called a resource view

of a network. In collaborative networks with resource sharing, however, an activity view is more

appropriate. A station here corresponds to an activity. A station may require the collaboration of

multiple resources and subsets of these resources may be required also at other stations.

The setup we introduced thus far does not cover parallel server networks or systems where an

activity can pull jobs from several buffers simultaneously (such as in a fork-join network). We

choose the more restricted setting to focus on key aspects of collaboration.

Graphic conventions: We draw multiple examples throughout this paper. Our convention is to

depict each activity by a rectangle (the activity has a single buffer but may have multiple resource

involved). Two activities are connected by a line if some of the jobs leaving the first station are

routed to the second. Within each rectangle we put the activity number (we add the letter a to

emphasize that this is an activity). Below each rectangle we list the resources that are required for

this activity (adding the letter r for resource). When it is clear from the context that we refer to

an activity (respectively a resource) we will omit the letter ‘a’ (respectively ‘r’).

3. Bottlenecks, Feasible Configurations and Unavoidable Idleness

The conventional approach to identify bottlenecks and capacity is easily extended from our basic

examples in the introduction to the general network defined in the previous section. Recall that λi

represents the flow rate or throughput at activity i and λimi represents the “load” of activity i:

the expected amount of processing time of activity i per unit of time. Similarly, the corresponding

amount of processing time required from resource k, or the “load” of resource k equals
∑

iAkiλimi.

Gurvich and Van Mieghem: Collaboration in Networks
10 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Assume for now that there is only one unit of each resource type; this will be relaxed in §5. The

highest loaded resources are the bottlenecks and we denote the set of bottleneck resources by

BN = arg max
k∈K

∑
i

Akiλimi. (6)

and the bottleneck load by

ρBN = max
k∈K

∑
i

Akiλimi. (7)

If ρBN ≤ 1, then ρBN is the bottleneck utilization or the fraction of time the bottlenecks are busy

processing. Given that the utilization depends on the inflow λ, we often will make that dependence

explicit and write ρBN(λ). This is consistent with the static planning problem (SPP) – see Harrison

(2002) – which in our setting specializes to

ρBN(λ) = minimize ρ

s.t.
∑

iAki(λimi)≤ ρ, for all k ∈K,
(SPP)

and has the solution in (7). When there is flexibility in the allocation of resources to activities,

the SPP is augmented with additional decision variables. For now, however, the set of resources

required for an activity is given; we relax this in §6.

For example, the incidence matrix of the BC network is

A=

(
1 1 0
1 0 1

)
, (8)

and the SPP requires here that λ1m1 +λ2m2 ≤ ρ and λ1m1 +λ3m3 ≤ ρ. Given that only activity 1

has exogenous arrivals (with rate α1), λ1 = λ2 = α1 and the solution to the SPP is given by

ρBN = α1 max{m1 +m2,m1 +m3} . (9)

As α1→min{(m1 +m2)
−1, (m1 +m3)

−1}, ρBN→ 1 in agreement with the bottleneck capacity (3).

The conventional capacity approach equates the capacity of the network with full utilization of

the bottlenecks: the network capacity then is the family of vectors λ for which ρBN(λ) = 1 (the

interior of this set is often referred to as the stability region). Notice that this bottleneck analysis

considers each resource in isolation to quantify network capacity. Collaborative networks, how-

ever, feature activities that require multiple resources and this introduces resource synchronization

constraints that are not captured by this procedure. These can be accounted for by explicitly

incorporating the collaboration constraints using configuration vectors; see e.g. (Jiang and Walrand

2010, Chapter 6).

A feasible configuration vector is a binary I-vector such that ai = aj = 1 if activities i and j can

be performed simultaneously, which means that they do not share resources. Clearly, the (column)

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 11

unit vectors in RI are the natural activity vectors for each network; indeed, unit vector ei, where

eij = 1 if j = i and 0 otherwise, represents a configuration where only activity i is being performed.

Activities i and j can be performed simultaneously if the set R({i}) of resources required by

activity i does not overlap with the resource set R({j}) required by activity j, i.e., S(i, j) = ∅.

(Recall that, for now, each resource type contains exactly one, non-splittable unit.)

To illustrate, let us return to the BC network with incidence matrix A given by (8). The three

natural configuration vectors {(1,0,0)′, (0,1,0)′, (0,0,1)′} represent the allocation of resources to a

unique activity. Activities 2 and 3 can be performed simultaneously because they require different

resources. This is represented by the fourth configuration vector (0,1,1)′. The vectors (1,1,0)′ and

(1,0,1)′ are not feasible configuration vectors. The family of feasible configuration vectors for this

network is then {(1,0,0)′, (0,1,0)′, (0,0,1)′, (0,1,1)′}. If there is no resource sharing, all 2I binary

vectors are feasible configuration vectors.

Now incorporate the collaboration constraints into the network capacity calculation as follows.

Let πk ≥ 0 be a proxy for the fraction of time that the k-th configuration vector is active. Utilization

level ρ≤ 1 is then feasible if there exists a time-allocation vector π such that
∑

k πk = ρ and

π1

 1
0
0

+π2

 0
1
0

+π3

 0
0
1

+π4

 0
1
1

=

λm1

λm2

λm3

 . (10)

For this basic example, a feasible time-allocation vector is calculated as a simple function of ρ:

π1 = α1m1, π2 = ρ−α1(m1 +m3), π3 = ρ−α1(m1 +m2), π4 = α1(m1 +m2 +m3)− ρ. (11)

As α1 → min{(m1 +m2)
−1, (m1 +m3)

−1}, we get that πi → 0, for i = 2,3, if resource i− 1 is a

bottleneck and π1, π4 have the appropriate values. If m2 =m3, only two configuration vectors are

active at capacity: one corresponding to the collaborative activity and the other to the simultaneous

processing of the specialized activities. Thus, there exists a feasible time allocation to feasible

configurations for all α1 ≤min{(m1 +m2)
−1, (m1 +m3)

−1}. This proves that in the BC network

the bottleneck capacity equals the network capacity.

It is convenient to introduce the following set notations. An activity subset A⊆ I is feasible if

no two activities in A share resources. Let C represent the family of all feasible activity subsets:

C= {A⊆ I : S(i, j) = ∅ for all i, j ∈A}. (12)

With each feasible activity subset A⊆ I corresponds a feasible configuration vector a(A), which

is the binary I-vector where ai(A) = 1 if i ∈ A and ai(A) = 0 otherwise, and ai(A)aj(A) = 0 if

Gurvich and Van Mieghem: Collaboration in Networks
12 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

i 6= j ∈A and S(i, j) 6= ∅. Equivalently, the activity subset A is feasible if
∑

iAkiai(A)≤ 1 for each

resource k. Obviously, the number of configuration vectors may be large, up to 2I .

Each element in C is a set of activity indices. In the BC network for example, C =

{{1},{2},{3},{2,3}}, where the first three sets are singletons (each corresponding to one of the

activities 1, 2, 3) and the last contains activity 2 and 3. These have a one to one correspondence

with the set of vectors used in (10). For example a({1}) = (1,0,0)′.

Let λm denote the vector (λ1m1, . . . , λImI). We define the static planning problem for collabo-

ration (SPPC) as: Find time-allocation vector π and minimal network utilization ρnet such that

ρnet(λ) = minimize ρ

s.t.
∑
A∈C a(A)π(A) = λm,∑
A∈C π(A)≤ ρ,

π≥ 0.

(13)

The network capacity is the set of throughput vectors λ≥ 0 for which ρnet(λ) = 1, which implies

that the network is fully utilized: the total time allocated under the optimal solution equals 1.

Any feasible solution (π∗, ρnet) to the SPPC corresponds to a feasible solution ρBN to the SPP

but not vice-versa. Since a feasible configuration vector satisfies
∑

iAkiai ≤ 1, we have:

∑
i

Aki(λimi) =
∑
i

Aki

(∑
A∈C

ai(A)π(A)

)
≤
∑
A∈C

π(A)≤ ρnet, for all k ∈K, (14)

which shows that ρnet is feasible for the SPP. In words, due to the collaboration synchronization

requirements, more time may be needed to process the same throughput. This establishes the

following lemma.

Lemma 3.1 The bottleneck utilization is a lower bound to the network utilization ρnet. That is,

ρBN(λ)≤ ρnet(λ),

for any λ≥ 0. Without multitasking, or without collaboration, ρBN(λ) = ρnet(λ).

The second part of this lemma is a direct corollary of our Theorem 4.4 in the next section. Thus,

the SPP provides a lower bound on the SPPC that is tight without multitasking or without

collaboration but may not be tight otherwise.

Example 3.1 Re-consider the BC+ network in Figure 2. If mi ≡ 1 and α1 = 1/2, then ρBN = 1.

Indeed, in this case, λ1 = λ2 = λ3 = α1 and the solution to the SPP is given by

ρBN = α1 max{m1 +m2,m1 +m3,m2 +m3}= 2α1.

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 13

The bottleneck utilization approaches 1 as α1 approaches 1/2. There are three feasible configu-

ration vectors here – these are the unit vectors in R3
+ associated with the sets C = {{1},{2},{3}}

and the SPPC has the (unique) feasible solution πi = λimi = α1 = 1/2 for i= 1,2,3 so that ρnet =

3α1 = 3/2 > ρBN. There is a gap between the SPP and the SPPC: the maximal value of α1 for

which the SPPC has an optimal value ρnet ≤ 1 is α1 = 1/3 in which case π1 = π2 = π3 = 1/3.

The discussion thus far leads to the following definition.

Definition 3.1 For any λ≥ 0, we define unavoidable bottleneck idleness (UBI) as

UBI(λ) = ρnet(λ)− ρBN(λ).

We say that the network features unavoidable idleness if there exists λ for which UBI(λ)> 0.

The meaning of unavoidable bottleneck idleness: Our notion of unavoidable idleness is

grounded in the physical meaning of idleness. Consider the BC+ network with mi ≡ 1 and recall

that its network capacity is λ∗ = (1/3,1/3,1/3) for which the network is fully utilized: ρnet(λ∗) = 1.

The bottleneck capacity, however, exceeds the network capacity: viewed in complete isolation, each

bottleneck resource can process up to 1/(1 + 1) = 1/2 jobs per unit of time. When all resources

must work in concert, however, that bottleneck capacity is not achievable by the network due to

collaboration and resource sharing requirements. At the network capacity, the bottleneck utilization

is ρBN(λ∗) = 2/3 so that the bottleneck resources are idle for a third of their time. This idleness is

unavoidable – one cannot increase the throughput of the process beyond λ∗ = (1/3,1/3,1/3) to

make the resources more busy. This is visualized by the utilization profile on the right in Figure 3.

In fact, for any throughput λ≤ λ∗, ρnet(λ)−ρBN(λ) captures the idleness forced on the bottleneck

resources by collaboration. Consider a throughput λ= (1/4,1/4,1/4) below network capacity λ∗ =

(1/3,1/3,1/3). Then, ρnet = 3/4 while ρBN = 1/2. As shown by the utilization profile on the left

in Figure 3, the bottleneck resources idle half the time. Part of their total idleness is unavoidable

idleness = ρnet − ρBN = 1/4, while the other part 1/2− 1/4 = 1/4 is avoidable (e.g., by increasing

throughput to network capacity).

A production interpretation provides another illustration of unavoidable bottleneck idleness. Say

we wish to produce at a rate of a 1/4 per hour. Then the bottleneck resources will idle 1/2 of the

time—or 30 minutes out of every hour—since ρBN = 1/2. Yet, this does not mean that we could

reduce the production shift length by 1/2. The amount of idleness per hour that can be removed is

only a 1/4 (15 minutes). There are 15 minutes per hour of bottleneck idleness that we must absorb

Gurvich and Van Mieghem: Collaboration in Networks
14 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Unavoidable
BN idleness

  BN

BN
Utilization

BN

Network
idleness
  NET

Operating below
network capacity



0%

100%

Unavoidable
BN idleness

  BN

BN
Utilization

BN

Operating at
network capacity

 Network
Utilization
NET= 1

Bottleneck
Utilization
BN= 2/3

Network
Utilization
NET = 75%

Bottleneck
Utilization
BN= 50%

Figure 3 In the BC+ network, the bottleneck resources exhibit unavoidable idleness for any throughput λ.

to be able to work at the throughput of 1/4 due to resources waiting for other resources. If the

team of resources works for 45 minutes per hour, they can continue processing at a rate of 1/4 per

hour, but not if the they work only 30 minutes per hour.

Thus, while in the absence of collaboration, a production process’ hours can, in first order, be

cut by a fraction 1 − ρBN, this is not true here. The maximum we can cut here is 1 − ρBN −

(Unavoidable idleness) = 1 − ρnet. In other words, in the presence of collaboration and resource

sharing, bottleneck utilization and network utilization measure different things: the first measures

the fraction of time that bottlenecks are busy while the latter measures the fraction of time the

network is busy. Due to synchronization constraints, the network must work longer hours to process

the same amount of input as the bottlenecks process.

4. Collaboration Graphs and Architectures of Collaboration

Quantifying unavoidable bottleneck idleness by solving and comparing two linear programs, as we

did thus far, requires the values of all network parameters (arrival rates, services times and routing

probabilities). We next introduce architecture terminology that allows us to state (and prove)

conditions for unavoidable idleness that avoid such direct computation and that do not depend on

these parameters.

The resource-activity matrix A captures the processing conflicts – that is activities that cannot

be performed simultaneously because they share resources. A graph representation of the matrix A

provides a formal tool to characterize properties of what we call the collaboration architecture. An

intuitive graph representation of the matrix A represents each activity by a node and connects two

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 15

a4 a1 a2 a5a3

r1,r2,r3 r1,r2 r1,r4 r2 r3

a4

a1

a3a2

a5 1
2

Figure 4 A network with nested collaboration architecture (left) and its associated collaboration graph (right).

a1
1,2,4

a2
2,3,5

a4
1,2,4,5,

6

a3
3,1,6

Figure 5 A (complete) collaboration graph of a 4-activity network

nodes with an (undirected) edge if those two activities share resources. For example, the network

with five activities on the left in Figure 4 has the collaboration graph shown on the right of that

figure. There are multiple conflicts in this network. Activities 1 and 4, for example, cannot be

processed simultaneously as both require resources 1 and 2 which gives rise to 2 cycles. Removing

activity 4 would yield a network with acyclic collaboration graph.

The collaboration graph is an undirected graph. Notice that, without multitasking, this collabo-

ration graph is just a collection of isolated nodes (activities). Without collaboration, each activity

requires a single resource so that the graph is a collection of isolated paths where each path links

all activities that utilize the same resource.

Our first architectural result shows that UBI can grow linearly with the number of activities.

Collaboration and multitasking can thus lead to large capacity losses. The result is shown by

constructing a network whose collaboration graph is a complete graph (meaning that there is an

edge between any pair of nodes). Figure 5 gives an example.

Theorem 4.1 Given I, one can construct a network with I activities and K = 3+
∑I−1

i=3 resources

such that the collaboration graph is a complete graph and ρnet− ρBN = I/2− 1.

(All proofs are relegated to the online supplement.) In the special case of the BC+ network

(I = 3) with mean service time equal to 1 and arrival rate equal to 1/2, we have ρBN = 1 and

ρnet = I/2 = 3/2.

Gurvich and Van Mieghem: Collaboration in Networks
16 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Recall that ρnet captures the time (not fraction of time) it takes the network to process an input

of λ that arrives in one time unit. ρnet > 1 means that the network has to work multiple time units

to process a single time unit worth of arrivals. UBI = I/2−1 captures the fact that the constructed

network will take I/2 to complete processing the input but, out of this time, the bottlenecks will

be working only for one time unit.

Our first positive result is the following– recall that a polyhedron is integral if all its extreme

points are integer valued.

Theorem 4.2 ρBN = ρnet and UBI = 0 for any primitives (α,P,µ), if and only if the Polyhedron

P = {x∈RI+ :Ax≤ 1} is integral.

In general, having an integral polyhedron is not a necessary condition for ρBN = ρnet. There can

be, as we show in §4.1, networks with UBI> 0 under some choice of parameters but with UBI = 0

under other choices. The integrality of the relevant polyhedron is necessary and sufficient if one

seeks to get a result that is independent of the specific service and arrival parameter values.

We focus below on sufficient conditions on A that guarantee that the polyhedron P is indeed inte-

gral. The first condition comes directly from the theory of integer programming–see, e.g., (Schrijver

1998, Corollary 19.2a)–and, to a large extent, reduces our pursuit to identifying conditions on the

collaboration architecture that guarantee that A is totally unimodular.

Theorem 4.3 If the matrix A is totally unimodular (TUM) then the network features no unavoid-

able idleness. For any throughput λ> 0, UBI(λ) = 0 and ρBN(λ) = ρnet(λ).

For purely computational purposes, Theorem 4.3 might be sufficient as there exist algorithms that

verify whether a matrix is totally unimodular. We proceed to analyze which kinds of collaboration

architectures result in a totally unimodular matrixA. The following corollary follows almost directly

from existing results about TUM matrices:

Corollary 4.1 If each resource has at most two activities and the collaboration graph is bi-partite,

then the network features no unavoidable idleness. For any throughput λ > 0, UBI(λ) = 0 and

ρBN(λ) = ρnet(λ).

For the network of Figure 4, the collaboration graph is not bi-partite– it includes a cycle that

has the three activities a1, a2 and a4. This, however, is what we will call a nested-sharing cycle:

The resources shared by activities a1 and a2 are a subset of the resources shared by activities a1

and a4. We will show that nested-sharing cycles do not generate unavoidable idleness.

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 17

A set of l activities i1, . . . , il form a cycle if activity ij shares resources with activity ij+1 (j =

1, . . . , l−1) and activity il shares resources with activity i1. A set of such activities are said to form

a nested-sharing cycle if whenever activities ij and il with ` > j share resources, these resources

are also shared by activities il−1 and il; formally, if the activities can be ordered so that for all

` > k > j:

S(ij, i`)⊆S(ik, i`). (15)

In Figure 4, S(4,2)⊆ S(1,2) so that activities 1, 2 and 4 form a nested-sharing cycle. Naturally

when a cycle is not nested we say that it is non-nested. Note that if the collaboration graph is

acyclic the architecture is, in particular, nested. It is also useful to observe that in a nested-sharing

cycle there must be a resource that is shared by all activities in the cycle.

The intuition that nested-sharing cycles do not insert unavoidable idleness rests on how a finite

amount of work is allocated to resources (ignoring the precedence processing constraints). In Figure

4 resources 1,2 and 3 can be allocated to activity a4 until it is “exhausted,” meaning its amount

of work λ4m4 is processed. Afterwards, these resources are free to work on activities a1 and a5 in

parallel since there is no sharing between these activities. Note that once activity a1’s work is done,

resources 1,4 and 2 can work in parallel on activities a2 and a3 even though these two activities

are part of a cycle that contain also a1 and a4. With nested architectures, work can be organized

so that once two resources complete all the tasks on which they collaborate they impose no further

constraints on each other.

Non-nested cycles are in general problematic. We cannot go through the exercise we performed

for the network in Figure 4. Resources cannot be gradually “freed” in a non-nested cycle: when

certain resources are working, other resources are forced to idle. In the BC+ network when resources

1 and 2 work, resource 3 must idle.

Definition 4.2 (Nested Collaboration Architecture) We say that the network has a nested

collaboration architecture if any cycle in the collaboration graph is a nested-sharing cycle.

Definition 4.3 (Non-nested Collaboration Architectures) We say that the network has a

non-nested collaboration architecture if the network has a non-nested cycle. We say that it is weakly

non-nested if every such cycle has a resource that is shared by all activities in the cycle. We say

that it is strongly non-nested otherwise.

We are able to prove that if a network has a nested collaboration architecture then its matrix

A is TUM. If the network is weakly non-nested it can be transformed, without changing ρBN and

ρnet into a network with a matrix A that is TUM. Invoking Theorem 4.3 then yields:

Gurvich and Van Mieghem: Collaboration in Networks
18 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Theorem 4.4 A network with nested or weakly non-nested collaboration architecture features no

unavoidable idleness. For any throughput λ> 0, UBI(λ) = 0 and ρBN(λ) = ρnet(λ).

This sufficient condition is strong in that it depends only on the network structure (its col-

laboration architecture) and is independent of service-time, routing probability and arrival-rate

parameters. The value of the nested structure is that it is “robust” in that it hold for any service

and arrival parameters.

We will show that our sufficient conditions are necessary in the following sense: If a collaboration

graph is not bi-partite or if it has a strongly non-nested cycle, then there exist parameter values

(α,P,µ) for which the network will feature unavoidable idleness.

We say that a cycle i1, . . . , il is simple non-nested if each two activities connected by an edge

share a resource that is not used in any other activity in the cycle: for each j, S(ij, ij+1) 6= S(i`, i`+1)

for all ` 6= j. In a simple cycle, there is a one-to-one mapping from the edges of the cycle to a subset

of the resources. The BC+ network is the prototypical simple non-nested cycle of odd length.1 It

has three edges each of which corresponds to a distinct shared resource. We show that every non-

nested collaboration architecture has a simple non-nested cycle (not necessarily of three edges)

and, subsequently, deduce a sufficient condition for the persistence of unavoidable idleness.

Lemma 4.2 A network with a strongly non-nested collaboration architecture has a simple non-

nested cycle.

Theorem 4.5 Consider a network with a strongly non-nested collaboration architecture. If one

of its simple non-nested cycles has an odd number of activities, then there exist parameter values

(α,P,µ) (and, in turn, λ) such that ρnet(λ) 6= ρBN(λ) and UBI(λ)> 0.

The following is a rough summary of the results derived in this section:

(i) Bounds: One can construct networks with arbitrarily large values of UBI; consistent with

Theorem 4.5, the examples underlying Theorem 4.1, as in Fig. 5, have a strongly non-nested

architecture.

(ii) Sufficiency for UBI = 0: Networks with either a bi-partite, nested, or a weakly non-nested

architectures have ρnet = ρBN and UBI = 0.

(iii) Necessity for UBI = 0: If the architecture is non-nested and one of its simple cycles is of

odd length, there exists a choice of parameters (α,P,µ) for which ρnet <ρBN and UI > 0.

1 The restriction to odd length is necessary. If each activity has at most two resources and the collaboration graph is a
simple non-nested cycle of even length, then the graph is bipartite in which case Theorem 4.1 shows that ρBN = ρnet.

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 19

The fact that item (iii) allows to “choose” the parameters is important. For non-nested networks

UBI might be equal to 0 for certain parameter values but be strictly positive for others. We explore

this further in the next subsection.

4.1. Non-nested networks

We now focus specifically on non-nested networks and to derive some parameter-specific necessary

conditions that relate configurations to bottlenecks.

Example 4.2 Consider the BC++ network in Figure 6. Assume that mi ≡ 1 and that the input

rate to activity 1 is α1 = 1/3. The incidence matrix A for this network is given by

A=

 1 0 1 1 0
1 1 0 0 1
0 1 1 0 0

 ,

and does not satisfy any of our sufficient conditions. The load is
∑

iAki(λimi) = (1,1,2/3) such

that resources 1 and 2 are the bottlenecks and the SPP has the solution ρBN = 1. Also, note that

λimi = 1/3 for all i= 1, . . . ,5. By directly solving the SPPC linear program we find that the network

capacity equals the bottleneck capacity.

The feasible configurations that utilize the bottlenecks correspond to the activity setsA1 = {3,5},

A2 = {4,2}, A3 = {4,5} and A4 = {1}. Note that, for each of these sets π(Ai) ≤ mini∈Al λimi

(otherwise there would be an activity that is allocated more time than it can use). A necessary

condition for the bottlenecks to not suffer unavoidable idleness is that they are utilized 100% or

that
∑4

l=1 π(Al)≥ 1. This requires that
∑4

l=1 mini∈Ai λimi ≥ 1. In this case, indeed,

4∑
l=1

min
i∈Al

λimi = λ4m4 +λ5m5 +λ5m5 +λ1m1 = 4/3≥ ρBN = 1.

The fact that ρBN = ρnet for this network is, however, dependent on the service-time means

mi, i = 1, . . . ,5. To see this, consider the service-time vector m= (1/2,1,2− ε,1/2,1/4) with 0 <

ε < 5/4. Then,
∑

iAkiλimi = α1(3 − ε,7/4,3 − ε) so that resources 1 and 3 are the bottlenecks

with capacity 1/(3− ε). The activity sets that use the bottlenecks are A1 = {3},A2 = {4,2} and

A3 = {3,5}. Then,

3∑
l=1

min
i∈Al

λimi = λ3m3 +λ4m4 +λ5m5 =
3− ε− 1/4

3− ε
< 1 = ρBN.

This means that the feasible configuration vectors cannot utilize the bottlenecks 100% of the time

so that they suffer unavoidable idleness. (Equivalently, the SPP is assigning positive probabilities

to infeasible configuration vectors.)

Gurvich and Van Mieghem: Collaboration in Networks
20 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

a1 a2 a3

r1, r2 r2,r3 r3,r1

a4

r1

a5

r2

α1

Figure 6 The BC++ network whose unavoidable idleness depends on the service-time means.

We generalize the arguments in Example 4.2 to the following lemma:

Lemma 4.3 (A condition for non-nested networks) Suppose that ρBN = 1 (in particular,

ρnet ≥ 1). If ∑
A∈C:BN⊆R(A)

min
i∈A

λimi < 1, (16)

then the network features unavoidable idleness. Also, ρnet ≥mink∈BN

(∑
A:k∈R(A) mini∈A λimi

)−1
.

This lemma bridges two “worldviews”: the bottleneck view (the SPP) and the network view (the

SPPC). Intuitively speaking, (16) implies that the SPP is assigning strictly positive probabilities

to “infeasible” configurations (that is, it requires that the bottleneck be assigned simultaneously

to two activities that require its participation – i.e, that the resource is split). In Example 3.1 the

SPP splits each of the three resources so that half a unit of each resource is assigned to an activity.

5. Collaboration and Scale: Multi-server Networks

In this section we consider multi-server networks with nk ∈ N units of resource type k ∈ K. The

vector n = (n1, . . . , nK) is the resource-units, or “staffing”, vector. The multi-server scenario here

should be interpreted as follows: a job processed in activity i requires one unit from each of the

resource-types k ∈ K for which Aki = 1. With multiple units per resource type, one can process

multiple jobs (in one or multiple activities) in parallel. In the BC network, if there are three resource

units of type 1 and three of type 2, the controller can choose to assign two units of each resource

type to the collaborative activity 1 and one unit of resource of each of types 1 and 2, to activities

2 and 3 respectively.

For multi-server networks, the SPP considers the load of the entire type-k resource group

ρBN(λ) = minimize ρ

s.t.
∑

iAkiλimi ≤ ρnk, for all k ∈K. (17)

If nk ≡ 1 this reduces to the original SPP. As before, the input to this SPP captures the load of

resource k. Specifically, λimi can be interpreted as the average number of resource units required

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 21

by activity j from each of the resource types participating in the processing of j. Fixing the service

times m, we say that a staffing vector n is feasible for λ if the SPP has the optimal value ρBN(λ)≤ 1.

The “world” of configuration vectors is richer in the multi-server case. A configuration not only

defines which activities are performed simultaneously but also how many units of each resource are

allocated to each of the activities in the configuration. Here, activities i and j can participate in

a given configuration even if S(i, j) 6= ∅ since one can assign only some of the units of a resource

k ∈ S(i, j) to activity i and the remainder to activity j without creating a conflict. A configuration

a is, here, an integer-valued vector of dimension I such that the ith entry specifies the number of

units of resource (of each resource type k ∈R({i})) assigned to activity i under the configuration

a. (This suffices in order to capture a configuration since we assume that each activity requires the

same number of units from each resource.) In the BC network, the configuration vector (n,0,0)′

means that n units of each of the resources involved in this activity are assigned to this activity.

Formally, given incidence matrix A and staffing vector n = (n1, . . . , nK), a configuration vector

a= (a1, . . . , aI)∈NI is feasible if ∑
i∈I

Akiai ≤ nk, for all k ∈K. (18)

The family of feasible configuration vectors depends on the vector n = (n1, . . . , nK) and is denoted

by N (n). Given n∈NK , the SPPC is identical to the single server case. That is,

ρnet(λ) = minimize ρ

s.t.
∑

a∈N (n) aπ(a) = λm,∑
a∈N (n) π(a)≤ ρ,

π≥ 0.

(19)

One expects that unavoidable bottleneck idleness will shrink as the number of resource units grows:

The simple intuition is that for a number of resources n= (n1, . . . , nK) that has an SPP solution

ρBN(λ)≤ 1, we could permanently assign dλimie units of each resource k ∈R({j}) to activity j. In

the end there will be a deficit of at most I units of each resource. Yet, as n and λ grow, this deficit

will become negligible relative to the number of resource units.

This intuition deserves a formalization. Our base network has parameters α (and λ=Qα) and

n= (n1, . . . , nK). We introduce an integral scalar θ and consider a sequence of networks, indexed

by θ, so that the input rate in the θth network is αθ = αθ (and λθ = θλ and nθ = θn). The SPP and

SPPC are re-written to reflect the dependence on θ (note, however, that with this scaling, the SPP’s

objective value does not depend on θ, i.e, SPP (θ) ≡ SPP as the bottleneck utilization remains

unchanged under this scaling). The set of configuration vectors N (nθ) does, however, depend on θ

and we let ρnet(θ) be the corresponding solution to SPPC.

Gurvich and Van Mieghem: Collaboration in Networks
22 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Lemma 5.4 Suppose that SPP has a solution ρBN ≤ 1. Then, ρnet(θ) ↓ ρBN, as θ→∞,

While correct in an asymptotic sense, the splitting intuition that underlies this result is too con-

servative – it is equivalent to restricting attention to a limited family of configuration vectors. It

must be (and is indeed) the case that in some networks a small finite number of resource units will

do the trick.

Example 5.3 Let us re-visit the BC+ network. If mi ≡ 1, all resources are bottlenecks with

capacity 1/2. With α= 1/2 and θ= 2 (so that αθ = αθ= 1) we can permanently assign one unit of

each resource to each activity where it is required, thus breaking all collaboration requirements.

This splitting is facilitated by, and is specific to, these particular service rates. With different

parameters, we may still be able to get away with two units of each resource without splitting

by properly allocating time to configurations. For example, assume that m1 = m3 = ε < 1/2 and

m2 = 2− ε. With α= 1 the number of units of resource 2 that are needed is d2αe (since the load

on resource 2 is 2 per job). Taking the splitting approach one assigns dαεe of the units of resource

1 to activity 1 and the remainder to activity 2. With “unsplittable” resources this works only if αε

is an integer. In principal, ε may be an irrational number in which case, αε cannot be an integer.

Instead, we show that we can construct a solution to the SPPC (still assuming m1 =m3 = ε < 1/2

and m2 = 2− ε) that has ρnet = ρBN (and UBI = 0) by using time splitting between suitably chosen

configuration vectors. Assume that n = (2,2,2). A solution to the SPPC is obtained by assigning

positive weights to the configuration vectors

a1 =

 1
1
1

 and a2 =

 0
2
0

 ,

and setting π(a1) = ε and π(a2) = 1− ε so that (a1π(a1) + a2π(a2))2 = 2− ε= λ2m2.

The second part of this last example may lead the reader to conjecture that ρBN = ρnet should

mostly hold also for moderately sized systems and facilitated by carefully allocating time to corre-

sponding configurations. This is not generally true.

Example 5.4 Re-visit yet again the BC+ network. Let m1 = m3 = 1/4 and m2 = 2− 1/4 (i.e.

ε= 1/4). Resources 2 and 3 are bottleneck resources with capacity of 1/2 each, while the capacity

of resource 1 equals 2. Thus, to process input rate α1 = 401 (to activity 1), the minimal number of

resource units of each type is given by n = (d401/2e, d2 ∗ 401e, d2 ∗ 401e) = (201,802,802).

With this “minimal” number of units, to be able to process all the input, we must allocate time

only to configurations in which all of the 802 units of each of resources 2 and 3 are used. Also, while

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 23

resource 1 is not a bottleneck with this capacity, using only 200 units of this resource does not

suffice to process the load of 401/2 = 200.5 on this resource. We must allocate a positive time to

a configuration in which all resource units are used. Yet, there exists no such configuration–there

exists no n ∈ N3 such that n1 + n2 = 802, n2 + n3 = 802 and n1 + n3 = 201–and we conclude that

this network features unavoidable bottleneck idleness.

The argument in this last example leads to a simple necessary condition for the network capacity

to equal the bottleneck capacity.

Lemma 5.5 If the process capacity equals the bottleneck capacity, then there exists a configuration

vector a∈N (n) that fully utilizes each bottleneck: for each k ∈BN,
∑

iAkiai = nk.

Fortunately, the benefits of the nested collaboration structure extend to multi-server networks:

Theorem 5.6 A multiserver network that satisfies the bipartite condition of Corollary 4.1 or the

conditions of Theorem 4.4 features no unavoidable bottleneck idleness. For any throughput λ > 0,

UBI(λ) = 0 and ρBN(λ) = ρnet(λ).

In principle, the number of servers of each type is decided by solving a staffing problem. If a

server of type k costs ck, a lower bound on the cost of capacity required to process all input is

obtained by solving
minimize

∑
k∈K cknk

s.t
∑

iAki(λimi)≤ nk, k ∈K,
n∈NK ,

(20)

which has the trivial solution nk = d
∑

iAkiλimie. Due to unavoidable bottleneck idleness, however,

this may underestimate the true staffing requirements. One must, in general, make explicit the

dependence of the configurations and solve

minimize
∑

k∈K cknk

s.t
∑

a∈N (n) aπ(a) = λm,∑
a∈N (n) π(a) = 1,

n∈NK .

(21)

As the set of feasible configuration vectors depends explicitly on the staffing vector n, this adds

significant complexity relative to (20). With tight capacities, as in Example 5.4, the collaboration

architecture may induce unavoidable idleness even when the number of servers is large. Thus,

maximizing efficiency (having capacity highly utilized) in networks with simultaneous collaboration

poses a managerial challenge. With nested architectures, however, Theorem 5.6 removes any worry:

Gurvich and Van Mieghem: Collaboration in Networks
24 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

a1 a2 a3

r1, r2 r1 r2

a1

a2

a3

r1, r2 a2

F

r2

r1

r2

a1 a2 a3

r1, r2 r1 r2

a1

a2

a3

r1, r2 a2

F

r2

r1

r2

Figure 7 (Left) No-flexibility in the BC network. (Right) A flexibility extended activity view.

at least as far as capacity is concerned, staffing problems may be solved by considering each server

pool in isolation.

Making progress beyond first order staffing problems by imposing constraints on the stochastic

performance of the network (e.g., constraining average waiting times) is a desirable follow-up for this

work. Questions of staffing are intimately entangled with questions of optimal control. The control

of networks with collaboration is mostly uncharted territory and offers a significant challenge that

must be resolved before turning to staffing with refined performance constraints; see §7.

6. Unavoidable Bottleneck Idleness and Flexibility

In modeling flexibility it is useful to consider activity resource-groups and discretionary routing. In

the original BC network (left panel of Figure 7) the resource group {1,2} performs activity 1 and

the groups {1} and {2} perform activities 2 and 3, respectively. Flexibility expands the family of

activity-resource groups. Training resource 2 to perform activity 2 introduces routing discretion:

there are now two optional resource groups (each, in this case, containing an individual resource)

{1} and {2} that can process activity 1 and we can choose how to distribute the activity’s load

between them. This added discretion is graphically captured by the diamond-shaped decision node

in the right panel of Figure 7.

The incidence matrix A is extended here to a resource-to-extended-activity matrix AF . Having

trained resource 2 to perform activity 2, the matrix for the flexible BC network is

AF =

(
1 1 0 0
1 0 1 1

)
,

where the 4th column corresponds to activity 2 being performed by resource 2. This is consistent

with the framework of Harrison (2002)—flexibility enlarges the family of activities. The SPP is

expanded correspondingly to include the discretionary activities:

ρBN(λ) = minimize ρ

s.t. x2,1 +x2,2 = λ2m2,
λ1m1 +x2,1 ≤ ρ,
λ1m1 +λ3m3 +x2,2 ≤ ρ,
x≥ 0,

(22)

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 25

a2

r3, r4

a1

r1,r2

a3

r2,r3

a4

r4

a2

r3, r1

a1

r1,r2

a3

r2,r3

a4

r4

a5

a5

r5

r5

a2

r3, r5

a1

r1,r2

a3

r2,r3

a4

r4

a5

r5

a3

a2

a4

a1

4

a5
a2

r3, r4

a1

r1,r2

a3

r2,r3

a4

r4

a2

r3, r1

a1

r1,r2

a3

r2,r3

a4

r4

a5

a5

r5

r5

a2

r3, r5

a1

r1,r2

a3

r2,r3

a4

r4

a5

r5

a3

a2

a4

a1
1

a5

a2

r3, r4

a1

r1,r2

a3

r2,r3

a4

r4

a2

r3, r1

a1

r1,r2

a3

r2,r3

a4

r4

a5

a5

r5

r5

a2

r3, r5

a1

r1,r2

a3

r2,r3

a4

r4

a5

r5

a3

a2

a4

a1

a5

Figure 8 (TOP) Without flexibility, the network has a nested collaboration architecture. Depending on which

resource adds flexibility to activity 2 the collaboration architecture can become non-nested (MIDDLE)

or remain nested (BOTTOM).

where x2,k is the amount of activity 2 load assigned to resource k. (We will shortly provide a general

formulation of the SPP.)

Adding flexibility also enlarges the family of feasible configuration vectors. In Figure 6, for

example, training resource 3 to perform also activity 1 adds the configuration vector (1,0,0,1,0)′

corresponding to activities 1 and 4 being processed in parallel. As flexibility grows and the family

of configuration vectors becomes “denser” one expects unavoidable idleness to shrink. Evidently, an

upper bound on the network capacity is given by the full flexibility case in which all resources are

trained to perform all tasks. Due to non-splitting, this upper bound will typically still be strictly

smaller than the bottleneck capacity.2

Example 6.5 Consider the network at the top of Figure 8 with service time vector m =

(1,1,1,2.5,1). This network has a nested collaboration architecture and, by Theorem 4.4, features

2 It is assumed here that the number of resource units is the same across all groups that can process an activity.
Activity 1 in the BC network requires, for example, two units of resource. The two units cannot be replaced by a
single unit with one “arch-skill.” Such pooling of skills may be viewed as process re-design. We assume here that the
process is given but that some skill requirements can be satisfied by several resource types.

Gurvich and Van Mieghem: Collaboration in Networks
26 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

no unavoidable idleness. Resource 4 is the bottleneck with a load of 3.5 so that the bottleneck

capacity of 1/3.5 equals the network capacity. Assume now that resource 1 is trained also to replace

resource 4 in activity 2. The SPP then has a maximal throughput of 0.4. In the (unique) optimal

solution activity 2 is assigned entirely to the resource group {3,1} (the group {3,4} does not do

any work on this activity). In this example, to achieve the SPP optimal solution, the SPPC must

allocate no weight to those configurations where resource 4 works at activity 2. The remaining

configuration vectors are those that correspond to the collaboration graph in the middle, which

contains a strongly non-nested cycle. Resource 4 is still the bottleneck but now with a load of 2.5.

With α= 0.4 (the input to the first station) the SPPC has the optimal solution ρnet = 1.1> 1 = ρBN.

The maximal throughput for which the SPPC has ρnet ≤ 1 is 1/2.75< 0.4. The added flexibility of

resource 1 increased the network the capacity from 1/3.5 to 1/2.75 but by less than the amount

predicted by bottleneck analysis.

Consider the alternative flexibility investment that cross-trains resource 5 to replace resource 4

in activity 2. As before resource 4 is still the bottleneck and the theoretical capacity is 0.4. Now,

however, the ρnet = 1 = ρBN as the graph induced by the optimal solution to the SPP is acyclic.

Thus, in choosing between flexibility investments that are equally costly and yield the same value

for theoretical capacity it is “safer” to take the one that does not introduce non-nested cycles.

To generalize the observations made in this example and provide some prescriptions we must

introduce some notation. We let G(i) be the family of resource groups that can process activity

i. In the no-flexibility setting, the family G(i) contains a single group of resources – this is the

group R({i}). Our restriction that the number of resource units required is fixed means that |G| is

constant for all G∈ G(i). For G∈ G(i), denote Ak,(iG) = 1 if resource k participates in the processing

of activity i as part of resource group G. Let

IE = {(i,G) : i∈ I,G∈ G(i)}

be the family of extended activities. The SPP, augmented to include flexibility, is then given by

ρBN(λ) = min ρ

s.t.
∑

(i,G)∈IE xiG = λimi, i∈ I,∑
(i,G)∈IE :k∈GAk,(iG)xiG ≤ ρ, k ∈K,

ρ, x≥ 0.

(23)

For G ∈ G(i), the variable xiG should be interpreted as the time that resource group G works on

activity i. We use the notation (xBN, ρBN) to denote an optimal solution. The bottleneck resources

are

BN =
{
k ∈K :

∑
(i,G)∈IE :k∈G

xBN
iG = ρBN

}
,

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 27

which is a strict generalization of (6). A feasible configuration set is a collection of extended

activities such that the associated resource groups do not overlap. Consequently, the family of

feasible configuration sets is

C :=
{
A⊆IE :

⋂
(i,G)∈A

G= ∅
}
. (24)

A feasible configuration vector a is constructed from a feasible configuration set, as before, by

letting aiG(A) = 1 for all (i,G)∈A. The SPPC becomes:

ρnet(λ) = minimize ρ

s.t.
∑

G

(∑
A∈C a(A)π(A)

)
iG

= λimi, i∈ I,∑
A∈C π(A)≤ ρ,

ρ,π≥ 0.

(SPPC)

For the remainder of this section the terms SPP and SPPC refer to these extended versions.

The extended collaboration graph: The collaboration graph includes an edge between two

extended activities (i1,G1) and (i2,G2) if G1

⋂
G2 6= ∅. It is useful to look at resource-group combi-

nations that are “active” under the solution xBN to the SPP. Fix a solution (xBN, ρBN) to the SPP.

An activity-resource group pair (i,G) is an extended activity under xBN if G ∈ G(i) and xBN
iG > 0.

The extended collaboration graph for xBN is then constructed as before from these extended activ-

ities (and does not include extended activities for which xBN
iG = 0).

One can now define nested-sharing cycles limiting attention to extended activities that have

positive weights under xBN. We say that the extended collaboration architecture (for xBN) is nested

if all cycles are nested. Obviously, if the extended collaboration graph is itself acyclic then so is

the graph for xBN for each solution xBN to the SPP. The following is a corollary of Theorem 4.4.

Theorem 6.7 Fix λ≥ 0. If the extended collaboration architecture for xBN(λ) is nested then the

network features no unavoidable bottleneck idleness.

In the BC network with added flexibility of Figure 7, the extended graph is itself acyclic (for

each solution xBN to the SPP) so that the extended collaboration architecture is nested. This is

not the case in the network of Example 6.5. There, if xBN uses the extended activity corresponding

to resources 3 and 1 performing activity 2, the extended architecture is non-nested. A weaker

sufficient condition is stated in the online supplement.

We say that two resources k and l are part of the same collaborative pool if there exists a

path between them in the extended collaboration graph. The following corollary states that cross-

training across collaborative pools is a “safe” flexibility investment. In graph terms such investments

correspond to adding an edge to previously disconnected components of the collaboration graph.

Gurvich and Van Mieghem: Collaboration in Networks
28 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Corollary 6.2 Training a resource k to perform a task of a resource in a different collaborative

pool does not introduce unavoidable idleness into a network with a nested collaboration architecture.

On flexibility, bottlenecks and coverings: In Lemma 4.3 we learned that it is useful to map the

unavoidable idleness to “coverings” of the bottlenecks. A feasible configuration set A (see (24)) is

said to cover the bottlenecks if each bottleneck k is used for one of the activities in the configuration

A: for each k ∈BN there exists (i,G)∈A such that k ∈G. We then write BN⊆R(A).

Example 6.6 Consider the BC++ network with service times m= (1/2,1,7/4,2,1/4). Suppose

first that the resource-activity mapping is as in Figure 6. Without flexibility, resource 1 is the only

bottleneck with capacity 4/17, which equals the network capacity (direct computation shows that

there is no unavoidable idleness, i.e, ρBN = ρnet).

Introduce flexibility by training resource 2 so it can replace resource 1 in either activities 3 or

4. Then resources 1 and 2 are bottlenecks with bottleneck capacity 1/3 – the flexibility allows

us to shift some work from resource 1 to resource 2. By adding this flexibility we also make the

configuration vector (0,0,1,1,0)′ feasible. The maximal α1 for which SPPC has a solution ρnet ≤ 1

is 1/3.25 – which is the full-flexibility bound and, thus, cannot be further improved.

The flexibility we added here has a special feature: assigning resource 2 to activity 3 requires

it to collaborate with resource 3 which is not required for any work with the bottleneck resource

1 so we are “free” to exploit this flexibility: we added a bottleneck but also a configuration that

covers both bottlenecks – the previous one (resource 1) and the new one (resource 2).

Flexibility is likely then to be less beneficial when it adds an extended activity that conflicts with

the current bottlenecks. Cross-training resource k to perform activity i as part of resource group G

is formally captured by adding an extended activity (i,G) with k ∈G. The following lemma shows

that given a set of bottlenecks and the corresponding bottleneck coverings one can predict that

certain investments fail to remove the unavoidable idleness and hence require a careful analysis.

Lemma 6.6 (i) Let BN be the set of bottlenecks and C be the family of feasible configuration

sets. Let λ be such that ρBN(λ) = 1. The network features unavoidable idleness if

∑
i

min
A∈C:BN⊆R(A)

λimi < 1. (25)

(ii) Regardless of whether (25) holds, suppose that resource k /∈BN is cross-trained by adding the

extended activity (i,Gi) (with k ∈Gi and BN
⋂
Gi = ∅) and that λF is such that BNF = BN

⋃
{k}

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 29

are post cross-training bottlenecks with an SPP value ρBNF (λF) = 1. Let CF be the updated family

of feasible configuration sets. The network features unavoidable idleness if A
⋃

(i,Gi) /∈CF for each

covering A of BN (adding the extended activity (i,Gi) to any of the original BN coverings A∈C

results in an infeasible configuration set) and if∑
i

min
A∈C:BN⊆R(A)

λFi mi < 1.

For the incremental analysis in Lemma 6.6, one does not need to identify the new (post-

investment) configuration sets: the evaluation in part (ii) uses the pre cross-training family C of

feasible configuration sets.

The guidelines that emerge from our flexibility discussions, examples and results are as follows:

1. Architectures: If the extended collaboration architecture under the optimal solution xBN to

the SPP is nested then ρBN = ρnet and the benefit of flexibility as projected by the conventional

bottleneck analysis will materialize. From a design perspective, this means that when facing multi-

ple options for flexibility (for which the SPP predicts the same improvement) one should choose,

if possible, an option for which the extended graph has a nested structure; see Corollary 6.2.

2. Bottlenecks and configurations: Among several options of flexibility investments for which the

SPP reflects the same increment, those options that add configurations that cover the (new set

of) bottlenecks are likely to be more valuable. One must be careful with incremental flexibility

investments that create conflicts with the bottleneck; see Lemma 6.6.

The discussion above only distinguishes flexibility investments that have the same bottleneck-

based effect. Ideally, a framework should be developed that facilitates choosing between two dis-

tinct flexibility investments that generate different bottleneck capacity and different unavoidable

idleness. Such development is beyond the scope of this paper as it requires going beyond the char-

acterization of the existence of unavoidable idleness to developing tight bounds on its magnitude.

7. Concluding Remarks

In this paper we offered an initial exploration of the effect of simultaneous collaboration and

resource sharing on network capacity and of its implications for conventional bottleneck analysis.

We use this section to outline some directions that deserve further explorations.

Dynamic control: This paper has focused on deterministic (“fluid”) analysis. The study of the

dynamic control of networks with simultaneous collaboration is a promising direction for future

research. Human operated services impose certain constraints on the dynamic control—resources

cannot be split and preemption if often undesirable or plainly infeasible.

Gurvich and Van Mieghem: Collaboration in Networks
30 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

The maximization of throughput in non-splitting, non-preemptive settings is studied by Dai

and Lin (2005), Jiang and Walrand (2010, Chapter 6) and Tassiulas and Ephremides (1992). In

our terminology those articles take unavoidable idleness as given and are concerned with design-

ing dynamic policies that achieve the throughput predicted by the SPPC. More refined objec-

tives for collaborative networks – such as minimizing queue-holding costs – are mostly unex-

plored. With such studies in mind, an important observation to be made is that non-splitting,

non-preemptive collaborative networks introduce a fundamental tradeoff between achieving high

throughput (resource utilization or “efficiency”) versus controlling queue lengths.

This tradeoff is best understood by first taking a step back and away from collaborative networks

to consider a basic two-class single server M/G/1 queue. It is well known that the so-called cµ

rule is optimal here towards minimizing long-run average linear holding costs. Under this rule,

whenever the server becomes available it serves a customer from the non-empty queue with the

highest value of ciµi. Suppose, however, that switching between classes requires a setup time. That

is, after completing a service of a class-1 customer, if the server wishes to serve a class-2 customer

it cannot do so immediately but only after some setup time has elapsed (the server, can, however,

immediately serve another class-1 customer). Frequent changeovers will allow the controller to keep

the expensive queue short but lead to a capacity loss. Infrequent changeovers eliminate some of

the capacity waste but at the expense of longer queues of the expensive class; this model has been

studied in Reiman and Wein (1998).

Returning to collaborative networks, we observe that the changeovers (setups) arise here endoge-

nously. In our BC network, consider a time at which both resources are working on their individual

tasks (resource 1 in activity a2 and resource 2 in activity a3) and the controller wishes to move

them to work on the collaborative activity a1. If, for example, resource 1 completes his current

processing first, it will have to wait until resource 2 completes its current job. This introduces a

synchronization idleness that is unavoidable with random service times and that is the analogue

of the exogenous setup time in the single-server example above.

This tradeoff between utilization and queue length presents an interesting further object of study.

Decentralized control – setting the incentives right: The dynamic control of queueing networks

typically assumes a central controller that can allocate resources to activities in real time. The

controller can guarantee that resources are “at the right place at the right time” to perform

collaborative activities. In various human-operated services (health-care being a primary example

here as well) resources have “discretion” or degrees of freedom in choosing jobs for processing. Each

of the “players” has its own objectives and the aggregation of what may be individually-optimal

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 31

action may lead to overall sub-optimal performance. The BC network again offers a case in point –

in the introduction we have shown that letting the resources prioritize their individual task leads to

significant capacity loss. Yet, it seems clear that one can find individual objective (utility) functions

that would render such a prioritization scheme the individually rational thing to do.

Collaboration, throughput and incentives offer promising candidates for empirical investigations

of questions such as (1) does collaboration indeed work better in nested architectures in the pres-

ence of individually rational agents, or (2) is there a relationship between our notion of nested

collaboration and some organizational notions of teamwork and hierarchy?

Practical applications – the case of health-care: There are tasks in health-care delivery were

simultaneous collaboration of multiple resources is required. This is evident in the case of surgeries

but is also true for more mundane tasks as patient discharge from an internal ward. The structure of

collaboration in patient flow is not always evident and a thorough understanding of these processes

can suggest meaningful ways to change and expand on the initial study we conducted here.

Hospital beds are one type of resource that presents an interesting challenge to the study of

collaborative processing. On one hand, beds (like other hospital equipment such as MRI machines)

could be viewed as just another processing resource that collaborates with other resources (doctors,

nurses etc.) in “serving” patients. Yet, beds are different in a subtle way. One cannot embed these

directly into the framework in this paper. In principle one can model, for example, a visit of the

doctor to a patient as an activity in which the doctor and the bed collaborate in processing the

patient followed by a period in which the patient waits for the next round which can be modeled

as another (distinct) activity. This requires a departure from the standard framework to capture

the fact that, in between activities, the patient remains on the same bed for the remainder of her

flow through the network.

One may generate an upper bound on the network’s capacity by pretending that resources can

be re-allocated at the end of an activity. Our framework would apply to this relaxation.

Collaboration seems to be prevalent in service networks, and the complexities of these networks

are important to understand and model so as to understand the tradeoffs imposed by collaboration.

It is our hope that our work in this paper can serve as a stepping stone.

References

Bassamboo, A., R.S. Randhawa, A. Zeevi. 2010. Capacity sizing under parameter uncertainty: Safety staffing

principles revisited. Mngt. Sci. 56(10) 1668–1686.

Brucker, P., A. Drexl, R. Möhring, K. Neumann, E. Pesch. 1999. Resource-constrained project scheduling:

Notation, classification, models, and methods. European Journal of Operational Research 112(1) 3–41.

Gurvich and Van Mieghem: Collaboration in Networks
32 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Chan, C. W., G. Escobar, G. Yom-Tov. 2014. When to use speedup: An examination of service systems with

returns. Oper. Res. 62(2) 462–482.

Chopra, S., R. C. Savaskan-Ebert. 2013. Weight solutions clinic bariatric surgery center Kellogg Case

Publishing, Case Number: 5-104-006.

Dai, J. 1999. Stability of fluid and stochastic processing networks. MaPhySto Miscellanea Publication.

Dai, J. G., W. Lin. 2005. Maximum pressure policies in stochastic processing networks. Oper. Res. 53(2)

197–218.

Dobson, G., U. S. Karmarkar. 1989. Simultaneous resource scheduling to minimize weighted flow times.

Oper. Res. 37(4) 592–600.

Graves, S. C., B. T. Tomlin. 2003. Process flexibility in supply chains. Mngt. Sci. 49(7) 907–919.

Harrison, J. M. 2002. Stochastic networks and activity analysis. Y. Suhov, ed., Analytic methods in Applied

Probability, In memory of Fridrih Karpelevich. AMS, Providence, RI.

Haviv, M. 2013. Queues: A Course in Queueing Theory . Springer New York.

Herroelen, W., B. De Reyck, E. Demeulemeester. 1998. Resource-constrained project scheduling: a survey

of recent developments. Computers & Operations Research 25(4) 279–302.

Jiang, L., J. Walrand. 2010. Scheduling and congestion control for wireless and processing networks. Synthesis

Lectures on Communication Networks 3(1) 1–156.

Kelly, F. P. 1991. Loss networks. Ann. Appl. Prob. 1 318–378.

Massoulie, L., J. W. Roberts. 2000. Bandwidth sharing and admission control for elastic traffic. Telecom-

munication Systems 15(1-2) 185–201.

Reiman, M., L. Wein. 1998. Dynamic scheduling of a two-class queue with setups. Oper. Res. 46(4) 532–547.

Roels, G., U. S. Karmarkar, S. Carr. 2010. Contracting for collaborative services. Mngt. Sci. 56(5) 849–863.

Schrijver, A. 1998. Theory of linear and integer programming . Wiley, Chichester New York.

Shah, D., D. Wischik. 2012. Switched networks with maximum weight policies: Fluid approximation and

multiplicative state space collapse. Ann. Appl. Prob. 22(1) 70–127.

Stolyar, A. L. 2004. Maxweight scheduling in a generalized switch: State space collapse and workload

minimization in heavy traffic. Ann. Appl. Prob. 14(1) 1–53.

Tassiulas, L., A. Ephremides. 1992. Stability properties of constrained queueing systems and scheduling

policies for maximum throughput in multihop radio networks. Automatic Control, IEEE Transactions

on 37(12) 1936–1948.

Van Mieghem, J. A. 2008. Pizza pazza Available from permissions@vanmieghem.us.

Williams, R. J. 1998. Diffusion approximations for open multiclass queueing networks: Sufficient conditions

involving state space collapse. Queueing Systems 30(1-2) 27–88.

Zachary, S., I. Ziedins. 1999. Loss networks and markov random fields. Journal of Appl. Prob. 36(2) 403–414.

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 33

Online Supplement

Proof of Theorem 4.1: We first argue that given I, we can construct a network with I activities and

K = 3 +
∑I−1

i=3 i resources that has a complete collaboration graph and such that each resource has only two

activities, i.e,
∑

j
Akj = 2 for all k ∈K. We take the collaboration graph of the BC+ network as the starting

point for this construction. This is a complete graph with three nodes: 1,2 and 3. With R({1}) = {1,2},

R({2}) = {2,3} and R({3}) = {3,1} and has K = 3 resources as needed. Now assume we construct the

required network for all network sizes less than or equal to I − 1. We next add an activity (numbered I)

as follows. For each node i in the current graph (a total of I − 1 nodes) create a (new) resource ki, assign

it to activity i and add it to K (before this step K = 3 +
∑I−2

i=3 i). Assign all these new resources to the

new activity I. That is, R({I}) is the set of these newly added resources. Each of the added resources ki

has two activities (activities i and I) and activity I is connected with an edge to each of the nodes of step

I−1. After this step, then, we have a network with a complete collaboration graph, where each resource has

two activities and K = 3 +
∑I−2

i=3 i+ (I − 1) =K = 3 +
∑I−1

i=3 i. Finally, set the service time and arrival rate

to each activity i to mi = 1 and αi = 1/2. Set P = 0. Then, ρBN = maxk∈K
∑

j
Akj = 1. However, the only

feasible configuration vectors are the identity vectors so that to satisfy (
∑

l
π(el)el)j = λjmj = 1/2 we must

π(ej) = 1/2 and, in turn, that ρnet =
∑

j
π(ej) = I/2. �

Proof of Theorem 4.2: We prove this result for multiserver networks and the single-server case follows

as a special case. We start with the sufficiency. Consider the polyhedron

Ξ =
{
x≥ 0 :

∑
i

Akixi ≤ nk, k ∈K
}
.

By definition, if the SPP (17) has a solution ρBN ≤ 1, we have that
∑

iAkiλimi ≤ ρBNnk or, re-writing,∑
i

Aki
λimi

ρBN
≤ nk, k ∈K.

In particular, xBN = (λ1m1/ρ
BN, . . . , λImI/ρ

BN) is in the convex polyhedron Ξ and can be expressed as a

convex combination of its extreme points. From the assumption that the extreme points are integer it follows

that the extreme points of Ξ are integer valued for any integer right hand side. In particular, the extreme

points of Ξ are feasible configuration vectors; see (18)). Thus, xBN can be written as a convex combination

of configurations: there exists π≥ 0 where e′π= 1 and∑
j

πjaj = xBN,

where aj are feasible configuration vectors. Setting π̂= ρBNπ we have, as required, that∑
j

π̂jaj = λm, and ρnet =
∑
l

π̂l = ρBN.

For the necessity, assume that the polyhedron Ξ has a non-integral extreme point x∗. Choose (α,P,µ)

such that λm= x∗. Then, x∗ cannot be expressed as a (non-trivial) convex combination of integer vectors

in Ξ. In particular, there exists no π such that π≥ 0, e′π≤ 1 and with
∑

i
πia

i = 1 for configuration vectors

ai. In particular, it must be the case that ρnet > 1≥ ρBN .

Finally, note that if the adjacency matrix A is Totally Unimodular (TUM) it follows that the extreme

points of Ξ are integer valued (for any integer right hand side); see (Schrijver 1998, Corollary 19.2a). �

Gurvich and Van Mieghem: Collaboration in Networks
34 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Proof of Corollary 4.1: Notice first that we may ignore resources that have a single activity. Those

resources must be assigned in full to their single activity and it suffices to consider the residual network.

Here, each resource has exactly two activities with an edge connecting the two activities in the graph. In

particular, each edge is associated with a single resource. There can be two resources collaborating on the

two activities but in that case they can be treated as a single resource. Thus, we may assume without loss of

generality that there is a one to one mapping between edges and resources. With each resource corresponding

to an edge and each activity to a node, the matrix AT (the transpose of A) is then (by the assumption of

the corollary) the incidence matrix of a bi-partite graph and is hence totally unimodular; see e.g. (Schrijver

1998, page 273). The transpose of a totally unimodular matrix is itself totally unimodular and we conclude

that A is a TUM matrix. In turn, by Theorem 4.3 the network features no unavoidable idleness. �

The following will be used in subsequent proofs.

An auxiliary synchronization graph for networks with nested architectures: Recall that for a network

to have a nested collaboration architecture it is not necessary that there be no cycles in the collaboration

graph. It is only required that all cycles are nested-sharing cycles. For nested architectures we can construct

an auxiliary acyclic graph that has the useful property that activities at the same “level” of the graph do

not share resources – we will refer to this acyclic graph as the synchronization graph. This graph is a tool

rather than a conceptual entity.

Recall that a nested-sharing cycle is a set of l connected nodes (activities) i0, . . . , il such that

S(ik, ij)⊆S(im, ij) for all k,m, j ∈ {1, . . . , l} : j >m> k.

We refer to i0 as the highest rank activity in the cycle, i1 the second rank etc. Following standard terminology

we say that a simple path in a graph between nodes i and j is a set of distinct nodes i, i1, . . . , il, j such that

each two consecutive nodes are connected by an edge. Given a network, we construct the synchronization

graph as follows:

0. Initialization: Set `= 0 and C0 = ∅. Add a fictitious node r and set dr = 0. (think of the root as an

activity with λr = 0 that uses all K resources.)

1. If C` = I stop. Otherwise, consider the maximal sharing between an activity outside the graph and one

in the graph, i.e,

O= max{i /∈ C`−1, j ∈ C`−1 : |S(i, j)|}.

Set O= 0 if there are no such i and j.

2. O > 0: Pick an activity i` /∈ C`−1 with |S(i`, j)| = O for some j ∈ C`−1. If taking an activity from a

nested-sharing cycle take the highest-rank activity in that cycle not yet in the graph (if there are multiple

nested-sharing cycles with activities not yet in the graph, take an activity from a cycle with the largest

number of nodes).

Pick a node j` ∈ arg maxj∈C`−1:|S(i`,j)|=O dj , add the edge (i`, j`) and set di` = dj` + 1. (we are connecting i`

to the activity with the greatest distance from the root among those that share resources with i`). Stop if

there exist j, k ∈ C`−1 with |S(i`, j)|= |S(i`, k)|=O but S(i`, j) 6= S(i`, k).

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 35

a1

r1,r2,r3

a3

r1,r2

a2

r1,r2,r4

a4

r4

a5

r1

a6 r2

a7

r5,r3

a8

r5

a9

r3

p

1‐p

a1
1,2,3

a2
1,2,4

a4
4

a3
2,1

a6
2

a5
1

a7
3,5

a8
5

a9
3

Figure 9 A network with nested hierarchical architecture

a1
1,2,3

a2
1,2,4

a4
4

a3
2,1

a6
2

a5
1

a7
3,5

a8
5

a9
3

Figure 10 A synchronization graph for the network in Figure 9

3. O = 0 (there are no activities i, j one in the graph and the other out of it that share resources): pick

an arbitrary i` /∈ C`−1 and add to the graph connecting it via an edge to the root. If adding an activity from

a nested-sharing cycle take the one with the highest rank (if there are multiple nested-sharing cycles with

activities not yet in the graph, take an activity from a cycle with the largest number of nodes). Set di` = 1.

Example A.1 Consider the network in Figure 9 together with its collaboration graph. The collaboration

graph contains only nested-sharing cycles. The outcome of the algorithm applied to this network is as in

Figure 10 (we removed here the fictitious root).

Since the choice of the edge to add in step 2 of the algorithm is arbitrary there can be multiple synchro-

nization graphs but, importantly, the following holds.

Lemma A.1 (1) If the network has a nested collaboration architecture the algorithm generates a graph with

I nodes and no cycles and, (2) in this case, activities in the same level of the graph (i.e, with the same

parameter d) do not share resources (S(i, j) = ∅ if di = dj).

Proof: If the algorithm stops after I steps then all nodes were added with a single edge and no cycles were

formed. Suppose, towards contradiction, that the algorithm stops after ` < I steps. In this step a node i`

is added and there are j` and k` with O = |S(i`, j`)|= |S(i`, k`)| and S(i`, j`) 6= S(i`, k`). We claim that the

cycle containing i`, k` and j` must be a non-nested cycle. Suppose that these activities are, in fact, part of a

Gurvich and Van Mieghem: Collaboration in Networks
36 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

nested-sharing cycle. Let us further assume that k` was added to the graph after j` (the other case is argued

identically). By assumption, O= |S(i`, j`)|= |S(i`, k`)|. Since this is a nested-sharing cycle and k` has a lower

rank than j` we have that S(j`, i`) ⊆ S(k`, i`) and, in turn, S(i`, j`) = S(i`, k`) which is a contradiction to

the stopping rule. We may thus conclude that, if the network has a nested architecture, the algorithm ends

with a tree that includes I nodes.

We argue next that if the architecture is nested then i and j with di = dj must have S(i, j) = ∅. The case

that i and j are not part of a cycle is trivial as, if di = dj and S(i, j) 6= ∅, we would have in fact found a cycle

containing i and j in the collaboration graph. To argue the case that i and j are part of a nested-sharing

cycle, let ` be the first step in which a node i` is added with the property that di` ≤ dj for some j ∈ C`−1

with S(i`, j) 6= ∅. Let k 6= j be such that (i`, k) is the edge that is added to the graph with node i` (if k = j

we would have di` = dj + 1 > dj). Then, dj ≥ di` = dk + 1. In particular dk < dj . Note that S(j, k) 6= ∅ as

they are both part of a nested-sharing cycle containing j. Since i` is the first node added with the required

property, the fact that dk < dj implies that k was added to the graph before j (and has higher rank in the

nested-sharing cycle containing both). By the definition of nested-sharing cycles we must then have that

S(k, i`)⊆S(j, i`) and, in particular, that |S(k, i`)| ≤ |S(j, i`)|. Recall that also dj > dk so that, when adding

i` we would have added the edge (i`, j) instead of (i`, k). �

Proof of Theorem 4.4 and Theorem 5.6: First, note that Theorem 4.4 is a special case of Theorem 5.6

with the staffing vector set to be the vector of ones. We divide the proof into two parts. In the first we treat

nested architectures and in the second we treat weakly non-nested architectures.

Nested architectures: A known sufficient condition for the total unimodularity of the matrix A is that

it (or a permutation of its rows) has the consecutive ones property; see (Schrijver 1998, Example 7, Chapter

19). We next prove that we can re-label the resources and permute the rows so that the 1s in each column

(corresponding to an activity) appear consecutively.

Our starting point is the synchronization tree constructed above. We first re-organize the tree. We make

sure that at every level of the tree the nodes with the least number of sons are far from the root. Formally, i

is a parent node of j (and j the son of i) if there is an edge between them and dj = di + 1. Returning to the

example we used before, the graph in Figure 11(LHS) would be re-organized into the one on the RHS.

Proceeding with this example, we can now re-label resources following depth-first-search to traverse the

tree. We first visit activity a8. This activity has the single resource 5 – we re-label this resource as 1 (i.e,

5→ 1). We then proceed to activity a9 and re-label 3 as 2. At this point labels 1 and 2 are already taken

and the next available label is 3. In activity a7, 3,5 is replaced with 2,1 (or 1,2 for convenience of display)

following the re-labeling already done in the son nodes of a7. We then visit node a6 and replace 2→ 3 and

in activity a5 1→ 4. In activity a3 we re-label based on the son nodes a5 and a6. For activity a4, the next

available resource number is 5 so we re-label 4→ 5 and follow accordingly in activities a2 and finally a1.

By the end of this procedure we have re-labeled the resources (5,3,2,1,4)→ (1,2,3,4,5). This re-labeling

guarantees the consecutive 1’s property: a1, for example, uses resources 2,3 and 4 (previously 1,2,3), a2 uses

3,4,5 (previously 1,2,4), etc.

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 37

a1
1,2,3

a2
1,2,4

a4
4

a3
2,1

a6
2

a5
1

a7
3,5

a8
5

a9
3

a1
1,2,3

a2
1,2,4

a4
4

a3
2,1

a6
2

a5
1

a7
3,5

a8
5

a9
3

a1
2,3,4

a2
3,4,5

a4
5

a3
3,4

a6
3

a5
4

a7
1,2

a8
1

a9
2

Figure 11 (LHS) A synchronization graph for the network in Figure 9 and (RHS) re-organized version and

(BOTTOM) re-labeled resources

The following is the formalization of the re-labeling algorithm:

Initialize num= 0 and z0 = 0. Each resource has a tuple containing its original number k, its current label

`(k) (which is initialized to k), and a binary variable v(k) which is 0 initially and set to 1 once k is labeled.

We take the following actions in step l of the depth first search:

1. If the node is a leaf (corresponding to activity i say), we label all unlabeled resources in this node in an

arbitrary order starting with the numbers num+1, . . . , num+ |R({i})|. We advance num← num+ |R({i})|.

For each labeled resource k, we write `(k) for its new label and set v(k) = 1.

2. If node i is not a leaf:

2a. If node i has a resource k that has not yet been marked (i.e. v(k) = 0): if i is on the left of the root

assign it the number zl−1 (and change zl← zl− 1). If i is on the right of the root, label `(k) = num+ 1, set

v(k) = 1 and advance num← num+ 1.

2b. Order the resources in each activity in increasing order of their labels. If after completing step 2a

there is a gap in the labels of resources in activity i (there are resources k, l ∈R({i}) such that `(k)> `(l)+1

but no κ ∈ R{i}) with `(κ) = `(l) + 1)) we take the following actions: Let k (with label `(k)) be the first

resource after the gap. Let j be a son of i such that k ∈ S(i, j) (by Lemma A.1 there can be at most one

such son node). Re-label all resources in the sub-tree rooted in j by shifting them by −`(k). Repeat as long

as there are gaps.

To illustrate step 2b consider Figure 12. The top graph on the left is the original one and the bottom

graph on the left is the one obtained after applying all steps except for step 2b on the root node a1. Note

that in the root node there is now a gap (between 2 and 4). In this last step we take the sub-tree rooted at

Gurvich and Van Mieghem: Collaboration in Networks
38 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

a1
4,5,3

a5
2,3

a7
3

a6
2

a2
4,5

a3
4

a4
5

a1
4,5,3→1,2,4

a5
2,3→3,4

a7
3→4

a6
2→3

a2
4,5→1,2

A3
4→1

a4
4→2

a1
4,5,3→1,2,4

→0,1,2
a5

2,3→3,4→
‐1,0

a7
3→4
→0

a6
2→3
→‐1

a2
4,5→1,2

a3
4→1

a4
4→2

Figure 12 Relabeling example

a5 and shift all labeling by −4, thus creating the two new labels −1 and 0. All labels in the graph are now

consecutive.

To argue that the resulting labeling has consecutive labels we perform induction on the step number.

This is obviously true for the first visited leaf. Since no two leafs in the synchronization tree have shared

resources, when a leaf is visited no resource is already labeled. Assuming that for all activities visited in step

l≤ k− 1 resources are consecutively numbered, the algorithm preserves this property. Let i be the activity

visited in the kth step: if step 2b is not applied to node i, it means there is no gap and the consecutive

labeling is inherited from the son nodes because new resources are added to the left (if the node is to the

left of the root) or right (if the node is on the right of the root). If step 2b is applied in this node then

the resource numbers are merely shifted and hence, by the induction assumption, all son nodes preserve the

consecutive-labels property.

Notice that the fact (recall Lemma A.1) that the synchronization tree does not have nodes with shared

resources in the same level, is used in step 2b.

Finally, permuting the rows of A according to the labeling we created, each column in the graph (corre-

sponding to each activity) will have consecutive ones. Recall that this guarantees that the matrix A is totally

unimodular which concludes the proof for nested architectures.

Weakly non-nested architectures: We will show that if an architecture is weakly non-nested, we can

alter the network in a way that preserves the value of ρBN and can only increase ρnet but has a nested

collaboration architecture. This will imply, by the first part of this theorem, that there is no unavoidable

idleness.

We start with an example. Consider a network of 3 activities and 4 resources as in the collaboration graph

in Figure 13(LHS)–each circle corresponds to an activity and the required resources are listed below the

activity’s label.

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 39

a1
1,2,4

a2
2,3,4

a3
3,1,4

a1
1,2,4,3

a2
2,3,4,1

a3
3,1,4,2

Figure 13 Transforming a weakly non-nested network into a nested one without changing ρBN.

This network contains a non-nested cycle. It is weakly non-nested because resource 4 is shared by all

activities in the cycle. The bottleneck in this network is trivially resource 4 with ρ4 = ρBN =
∑3

j=1 λjmj (and

ρ2, ρ1, ρ3 ≤ ρ4). If we add each of the resources 1,2 and 3 (each, notice, is assigned initially to 2 activities)

to activities to which they are not assigned, we obtain the network with the collaboration graph on Figure

13(RHS). The resulting network is trivially nested. Importantly, this action does not affect the theoretical

utilization which remains ρBN = ρi =
∑3

j=1 λjmj , i= 1, . . . ,4 and it can only increase ρnet as, by assigning

more resources to activities we can only shrink the family of feasible configuration vectors.

The new network we constructed is nested so that ρBN = ρnet. In particular, we can construct an allocation

π that achieves ρnet = ρBN. In this special example, positive weights are given only to the identity vectors

ei, i= 1,2,3.

To generalize this argument, fix a network with a weakly non-nested collaboration architecture. As in the

above example, we first transform all weakly non-nested cycles into nested ones.

Fix a weakly non-nested cycle of activities C ⊆ I. Let k∗ be the focal resource of this cycle: the resource

that is shared by all activities in the cycle. If there are multiple cycles in which k∗ is the focal resources, C

is taken to be the one with the most activities. We can also assume there is a single such resource for C. If

there are two we can treat them, without loss of generality as the same resource. Let K(C) = {k ∈K :Akj =

1, for some j ∈ C} be the set of resources that participate in at least one activity in the cycle.

By definition j ∈ C if and only if Ak∗j = 1. We distinguish between two types of resources associated with

this cycle:

(i) Resources that participate in two activities or more in the cycle. The set of these is given by K≥2(C) :=

{k ∈K(C) :
∑

j∈CAkj ≥ 2}.

We claim that a resource k ∈K≥2(C) cannot have activities j /∈ C. Indeed, suppose that there exist k ∈K≥2(C)

and j0 ∈ I such that Akj0 = 1 but Ak∗j0 = 0. Since k participates in two activities in the cycle C, there must

exist two activities j1, j2 ∈ C such that j0, j1 and j0, j2 are in the graph. Note that because all activities in C

share a resource we can assume without loss of generality that the activities j1, j2 are consecutive activities

Gurvich and Van Mieghem: Collaboration in Networks
40 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

in the cycle (otherwise we can re-label the activities). Thus, we have identified a non-nested cycle C̄ (with

more activities than C). Note that C̄ must be a non-nested cycle. If it were nested than the smaller cycle C

would also be nested. Moreover, it is strongly non-nested because Ak∗j0 = 0. This would be a contradiction

to the assumption that all non-nested cycles are weakly non-nested.

(ii) Resources that participate in one activity in the cycle K1(C).

We do nothing for resources k ∈K(C) \K>2(C). Since we have argued that for k ∈K>2(C),
∑

j /∈CAkj = 0,

we can alter the network by assigning k to each of the activities j ∈ C with (initially) Akj = 0 and still have∑
j
Akjλjmj ≤

∑
j
AkCjλjmj so that the value of ρBN = maxk ρk does not change. Note that the resulting

cycle is nested. Any resource that appears twice appears now in all activities of C so that, in any order, the

condition (15) holds. Repeating the same for each such weakly non-nested cycle, the network is transformed

into a nested network. For this network ρnet = ρBN. Since, by assigning resources to more activities we only

shrink the family of configuration vectors this, in particular, implies for the original network that ρBN = ρnet

which concludes the proof. �

Proof of Lemma 4.2: Let C = i0, . . . il be the shortest amongst the strongly non-nested sharing cycles. A

segment of the cycle is a subset of consecutive activities in the cycle. Since C is strongly non-nested it can

be divided into non overlapping segments (the end point of one segment can serve as a starting point for the

next) such that for each segment there is a resource k that is shared by all activities in this segment. There

must be at least two such segments since the cycle is, by assumption, strongly non-nested.

Note that there cannot be another strongly non-nested cycle in the graph that has nodes in two distinct

segments of the cycle C. Otherwise C would not be the shortest strongly non-nested cycle. Also, there can

not be a nested-sharing cycle (or a weakly non-nested cycle) with nodes in two distinct segment because by

definition both nested and weakly non-nested cycles require the existence of a resource that is shared by all

activities in the cycle.

We conclude that there are no edges in the collaboration graph with end points in distinct segment of this

cycle. We can then assume, without loss of generality, that each segment has one edge (and two activities).

Indeed, if there are three activities there will be an edge between each two of them because they share a

resource and we can drop one activity. Thus, we have found a simple cycle. �

Proof of Theorem 4.5: By Lemma 4.2 the network contains at least one simple non-nested cycle. Let M

be the (odd) number of nodes in the cycle (it is also the number of edges).

Choose λ and m such that λjmj = 1/2 for each activity on the cycle. Set λjmj = 0 for all other activities

in the network. Recall that a cycle i1, . . . , il is simple non-nested if each two activities connected by an edge

share a resource that is not used in any other activity in the cycle. With the above parameters we can assume

that there is one such resource per edge (if there are multiple we can treat them as the same resources) and

a total of M resources assigned to activities in the cycle.

Each resource that defines an edge on the cycle has two activities with a total load of 1 and is thus a

bottleneck. Since at most b(M − 1)/2c<M/2 of the M activities on this cycle can be processed in parallel

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 41

and each activity uses 2 of these resources there is no feasible configuration set A with BN⊆R(A). The

condition of Lemma 4.3 is trivially satisfied and we can conclude that the network features unavoidable

idleness. �

Proof of Lemma 4.3: Suppose that ρnet = ρBN = 1. Let (π,ρnet) be a solution to the SPPC (i.e,∑
A∈C a(A)π(A) = λm. and

∑
A∈C π(A) = ρnet).

Since
∑

i
Akiai(A)∈ {1,0} for any feasible configuration set A, we have that

ρk =
∑
i

Aki(λimi) =
∑
i

Aki(
∑
A∈C

a(A)π(A))i

=
∑
A∈C

π(A)
∑
i

Akiai(A) =
∑

A∈C,k∈R(A)

π(A). (26)

Moreover, if A is such that π(A) > 0 then it must be the case that BN ⊆R(A). Indeed, for all k ∈BN,

the right hand side of (26) is ρnet = ρBN = 1. Thus, if there exist k, l ∈BN and A with π(A)> 0 such that

k ∈R(A) but l /∈R(A) then we would have
∑
A∈C:l∈R(A) π(A)< 1 = ρBN.

In turn, if ρnet = ρBN = 1 there exists a family C(BN)⊆ C such that BN⊆R(A) for each A ∈ C(BN)

and
∑
A∈C(BN) π(A) = 1.

Finally, for each i, (
∑
A∈C a(A)π(A))i = λimi (recalling that a(A) is a binary vector) so that π(A) ≤

mini∈A λimi. We conclude that, if ρBN = ρnet there must exist a family of subsets C(BN) of C such that

1 =
∑

A∈C(BN)

π(A)≤
∑

A∈C(BN)

min
i∈A

λimi.

In particular, if ∑
A∈C:BN⊆R(A)

min
i∈A

λimi < 1,

it must be the case that ρnet >ρBN = 1.

For the second part of the lemma, arguing as before we obtain that

ρk =
∑

A:k∈R(A)

π(A)≤ ρnet
 ∑
A:k∈R(A)

min
i∈A

λimi

 .

(Recall that ρnet ≥ 1 in the assumptions of the lemma.) Then, for each k ∈BN

ρBN = ρk ≤ ρnet max
l∈BN

 ∑
A:l∈R(A)

min
i∈A

λimi

 ,

which completes the argument. �

Proof of Lemma 5.4: The proof is by construction. Let ρBN be the solution of the SPP. Let c0,θ be the

configuration vector that has as its ith entry

c0,θi =
1

ρBN

⌊
λθimi

⌋
.

(note that since we assume throughout the paper that λimi > 0 for at least one i, we have that ρBN > 0.)

Let π(c0,θi) = ρBN. Also, let ni,θ be the vector that has mink:k∈R({i}) n
θ
k in its ith entry and 0 otherwise. Set

π(ni,θ) =
1

mink:k∈R({i}) nθk

(
λθimi−

⌊
λθimi

⌋)
.

Gurvich and Van Mieghem: Collaboration in Networks
42 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Note that all vectors c0 and (ni, i∈ I) are feasible configuration vectors since they satisfy
∑

i
Akic

0,θ
i ≤ nθk

for all k and
∑

l
Akln

j,θ
l = minl:l∈R({j}) nl ≤ nθk for all k. Finally, note that

π(c0,θ)c0,θ +π(ni,θ)ni,θ = λθimi

and

π(c0,θ) +
∑
i

π(ni,θ) = ρBN +
∑
i

1

mink:k∈R({i}) nθk

(
λθimi−

⌊
λθimi

⌋)
=: ρθ.

Thus, the θ-s SPPC has a feasible solution (πθ, ρθ) with

|ρBN− ρθ| ≤
∑
i

1

mink:k∈R({i}) nθk

Finally, since λ is strictly positive by assumption and each resource is assigned to at least one activity we

must have that nk > 0 to have a feasible solution for the SPP. Since nθk = θnk→∞ as θ→∞, we conclude

that |ρBN− ρθ| → 0, as θ→∞. �

Proof of Theorem 6.7: The proof is straightforward given the definitions and Theorem 4.4 for the no-

flexibility case. Specifically, given (xBN, ρBN) as in the statement of theorem (i.e, that solve (23)), consider

the following problem

minimize ρ

s.t.
∑

iAk,(iG)x
BN
iG ≤ ρ, for all k ∈K,

This can be interpreted as the SPP corresponding to an artificial network with activities {(iG)} and with

arrival rate xBNiG to activity (iG). Trivially, this problem has ρBN as its optimal solution. The collaboration

architecture of this artificial network is nested by assumption. By Theorem 4.4, there exists π≥ 0 such that∑
A∈C π(A) = ρBN and

∑
A∈C a(A)π(A) = xBN. Thus,

∑
G

∑
A∈C(a(A)π(A))iG =

∑
G
xBN
iG = λimi where the

last equality follows directly from the SPP. �

The following provides a weaker sufficient condition than the one in Theorem 6.7. We let ρ(x) =

maxk
∑

kAk,(iG)xiG.

Lemma A.2 Fix λ and let (xBN, ρBN) be an optimal solution to the SPP with ρBN(λ)≤ 1. Suppose that xBN

can be written as a sum of non-negative vectors x1, . . . x` each of which induces a nested extended collaboration

architecture and such that
∑`

l=1 ρ(xl)≤ 1. Then, ρnet(λ)≤ 1.

Proof: For each m we can construct as in the proof of Theorem 6.7 a probability vector such that
∑

a
π(a) =

ρm where ρm is the value of the static planning problem for xm. A probability vector π̌ is then constructed

by setting π̌(a) =
∑

m
πm(a). by assumption

∑
a
π̌(a)≤ 1 and

∑
a
aπ̌(a) = xBN. �

Gurvich and Van Mieghem: Collaboration in Networks
Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS 43

Proof of Lemma 6.6: Identically to Lemma 4.3 it is proved that if the SPP has an optimal solution

ρBN = 1 and ∑
A∈C:BN⊆R(A)

min
(i,G)∈A

λimi < 1,

then the network features unavoidable bottleneck idleness. Let CF be the family of feasible configuration

sets after the addition of the extended activity (i,G) as in the statement of the lemma. Under the conditions

of the Lemma 6.6 the extended activity (i,G) cannot participate in any covering of BNF = BN
⋃
{k}. In

particular, {A∈CF : BNF ⊆R(A)} ⊆ {A∈C : BN⊆R(A)} so that under the condition of the lemma∑
A∈CF :BNF⊆R(A)

min
(i,G)∈A

λFi mi ≤
∑

A∈C:BN⊆R(A)

min
(i,G)∈A

λFi mi < 1

and by the first part of the lemma the network features unavoidable idleness. �

	Introduction
	Network Notation and Graphic Conventions
	Bottlenecks, Feasible Configurations and Unavoidable Idleness
	Collaboration Graphs and Architectures of Collaboration
	Non-nested networks

	Collaboration and Scale: Multi-server Networks
	Unavoidable Bottleneck Idleness and Flexibility
	Concluding Remarks

