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elative to brick-and-mortar retailers, online retailers have the potential to offer more options to their cus-

tomers, with respect to both inventory as well as delivery times. To do this entails the management of a
distribution network with more decision options than a traditional retailer. The online retailer, not the customer,
decides from where items will ship, by what shipping method, and how or whether multiple-item orders will
be broken up into multiple shipments. What is the best way to fulfill each customer’s order to minimize average
outbound shipping cost? We partner with an online retailer to examine this question. We develop a heuristic that
makes fulfillment decisions by minimizing the immediate outbound shipping cost plus an estimate of future
expected outbound shipping costs. These estimates are derived from the dual values of a transportation linear
program (LP). In our experiments on industry data, we capture 36% of the opportunity gap assuming clair-
voyance, leading to reductions in outbound shipping costs on the order of 1%. These cost savings are achieved
without any deterioration in customer service levels or any increase in holding costs. The transportation LP also
serves as the basis for a metric that provides information on the quality of the inventory position. Based on
initial successful piloting, our industrial partner has implemented the metric as well as a version of the heuristic
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that it is applying to every fulfillment decision for each of its stock keeping units in North America.
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1. Introduction

In 2013, sales of items paid for over the Internet in
the United States brought in revenues of $263 billion
(Forrester Research, Inc. 2014a). This number repre-
sents a 14% increase in sales over the previous year
and is expected to grow to $414 billion in 2018, consti-
tuting 11% of U.S. retail sales (Forrester Research, Inc.
2014a). Growth rates are similar in western Europe,
where online revenues are forecast to grow from
135 billion euros in 2013 to 234 billion euros in 2018
(Forrester Research, Inc. 2014b). The online retail busi-
nesses serving this growing customer base operate
differently from pure brick-and-mortar retailers and
require a new set of tools to run efficiently.

One important aspect of online retailing is fulfill-
ment: the picking, packing, and shipping of orders to
individual customers. One element of fulfillment, out-
bound shipping, can by itself incur significant costs.
From the 10-K statements of several online retailers
(Amazon.com, Inc. 2012, 2013, 2014; Bluefly, Inc. 2011,
2012, 2013; Vitacost.com, Inc. 2012, 2013, 2014), out-
bound shipping revenues (shipping fees charged to
the customer) can vary from 3.2% to 4.6% of sales.
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It is reasonable to suppose that outbound shipping
costs are similar in terms of order of magnitude as
shipping revenues; indeed, Amazon.com reports out-
bound shipping costs to be about double of their ship-
ping revenue (Amazon.com, Inc. 2012, 2013, 2014).
Thus, outbound shipping costs can be significant
when compared to total sales revenue generated by
online retailers. Furthermore, many online retailers
charge customers a flat fee for shipping (which may
be equal to zero if free shipping is offered), regard-
less of the actual cost to fulfill specific orders. Conse-
quently, reducing outbound shipping costs helps the
retailer’s bottom line directly.

In this paper, we study the impact of forward-
looking fulfillment decisions on outbound shipping
costs in an online retail environment. This research
grew out of a partnership with a large American-
based retailer that sells a broad catalog of physical
items online and operates a network of fulfillment
centers around the United States. Like other online
retailers, outbound shipping costs constitute a sig-
nificant portion of their expenditures. The retailer’s
assortment varies in cost and popularity, with some
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items selling thousands of units in a week, and others
selling a dozen units over the course of a year. For
the most part (except when operational constraints
or considerations intervene), our industrial partner
makes fulfillment decisions myopically: the online
retailer fulfills each order the cheapest way possi-
ble based on its current inventory position, with-
out accounting for any cost implications for fulfilling
future orders.

To illustrate the possible pitfalls of a myopic pol-
icy, imagine two fulfillment centers (FCs): one in Los
Angeles and one in Nashville. The Los Angeles facil-
ity has three textbooks left in stock, whereas the
Nashville facility has one textbook and nine CDs in
stock. Over the course of the next day, two customers
will arrive: one in Dallas wanting a textbook, and one
in Washington, DC wanting a textbook and a CD.
These customers will each pay a fee to receive their
orders within three days; this fee will not depend on
the actual costs incurred by the online retailer. The ful-
fillment system is unaware of these customers at the
outset of the day. Figure 1 shows the costs of shipping
each item or combination of items from each facil-
ity to each customer. These costs were retrieved from
http://www.ups.com on June 30, 2014. They represent
the cost to send a one-pound package to a residential
address within a three-day window. $13.68 represents
the cost to send a two-pound package from Nashville
to Washington, DC.

If the Dallas customer arrives first, the online
retailer (acting myopically) will ship the textbook
from Nashville rather than Los Angeles, saving
$13.30 — $12.44 = $0.86. This depletes the textbook
inventory at Nashville, which now has only nine
CDs remaining. Then the Washington, DC customer

Figure 1 Example of Myopic Fulfillment with Shipping Costs

arrives, wanting a textbook and a CD. Nashville no
longer has the textbook; hence, the textbook must
ship from Los Angeles, and the CD must ship from
Nashville, for a cost of $25.03 + $12.44 = $37.47.
The total fulfillment cost for the myopic fulfillment
policy (MYO) is $12.44 + $37.47 = $49.91. If the online
retailer could have seen the future, it would have
fulfilled the Dallas customer’s order from Los Ange-
les and the Washington, DC customer’s order from
Nashville, at a total cost of: $13.30 + $13.68 = $26.98,
a little over half the cost of the myopic policy. We call
this the perfect hindsight policy. As mentioned above,
the savings achieved through the perfect hindsight
policy go straight to the bottom line.

We assume that customers have delivery-time
options, with shorter delivery times corresponding to
higher shipping fees (regardless of the actual fulfill-
ment cost). The online retailer typically has several
ways that it can fulfill an order, choosing both the FC
and shipping mode (air, truck, etc.). Faster shipping
modes incur higher shipping costs on the part of the
online retailer. We note that the online retailer need
not use an expensive shipping mode to serve a cus-
tomer who requests a short delivery window. If the
items in a customer’s order are in a facility nearby,
the online retailer may use a relatively cheap mode
and still satisfy the customer’s delivery-time request.
Thus, a large savings can be realized not only by ship-
ping items shorter distances but also by using cheaper
modes of transportation, namely, choosing trucks over
airplanes whenever possible.

Although the problem we study is motivated by
online retailing and tested on data from that industry,
we note that similar problems exist in other supply
chain domains. For instance, in a traditional supply
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chain, if a distribution center is stocked out of an item,
a retail store may be served by an alternate distri-
bution center via an emergency shipment. In omni-
channel retailing, in which an organization integrates
its brick-and-mortar operations with its online pres-
ence, the retailer must decide whether to fulfill an
online order from one of its warehouses or from the
inventory at one of its retail stores.

In this paper, we investigate the extent to which
we might improve upon the performance of a myopic
fulfillment policy for online retailers by developing an
implementable heuristic. By implementable we imply
both computationally tractable and intuitive to the
extent necessary both to write flexible code and to
obtain buy-in from business managers. We propose
a linear programming-based heuristic that takes into
account current inventory levels and future demand
when making fulfillment decisions. Utilizing data
from our industrial partner, we show that this heuris-
tic can reduce outbound shipping costs by 1%. This
heuristic has been implemented at our industrial part-
ner and is being applied to every fulfillment deci-
sion in North America. We also characterize for which
types of stock keeping units (SKUs) the heuristic
works best and create a balance metric, based on the
linear program (LP), which gives information regard-
ing the quality of the inventory position.

2. Literature Review

We divide the relevant literature into five categories:
rationing for multiple customer classes, emergency
lateral transshipments among multiple depots, online
and omni-channel retailing operations, dynamic and
approximate dynamic programing, and airline net-
work revenue management.

There is a rich literature on rationing inventory
in the presence of multiple customer classes, albeit
mostly for a single warehouse node. In these cases,
customer classes are defined by their priority lev-
els, and each level has a desired fill rate, or service
level. For each class, a “support level” is set, such
that when the total inventory drops below a cus-
tomer class’s support level, all demand for that class
is back-ordered. The characteristics of this system are
explored in Nahmias and Demmy (1981), building on
previous work by Kaplan (1969) and Veinott (1965).
In this stream of literature, customers are prioritized,
and the inventory system is allowed to either back-
order or lose demand for low priority customers to
fulfill future demand for high priority customers. Cat-
tani and Souza (2002) investigate rationing in a direct
marketing environment (similar to online retailing),
where customers may pay a higher fulfillment fee to
reduce their delivery times. In online retailing, cus-
tomers could be categorized by their delivery-time
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requests, as well as their geographical location; how-
ever, there is no notion of customer priorities, because
the online retailer serves all customers as long as
inventory exists in the system. Nevertheless, the ful-
fillment policy that we develop in this paper could be
viewed as a rationing policy at each FC, whereby an
FC will protect some inventory for customer classes
requiring rapid delivery. But the application of poli-
cies in the literature to online retailing is difficult
because determination of the rationing levels depends
on the distribution of inventory across the FCs, and
they would need to be recalculated whenever this
changes.

When one FC serves a customer who lives nearer
to another facility, this might be viewed as simi-
lar to a lateral transshipment. Paterson et al. (2011)
review the relevant transshipment literature and cat-
egorize it by several factors, including by whether
a retailer is transshipping reactively due to a stock-
out or proactively to prevent a stockout and other
relevant costs. Oftentimes in these models, the cost
of the transfer is high, the lead time is assumed
to be negligible, and back orders are allowed. Lee
(1987) and Axsater (1990) develop inventory alloca-
tion approximations for multiechelon systems with
repairable items. Axsater (2003), for example, devel-
ops a decision rule dictating whether to transship,
or whether to incur the back-order costs. Yang and
Qin (2007) discuss a model that utilizes virtual lateral
transshipments between two factories. This is similar
to online retailing in that inventory need not travel
from FC A to B, then to the customer to be considered
a transshipment, but instead may be shipped directly
from A to the customer in region B at increased
cost. Archibald et al. (2009) develop a transshipment
heuristic for a realistic multilocation inventory sys-
tem; the heuristic suggests from which retail location
inventory should be transshipped when a retail loca-
tion stocks out.

Much of the existing emergency lateral transship-
ment literature assumes that myopic fulfillment poli-
cies will be used to meet demand and then focuses
on deciding whether or not to transship reactively
when there is a stockout, and from where, as well as
how best to allocate inventory initially across multiple
locations. Other literature focuses on proactive trans-
shipment (e.g., Abouee-Mehrizi et al. 2014), whereby
a central planner transfers inventory among retail
locations at a review epoch instead of or in addition
to shipping inventory to these locations from a cen-
tral depot. In contrast to both of these approaches,
we take as given an inventory allocation across a set
of FCs and then determine how best to fulfill each
order so as to minimize the outbound shipping costs
over all orders. Effectively, our focus is to determine
the conditions for which proactive transshipment is
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warranted on an order-by-order basis, namely, when
the best fulfillment policy is to deviate from a myopic
policy and fill an order from a more distant, more
expensive FC.

Researchers have also looked directly at the prob-
lem of optimizing online and omni-channel retailing
operations. Agatz et al. (2008) provide an excellent
review. Researchers in this stream have previously
noted the high cost associated with fulfilling online
orders (Agatz et al. 2008, de Koster 2002, Lummus
and Vokurka 2002) and the importance of shipping
multi-item orders in as few boxes as possible (Xu et al.
2009). Reducing outbound shipping costs associated
with order fulfillment and split shipments is our main
objective with this research.

Other papers have addressed the incorporation of
delivery cost differences into fulfillment models. For
example, Campbell and Savelsbergh (2005) use inser-
tion heuristics in the context of vehicle routing to
decide which online grocery delivery orders to accept
and the time slots in which to deliver them. Mahar
and Wright (2009) propose a quasi-dynamic alloca-
tion policy that reduces the sum of holding, back-
order, and outbound shipping costs in an online retail
or omni-channel environment. Instead of assigning
orders to FCs one by one as requests arrive, the
authors suggest accumulating sets of customer orders
before allocating them to facilities.

Specific research related to companies operating
both online and brick-and-mortar channels are dis-
cussed in Bretthauer et al. (2010) (which examines for
a dual-channel retailer which of its locations should
be utilized as online FCs), Mahar et al. (2009b) (which
looks at a similar problem over multiple periods),
Alptekinoglu and Tang (2005) (which analyzes the
trade-offs between fulfilling online orders from ware-
houses and from retail locations), and Cattani et al.
(2006) (which discusses pricing strategies in this envi-
ronment). In a dual-channel environment, Mahar et al.
(2009a) develop a dynamic rule that assigns orders
to the FC that incurs the lowest expected holding,
back-order, transportation, and handling costs for this
period, while accounting for inventory in transit.

Other literature analyzes how best to integrate drop-
shipping into online retail supply chains (Netessine
and Rudi 2006), i.e., whether the online retailer should
hold inventory of particular items or contract with a
wholesaler to ship the items direct to consumers. Pre-
vious research has investigated better fulfillment poli-
cies in online retailing, but to our knowledge, none
of these policies utilizes linear programming or dual
variables to approximate opportunity costs and value
functions. Additionally, we verify the possible savings
of a forward-looking fulfillment policy on actual data.
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Generally, the problem of determining an optimal
fulfillment policy falls into the broad class of opti-
mal dynamic resource allocation. The fulfillment sys-
tem must allocate inventory to customers as soon as
they request an item while simultaneously minimiz-
ing future expected costs. Whereas we can formulate
the problem as a dynamic program, the dimensional-
ity of the state space prevents obtaining solutions in a
reasonable amount of time. Neuro-dynamic program-
ming (Bertsekas and Tsitsiklis 1998) and approximate
dynamic programming (Powell 2011) utilize tech-
niques to estimate the value function in a dynamic
program, producing suboptimal but tractable solu-
tions that perform well in practice (Maxwell et al.
2010, Van Roy et al. 1997, Simao et al. 2009).

We can interpret our heuristic as solving an approx-
imate dynamic program for which we approximate
the expected cost-to-go value function. Our method
is inspired by other work that approximates the
value function with dual prices from a linear pro-
gramming model. For instance, early work on air-
line network revenue management (Simpson 1989,
Williamson 1992) used linear programming to match
supply (flight legs) to demand (expected passen-
ger itineraries). When an itinerary’s revenue did not
exceed the sum of the imputed costs of the legs of
that itinerary (determined by the dual values from an
LP), then that itinerary would not be offered to cus-
tomers. Researchers have used this general approach
in several other problem domains, including rem-
nant inventory management (Adelman et al. 1999),
dynamic vehicle dispatching (Gans and van Ryzin
1999), inventory routing (Adelman 2003), approxi-
mate dynamic programming (Powell and Topaloglu
2003), and kidney allocation (Bertsimas et al. 2013).
Our contribution is to apply the basic principles uti-
lized in the previous literature to a new context
(online retailing), to formulate the linear program in
a way that approximately accounts for multi-item
orders, and to demonstrate that the resulting heuristic
works well in practice.

3. Problem Formulation

In theory we can formulate the order-fulfillment prob-
lem as a continuous-time dynamic program that min-
imizes the immediate outbound shipping cost plus
the expected future costs. In this section we present
and discuss the structure of this formulation. We do
not attempt to give a precise specification of the opti-
mization problem, as this is not our intent. Rather
we wish, on the one hand, to convey the complex-
ity of the problem, and on the other hand, to lay the
groundwork for explaining and justifying the heuris-
tic. We will see that the essence of the heuristic is
to develop an approximation for the expected future
costs (the cost-to-go function).
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We define the value function J(S,t) to be the
expected future discounted shipping costs as of
time ¢, for state S, under the assumption of an optimal
fulfillment policy that minimizes the expected future
costs. The system state S, for a single SKU #n con-
sists of the on-hand inventory of this SKU at time ¢
in each FC and the on-order inventories that will
be received for this SKU in each FC at some future,
known time. As we examine only fulfillment deci-
sions, the on-order inventories are exogenous, and
they represent replenishment decisions made prior to
time t. The state S is the union of these individual
SKU states, i.e., S=J,S,. Given that customers can
order any combination of items as a multi-item order,
one needs to know the inventory status of all SKUs
at each FC to determine the feasible options available
for satisfying an order. In order to devise an optimal
fulfillment strategy, one also needs to know both what
is on hand in each FC as well as what inventory is
scheduled to arrive at each FC on each day.

To develop an expression for J(S, t), we will first
consider another value function defined just after
order epochs, namely just after the time instants at
which an order arrives and a fulfillment decision is
made. We define J(S, t | 0) as the minimum expected
future discounted shipping costs for state S, condi-
tioned on order o having just arrived at time ¢, includ-
ing the cost to ship order o at time t. We specify an
order by the set of items to be delivered, by the loca-
tion, and by the delivery time or due date. When
an order arrives we need to decide how to fulfill it:
which FC will supply each item, and then how the
items will be shipped to the delivery location, so as
to satisfy the delivery time. We denote a fulfillment
decision or action as u, and let U be the set of feasi-
ble actions. The decision # would include the choice
of FCs and shipping modes. The set U depends on S
and o because it represents the set of FCs that have the
inventory on-hand to satisfy the order; this set might
also depend on t to account for time-of-day or day-
of-week affects. We express J(S,t | o) as the solution
to the following:

J(S, t]0) =min{C(u, 0) + J(f(S,u, 0), )}, (1)

where C(u, 0) is the cost to fulfill order o with fulfill-
ment action u, and f(S, u, 0) defines how the state S
evolves given action u to satisfy order o. Thus, we
express J(S,t | o0) as the immediate cost for filling
order o, plus the future costs just after a decision is
made. The future costs depend on the new system
state, given by f(S, u,0), which accounts for what
inventory was used to satisfy order o.

We can now develop a recursive expression for
J(S,t) under the assumption that orders arrive ran-
domly and sequentially, and that the order fulfill-
ment decision for each order is made at the arrival
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epoch. Let T be a random variable that denotes the
elapsed time from t until the next order arrival, and
let y denote the discount rate. For instance, if arrivals
were from a Poisson process, then T is independent
of t and is exponentially distributed. The recursive
expression for J(S, t) is

J(S, ) =Er[e™" x Eo[J(S, t+ T | O)]], )]

where O is a random variable representing the
specifics of the next order, and the notation Ey[]
denotes expectation over the random variable X.
We note that we define the value function J(S, ) for
any state S and time ¢, ignoring order epochs.

Solving the dynamic program given by (1) and (2) is
difficult because of the size of the state space. Assume
for a moment that all orders are for single items (so
that the problem can be decomposed into one prob-
lem for each SKU) and that the replenishment lead
time is zero (so that there is no on-order inventory).
An SKU might well be stocked in 10 FCs; thus, the
state space is of dimension 10 to account for the
inventory levels across 10 FCs. Nominally, a dynamic
program with 10 dimensions is nontrivial to solve in
practice for a large number of SKUs. If multi-item
orders are considered, the problem becomes more dif-
ficult because we can no longer decompose it into
subproblems for each SKU. The size of the state space
is now the product of the number of FCs and the size
of the assortment; online retailers have assortments
ranging from 10,000 to many millions. If the replen-
ishment lead time is strictly positive, then the state
space increases further because for each FC and SKU
we also need to account for each scheduled replenish-
ment. We could find no structural results to simplify
the evaluation to make it practical to solve in a real-
istic context.

To get a tractable solution, we make a number of
simplifications and approximations. We focus just on
order epochs, because this is when the fulfillment
decisions are made. We ignore discounting (y =0), as
not being relevant given the time scale for the fulfill-
ment decisions. We approximate the value function
J(S,t) by the sum of value functions for each SKU.
And for each SKU, we approximate its state by its
inventory position. Effectively the approximation can
be seen as

J(S, )~ 3 T(X 1),

where J,(X,,t) represents the minimum expected
future shipping costs as of time ¢, that are attributable
to SKU n, given that SKU 7 has inventory position X,,.
The inventory position X, is a vector containing the
inventory position of the SKU at each FC. We can use
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J.(X,,, t) to determine how to fill an order o by solv-
ing the following minimization over the set of feasible
actions:

r&ig{C(u, 0)+ > (X — ey t)}, ®)

neK,

where k, is the set of items in order o, u(n) denotes the
FC chosen by action u for SKU #, and e; is a vector of
all zeroes except for a one as the jth element. We note
that the feasible action space U depends on the system
state S, the order o, and the time ¢, whereas the approx-
imation for the value function, 3, J,(X, — €., 1),
depends only on X and t. To implement this fulfill-
ment policy, we need a way to approximate the SKU-
specific value functions J,(X,, t). Before proposing the
details of how we do this, it will be helpful to first
describe how we will evaluate and compare different
fulfillment policies. We do this in §4, and then will give
the approximation for J,(X,, t) in §5.

4. Framework for Evaluation

In this section, we describe the framework we use
to evaluate and compare fulfillment policies. We first
discuss the data available to us, some complica-
tions we must overcome, as well as the assump-
tions and simplifications we make to overcome these
complications.

4.1. Overview of Data

Our industrial partner provided us with detailed
records of order, shipment, and inventory data over
28 consecutive days of operations. From this, we built
a data warehouse containing the relevant details of
each customer order (the items in the order, the zip
code of the customer, the order date, and the delivery-
time request), how each order was fulfilled (whether
it was split, from where it shipped, by what mode,
and at what cost), as well as the on-hand and on-
order (inbound) inventory for each item in each ware-
house on each day. In our evaluations, we use the
actual customer order data over this 28-day period to
simulate customer demand. We also use the actual on-
hand inventory data for each day to simulate the ful-
fillment options that were available for each order on

Table1  Minimum Transportation Time

each day. Thus, we take the inventory replenishments
that occurred during this 28-day period as given. As
a consequence, each order fulfillment policy operates
with exactly the same system inventory as was avail-
able in the actual system.

Customers have four options with respect to deliv-
ery time: Next Day, Second Day, Four Day, and
Eight Day. The online retailer has at its disposal
four shipping-mode options: Air Next Day, Air Sec-
ond Day, Premium Ground, and USPS (US Postal
Service). To simplify our data analysis, we made a
couple of approximations. We represent the cost of
each shipping-mode option by a linear function that
increases with distance. Both the fixed and variable
costs increase for each higher priority shipping mode,
e.g., Air Next Day has a higher fixed cost and per mile
cost than Air Second Day, Ground, or USPS. We fit the
linear model by performing a bivariate regression on
actual data of shipping cost versus distance for each
of the four shipping-mode options. The actual cost to
ship an item is more complicated than a linear model
(in fact, it is not even always monotonically increasing
with distance). However, because each fulfillment pol-
icy that we test in our simulation environment utilizes
the exact same cost structure, the comparison should
be fair and should approximately reflect proportional
gains of smarter policies.

The United States is divided into three-digit zip
code prefix regions (Zip3’s), resulting in 932 customer
zones in our data set. We approximate the cost of
mailing a package from a facility to an address within
a Zip3 region as being identical for any address
within that region. We also need to determine which
shipping modes are feasible for a given combination
of FC, customer location, and customer delivery time.
We approximated the transportation times from point
to point with the data in Table 1. We based this table
on the empirical data and verified with our industrial
partner its accuracy for the purposes of this study, as
well as with each carrier’s own website.

For instance, a Second Day delivery can be satisfied
by Air 1-Day or Air 2-Day from any FC, and by Pre-
mium Ground from any FC within 500 miles of the
customer. USPS service can never be used.

Distance from FC Air 1-Day Air 2-Day Premium ground USPS

to customer transportation time | transportation time | transportation time | transportation time
0-250 miles 1 day 3 days
250-500 miles 2 days

_ 1 day 2 days 4 days
500-750 miles 3 days

750+ miles 5 days
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The following parameters are referred to below in
defining shipping costs:

I > i—Set of fulfillment centers (FCs)

J 3 j—Set of customer regions
M > m—Set of customer delivery-time options

¢ijm—Cost from FC i to customer j of delivery-time
type m to ship an average size package.

From the above data, we create a three-dimensional
array with elements c;;,, where i represents the FC,
j represents the three-digit zip code prefix of a cus-
tomer, and m represents the customer’s delivery-time
request. For every i, j, m triplet, there may be up to
four feasible shipping-mode options available to the
online retailer, or as few as one (where feasibility will
be determined by a customer’s delivery-time request
and the data in Table 1). We set the parameter c;,
equal to the cheapest of the feasible shipping-mode
options.

4.2, Stratified Sample of SKUs

Of the millions of items in our partner’s catalog held
in its FCs, we pick a random stratified sample of
2,639 SKUs, which in aggregate sold 1.5 million units
over a four-week period. The sample is stratified by
sales volume because high volume SKUs make up a
small proportion of items but a large proportion of
total outbound volume.

For computational reasons, we exclude any SKU
with sales volume of greater than 5,000 over four
weeks. The fraction of SKUs that sell more than
5,000 units over four weeks is not a significant por-
tion of the catalog of our industrial partner. In extrap-
olating our findings, we assume that for SKUs that
sold more than 5,000 units over four weeks, their per-
formance is equivalent to SKUs in our sample whose
sales were just under 5,000 units over four weeks.
We will see that this is a conservative assumption.
Thus, we create 17 strata defined by sales volume
over four weeks, up to 5,000 units. The breakpoints
of the strata are on a log scale, so that the endpoints
are closer together for lower sales volumes and fur-
ther apart for the higher sales volumes. In each strat-
ification bucket, we attempted to sample 200 SKUs,
or 3,400 SKUs in total. We were able to sample only
3,230 SKUs because in higher sales volume strata there
were fewer than 200 SKUs in the population (for our
industrial partner, there were not many SKUs that sold
thousands per month). Of these 3,230 SKUs, 591 were
excluded (about 18%) because we could not fully rec-
oncile how the retailer feasibly shipped the SKU to
customers based on the data that was available to
us. For instance, we would exclude an SKU if there
were any order for which we could not document
from where the inventory came to satisfy the order.
This exclusion policy rejected faster-selling SKUs more
often than slower-selling SKUs; for an SKU to be
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Table 2 Characteristics of Our Sample of SKUs

Characteristic Value
Number of SKUs 2,639
Number of FCs that held these SKUs 12
Number of orders placed 1.52 million
Average number of orders per SKU (in this stratified sample) 576
Average number of orders per SKU per week 144
Per-week sales of slowest SKU ~1
Per-week sales of fastest SKU ~1,250
Number of unique SKUs involved in orders for SKUs 310,000
in this sample

Note. The last entry in the table is the total number of unique SKUs requested
by the 1.52 million orders.

included, every single sale must have been reconcil-
able. Whereas many of the SKUs we left out might
have been “nearly feasible,” we made the decision to
exclude them from our analysis instead of relying on
further assumptions to make them feasible. In Table 2,
we list some of the overall characteristics of the SKUs
in our sample.

4.3. Treatment of Multi-item Orders

The presence of multi-item orders complicates the
evaluation of a policy. A customer may order a single
item or multiple items at once. For multi-item orders,
any item may be ordered with any other item in the
catalog. Multi-item orders are important because of
the large cost savings from shipping items together in
a single box. To evaluate a specific fulfillment policy,
one would need to be able to determine the fulfill-
ment options for every possible combination from the
catalog. For complete accuracy, an evaluation would
need to keep track of the inventory for all items in all
warehouses at all times. Given the size of the catalog,
this is impractical.

Instead, we examine one SKU at a time and try
to replicate how each fulfillment policy would serve
each of the actual orders that contain this SKU in
the 28-day period, all else being held equal. We take
the inventory replenishments for that SKU as given,
and we take the inventory for all the other items as
given. This allows us to determine for each order,
what shipping options are feasible. Additionally, we
always attempt to keep an order together in a single
shipment, and we split the shipment only if this is
not feasible (at an increased outbound shipping cost).
As we hold this the same for all policies we evaluate,
this seems to create a fair comparison.

More specifically, when we are analyzing a spe-
cific order that includes the particular SKU, we flag
the FCs that also had on-hand (at the time the order
was placed) the other items in the customer’s order.
We first attempt to fulfill this customer’s order from
an FC that had both the particular SKU and the other
items. The cost to ship this order is shared among the
items that can be shipped in a single package. If no FC
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satisfies these criteria, we then allow the customer’s
order to be shipped from any FC that had the SKU on
hand. The cost to ship this order now accounts for the
fact that the order was split into multiple packages.

To describe how we account for the other items in
our simulation, we first define parameters utilized
below:

K 5 k—The set of customer orders

r,—The number of items in customer k’s

order
Zy €{0,1}—A parameter calculated from the actual

data, which is set to one if FC i has the
other items in customer k’s order and
zero otherwise

¢;—The contribution of the cost of customer
k’s order to the total cost of fulfilling a
specific SKU.

Based on actual inventory data, for each SKU in
the sample, we determine which FCs to consider for
each multi-item order that includes the specific SKU.
If order k is a multi-item order, then we set Z; to
one if FC i had the other items in the order on-hand
the day order k was placed, and zero otherwise. Note
that while the specific SKU is from the sample, we
consider the entire population of SKUs in setting the
parameter Z;, whether or not those other SKUs in the
customers’ orders are in the sample.

When performing the evaluation for each policy for
order k, we first consider only those FCs that have
positive on-hand inventory for the specific SKU, and
whose associated Z;;’s equal one, i.e., the FCs that can
satisfy order k with a single shipment. In determining
the shipping costs for the order k that are attributable
to the specific SKU, we charge 1/r; of the cost to send
a package, where r; is the actual number of items in
the order; that is, ¢y = ¢y, /1, if order k is shipped in a
single package. If there is no FC with Z; =1 and that
has the specific SKU on-hand, then the order must be
split. The specific SKU is shipped from a feasible FC
as dictated by the specific policy, and we assume the
order will be shipped in two shipments, with equiva-
lent shipping costs. Thus, ¢; = 2c;;,, /7, if order k can-
not be shipped in a single package.

In our bookkeeping, we keep track only of inven-
tory changes with respect to the specific SKU, not with
respect to the other items in the order. The Z;’s are
fixed a priori and are not updated throughout the
course of the simulation. However, in actual opera-
tions, any policy would utilize the real Z;'s. As each
order arrives to the system, the retailer could calcu-
late which FCs are feasible. We set the Z;’s a priori
only to make the evaluation possible because we are
looking at one SKU at a time. The above approxima-
tions allow our models to be tractable, without sac-
rificing too much accuracy. All of these assumptions
were made in conjunction with our industrial partner
and were thought reasonable.
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4.4. List of Assumptions for the Evaluation

We list our assumptions (including the ones just
mentioned) in the evaluation of the fulfillment
policies:

1. For determining the cost performance of a ful-
fillment policy, we evaluate one SKU at a time, as
described above; to get an aggregate cost measure, we
use a weighted sum of the shipping costs of the indi-
vidual SKUs, with the weights based on the sample
stratification.

2. The cost attributed to an SKU for a multi-item
order is the shipping cost divided by the number of
items in the order if it ships in one box, and this
number multiplied by two if the order must be split.
(Implicit in this assumption is that a multi-item order
ships in either one or two boxes.)

3. The demand for each SKU in an order is for
exactly one unit. Some orders do include demand for
multiple units of an SKU, but this is not very com-
mon. Nevertheless, this could easily be incorporated
into the model during implementation.

4. The decision as to how to fill an order, in terms
of what inventory to use and the shipment mode, is
made at the time the order is placed and is not sub-
sequently revisited. This assumption mirrors actual
practice at our partner; furthermore, it allows for
the fulfillment policies to be compared without the
confounding effect from postponing the fulfillment
decision.

5. We exclude very high volume SKUs because of
computational considerations. When determining the
aggregate performance, the performance of SKUs that
sold more than 5,000 units over the course of four
weeks is set equal to that of SKUs that sold the highest
volume within our sample.

6. We assume that shipping costs do not depend
on weight of the item but do depend on shipping
mode and distance. As justification, there is no rea-
son to think that one policy performs better than
another based on the weight of the item; hence, the
proportional improvement of one policy over another
remains valid.

4.5. Details of Evaluation

Using the data set from our industrial partner, we can
evaluate the effect that different fulfillment policies
have on total outbound shipping costs of the system.
We evaluate three policies: a myopic policy that is a
proxy for the actual policy; a heuristic policy that we
develop as an implementable improvement over the
current policy; and a clairvoyant policy that provides
a lower bound on the total costs.

For both the myopic (MYO) and heuristic policy
(HEUR), we simulate the performance of the policy
for each SKU on the set of actual orders over a four-
week period. As each order k arrives to the system,
each policy chooses an FC from which to fulfill based
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on the following logic where U is the set of feasible
FCs, which is understood to depend on the system
state S, the order o, and the time ¢:

FCM© =argmin ¢, (4)
iel
FCHEUR = arg min ¢y + J, (X, —e;, ), ®)
iel

where expression (5) is the single SKU simplification
of expression (3). (Recall that J() is our approximation
of the cost-to-go function in the dynamic program, for
which we develop a mathematical expression in §5.)
We defined c;;, for multi-item orders in §4.3; for single-
item orders, ¢; = ¢;;,, where j is the customer location
for order k, and m is its delivery-time option, and c;;,
is the cost of the cheapest shipping-mode option that
meets the delivery time requirement of order k.

The third policy we evaluate, a clairvoyant perfect
hindsight policy (PH), is the solution to an opti-
mization problem. The time-indexed problem allo-
cates inventory to actual customer requests assuming
complete knowledge of all orders for an SKU over the
four-week horizon. The objective function minimizes
the sum of shipping costs. Sets of constraints include
the following:

1. Each customer request must be satisfied.

2. The on-hand inventory at the start of the day in
an FC must equal the previous day’s starting inven-
tory plus inbound inventory minus items shipped to
customers.

3. Each multi-item order must be shipped from an
FC that also has the other items in the order on the
day it was placed, if possible; if it is not possible, then
the order may be shipped from any FC that has the
SKU on hand.

See the online appendix (available as supple-
mental material at http://dx.doi.org/10.1287 /msom
.2014.0505) for more details on the PH formulation.

The incurred costs for a specific policy for a specific
SKU are denoted by C?, where 7 is the SKU and % is
the fulfillment policy being tested (i.e., MYO, HEUR,
or PH). This represents the sum of the c;’s for that
SKU. The overall total incurred cost C” is a weighted
sum of the C’s. The weights are determined by cal-
culating the proportion of SKUs in the actual system
that have the same volume as the SKUs in each strat-
ification bucket of our sample.

5. Linear Programming Heuristic

Formulation
Having described the evaluation framework, we now
describe how we approximate the cost-to-go function
J.(X,,, t) of the heuristic mentioned in §3. [,(X,,, t) is
an estimate of the future expected cost to fulfill SKU
n when its inventory position is X,,. We propose using
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the objective value of a transportation LP to approxi-
mate this function. As explanation, we want our esti-
mate of J,(X,,t) to reflect the shipping costs over
some short time horizon beginning at time ¢, because
these costs depend on the current state, namely the
current inventory position. We choose the time hori-
zon based on when we expect the current inventory to
be depleted. To estimate these shipping costs over this
horizon, we assume demand is deterministic. With
this assumption, we find the minimal shipping costs
by solving a transportation LP and use the objective
value as our estimate of [,(X,,, t). Because we evaluate
only one SKU at a time, and because the transporta-
tion LP is being solved utilizing the current inven-
tory position at time f, we simplify the notation in
this section by dropping the SKU subscript n and the
time ¢, and we represent the approximate value func-
tion simply as J(X).

5.1. The Linear Programming Formulation
We define the inventory position for the SKU at each
FC as the current on-hand inventory plus all inbound
inventory (on-order or in transit) over the next 7
days, where we term 7 to be the look-ahead period.
We denote the system inventory position for the item
by the vector X", where the ith element corresponds
to the ith FC and represents the ith supply node of
the transportation LP. We assume that we can rep-
resent with a single number all of the information
about the on-hand and inbound inventory for the next
7 days for a single FC, and that we can ignore any
inbound information beyond 7 days. This assump-
tion allows us to solve a single-period transportation
LP. One might alternatively formulate a multiperiod
transportation LP that accounts more explicitly for the
timing of the arrival of inbound inventory. We did not
attempt this because of computational considerations.

Each demand node in the LP corresponds to a
geographical region and a customer delivery option,
as described in §4.1, and an order type. In par-
ticular for each pair (region, customer option) we
have two order types: one for single-item orders and
one for multi-item orders. The single-item-order node
represents the demand for the specific SKU when
the SKU is ordered by itself; the multi-item-order
node represents the demand for the SKU when it
is ordered with other items. Thus, one node might
be (Illinois, NextDay, Single), whereas another might
be (Kansas, EightDay, Multi). We specify below the
model’s indices, parameters, and variables; in the next
section, after formulating the model, we discuss how
to set the parameters.

7 € Z.—Look-ahead period in days

X] e Z'Z”O—On-hand inventory in FC i plus inven-
tory arriving over next 7 days where |I|
is the number of FCs in the system
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d € R.—Forecast of system daily demand

A, € [0, 1]—Proportion of customers of delivery-time

type m requesting multiple items
p; € [0, 1]—Probability that FC i has “other items in
order”

w,, € (0, 1]—Expected discount of sending a multi-
item order in one package for delivery-
time type m (calculated as the average of
the inverse of the number of items in an
order)

a@j,, € [0, 1]—Fraction of total demand that is region j,
delivery timetypem;notethat}; , a, =1

w;;,,—Decision variable for flow from FC i to
single-item customer (j, m)

x;,—Decision variable for unsplit flow from FC
i to multi-item customer (j, m)

Y;jm—Decision variable for split flow from FC i
to multi-item customer (j, m).

The expected demand over the look-ahead period
for a specific region j and delivery time m is
@, dt(1—A,) for single-item orders and «,dTA,, for
multi-item orders. We allow the parameter A to
depend on delivery time m: customers who request
fast (slow) delivery tend to order fewer (more) items,
with more (fewer) single-item orders.

The transportation LP has a single uncapacitated arc
between each supply node and each single-item-order
demand node. The cost for this arc represents the ship-
ping cost from the FC to the customer region by the
cheapest mode that will satisfy the delivery time.

The transportation LP has two arcs between each
supply node and each multi-item-order demand node.
One arc corresponds to satisfying the multi-item order
with a single shipment; the second arc corresponds to
splitting the multi-item order into multiple shipments.
The cost for the multi-item single-shipment (multiple-
shipment) arc is w,, (2w,,) times the relevant shipping
cost from the FC to the customer region. We set w as
the average of the inverse of the number of items in
a multi-item order; thus, the fraction w represents the
proportion of the shipping cost assigned to each item
in the single shipment. When the multi-item order is
split, we assume there will be two shipments, with
the specific SKU being part of a shipment of size
approximately 1/2w items, and hence 2w is its pro-
portion of the cost. The single-shipment arc is capac-
itated to reflect the likelihood that the FC can fulfill
the order with a single shipment. We set the capac-
ity equal to the expected number of multi-item orders
that can be fulfilled from a given FC, based on that
FC’s ability to fulfill the other items in the order. This
capacity from FC i to customer region j with delivery
time m is p;a;,dTA,,, where p; is the probability that
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FC i has the other items in a random multi-item order.
The formulation is

C(X7) (6)
=min Z Cijmwijm + Z wmci]’mxijm
* Y.z ij,m i,j,m
+ 20, CijnYijm (6a)
i,j,m
j,om jom j,om

Y Wi =a;,dT(1=A,) Yj,m, (6¢)
injm + Zyijm = ajde/\m V]/ m, (6d)

xijm = Piajde/\m Vi/ j/ m, (69)

Wi s Xijm s Yijm =0 V1, j, m. (6f)

The decision variables w, x, and y represent the
amount of flow along the arcs for single-item, unsplit
multi-item, and split multi-item orders, respectively.
The objective value captures the outbound shipping
costs for meeting the demand. Constraints (6b) ensure
that no FC ships more inventory than it has. Con-
straints (6c) and (6d) require both single-item and
multi-item demand to be met, and constraints (6e)
limit the number of multi-item orders that can be
shipped as a single shipment. The above formulation
presumes that supply is sufficient to meet demand,
that is, > ; X7 > dr. If this is not the case, we reset
the value of 7 so that dr =) ; X7, where 7 can be
continuous.

We make a further simplification in how we imple-
ment the heuristic within the evaluation framework.
Previously in (5) we expressed the heuristic for a spe-
cific SKU as choosing an FC for order k based on the
following logic:

FC"ER = argminc;, + J(X™ —e,),
iel
where U is the set of FCs that can satisfy order k
at the current time. Notice that we dropped the SKU
subscript and time specification from the function J()
in (5) and added 7 to the inventory position vector to
be explicit about the look-ahead period. To make the
heuristic operational, we first approximate the cost-
to-go J(X™ —e;) by C(X™ —¢;), the objective function
of the transportation LP (6), for each i € U. However,
this requires solving one LP for each FC i that holds
the SKU. To avoid this, we approximate C(X" —¢;) by
C(X™) — m;(X"). Here, m;(X") is the dual value associ-
ated with constraint (6b), the inventory constraint of
the specific SKU at FC i. This is an approximation for
a couple of reasons: (i) there may be alternative dual
solutions, and (ii) the dual value may only be valid
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for incremental changes to the right-hand side of the
constraint and need not be valid for a unit change.
More explicitly, we state our approximations as

FC"™R = argminc; + (X" —¢;)

iell

~ argminc; + C(X" —¢;) (7)
iel

~ argmin c; + C(X") — m;(X").
iel

We note that C(X7) is a constant within the minimiza-
tion and can be removed from (7). We then redefine
the heuristic as

FC"R = arg min ¢;, — m;(X"). (8)

iel

For a given order k, this method requires solving a sin-
gle LP for each order. We can interpret (c;; — m;(X")) as
an adjusted cost for fulfilling order k from FC i, con-
sisting of an immediate cost c; plus an imputed cost,
—;(X"), reflecting the impact on future shipping costs
from using this inventory now. We note that the dual
variables ;(X") are non-positive: when inventory is
added to a supply node, the objective value can either
stay the same or get smaller.

5.2. Estimating Parameters for the Linear Program
We now describe how we set the parameters required
by (6): A,,, w,, Qs Pis d, and 7.

For A,, w,, and «;,, we use historical averages
based upon all SKUs for which we have records (so
that these parameters are non-SKU dependent). We let
k (k,) represent an order in the set of all orders (all
orders of speed m) in our database, let 1, be the
indicator function, and let (-) represent taking the
empirical average over all orders k (k,,). Then

)\m =1 {order k,, is a multi-item order} 7
Wy = (1/rkm) 7
ajm =1 {order kisinregion j and speed m}

To estimate p;, we define Z;,, =1 to signify that for
SKU n, FC i had the other items from order k on-hand
(besides n) on the day the order was placed, and zero
otherwise. Then, we use all of the orders in our sam-
ple and set the parameter p; equal to the fraction of
orders for which FC i had on-hand all the other items
in an order: p; = Z;,, where now (7) represents the
empirical average over k and n. Note that we deter-
mine Z;, for all orders and all SKUs in the sample,
and hence p; is SKU independent.

To calculate d, we use sales data from the previ-
ous month for a given SKU to get an initial fore-
cast of the daily demand rate for the SKU. Over the
four-week simulation, we update this forecast weekly
using exponential smoothing based on observed sales.

The intent of the look-ahead period is to determine
the relevant horizon over which the current inventory
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position should be evaluated. If there is no inventory
on order, then 7 is just the system run-out time for the
current inventory (rounded to the day before). If there
is inventory on order, then we set 7 equal to the earli-
est day in the future (within the 28-day horizon of our
simulation) with the lowest expected on-hand inven-
tory in the system. This value is SKU specific and will
vary over the evaluation period.

5.3. Computational Considerations
We make two simplifications to improve the compu-
tational performance of the heuristic. First, to reduce
the size of the LP, we consolidate the 923 three-digit
zip code regions in our data set into 100 regional clus-
ters using k-means clustering. (Specifically we utilize
the “k means” function from the “stats” package in
R (R Core Team 2012).) To perform k-means cluster-
ing, we must define for each Zip3 region a “location”
vector: the k-means algorithm then clusters together
these Zip3 regions based on the Euclidean distances
of their “locations.” We choose for each Zip3 region j
a “location” vector v; that is the concatenation of the
costs to serve that region from each FC via each cus-
tomer speed option. This location vector is defined as
v;=[cjyi€l, me M]", where Cijm T€presents the cost
to ship a package from FC i to Zip3 j via customer
delivery-time option m, I is the set of FCs, and M is
the set of customer delivery-time options. Although
we choose 100 clusters, we describe in §5.6 the sensi-
tivity of the heuristic to the number of clusters.
Second, to determine the dual values for the heuris-
tic, we need to solve the transportation LP whenever
the inventory position changes. However, we find that
the dual values do not change much when there is a
lot of inventory in the system. Hence, it seems unnec-
essary to solve the transportation LP with each inven-
tory position change. We resolve the linear program
with frequency defined by CEIL(||X||/q), where X is
the inventory position vector, || -| is the 1-norm, and
g is a parameter that we set to 100. Thus, when the
total inventory in the system is less than 100, the LP
is solved each time a customer places an order. When
the total inventory is between 100 and 200, the LP
is solved after every other order. When the inven-
tory is between 200 and 300, the LP is solved after
every third order, and so on. In §5.6, we show the sen-
sitivity of the performance of the heuristic with the
parameter 4.

5.4. A Numerical Example

Here, we present a numerical example of the heuris-
tic in which a customer orders a single product. This
could be extended to a multiproduct case according
to Equation (3), i.e., the dual variables for each of the
SKUs in the multi-item order would be considered.
For this example, we assume there are two FCs: one
in Utah, and one in Nevada. There is a single cus-
tomer region, Kansas, and a single delivery time, two
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days. The Utah facility has five units in stock, whereas
Nevada has 20. Utah is closer to Kansas, with ship-
ping cost of $9; the shipping cost from Nevada to
Kansas is $12.

Suppose that a customer arrives from Kansas
requesting a single item. The myopic policy defined
in (4) fulfills the demand from Utah, because the ship-
ping cost is less. The heuristic policy given by (8)
compares the shipping costs, modified by the dual
values for the inventory at each FC. To determine
these dual values, we need more system information
to formulate the LP. We suppose that the look-ahead
period 7 is 10 days, the daily demand forecast d for
this SKU is two units per day, 75% of the orders are
multi-item orders (A =0.75), and all multi-item orders
request three SKUs (w = 0.33). The Utah facility car-
ries a larger assortment and has a higher probabil-
ity of being able to fulfill a random multi-item order
as compared to Nevada, and as such pyy, = 0.5 >
0.2 = PNevada- 1O sSUmMmarize:

7 =10,
I>i — {Utah, Nevada},
J > j — {Kansas},
M>m — {2-day},

Utah Nevada

X'=5 20
d=2, :

A, =075, pi= 05 02

w, = 0.33, Cijm = 9 12

Ay = 1

Figure 2 shows the transportation LP labeled with the
above parameters, with arc capacities and costs cal-
culated as in formulation (6). We give the optimal
solution in Table 3. The resulting dual variables are
Tuah = —D and Tyeada = 0- An incremental unit of
inventory in Utah decreases the shipping cost by 5:

Figure 2 Transportation LP Example

10
XNevuda =20

PNevada = 0.2

10
Xyan =5

Table 3 Decision Variable Optimal Values

Optimal value
Flow decision variable i=Utah i=Nevada
Wiy 0 5
xi]m 5 3
Yijm 0 7
Objective value 143

it will satisfy multi-item demand with a single unsplit
shipment, allowing Nevada to reduce its flow on the
split multi-item link.

For a single-item customer k from Kansas, the
heuristic would compare cy,  — Tyen(X") = 14 to
CNevada, k — TNevada(X") = 12. Unlike the myopic policy,
the heuristic assigns the order to Nevada because the
imputed cost is less than shipping the unit from Utah.
Even though Utah is closer to Kansas than Nevada,
the heuristic protects the inventory at Utah because of
its value in serving multi-item orders in a single box.
In essence, the heuristic reserves the limited inven-
tory in Utah for multi-item orders rather than single-
item orders based on the current system state and
parameters.

5.5. Overall Evaluation Results

We report in this section our results evaluating the
heuristic relative to the myopic policy and relative to
a perfect assignment policy. The evaluation is done on
the data set of actual orders for a stratified sample of
SKUs, as described in §4.

The improvement gap is set equal to (CMYO—C)/
CMYO, The performance of the heuristic relative to the
myopic policy is defined similarly as (CMY© — CHEUR)/
CMYO_ Table 4 shows the results of these evaluations.

Putan =0.5

Kansas

2nd day
Single Demand =5
Multi Demand = 15

Order Shipped Cost to Flow decision

type packages ship Capacity variable
—— | Single | 1 i w B
—_— Multi 1 @, Cijm Piy,dTA,, Xijm
=== Multi 2 2 0,Cjy oo Yijm
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Table 4 Percentage Reduction in Outbound Shipping Costs

Perfect hindsight Heuristic
over myopic (%) over myopic (%)
Percentage improvement 2.94 1.07
(std. err.) (0.07) (0.04)

The cost savings in this table are achieved without any
deterioration in customer service levels or increase in
holding costs.

We calculate the overall standard error by first mea-
suring the sample variance within each stratum where
the observations are weighted by each SKU’s con-
tribution to the total cost within that stratum. From
these sample variances, we calculate the standard
error of the fotal proportional improvement account-
ing for the weights of each stratum in the improve-
ment calculation.

SKUs that are high in sales volume tend to improve
more than SKUs that have low sales. In Figure 3, we
bucket the SKUs by their sampling strata and plot
proportional improvement against this. We see in the
figure that although the overall improvement of the
heuristic is 1.07%, the improvement of the heuristic
for high volume SKUs is about 2%. Likewise, the
overall perfect hindsight gap is a little under 3%,
whereas the gap is almost 4% for high volume SKUs.

We notice also in Figure 3 that the heuristic captures
a larger portion of the gap as sales volume increases.
For very fast moving SKUs, the heuristic is capturing
up to 50% of the possible improvement as defined by
the perfect hindsight analysis.

The heuristic performs better on SKUs with rela-
tively less inventory. Figure 4 shows the proportional
improvement from the heuristic versus a measure of
inventory scarcity; on the x axis, we bucket the SKUs

Figure 3 Heuristic Performance vs. Volume of Sales, Bucketed by Sample Strata
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Figure 4 Heuristic Performance vs. Inventory Scarcity, Bucketed Into Vigintiles (with Ratios Higher Than Six Truncated from Plot)

6 E;
Eii

Percent improvement over myopic (%)

9o, 911

@ Perfect hindsight
<& Heuristic
—— Std. err.

55 -
) 92866 o E
TR0 8 [
) I T
0
T T T T T T T T T T
1.00 1.25 1.50 1.75 2.00 2.50 3.00 4.00 5.00 6.00

Inventory to sales ratio (log scale)

RIGHTS L1 N Hig



Acimovic and Graves: Better Fulfillment Decisions in Online Retail Environment

Manufacturing & Service Operations Management 17(1), pp. 34-51, ©2015 INFORMS 47
Figure 5 Distribution of Improvement Across All SKUs in the Sample of the Heuristic Over Myopic Policy (Left Closed Intervals)
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by their ratio of the total inventory that was avail-
able over the four weeks to sales. This relationship
makes intuitive sense. If inventory is high and well
distributed, then no facility will run out of inven-
tory and a myopic policy is best. If inventory is very
scarce, then it is very likely that one or more FCs
will stock out and there can be value from forward-
looking fulfillment policies.

Finally, the improvement from the heuristic was not
distributed evenly across all SKUs. In Figure 5 we plot
a histogram of the improvement. For each SKU in the
sample, the proportional improvement is calculated
by (CMYO _ CHEUR)/CMYO'

As can be seen in Figure 5, even though most SKUs
showed improvement, many SKUs did not improve
at all. About 10% of the SKUs performed worse than
the myopic policy, 30% did exactly as well, and 60%
performed better.

When we examine how each individual order is
fulfilled, we find that the vast majority of the 1.5 mil-
lion orders in our sample were fulfilled the same
way by all three fulfillment policies. The heuristic
deviated from the myopic policy in 16.8% of the
orders. The perfect hindsight solution deviated from
the myopic in 22.3% of the orders. Surprisingly, the
heuristic deviated from the perfect hindsight solution
in 17.7% of the orders. It seems that the perfect hind-
sight solution and the heuristic are changing the same
customer orders, but changing them in different ways.
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5.6. Sensitivity Analysis

We tested the sensitivity of this heuristic over tuning
parameters such as dual variable update frequency
and Zip3 cluster size as well as exogenous conditions
such as forecast accuracy and the presence of multi-
item orders. We observed that it is robust to a wide
variety of conditions.
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T T T 1
10 15 20 25

Percent improvement of LP heuristic over myopic for individual SKUs (%)

Update Frequency of Dual Variables. We test values
of the update frequency parameter g = 25, 50, 100,
200, 400, 800, and 1,600. (Recall that we solve the LP
in (6) with frequency CEIL(||X||/g).) Generally, as we
increase g over this range, we increase the frequency
with which we solve the LP. We find that the choice
of g moderately affects the performance of the heuris-
tic but has a large effect on computational effort. For
instance, the performance of the heuristic (defined as
the proportional improvement over the myopic pol-
icy) varies from 0.98% when g =25 to 1.099% when
g =1,600. The run time, defined as the CPU time
required to evaluate the heuristic fulfillment policy
on our sample of 2,639 SKUs, is about seven times
greater when g =1,600 than when g = 25.

Sizes of Clusters of Zip3s. When solving the LP in (6),
we used k-means clustering to aggregate similar Zip3
regions to reduce the number of demand nodes. Here,
we vary the cluster sizes for modeling the demand
within the transportation LP, testing the heuristic with
cluster sizes between 10 and 923. The performance of
the heuristic varies from 1.065% when there are 10
clusters to 1.077% when there are 923 clusters, equal
to the number of Zip3 regions in our sample. The run
time is about 75 times longer when there are 923 clus-
ters as when there are 10. Thus, we might achieve
significant computational efficiencies in implement-
ing the heuristic by clustering demand regions rather
coarsely.

Forecast Accuracy. To examine the impact of fore-
cast accuracy on the performance of the heuristic, we
assume that we know the daily demand rate, instead
of utilizing exponential smoothing forecasts. The per-
formance of the heuristic improves from 1.07% to
1.11%. From this we infer that the heuristic is robust
to the accuracy of the forecast, over the range tested.

Multi-item Orders. Finally, we examine the impact
of multi-item orders on our analysis. We redid the
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evaluation but now assumed that each multi-item
order is actually a single-item order. In this scenario,
the SKUs do become completely decomposable in the
analysis. Both the perfect hindsight improvement gap
and the performance of the heuristic increased, from
2.93% to 3.31% and from 1.07% to 1.41%, respectively.
The likely reason for this is that needing to bundle
items together creates an implicit constraint. If only
one FC can serve a specific multi-item order, then the
myopic, perfect hindsight, and heuristic policies will
all take the same action: serve that order from that
one FC. When the system does not need to worry
about bundling these multi-item orders together, both
the perfect hindsight and heuristic policies have more
options to consider and can take advantage of this by
fulfilling smarter, leading to decreased shipping costs.

Trajectory of Dual Variables. With specific SKUs as
examples, we consider how the dual variables vary
through time. We find some instances where the dual
variables change relatively smoothly with changes in
the inventory positions. We also find examples where
the duals seem more sensitive to changes in the inven-
tory positions. Investigating these in more detail may
be an avenue for future research.

5.7. Balance Metric and Additional
Benefit of Heuristic

Retailers operating a network of FCs may want to
measure how balanced their inventory is in the sys-
tem. Comparing ideal and actual inventory levels at
each facility results in a vector describing literally the
inventory imbalance, but it is unclear how to translate
this vector into a scalar that also indicates the magni-
tude of the impact of the imbalance on the organiza-
tion’s operations. We find that the solution to the LP
(6) provides information on the quality of the current
inventory position. In particular, when the objective
value of the LP is relatively large for an SKU for an
initial inventory position X, the outbound shipping
costs incurred over the next four weeks are also rela-
tively large. We attribute this relationship to how well
balanced the inventory position is.

We define a balance metric § for an inventory posi-
tion as the outbound shipping costs from the solu-
tion of (6) assuming that all inventory is allocated to
demand nodes, divided by the shipping costs if the
same inventory were positioned optimally. Thus, the
balance metric 8 is set equal to

B=C(X)/C(X"),

where X* =argmin, {C(Y) | || Y] = [ X]]}, and we reset
the value of 7 to the expected time of the next replen-
ishment or so that 7d =} ; X7. That is, in light of
the LP (6), X* represents the best allocation of the
inventory across the FCs, including possible frac-
tional allocations. Thus, a lower bound on S is one,
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corresponding to a perfectly balanced system; sys-
tems with imbalanced inventory would have a value
greater than one. We note that in practice, X* can be
calculated using LP (6) with additional decision vari-
ables representing the inventory allocated to each FC,
and an additional constraint to ensure that the total
inventory in the system is maintained at || X||. In fact,
the ratio of C(X*)/||X| is the same for a specific sce-
nario regardless of the inventory level. Thus, to save
on computational effort, we solve this modified LP
once for a given set of FCs that carry inventory and
for a normalized vector representing the expected
proportion of demand at each demand node. Then,
the objective value C(X*) can be scaled up or down
for all SKUs and inventory levels represented by this
scenario.

For each of the 2,639 SKUs in our sample, we cal-
culate B for the actual starting inventory position on
day one of the simulation, plus 10 days of incoming
inventory (7 = 10). We chose 7 =10 because this is
a reasonable estimate of the run-out time for these
SKUs with a one-week review period. For each SKU,
we record the total outbound shipping costs incurred
over the four-week period and divide by the num-
ber of sales to reflect an average per-unit fulfillment
cost. Figure 6 plots the per-unit cost against the bal-
ance metric, where the 2,639 SKUs have been placed
in 20 equal-sized buckets according to the balance
metric. The y axis shows the normalized mean of
the actual incurred outbound shipping costs for each
bucket when a myopic policy was used to fulfill
orders over the four-week evaluation period. These
incurred outbound shipping costs have been divided
by the mean of the actual incurred cost in the cheap-
est bucket, which is why the y axis begins at exactly
one. Very similar plots result from utilizing the costs
of the heuristic or the perfect hindsight policies. The
axis labels have been removed for confidentiality rea-
sons. However, we have placed the 45 line on the plot
to show how the axes are scaled relative to each other.

From Figure 6, there is visual evidence to suggest
that the balance metric 8 is a good indicator of future
outbound shipping costs. This balance metric could
be used to take managerial action. For instance, those
SKUs whose balance metrics are above a threshold
(say, x, which would correspond to about 5% of the
SKUs in Figure 6) might be manually investigated
to uncover the root cause of the imbalance or might
be proactively rebalanced. Our industrial partner has
extensively utilized this balance metric to discover
previously undetected systematic errors.

5.8. Heuristic Results in Better Balanced Inventory
There is an additional benefit to the heuristic besides
reduced outbound shipping costs over the course of
the four-week evaluation period: inventory is better
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Figure 6 Normalized Cost to Ship Orders for an SKU Under a Myopic Policy vs. Its Balance Metric, Bucketed Into Vigintiles
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— Std. err.
~~~~ 45°line

Average shipping cost per
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A
>

Balance metric

balanced at the end of the period, which may lead
to additional cost savings in the future. We find that
the balance metrics for the ending inventory positions
under a myopic policy are larger than those for the
heuristic.

For each policy, for each SKU #n, we calculate the
balance metric 8, for the inventory position at the end
of the four-week evaluation period. We define the
overall proportional improvement as the average dif-
ference between the myopic balance metric and the
corresponding heuristic balance metric, divided by
the average myopic balance metric: A = (3_,(BYY° —
BHEURY) /(3 BMYO). We calculate A = 1.2% over the
SKUs that had positive on-hand inventory; the fact
that A > 0 indicates that the ending inventory posi-
tions under the heuristic are better balanced than
those for the myopic policy. For 58% of these SKUs,
BMYO — BHELR . 0, for 36%, pMYO — BHEUR =0, and for
6%, BYYO — BHEUR (. This four-week period’s ending
inventory position is the next period’s starting inven-
tory position. If the next period begins in a more bal-
anced state, we project lower shipping costs as shown
in Figure 6.

6. Conclusion

With online fulfillment and inventory data from a
large American retailer, we show that a perfect hind-
sight fulfillment policy can outperform a myopic
one by almost 3%, with respect to outbound ship-
ping costs. A heuristic captures about a third of this
improvement gap by using dual variables from a
transportation LP to value inventory in geographi-
cally strategic locations as well as at FCs with large
assortments. The heuristic performance is robust to a
variety of business conditions and leads to an addi-
tional benefit of keeping inventory more balanced
throughout time. These gains are achieved without
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any negative impact to customer service levels or
inventory holding costs.

Our industrial partner implemented in 2012 a ver-
sion of the heuristic and has applied it since then
to every fulfillment decision for each of its SKUs in
North America. In addition, our industrial partner
computes the balance metric outlined in §5.7 for each
SKU as a way to monitor the health of its inventory
positions. Out-of-balance SKUs have triggered proac-
tive responses to address the imbalances, as well as
investigations of the causes; these latter efforts have
uncovered some systematic errors that were previ-
ously undetected.

Utilizing dual variables to value resources is not
new, and indeed, our approach is inspired by the net-
work airline revenue management literature. How-
ever, in this paper we apply these techniques to a
new setting of order fulfillment for online retailing
and demonstrate the practical value of doing so. Nev-
ertheless, there are several limitations of and exten-
sions to our research worth considering. In this paper,
we decompose the problem by SKU, as opposed to
tackling the entire system as a whole. Perhaps there
is value in finding some middle ground by identi-
fying and analyzing a subset of SKUs that are often
ordered with each other and modeling this subsys-
tem. Additionally, we find that the heuristic is most
valuable when SKU volume is high and there are
minimal benefits from our heuristic for low volume
items. We expect that there are still opportunities for
improvement when SKU volume is low. Can imple-
mentable policies be developed for low-volume SKUs,
perhaps by using approximate dynamic program-
ming or some other technique that accounts for the
high coefficients of variation experienced by these
items? Also, this research looks only at the problem
of making better fulfillment decisions at the order
level. There is potentially a tremendous opportunity
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in jointly optimizing fulfillment along with other sup-
ply chain decisions: inventory replenishment into the
FCs, proactive transshipment to balance inventory
across FCs, the inventory positioning decision that
sets which FCs should hold inventory in the first
place, and the actual workload planning at each of
the FCs. Furthermore, some online retailers are not
merely handing off customer packages to carriers
such as UPS and FedEx; instead, they are partner-
ing with these carriers to find win-win solutions that
reduce the costs of both the retailer and the carrier.
For instance, the online retailer may deliver packages
destined for New England directly into the New Eng-
land UPS hub, instead of putting the onus on UPS to
sort all the packages by region. How can the retailer
further reduce its outbound costs by injecting pack-
ages further down the work stream of the carrier?
There is finally the consideration of optimizing order
fulfillment for an omni-channel retailer that uses retail
store inventory to fulfill both online customers and
customers who walk in: this is an avenue of future
research.
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