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Abstract. This paper examines the capacity investment decisions of a processor that uses
a commodity input to produce both a commodity output and a by-product in the context
of agricultural industries. We employ a multiperiod model to study the optimal one-
time processing and (output) storage capacity investment decisions—in addition to the
periodic processing and inventory decisions—when both input and output spot prices as
well as production yield are uncertain. We characterize the optimal decisions and perform
sensitivity analysis to investigate how spot price uncertainty affects the processor’s optimal
capacity and profitability. Using a calibration based on the palm industry, we study (both
numerically and analytically) the performance of a variety of heuristic capacity investment
policies that can be used in practice. We find that if the yield uncertainty is ignored in
capacity planning, then basing those plans on the average yield is preferable to basing
them (as often occurs in practice) on the maximum yield. However, planning based on
the average yield performs well only when the relative (processing-to-storage) capacity
investment cost is high; otherwise, it leads to a significant loss of profit. We also find that
ignoring spot price uncertainty in capacity planning results in a relatively small profit
loss. In contrast, ignoring by-product revenue—which constitutes a small portion of total
revenues—during capacity planning substantially reduces the processor’s profit.

Funding: The work of the third author was supported by the Singapore Ministry of Education Aca-
demic Research Fund Tier 1 [Grants WBS R-314-000-098-112 and R-314-000-104-112].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2017.0624.

Keywords: capacity management • multiproduct firm • commodity risk management • spot market • agriculture • dynamic programming •
processing • storage

1. Introduction
In this paper, we study the capacity investment deci-
sions of a processor that—in the context of agricultural
industries—uses a primary commodity input to pro-
duce a commodity output as well as a by-product. In
particular, we analyze investment decisions related to
input processing capacity and output storage capac-
ity. Our analysis is applicable to several agricultural
industries, including the oilseed industry (e.g., palm,
soybean, rapeseed, sunflower seed, coconut) and the
grain industry (e.g., corn and wheat).
Consider, for example, the palm industry. In this

industry, palm oil mills produce crude palm oil (CPO;
a commodity output) and palm kernel (a by-product)
from palm fresh fruit bunches (FFBs; a commodity
input). As seen in Table 11 of the U.S. Department
of Agriculture report on oilseeds (2015), palm is the
largest oilseed industry globally, with 59.39 million
metric tons of crude palm oil produced between 2013
and 2014, the estimated market value of which is more
than US$49 billion. In a palm oil mill, the palm fresh
fruit bunches go through several processing stations

(receiving, sterilization, threshing, pressing, and cen-
trifugation) to produce palm kernel and crude palm
oil. Crude palm oil is transferred to storage tanks prior
to dispatch from the mill. The processing volume of
the palm fresh fruit bunches is constrained by the joint
capacity of the processing stations, while crude palm
oil production and inventory volume is constrained by
storage tank capacity. It follows that choosing the opti-
mal levels of processing and storage capacity is critical
for a mill’s profitability. Similar capacity investment
decisions are of relevance to other oilseed processors,
which produce crude vegetable oil and meal or cake,
and grain processors, which produce biofuel and ani-
mal feed.

In the operations management (OM) literature there
is a vast amount of research that studies capacity
investment decisions in processing environments (for
a review, see Van Mieghem 2003), but a very lim-
ited amount of this research in the context of agricul-
tural industries. Among the few papers that focus on
agricultural industries (e.g., Allen and Schuster 2004),
there is no work that considers the processing of a
commodity product—a common characteristic of the
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majority of agricultural products in practice. To this
end, the literature most relevant to our paper is the
OM research on commodity processing. The papers
in this field examine operating decisions (e.g., pro-
cessing and inventory) of a commodity processor in a
variety of models. These studies capture the idiosyn-
cratic features of different commodity markets, includ-
ing those for electricity (Zhou et al. 2014), electronic
equipment (Pei et al. 2011), metals (Plambeck and
Taylor 2013), natural gas (Secomandi 2010a, b; Lai et al.
2011), petroleum (Dong et al. 2014), and semiconduc-
tors (Kleindorfer and Wu 2003), as well as commodity
markets associated with such agricultural industries
as beef (Boyabatlıet al. 2011), citrus fruit (Kazaz and
Webster 2011), cocoa (Boyabatlı 2015), corn (Goel and
Tanrisever 2017), olives (Kazaz 2004), processed food
(Mehrotra et al. 2011), and soybeans (Devalkar et al.
2011, 2017). Because the focus of these papers is on
operating decisions, they either assume (often implic-
itly) abundant processing and storage resources or con-
sider fixed capacity levels for these resources. In sum-
mary, there is no work that studies the joint processing
and storage capacity investment decisions of commod-
ity processors in agricultural industries. In this paper,
we attempt to fill this void.
Processors in agricultural industries feature unique

characteristics that present challenges for capacity
management. First, since both the input and the out-
put are commodities, there exist regional exchange or
“spot” markets (Devalkar et al. 2011). So in buying
and selling these commodities, processors are exposed
to prevailing spot prices. The input and output spot
prices are closely linked and exhibit considerable vari-
ability, as shown for the palm industry in Figure 1(a).
The uncertainty in spot prices may affect capacity
investment decisions because the profit from process-
ing depends on those prices. Moreover, the processor

Figure 1. (Color online) Characteristics of Fresh Fruit Palm Bunches and Crude Palm Oil in the Malaysian Peninsula for the
Period January 2006 to December 2013, as Reported by the Malaysian Palm Oil Board
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can hold inventory for sale at a later date to bene-
fit from fluctuations in output spot price, where that
inventory can be sourced from in-house production
(Fackler and Livingston 2002) and the spot market
(Kouvelis et al. 2013). Second, there is some uncertainty
also in the production yield (extraction rate) from each
input, as plotted (again for the palm industry) in Fig-
ure 1(b). This uncertainty is driven by several factors
that include weather conditions and the extent of pests
and diseases during the input’s growing period (Boy-
abatlıet al. 2016), the harvest timing of the input, and
the processing technology used (Chang et al. 2003).
The uncertainty in production yieldmay affect capacity
investment decisions because profits from processing
depend also on that yield.

Given these characteristics, our first objective is to
study how the processor should determine the optimal
levels of investment in processing and storage capac-
ity. Because there is substantial variability in input and
output spot prices observed in practice, our second
objective is to investigate how spot price uncertainty
affects the processor’s optimal capacity and profitabil-
ity. Our final research objective is to examine the per-
formance of heuristic capacity investment policies that
are already used—or that can be used—in practice
in comparison with the optimal capacity investment
policy. Because these heuristic policies ignore some
operational factors (e.g., production yield, by-product
revenue) during capacity planning, this performance
comparison is instrumental in understanding the crit-
icality of these operational factors for capacity invest-
ment to generate valuable managerial insights.

To achieve these objectives, we model the proces-
sor’s decisions as a multiperiod optimization problem
in which the firm (i) procures an input commodity,
where the marginal procurement cost equals the com-
modity’s spot price; (ii) sells an output commodity,
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where the marginal sales revenue equals this commod-
ity’s spot price; and (iii) sells a by-product that has a
fixed marginal sales revenue. The output can also be
procured from the spot market for storage and specu-
lative sale with the marginal procurement cost equal to
the output spot price. The firm maximizes its expected
total profit over a finite planning horizon. At the begin-
ning of this horizon, the firm chooses input processing
and output storage capacity levels. In the rest of the
planning horizon, constrained by these capacity lev-
els, the firm periodically makes decisions about the
processing volume and output inventory. More specif-
ically, in each period, the processing volume is chosen
with respect to production yield uncertainty, and the
output inventory level is chosen after this uncertainty
is realized.
We characterize the optimal levels of investment in

processing and storage capacity (as well as the periodic
processing and inventory decisions) in closed form.We
distinguish two optimal capacity investment strategies
based on the investment cost of processing capacity
relative to storage capacity. When that relative cost is
sufficiently high, the firm invests in a storage-dominating
portfolio, where the storage capacity is strictly greater
than what is required for production (with full uti-
lization of processing capacity) under all yield realiza-
tions. When that relative cost is sufficiently low, the
firm invests in a high yield–balanced portfolio (HYBP),
where the processing capacity is at the level required
for production (with full utilization of storage capacity)
under the maximum yield. We complement our struc-
tural analysis with numerical analysis by calibrating
our model to represent a typical palm oil mill. We use
publicly available data from the Malaysian Palm Oil
Board (MPOB) as well as publicly available and pro-
prietary data from palm oil mills located in Malaysia.
Our main findings and their contribution can be sum-
marized as follows.
(1) We conduct sensitivity analyses, both analyti-

cally and numerically, to investigate the effects of corre-
lation between input and output spot prices and their
respective volatility. We find that the processor always
benefits from a lower correlation but benefits from a
lower input or output price volatility when this volatil-
ity is low; otherwise, a higher volatility is beneficial.
These results are reminiscent of the sensitivity results
of Plambeck and Taylor (2013), who examine the effect
of spot price uncertainty on a clean-tech manufac-
turer’s profitability, and Dong et al. (2014), who exam-
ine the effect of spot price uncertainty on the value of
operational flexibility in the context of an oil refinery.
In both papers, only a single period is modeled. We
extend the sensitivity analyses to amultiperiod setting.
In addition, we examine the effect of spot price uncer-
tainty on capacity investment decisions of a typical

processor. We find that the optimal processing capac-
ity decreases with an increase in price correlation. The
optimal processing capacity also decreases with an
increase in output or input price volatility, but only
when this volatility is low; otherwise, it increases with
an increase in that volatility. In contrast, the optimal
storage capacity increases with an increase in output
price volatility but it is not affected otherwise. These
results showcase the significant differences in how spot
price uncertainty affects each capacity type.

(2) We study the performance of a variety of heuris-
tic capacity investment policies in comparison with the
optimal capacity investment policy. To this end, we
numerically compute the profit loss due to employ-
ing the heuristic policy and also provide analytical
bounds on this profit loss. We find that should the
production yield uncertainty be ignored in capacity
planning, rather than making the planning based on
the maximum yield, as is often done in practice in the
palm industry, it is better to plan based on the average
yield. However, planning based on the average yield
performs well only when the relative (processing-to-
storage) capacity investment cost is sufficiently high;
otherwise, it leads to considerable profit loss (an aver-
age profit loss of 14.53% in the numerical instances con-
sidered). We also find that ignoring spot price uncer-
tainty in capacity planning results in a relatively small
profit loss (an average profit loss of 5.87% in the numer-
ical instances considered). Another finding of interest
is that the processor’s profits are substantially reduced
if its capacity planning ignores by-product revenue
(a minimum profit loss of 61.86% in the numeri-
cal instances considered)—even though that revenue
accounts for just a small portion of the firm’s total rev-
enue. Based on our theoretical analysis, as a heuristic
policy, we propose setting storage capacity at the level
required for production (with full utilization of pro-
cessing capacity) under the maximum yield. Because
this policy assumes a particular relationship between
processing capacity and storage capacity, it provides an
operational simplification in making capacity invest-
ment decisions. We show that this heuristic policy is
nearly optimal (an average profit loss of only 0.57% in
the numerical instances considered). These results con-
tribute to the OM research on commodity processing.
The papers in this field (e.g., Devalkar et al. 2011, Lai
et al. 2011, Zhou et al. 2014) compare the performance
of heuristic operating policies with the performance of
the optimal policy and propose near-optimal decision
rules for making operating decisions. Our focus is sim-
ilar but applied to capacity investment decisions. Our
results offer insights with potential practical relevance
for both optimal and approximate capacity investment
decisions in agricultural processing.

The rest of this paper proceeds as follows. Section 2
describes the model and the basis for our assumptions,
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and Section 3 derives the optimal strategy. Section 4
structurally examines the effects of spot price uncer-
tainty on the optimal capacity investment policy and
on firm profitability. It also compares the optimal pol-
icy’s performance with that of heuristic policies. Sec-
tion 5 conducts the same analysis numerically using a
model calibration that represents a typical processor in
the context of the palm industry. Section 6 concludes
with a discussion of the limitations of our analysis. All
proofs are relegated to the online technical appendix.

2. Model Description
We use the following notation and conventions th-
roughout this paper. A realization of the random vari-
able ỹ is denoted by y. The expectation operator is
denoted by Ɛ. We use (u)+ � max(u , 0). Boldface let-
ters represent row vectors. The monotonic relations
(increasing, decreasing) are used in the weak sense.
Subscript t denotes period t. Superscript I denotes
input-related parameters and decision variables, while
superscript O (B) denotes the parameters and variables
related to the output (by-product).
We consider a firm that uses a commodity input to

produce a commodity output and a by-product and
that seeks to maximize its expected total (discounted)
profit over a finite planning horizon. The firm operates
under capacity constraints related to input processing
and output storage. At the beginning of the planning
horizon, the firm chooses its level of investment in each
type of capacity. In the rest of the horizon, the firm
makes periodic decisions about processing volume and
output inventory subject to its chosen capacity levels.

Let K � (KI ,KO) denote the firm’s capacity invest-
ment portfolio, where KI is the input processing capac-
ity and KO is the output storage capacity. In agricul-
tural industries, the processors are located near the
plantations where the input originates; because the
available land is scarce, the marginal capacity invest-
ment cost is increasing in the capacity level. In line
with this observation, we assume that the capacity
investment cost C(K) is convex increasing in K.1 Specif-
ically, we consider a quadratic cost with parameters βI

and βO : C(K) � βI(KI)2 + βO(KO)2. The structural analy-
sis of Section 3 holds also for a general convex increas-
ing C(K) (except for the closed-form characterization of
the capacity portfolio, which requires a specific func-
tional form).

We assume the marginal procurement cost of the
commodity input to be given by that commodity’s spot
price. In practice, this case is relevant when the input is
procured through an exchange (spot) market or when
the input is procured through bilateral contracts under
which the unit price is benchmarked to the exchange
market price. Similarly, we assume that the marginal
sales revenue of the commodity output is given by its
spot price. Input and output spot prices are assumed

to follow correlated Markovian stochastic processes; in
other words, current spot price realizations are suf-
ficient to characterize the distribution of future spot
prices. We defer the specification of these stochastic
processes to Section 4 because the structural analy-
sis in Section 3 is not affected thereby.2 The firm may
also procure output from the spot market for the pur-
pose of storage and speculative sale. We assume that
the marginal procurement cost is given by the spot
price. Output storage incurs a per-period unit holding
cost of h.
We consider a per-period unit processing cost

¯
c > 0.

For each unit of the processed input, the production
yield of the output (by-product) is given by a (aB).
We assume that aB ∈ (0, 1) is constant and that the by-
product is not stored, but sold at a fixed unit price pB .
Hence, c �

¯
c − aB pB is the effective processing cost,

which can be negative if the by-product revenue is
sufficiently high. The output production yield ã is
uncertain and independent and identically distributed
across periods. We assume that ã is statistically inde-
pendent of the spot price processes, which is a rea-
sonable assumption in the palm industry (as verified
empirically in Section 5). We consider a Bernoulli dis-
tribution for ã: a � a l with probability q ∈ [0, 1] and
a � ah with probability 1 − q for 0 < a l < ah ≤ 1 − aB ,
where the last inequality follows because the overall
production yield cannot exceed 1. Let ā � qa l + (1− q)ah

denote the average production yield. The structural
analysis in Section 3will also hold for a general discrete
distribution of ã with more than two realizations.
The storage capacity KO affects processing activi-

ties because output is placed in the storage facility
before being dispatched from the plant. Profitability
will decline if the output yield from processing exceeds
the available storage capacity. This reduction in prof-
itability can result from the cost associated with pro-
cess interruption due to retrieving the excess output
from the facility or the cost of using temporary stor-
age tanks to handle the excess output. The reduction
in profitability can also be driven by the decline in
the marginal sales revenue due to the output’s infe-
rior quality as a result of improper storage conditions.
In the oilseeds industries, for example, the quality of
crude vegetable oil decreases not only with metal (e.g.,
iron) contamination, which occurs when the storage
facility is not lined with suitable protective coating, but
also with solidification and fractionation, which occur
if the storage facility cannot maintain a specific temper-
ature. In the palm industry, palm oil mills in practice
minimize quality issues related to storage conditions
by planning operations in such a way that the entire
volume of output (crude palm oil) goes through the
storage facility after processing. In line with this obser-
vation, we assume that the firm adopts a policy of no
excess production; that is, processing volume is chosen
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in such a way that the available output storage capacity
is sufficient under all yield realizations.3
We formulate the firm’s problem as a finite-horizon

stochastic dynamic program. The per-period process-
ing capacity KI (in units of, say, metric tons of input per
day) and the storage capacity KO (metric tons of out-
put) are determined at period t � 0, and they are fixed
in all subsequent periods. In each period t ∈ [1,T], the
sequence of events is as follows:
1. At the beginning of period t, the firm observes the

input and the output spot prices Pt � (pI
t , p

O
t ) as well

as the output inventory level st−1 (carried from period
t − 1). The firm then decides on the input process-
ing volume zt within the processing capacity level KI ,
and considering the available output storage capacity
KO − st−1 due to policy of no excess production.
2. The production yield a is realized, which deter-

mines the available output volume, and the firm
decides on the output inventory level st within the stor-
age capacity KO . Required inventory that is not pro-
vided by the available output volume is procured from
the spot market; output volume that is not stored is
sold to the spot market.
The firm’s immediate payoff in period t ∈ [1,T] is

given by

L(zt , st | st−1 ,Pt)
� −pI

t zt − czt − hst + Ɛã[−pO
t (st − (st−1 + ãzt))+

+ pO
t (st−1 + ãzt − st)+]. (1)

In (1), the first two terms capture the effective process-
ing and procurement cost, the third term denotes the
inventory holding cost, and the last term expresses the
expected cash flows resulting from the realized pro-
duction yield. The first term in these expected cash
flows denotes the spot procurement cost for the inven-
tory level beyond the available output volume, and the
second term denotes the spot sale revenue for the avail-
able output volume that is not stored.
Let Vt(st−1 ,Pt) for t ∈ [1,T] be the optimal value func-

tion from period t onward given st−1 and Pt ; this func-
tion satisfies

Vt(st−1 ,Pt)
� max

zt≥0, st≥0
{L(zt , st | st−1 ,Pt)+ δƐt[Vt+1(st , P̃t+1)]}

s.t. zt ≤min
(
KI ,

KO − st−1

ah

)
, st ≤ KO , (2)

with boundary condition VT+1(sT ,PT+1) � 0 and ini-
tial inventory level s0 � 0, where δ ∈ [0, 1] is the dis-
counting factor and Ɛt[ · ] is our shorthand notation
for Ɛ[ · | Pt]. In (2), the constraint zt ≤ (KO − st−1)/ah

captures the no excess production assumption, where
(KO − st−1)/ah denotes the input volume required to fill
the available output storage capacity under the high
yield realization.

At period t � 0, the firm observes P0 and chooses K�

(KI ,KO), thereby incurring the capacity investment cost
C(K) � βI(KI)2 + βO(KO)2. The firm’s optimal expected
total (discounted) profit over the planning horizon is
given by Π∗ � maxK≥0 δƐ0[V1(0, P̃1)] −C(K).

3. Characterization of the Optimal Strategy
In this section, we describe the firm’s optimal strategy.
In particular, we first characterize the periodic input
processing and output inventory decisions (Section 3.1)
and then characterize the optimal capacity investment
decisions (Section 3.2).

To facilitate the analysis, we make the following
observation. It costs the same to source inventory from
the output available in-house (i.e., the realized out-
put yield after processing combined with the inven-
tory carried over from the previous period) as it does
from the output spot market: in both cases, the cost is
the prevailing output spot price. For the in-house case,
this cost is the opportunity cost of not selling to the
spot market (spot sale revenue); when sourced from
outside, it is the spot procurement cost. Therefore, the
firm’s immediate payoff in period t ∈ [1,T], as given
by (1), can be decoupled into two components:

Lpr(zt | st−1 ,Pt) � (−pI
t − c + āpO

t )zt + pO
t st−1 ,

Lsc(st | Pt) � (pO
t + h)st ,

where the subscripts “pr” and “sc” refer, respectively,
to “processing return” and “storage cost.” This decou-
pling suggests that one can view same-period pro-
cessing and inventory decisions as being independent.
Thus, the firmfirst decides on the processing volume to
sell to the output spot market (together with the inven-
tory carried over from the previous period), which gen-
erates the processing return Lpr(zt | st−1 ,Pt), and then
chooses the output inventory level st to source from
the spot market incurring the storage cost Lsc(st | Pt).
The processing decision does not affect any other deci-
sions, and the inventory decision affects only the sub-
sequent period’s processing decision through limiting
the available storage capacity. Therefore, the optimiza-
tion problem given by (2) can be written in terms
of independent two-stage optimization problems by
grouping the inventory decision in period t − 1 with
the processing decision in period t; see Figure 2.

Because inventory is not needed in period T,
Lsc( · | PT)� 0, and so the optimal value function in
period t ∈ [1,T − 1] can be written as

Vt(st−1 ,Pt)� max
0≤zt≤min(KI , (KO−st−1)/ah )

{Lpr(zt | st−1 ,Pt)}

+

T−1∑
τ�t
δτ−tƐt[Gτ(P̃τ)], (3)
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Figure 2. Schematic Representation of the Formulations in (2) and (3)
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Period
cash flow

ã ã ãã …

…

…
…

…

where the optimal expected profit Gt(Pt) for the two-
stage problem in period t is given by

Gt(Pt)� max
0≤st≤KO

{
−Lsc(st |Pt)

+δƐt

[
max

0≤zt+1≤min(KI ,(KO−st )/ah )
Lpr(zt+1 | st ,P̃t+1)

]}
, (4)

with Lsc(st |Pt)�(pO
t +h)st , and Lpr(zt+1 | st ,Pt+1)�(−pI

t+1
−c+ āpO

t+1)zt+1+pO
t+1st .

3.1. Periodic Input Processing and
Output Inventory Decisions

We now derive the optimal solution for (4). We
first characterize the optimal processing volume
z∗t+1(st ,Pt+1) for a given output inventory level st
and then characterize the optimal output inventory
level s∗t(Pt).
Lemma 1. The optimal processing volume z∗t+1(st ,Pt+1) is
given by

z∗t+1(st ,Pt+1)

�

{
0 if − pI

t+1 − c + āpO
t+1 ≤ 0,

min((KO − st)/ah ,KI) if − pI
t+1 − c + āpO

t+1 > 0.

Here, −pI
t+1 − c + āpO

t+1, the difference between the
output spot sale revenue per expected yield and the
sum of input spot procurement and unit processing
costs, denotes the processing margin per input. If this
margin is not positive, then it is not profitable to
process. Otherwise, the firm optimally processes up
to (KO − st)/ah unless constrained by the processing
capacity KI .

Using Lemma 1 in (4), the optimal inventory decision
becomes the solution to

max
0≤st≤KO

{
(−pO

t − h + δƐt[p̃O
t+1])st

+ δƐt[(−p̃I
t+1 − c + ā p̃O

t+1)+]min(KI , (KO − st)/ah)
}
. (5)

Proposition 1. The optimal output inventory level s∗t(Pt)
is characterized by

s∗t(Pt)

�



0 if −pO
t −h+δƐt[p̃O

t+1]≤0,
(KO−ahKI)+ if 0<−pO

t −h+δƐt[p̃O
t+1]

≤(δ/ah)Ɛt[(−p̃I
t+1−c+ ā p̃O

t+1)+],
KO if −pO

t −h+δƐt[p̃O
t+1]

>(δ/ah)Ɛt[(−p̃I
t+1−c+ ā p̃O

t+1)+].

(6)

Here, −pO
t − h + δƐt[p̃O

t+1], the difference between the
discounted expected spot sale revenue in the subse-
quent period and the storage cost (the sum of output
spot procurement and holding costs), denotes the stor-
age margin per output. If the storage margin is not pos-
itive, then it is not profitable to hold inventory. Oth-
erwise, it is profitable to hold inventory, and s∗t(Pt)
is determined by the trade-off between the storage
margin and the opportunity cost of holding inven-
tory (i.e., since doing so limits the subsequent period’s
processing volume because then there is less unoccu-
pied storage capacity). In particular, (δ/ah)Ɛt[(−p̃I

t+1 −
c + ā p̃O

t+1)+], the discounted expected positive part of
subsequent period’s processing margin per output (and
thus, scaled by the high yield realization), denotes this
opportunity cost. If the opportunity cost is higher than
the storage margin, then the firm stores only up to
(KO−ahKI)+ so that the subsequent period’s processing
volume is not limited by the unoccupied storage capac-
ity under any yield realization. If the opportunity cost
is lower than the storage margin, then the firm stores
up to the full storage capacity KO .
It is clear from Proposition 1 that the firm’s rationale

for holding inventory is to benefit from output spot
price fluctuations across periods. In particular, instead
of selling the output to the spot market in period t, the
firm stores the output for later sale to the spot market
at what is expected to be a higher price. That benefit
does not exist if, for instance, the discounted output
spot price follows a Martingale process. In this case,
since δƐt[p̃O

t+1] � pO
t , it follows that the storage margin

is negative, and so, by Proposition 1, the firm does not
hold inventory.
Substituting the optimal inventory level s∗t( · ) in the

optimal processing volume z∗t+1(st ,Pt+1) for a given
inventory level st , as characterized by Lemma 1, we
observe that when the processing margin −pI

t+1 − c +
āpO

t+1 is strictly positive, z∗t+1(s∗t ,Pt+1) � min(KI ,KO/ah)
unless s∗t � KO (in which case the firm optimally does
not process because there is no available storage capac-
ity for the output to be placed after processing). Using
this observation, the optimal expected profit Gt(Pt) for
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the two-stage problem in period t, as given in (4), can
be written as

Gt(Pt)� max
(
−pO

t − h + δƐt[p̃O
t+1],

δ/ahƐt[(−p̃I
t+1 − c + ā p̃O

t+1)+]
)

min(ahKI ,KO)

+ (−pO
t − h + δƐt[p̃O

t+1])+(KO − ahKI)+. (7)

For the first ahKI units of the storage capacity KO ,
the firm faces the trade-off between holding inventory
this period, which has a unit profit of storage margin
per output, and processing in the subsequent period,
which has a unit expected profit of discounted pro-
cessing margin (when it is profitable to process) scaled
by the high yield realization. Therefore, the marginal
revenue of these capacity units is given by the maxi-
mum profit from the two options. For the remaining
(KO− ahKI) units of the storage capacity, holding inven-
tory this period does not limit the subsequent period’s
processing volume. Therefore, the marginal revenue
of these capacity units is given by the storage margin
(when it is profitable to hold inventory).

3.2. Capacity Investment Decisions
Next we solve for the firm’s optimal capacity invest-
ment decision. At period t � 0, the firm observes
�0 and chooses the capacity portfolio K � (KI ,KO),
while incurring the capacity investment cost C(K) �
βI(KI)2 + βO(KO)2, to maximize its expected total (dis-
counted) profit over the entire planning horizon:
maxK≥0 V(K)−C(K), where V(K)� δƐ0[V1(0, P̃1)] signi-
fies the expected profit for a given capacity portfolio K.
It follows from (3) that

V1(0,P1)� max
0≤z1≤min(KI ,KO/ah )

{(−pI
1 − c + āpO

1 )z1}

+

T−1∑
τ�1

δτ−1Ɛt[Gτ(P̃τ)],

and using Lemma 1 and the characterization of Gt(Pt)
given in (7), the expected total (discounted) profit over
the planning horizon for a given K can therefore be
written as

Π(K)� M1 min(ahKI ,KO)+ M2(KO − ahKI)+

− βI(KI)2 − βO(KO)2 , (8)

where

M1 �
δ

ah
Ɛ0[(−p̃I

1 − c + ā p̃O
1 )+]

+ Ɛ0

[T−1∑
t�1
δt max

(
−p̃O

t − h + δƐt[p̃O
t+1],

δ

ah
Ɛt[(−p̃I

t+1 − c + ā p̃O
t+1)+]

)]
, (9)

M2 � Ɛ0

[T−1∑
t�1
δt(−p̃O

t − h + δƐt[p̃O
t+1])+

]
.

In (9), M2 denotes the total expected storage profit over
the entire planning horizon. This term is relevant for
the storage capacity units (KO − ahKI)+, which have no
effect on the processing activities. The term M1 denotes
the expected marginal revenue of the first ahKI units
of the storage capacity KO . For these capacity units,
because holding inventory in each period limits the
subsequent period’s processing volume, the expected
marginal revenue is given by the maximum of the stor-
age margin and the expected processing benefit per
output—that is, expected discounted processing mar-
gin (when it is profitable to process) scaled by the high
yield realization. Because storage is empty at the begin-
ning of the planning horizon, the first period’s process-
ing volume is not constrained by inventory, and so only
the processing benefit per output is relevant.

Proposition 2 characterizes the optimal solution for
the firm’s capacity investment decision.

Proposition 2. The optimal capacity investment portfolio
K∗ � (KI ∗ ,KO ∗) is characterized by

(KI ∗ ,KO ∗)

�



(
ah(M1 −M2)

2βI ,
M2

2βO

)
if β ∈Ω1 � {β: βI/βO > (ah)2(M1/M2 − 1)},(

ah M1

2βI + 2(ah)2βO
,
(ah)2M1

2βI + 2(ah)2βO

)
if β ∈Ω2 � {β: βI/βO ≤ (ah)2(M1/M2 − 1)},

where β� (βI , βO) and Mi for i � 1, 2 is as given in (9). The
optimal expected profit is given by

Π∗ �


(ah(M1 −M2))2

4βI +
(M2)2
4βO if β ∈Ω1 ,

(ah M1)2
4(βI + βO(ah)2) if β ∈Ω2.

The optimal processing and storage capacity levels
are characterized by the ratio of the expected marginal
revenue of an additional capacity unit to its marginal
investment cost. The marginal investment cost of each
capacity type is given by 2β j for j ∈ {I ,O} if β ∈Ω1, and
by 2βI + 2(ah)2βO if β ∈ Ω2, in which case KO ∗ � ahKI ∗.
The expected marginal revenue of each capacity type
takes different forms based on the capacity investment
costs β � (βI , βO). When the processing capacity cost
relative to the storage capacity cost is sufficiently high
(i.e., β ∈ Ω1), there is excess storage capacity; that is,
this capacity is strictly larger than what is required for
production (with full utilization of processing capac-
ity) under both yield realizations (KO ∗ > ahKI ∗). We
denote the optimal capacity portfolio in this case as the
storage-dominating portfolio. Because there is no produc-
tion benefit to having additional storage capacity, its
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marginal revenue is given by the total expected stor-
age profit M2. In contrast, an additional unit of pro-
cessing capacity can be used for production (because
there is excess storage capacity); therefore, its marginal
revenue is given by the additional benefit of process-
ing margin over the storage margin M1 −M2 per input
(and thus, scaled by the high yield realization ah).
When the relative (processing-to-storage) capacity cost
is sufficiently low (i.e., β ∈Ω2), there is no excess stor-
age capacity in the optimal solution (KO ∗ � ahKI ∗). We
denote the optimal capacity portfolio in this case as
the high yield–balanced portfolio because the processing
capacity is at the level required for production (with
full utilization of storage capacity) under high yield
realization. In this case, because there is no excess stor-
age capacity, M2 has no effect on the expectedmarginal
revenue of either capacity type.

4. Comparative Statics and Heuristics
In this section, we study the effects of spot price uncer-
tainty on the processor’s optimal capacity investment
policy as well as on its profitability (Section 4.1), and
the performance of the optimal capacity investment
policy in comparisonwith a variety of heuristic policies
(Section 4.2).
Throughout this section, we make two additional

assumptions for the sake of tractability. First, we
assume that the processing margin is nonnegative
for all price realizations: −pI

t − c + āpO
t ≥ 0. In Sec-

tion 5.1, we employ the same data used for calibrat-
ing our numerical experiments to verify that this is
a reasonable assumption in the palm industry. Based
on this assumption, when characterizing the optimal
capacity investment portfolio and the optimal expected
profit given in Proposition 2, we replace Ɛt[(−p̃I

t+1 − c +
ā p̃O

t+1)+] for t ∈ [0,T−1]with Ɛt[−p̃I
t+1− c+ ā p̃O

t+1] in M1.
Second, to study the effects of spot price uncertainty,
we impose additional structure on our model of the
spot price process. In particular, we use a single-factor,
bivariate,mean-reverting price process to describe how
both the input and output spot prices evolve.4 Thus,
input and output spot prices at time τ, Pτ � (pI

τ , p
O
τ ),

are now modeled in as follows:

dpI
τ � θI(p̄I − pI

τ) dτ+ σI dW̃ I
τ , (10)

dpO
τ � θO(p̄O − pO

τ ) dτ+ σO dW̃O
τ ,

where θ j > 0 is the mean-reversion parameter, p̄ j is
the long-term price level, and σ j is the volatility for
j ∈ {I ,O}. We use (dW̃ I

τ , dW̃O
τ ) to denote the increment

of a standard bivariate Brownian motion with corre-
lation ρ. We assume ρ > 0 throughout our analysis.
This is a reasonable assumption in the palm industry
as we empirically demonstrate in Section 5.1. Because
the capacity investment and operating (processing and

storage) decisions are made at discrete time periods
t ∈ [0,T], although the price process in (10) evolves on
a continuous time τ, we only need to focus on the price
evolution at these discrete time periods. We assume
that τ and t are in the same time units (which we con-
sider to be a weekday for our model calibration in Sec-
tion 5.1). This price model implies that, at period t̂ and
with realized spot prices Pt̂ � (pI

t̂
, pO

t̂
), the spot prices

P̃t � (p̃I
t , p̃

O
t ) at a future period t > t̂ follow a bivariate

normal distribution with

Ɛ[p̃ j
t | Pt̂]� e−θ

j (t−t̂)p j
t̂
+ (1− e−θ

j (t−t̂))p̄ j ,

VAR[p̃ j
t | Pt̂]�

1− e−2θ j (t−t̂)

2θ j (σ j)2 ,

COV[p̃I
t , p̃

O
t | Pt̂]�

1− e−(θI+θO )(t−t̂)

θI + θO ρσIσO ,

where VAR and COV denote variance and covariance,
respectively.

4.1. Effects of Spot Price Uncertainty
In this section we conduct sensitivity analyses to study
the effects of spot price correlation (ρ) and of input and
output spot price volatility (σI and σO , respectively)
on the firm’s optimal capacity investment portfolio K∗
and optimal expected profit Π∗. The key observation
from Proposition 2 is that price correlation and price
volatility affect K∗ andΠ∗ through their impacts on the
expected marginal revenue terms M2 (which, in each
period t ∈ [1,T−1], depends on the positive part of the
storage margin −p̃O

t − h + δƐt[p̃O
t+1]) and M1 (which, in

each period, depends on the maximum of the storage
margin and the discounted expected processing mar-
gin per output (δ/ah)Ɛt[−p̃I

t+1 − c + ā p̃O
t+1] and that, in

turn, is characterized by the processing margin −p̃I
t −

c + ā p̃O
t in that period).

Proposition 3 (Price Correlation ρ). Inequalities ∂KI ∗/∂ρ
< 0, ∂KO ∗/∂ρ ≤ 0, and ∂Π∗/∂ρ < 0 hold, where ∂KO ∗/∂ρ
� 0 only when K∗ is given by the “storage-dominating”
portfolio.

Because the storage margin depends only on the
univariate distribution of the output spot price, M2 is
independent of the spot price correlation ρ. Therefore,
the effect of ρ on K∗ (and on Π∗) is characterized by
how it affects M1, which, in each period, depends on
the maximum of the storage and the processing mar-
gins. A lower ρ makes it more likely that when the
input spot price is low (high), the output spot price
will be high (low). Therefore, because the processing
margin depends on the difference between output and
input spot prices, a lower ρ increases the variability
of the processing margin while the storage margin
remains unaffected. With increasing variability of the
processing margin, the maximum of the storage and
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processingmargins increases: a higher processingmar-
gin increases this maximum, whereas a lower process-
ing margin does not decrease it because the maximum
value is given by the storage margin. Therefore, M1
increases. Thus, a lower ρ increases both K∗ and Π∗.

Proposition 4 (Input Price Volatility σI). There exist values

¯
σI<σ̄I such that ∂KI ∗/∂σI<0, ∂Π∗/∂σI<0 for σI<

¯
σI , and

∂KI ∗/∂σI>0, ∂Π∗/∂σI>0 for σI>σ̄I . If K∗ is given by the
storage-dominating portfolio, then ∂KO ∗/∂σI�0; otherwise,
∂KO ∗/∂σI<0 for σI<

¯
σI and ∂KO ∗/∂σI>0 for σI>σ̄I .

Much as with the effect of ρ, M2 is independent of
the input price volatility σI , and thus the effect of σI

on K∗ (and onΠ∗) is characterized by how it influences
the maximum of the storage and the processing mar-
gins in each period. Since ρ > 0, a higher σI decreases
(increases) the processing margin variability when σI

is low (high). Therefore, there exists a unique σ̂I
t thresh-

old in period t ∈ [1,T − 1] such that the maximum of
the storage and the processing margins decreases in σI

when σI is lower than this threshold, and increases in
σI otherwise. Because the threshold is period depen-
dent, we can identify the effect of σI on M1 only when
σI is either sufficiently low (σI <

¯
σI �mint{σ̂I

t }) or suf-
ficiently high (σI > σ̄I �maxt{σ̂I

t }).
Proposition 5 (Output Price Volatility σO). There exist σO

< σ̄O such that
(i) if K∗ is given by the high yield–balanced portfolio,

then ∂KI ∗/∂σO < 0, ∂KO ∗/∂σO < 0, and ∂Π∗/∂σO < 0
for σO < σO , whereas ∂KI ∗/∂σO > 0, ∂KO ∗/∂σO > 0, and
∂Π∗/∂σO > 0 for σO > σ̄O;
(ii) if K∗ is given by the “storage-dominating” portfolio,

then ∂KI ∗/∂σO < 0 for σO < σO , and ∂KO ∗/∂σO > 0.

The influence of σO on K∗ (and Π∗) is determined by
its effect on both M1 and M2. Recall that in each period
M2 depends on the positive part of the storage margin.
A higher σO increases the storage margin variability.
While a high storage margin is beneficial, a low stor-
age margin is less consequential because the firm opti-
mally chooses not to hold inventory. Therefore, M2 is
increasing in σO . The impact of σO on M1 parallels the
σI effect. In particular, there exists a unique σ̂O

t thresh-
old in period t such that the maximum of the storage
and the processing margins decreases in σO when σO

is lower than this threshold, and increases in σO oth-
erwise. This threshold, too, is period dependent, so
the effect of σO can only be partially characterized: M1
decreases (increases) with σO if σO < σO �min{σ̂O

t }∀ t
(if σO > σ̄I � max{σ̂O

t }∀ t). When K∗ is given by the
high yield–balanced portfolio, the impact of σO is char-
acterized by its effect on M1; otherwise, its effect on
M2 is also relevant. In this latter case, KO ∗ increases
in σO because M2 increases, whereas KI ∗ decreases in
σO when σO is low because then M1 decreases and M2
increases.

4.2. Heuristic Capacity Investment Policies
In this section, we compare the performance of the
optimal capacity investment policy with that of heuris-
tic capacity investment policies. Toward this end, we
define the profit loss due to employing a heuristic pol-
icy (hp) as ∆hp � [(Π∗ −Π(Khp))/Π∗], where Π∗ is the
optimal expected profit (as given by Proposition 2) and
Π(Khp) is the expected total profit (as given by (8))
evaluated with the capacity portfolio Khp � (KI

hp ,K
O
hp),

which is chosen by the heuristic policy. Here we intro-
duce the heuristic policies considered and provide
analytical bounds on the profit loss ∆hp with each
heuristic policy. Later in Section 5.3 we use these ana-
lytical bounds to frame our numerical investigation
of the heuristics in the context of the palm industry.
For ease of notation, we define η � βI/βO , the relative
(processing-to-storage) capacity investment cost.

4.2.1. Heuristics Based on Ignoring the Production
Yield Uncertainty. We consider two heuristic policies
in which the firm ignores production yield uncertainty
and plans for capacity based on a single number repre-
senting the yield. In the deterministic yield (maximum),
or DYM, heuristic, capacity planning is based on the
maximum possible yield. This policy is the one most
often implemented by palm oil mills in practice. The
optimal capacity investment with this policy, KDYM, can
be obtained from Proposition 2 by replacing ā with ah :

(KI
DYM ,K

O
DYM)�



(
ah(M̄1(ah) −M2)

2βI ,
M2

2βO

)
if η/(ah)2 > M̄1(ah)/M2 − 1,(

ah M̄1(ah)
2βI + 2(ah)2βO

,
(ah)2M̄1(ah)

2βI + 2(ah)2βO

)
if η/(ah)2 ≤ M̄1(ah)/M2 − 1,

where M̄1(ah) � (δ/ah)Ɛ0[−p̃I
1 − c + ah p̃O

1 ] + Ɛ0[
∑T−1

t�1 δ
t ·

max(−p̃O
t − h + δƐt[p̃O

t+1], (δ/ah)Ɛt[−p̃I
t+1 − c + ah p̃O

t+1])].
In the deterministic yield (average), or DYA heuristic,

capacity planning is based on the average yield. The
optimal capacity investment with this policy, KDYA, can
be obtained from Proposition 2 by substituting ah for ā:

(KI
DYA ,K

O
DYA)�



(
ā(M̄1(ā) −M2)

2βI ,
M2

2βO

)
if η/(ā)2 > M̄1(ā)/M2 − 1,(
āM̄1(ā)

2βI + 2(ā)2βO ,
(ā)2M̄1(ā)

2βI + 2(ā)2βO

)
if η/(ā)2 ≤ M̄1(ā)/M2 − 1,

where M̄1(ā) � (δ/ā)Ɛ0[−p̃I
1 − c + ā p̃O

1 ] + Ɛ0[
∑T−1

t�1 δ
t ·

max(−p̃O
t − h + δƐt[p̃O

t+1], (δ/ā)Ɛt[−p̃I
t+1 − c + ā p̃O

t+1])].
If production yield uncertainty is ignored, then

should capacity planning be based on the average yield
or the maximum yield? Our next proposition shows
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that the answer is the average yield when η is suffi-
ciently high—that is, when the firm invests in a storage-
dominating portfolio under the optimal policy as well
as under both DYM and DYA heuristic policies.

Proposition 6. When η > max((ah)2(M̄1(ah)/M2 − 1),
ah ā(M̄1(ā)/M2 − 1)), ∆DYM > ∆DYA.

Recall from Proposition 2 that processing capacity
in a storage-dominating portfolio is determined by
ah(M1 − M2), which, in each period, depends on the
difference between the processingmargin −pI

t − c+ āpO
t

and the storage margin (per input) ah smt , where smt �
(−pO

t − h + δƐt[p̃O
t+1]). Because −pI

t − c + ah pO
t > −pI

t −
c + āpO

t , a firm that uses the DYM heuristic will overes-
timate the processing margin and consequently over-
invest in processing capacity (i.e., KI

DYM > KI ∗). There
is no such effect on the processing margin for a firm
that uses the DYA heuristic, although that firm will
then underestimate the storage margin per input (i.e.,
āsmt < ah smt) and consequently overinvest in process-
ing capacity (i.e., KI

DYA > KI ∗). It turns out that overes-
timating the processing margin has a more significant
impact than underestimating the storage margin, and
so more significant processing capacity misspecifica-
tion occurs when using the DYM heuristic (i.e., KI

DYM >
KI

DYA). Therefore, the profit loss is higher than when
using the DYA heuristic.
Given that it is better to base the capacity planning

on the average yield, how significant, then, is the profit
loss when using this heuristic policy? Proposition 7
provides bounds on the profit loss∆DYA when η is suffi-
ciently high, that is, when the firm invests in a storage-
dominating portfolio under the optimal and the DYA
heuristic policies (i.e., KO ∗ > ahKI ∗ and KO

DYA > ahKI
DYA),

and when η is sufficiently low, that is, when the firm
does not invest in a storage-dominating portfolio under
the optimal and the DYA heuristic policies (i.e., KO ∗ �
ahKI ∗ and KO

DYA � āKI
DYA).

Proposition 7. Case (i).When η>max((ah)2(M1/M2−1),
ah ā(M̄1(ā)/M2−1)),∆DYA≤((1− ā/ah)/(M1/M2−1))2.
Case (ii). When η ≤max((ah)2(M1/M2 − 1), ā2(M̄1(ā)/

M2−1)), if η/(ah)2+1≈η/(ah)2 then 1−(ā/ah)2≤∆DYA≤
2(1− ā/ah).
In both cases, ā/ah plays a critical role for the sig-

nificance of the profit loss due to employing the DYA
heuristic policy. For example, the proposed upper
bound in each case—and thus the actual profit loss
∆DYA—will be low if ā/ah is close to 1 (ā < ah by defini-
tion). As ā/ah decreases, ignoring yield uncertainty in
capacity planningwill havemore severe consequences.
This can be observed from Case (ii) where the pro-
posed lower bound—and thus the actual profit loss—
will be high if ā/ah is low (which, in the next section,
we will show to hold true in the context of the palm
industry).

4.2.2. Deterministic Price Heuristic. Under the deter-
ministic price (DP) heuristic, the firm ignores spot price
uncertainty and plans for capacity based on expected
spot prices. The optimal capacity investment with such
a policy, KDP , can be obtained from Proposition 2 by
substituting the processing and storage margins in
each period with their expected values:

(KI
DP ,K

O
DP)�



(
ah( —M1 − —M2)

2βI , —M2

2βO

)
if η/(ah)2 > —M1/ —M2 − 1,(

ah
—M1

2βI + 2(ah)2βO
,
(ah)2 —M1

2βI + 2(ah)2βO

)
if η/(ah)2 ≤ —M1/ —M2 − 1,

(11)

where

—M1 �
δ

ah
Ɛ0[−p̃I

1 − c + ā p̃O
1 ]

+

[T−1∑
t�1
δt max

(
Ɛ0[−p̃O

t − h + δƐt[p̃O
t+1]],

δ

ah
Ɛ0[−p̃I

t+1 − c + ā p̃O
t+1]

)]
,

—M2 �
T−1∑
t�1
δt(Ɛ0[−p̃O

t − h + δƐt[p̃O
t+1]])+.

Failing to account for spot price uncertainty leads the
firm to underinvest in each capacity type, i.e., KDP <K∗.
This follows from —M1 < M1 and —M2 < M2, which can
be easily established using Jensen’s inequality. Recall
that the firm’s rationale for holding inventory is to
benefit from output spot price fluctuations—instead of
selling the output to the spot market, the firm stores
the output for later sale to the spot market at what is
expected to be a higher price. When the uncertainty in
output spot price is ignored, such benefit will be less
significant, and thus —M2, total expected storage profit
over the planning horizon, will be considerably small.
Therefore, the firm is likely to invest in the high yield–
balanced portfolio when DP heuristic is employed (sec-
ond case in (11)), a conjecture that we will show in the
next section to hold true in the context of the palm
industry. Proposition 8 provides a lower bound on the
profit loss ∆DP in the limiting case where —M2 � 0.

Proposition 8. Assume —M2 � 0.
Case (i). When η ≤ (ah)2(M1/M2 − 1), ∆DP � (1 −

—M1/M1)2.
Case (ii). When η > (ah)2(M1/M2 − 1), if η/(ah)2 +

1 ≈ η/(ah)2 and M1/M2 − 1 ≈ M1/M2, then ∆DP > (1 −
—M1/M1)2.
The lower bound on the profit loss equals the actual

profit loss when η is low enough that the firm invests in
a high yield–balanced portfolio under the optimal pol-
icy, i.e., Case (i). In both cases, —M1/M1 plays a critical

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
9.

17
1.

21
0.

21
5]

 o
n 

12
 M

ar
ch

 2
01

8,
 a

t 1
5:

09
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Boyabatlı, Nguyen, and Wang: Capacity Management in Agricultural Commodity Processing
Manufacturing & Service Operations Management, 2017, vol. 19, no. 4, pp. 551–567, ©2017 INFORMS 561

role for the significance of the profit loss due to employ-
ing DP heuristic policy. Because —M2 � 0 by assumption,
the expected storage margin in each period is practi-
cally zero, and thus —M1 depends on the expected pro-
cessing margin in each period. Under the price process
specified in (10), this expected processing margin con-
verges to a fixed quantity—where the input and output
spot prices are at their long termmeans—after a certain
number of periods. Therefore, this fixed quantity cru-
cially determines —M1, and thus the loss of profit under
the DP heuristic. We will show in the next section that
this fixed quantity is sufficiently low, and the profit loss
is small in the context of the palm industry.

4.2.3. No By-product Heuristic. Under the no by-
product (NB) heuristic, the firm does not account for
by-product revenue when planning for capacity. The
optimal capacity investment with such a policy, KNB ,
can be obtained from Proposition 2 by substituting the
effective processing cost c �

¯
c − aB pB for

¯
c, i.e., substi-

tuting M1 for

—M
NB
1 �

δ

ah
Ɛ0[−p̃I

1 − ¯
c + ā p̃O

1 ]

+ Ɛ0

[T−1∑
t�1
δt max

(
−p̃O

t − h + δƐt[p̃O
t+1],

δ

ah
Ɛt[−p̃I

t+1 − ¯
c + ā p̃O

t+1]
)]
.

Intuitively, failing to account for by-product revenue
leads the firm to underestimate the processing margin
in each period and, thus, to underinvest in capacity,
i.e., KNB ≤ K∗. This follows from —M

NB
1 < M1. Proposi-

tion 9 gives an upper bound on the profit loss when
η is high enough that the firm invests in a storage-
dominating portfolio under both the optimal and the
heuristic policies.

Proposition 9. Let χ �M1/M2 and χ � —M
NB
1 /M2. When

η > (ah)2(χ− 1), ∆NB ≤ (1− χ/χ)(1− (χ− 1)/(χ− 1)).
In this case, failing to account for by-product revenue

leads to underinvestment in processing capacity and
no change in storage capacity. Because the processing
capacity is determined by themaximumof the process-
ing margin and the storage margin in each period, the
proposed upper bound crucially depends on the rel-
ative magnitude of the two margins. When both mar-
gins are of the same order of magnitude, underestimat-
ing the processing margin—that is, by not accounting
for the by-product revenue—is less consequential. Sup-
pose, for example, that underestimation of the process-
ing margin leads to a 10% reduction in χ—that is, χ �

0.9χ. Then, the upper bound on ∆NB × 100 is only 1%
(i.e., the profit loss is of extremely low magnitude). We
will show in the next section that this example is not
relevant in the context of the palm industry.

4.2.4. High Yield–Balanced Portfolio Heuristic. Under
this heuristic, the firm chooses its capacity invest-
ment portfolio by assuming KO � ahKI . The optimal
capacity investment under this policy is character-
ized by KI

HYBP � ah M1/(2βI + 2(ah)2βO) and KO
HYBP �

(ah)2M1/(2βI + 2(ah)2βO). The following proposition
provides an upper bound for the profit loss experi-
enced under this heuristic policy.

Proposition 10. Let η > (ah)2(M1/M2 − 1) such that
∆HYBP > 0. If η/(ah)2+1≈ η/(ah)2, then∆HYBP ≤ (η/(ah)2)/
(η/(ah)2 + (M1/M2)2).
The proposed upper bound—and thus the actual

profit loss—will be low if η/(ah)2 is sufficiently large,
so η/(ah)2 + 1≈ η/(ah)2 holds, and M1/M2 is very large
(in other words, the processing margin is substantially
higher than the storage margin in each period) and
so (M1/M2)2 significantly outweighs η/(ah)2. We will
show in the next section that these conditions hold in
the context of the palm industry.

5. Numerical Analysis: Application to the
Palm Industry

In this section, we discuss an application of our model
in the context of the palm industry. In this industry, a
palm oil mill processes palm fresh fruit bunches to pro-
duce crude palm oil and palm kernel. The fresh fruit
bunches first pass through receiving and sterilization
stations, where high-pressure steam is applied. The
palm fruits are then separated from the bunches at the
threshing station before being crushed at the pressing
station to produce palm kernel and crude palm oil,
fromwhich water and waste are then removed via cen-
trifuge. The crude palm oil is transferred to storage
tanks prior to dispatch from the mill. In the context of
our model, the palm fresh fruit bunch is the input, the
crude palm oil is the output, and the palm kernel is
the by-product. The joint capacity of the receiving, ster-
ilization, threshing, pressing, and centrifuge stations
corresponds to KI ; the CPO storage tank capacity cor-
responds to KO .
The rest of this section is organized as follows. In

Section 5.1 we describe the data and calibration on
which our numerical experiments will be based. Sec-
tion 5.2 investigates the effect of spot price uncertainty
on the firm’s optimal capacity investment policy and
profitability. Finally, in Section 5.3 we compare the per-
formance of optimal and heuristic capacity investment
policies.

5.1. Data, Model Calibration, and Computation for
Numerical Experiments

Our focal unit of analysis is a palm oil mill located
in Southeast Asia. Within this region, Malaysia and
Indonesia share many characteristics; they are the two
largest players in the palm oil industry, accounting
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for 86% of world palm oil production for the 2013–2014
period (U.S. Department of Agriculture 2015, Table 11).
Our numerical experiments use publicly available data
from the Malaysian Palm Oil Board complemented by
proprietary and publicly available data from palm oil
mills located in Malaysia. Hereafter, we shall often use
“RM” to denote the Malaysian ringgit (currency) and
“mt” to denote metric ton (equal to 1,000 kg, or about
1.1 U.S. tons). Throughout this section, we use x̂ to
denote the calibrated value for parameter x.

5.1.1. Calibration for Price Process Parameters. In
our computational experiments, each period corre-
sponds to a weekday in practice. We use the daily
prices of FFB andCPO reported by theMPOB from Jan-
uary 1, 2006, to December 31, 2013. This period encom-
passes 1,940 weekdays. The daily FFB price varies as
a function of the palm fruit’s origin (i.e., the north,
south, west, or east subregion of the Malaysian Penin-
sula) and quality (i.e., Grade A, B, or C), so we use the
average of FFB prices across subregions and grades.
The daily CPO prices vary as a function of the delivery
month (i.e., to be delivered in the same month, next
month, etc.). Consistent with our model, we use the
CPO prices that correspond to immediate delivery (i.e.,
within in the same month). The daily prices used in
our calibration (in ringgit per metric ton) are plotted
in Figure 1(a). According to the price process specified
in (10), the daily spot prices evolve as follows:

p̃I
t � e−θ

I
pI

t−1 + (1− e−θ
I )p̄I

+ σI

√
1− e−2θI

2θI z̃I ,
(12)

p̃O
t � e−θ

O
pO

t−1 + (1− e−θ
O )p̄O

+ σO

√
1− e−2θO

2θO z̃O ,

where (z̃I , z̃O) follows a standard bivariate normal dis-
tribution with correlation ρ. The expressions in (12)
can be viewed as a system of simultaneous equations
of (p̃I

t , p̃
O
t ) on (pI

t−1 , p
O
t−1); that is, p̃ j

t � α
j p j

t−1 + ϕ
j + ε̃ j

for j ∈ {I ,O}. Because the error terms (ε̃I , ε̃O) are cor-
related, we use the “seemingly unrelated” regression
(SUR; see Zellner 1962) to estimate α j , ϕ j , and the
covariance matrix of (ε̃I , ε̃O). We can then use these
estimates together with (12) to obtain θ̂I � 0.00345, ˆ̄pI �

532.75, σ̂I � 8.60, θ̂O � 0.00437, ˆ̄pO � 2689.87, σ̂O � 39.08,
and ρ̂ � 0.734. According to the McElroy’s R2, the SUR
equations can explain 99.36% of the variation in the
spot prices observed.

5.1.2. Calibration for Production Yield Parameters.
The most granular data from MPOB are the monthly
average production yields (extraction rates) in the
Malaysian Peninsula. As plotted in Figure 1(b), the
CPO yield from January 2006 to December 2013 ranges
from 18.51% to 20.37%, with a mean of 19.72% and
a standard deviation of 0.43%. Proposition 2 suggests
that the average production yield ā and the high yield

realization ah are sufficient for numerical computation.
Accordingly, we set ˆ̄a � 19.72%, which is the average
yield in our data set, and âh � 20.37%, which is the
highest yield recorded in our data set. As discussed
in Section 2, we assume that the production yield and
spot price distributions are statistically independent.
To verify the reasonableness of this assumption, we
examine the correlation between CPO yield and the
CPO price change lagged by k months for k ∈ [1, . . . , 5]
and find that (results not reported here) this correlation
lies in the range [−0.08,−0.02].

5.1.3. Calibration for Other Operational Parameters.
For processing cost, we set ˆ

¯
c � 40 RM per metric ton

of FFB, which is representative of the palm industry.
For instance, in the 2013 annual report of Sime Darby
(a major palm producer in Malaysia), the average “mill
cost”between2008and2012 isgivenas199.75RM/mtof
CPO, which corresponds to 39.39 RM/mt of FFB at the
average production yield of 19.72%.5 As in Section 4,we
continuetoassumeanonnegativeprocessingmarginfor
all price realizations. To verify that this is a reasonable
assumption, we examine the observed processing mar-
gin apO + aB pB −

¯
c − pI (with

¯
c � 40) using the daily

FFB (pI) and CPO (pO) prices together with the
monthly CPO (a) and palm kernel (aB) production
yield reported by theMPOB.We find that the observed
margin is strictly positive for all 1,940weekdays except-
ing only 2 (on which the margins are −0.83 and −0.17).
For the inventory holding cost, we use ĥ � 1 RM/day
per metric ton of CPO, which is approximately 10% of
the CPO value if the inventory is held in storage for
an entire year (based on the long-term CPO price level
ˆ̄pO � 2,689.87 and counting 250 weekdays annually).
For the palm kernel by-product, we use the overall
average of the data reported by the MPOB within our
time frame for both the price (p̂B � 1,510.70 RM/mt)
and the production yield (âB � 5.53%). These values
entail an effective processing cost of ĉ � ˆ

¯
c − âB p̂B �

−39.47 RM/mt of FFB. Capacity cost parameters βI

and βO are calibrated based on the following capac-
ity cost information obtained from a palm oil mill
located in Malaysia. The cost of processing facilities
(fruit receiving, sterilization, threshing, pressing, and
centrifuge stations) with a capacity of 30 mt of FFB per
hour (or 300 mt of FFB daily in our model if we assume
there are 10 production hours per day) is 6,723,940 RM;
the cost of storage tank that can hold 2,000 mt of CPO
is 969,570 RM. Given this information, we estimate
β̂I � 75 and β̂O � 0.25. We do not consider fixed costs
(e.g., land) in our numerical experiments. For the dis-
count factor δ, we take an annual compound interest
rate r and set δ � (1 + r)−1/250 (i.e., based again on 250
weekdays per year). In the baseline scenariowe assume
that r̂ � 10%.
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5.1.4. Numerical Computation. It follows from Propo-
sition 2 that K∗ and Π∗ depend on Ɛ0[(−p̃O

t − h +

δƐt[p̃O
t+1])+] and Ɛ0[max(−p̃O

t − h + δƐt[p̃O
t+1], (δ/ah) ·

Ɛt[−p̃I
t+1 − c + ā p̃O

t+1])] for t ∈ [1,T − 1]. It can be proven
that at period 0, (−p̃O

t − h + δƐt[p̃O
t+1],Ɛt[−p̃I

t+1 − c +

ā p̃O
t+1]) for t ∈ [1,T − 1] follow a bivariate normal dis-

tribution, so these expressions can be written in closed
form (using the moments as well as the probability
density function and cumulative distribution function
of the standard normal distribution). Numerical com-
putation can therefore be carried out in an efficient
manner. We initialize the FFB and CPO prices at the
beginning of the planning horizon to their last avail-
able values in the data set: pI

0 � 528.5 RM/mt and
pO

0 � 2,570.5 RM/mt. We consider a five-year plan-
ning horizon, which is equivalent to 1,250 weekdays
(i.e., T̂ � 1,250).

5.1.5. Baseline Scenario. In our baseline scenario the
optimal capacity investment is given by the storage-
dominating portfolio with KI ∗ � 858.91 mt/day and
KO ∗ � 1,653.66 mt (where M1 � 633,308.421 and
M2 � 826.83), and the optimal expected profit is
56,012,483.86 RM over the five-year planning horizon.

5.2. Effects of Spot Price Uncertainty
Here we illustrate our analytical sensitivity results, as
discussed in Section 4.1, using numerical studies in the
context of the palm industry. We analyze (but refrain
from plotting here) the effect of changing price cor-
relation in our baseline scenario for ρ ∈ [0.5, 0.975] in
increments of 0.025. We observe in all instances that K∗
is given by the storage-dominating portfolio, and so, in
line with Proposition 3, KO ∗ is not affected by ρ, while
KI ∗ and Π∗ are both decreasing in ρ.
Figure 3 plots the effects of changing input price

volatility in our baseline scenario for σI ∈ [−50%, 50%]
of the baseline value σ̂I �8.60 in 5% increments.We can

Figure 3. Effects of Changing Input Spot Price Volatility (σI) on Optimal Levels of Processing Capacity (KI ∗) and Storage
Capacity (KO ∗) and on Optimal Expected Profits, Where σI ∈ [−50%, 50%] of the Baseline Value σ̂I � 8.60 in 5% Increments
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Note. In the two panels, baseline scenario is indicated by the circle (•) aligned (horizontally) with 0.

see that K∗ is always given by the storage-dominating
portfolio (KO ∗ > ahKI ∗ as observed in the first panel),
and so, in line with Proposition 4, KO ∗ is unaffected
by σI . In Figure 3, as σI increases in its specified range,
we observe a unique σI threshold where KI ∗ decreases
in σI when σI is below this threshold and increases
in σI otherwise. (The decreasing behavior is less visi-
ble than the increasing behavior in the figure because
the decreasing behavior is less significant in magni-
tude.) The same pattern also holds for the effect of σI

on Π∗. These observations are consistent with Proposi-
tion 4, which proves that both KI ∗ and Π∗ are decreas-
ing (increasing) in σI when σI is sufficiently low (high).
Figure 4 plots the effects of changing output price

volatility in our baseline scenario for σO ∈ [−50%, 50%]
of the baseline value σ̂O � 39.08 in 5% increments. If σO

is low, then K∗ is given by the high yield–balanced
portfolio (KO ∗ � ahKI ∗ as observed in the first panel).
Otherwise, K∗ is given by the storage-dominating port-
folio, and, in line with Proposition 5, KO ∗ increases
with σO . We again observe a unique σO threshold
where KI ∗ decreases in σO when σO is below this
threshold and increases in σO otherwise. The same pat-
tern also holds for the effect of σO on Π∗. These obser-
vations are also consistent with Proposition 5.

Two remarks are in order. First, we observe from Fig-
ure 4 that when K∗ is given by the storage-dominating
portfolio, as σO increases, KO ∗ changes to a larger extent
than Π∗—that is, the optimal profit is more robust
to changes in σO than the optimal storage capacity
level. Second, comparing the second panels in Figures 3
and 4 reveals that the optimal profit is less sensitive
to changes in input price volatility than to changes in
output price volatility.

To summarize, we find that the palm oil mill bene-
fits from a lower spot price correlation and also from
a lower (higher) FFB or CPO price volatility when
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Figure 4. Effects of Changing Output Spot Price Volatility (σO) on Optimal Levels of Processing Capacity (KI ∗) and Storage
Capacity (KO ∗) and on Optimal Expected Profits, Where σO ∈ [−50%, 50%] of the Baseline Value σ̂O � 39.08 in 5% Increments
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Note. Circles again indicate the baseline scenario.

this volatility is low (high). How do the changes in
spot price uncertainty affect the processing and stor-
age capacities of a typical palm oil mill (that invests
in a storage-dominating portfolio)? Our results high-
light the significant differences in how spot price uncer-
tainty affects each capacity type. In particular, we
find that the optimal processing capacity decreases
with an increase in price correlation or an increase (a
decrease) in CPO or FFB volatility when this volatility
is low (high). In contrast, the optimal storage capacity
increases with an increase in CPO volatility, but it is
not affected otherwise.

5.3. Performance of Heuristic Capacity
Investment Policies

Here we numerically compare the performance of the
optimal capacity investment policy with that of heuris-
tic capacity investment policies discussed in Section 4.2
in the context of the palm industry. Recall that the
profit loss due to employing a heuristic policy (hp) is
defined as ∆hp � [(Π∗ − Π(Khp))/Π∗], where Π∗ is the
optimal expected profit, and Π(Khp) is the expected
profit evaluated with the capacity portfolio Khp �

(KI
hp ,K

O
hp), which is chosen by the heuristic policy. We

relate our numerical results to the analytical results
(bounds on the profit loss with each heuristic policy)
presented in Section 4.2.

We extend our numerical instances to assess the sen-
sitivity of our results to several key parameters. In par-
ticular, for η � βI/βO , we consider η ∈ [−30%, 30%] of
the baseline value η̂ � 300 in 10% increments. We also
consider the maximum yield ah ∈ [20.37%, 22.37%] in
0.05% increments as well as holding costs h ∈ {0.5, 1, 2}
and interest rates r ∈ {0%, 10%, 20%}. Altogether, we
evaluate 315 numerical instances.
Before discussing our key findings, we make two

crucial observations based on our numerical results.

First, η/(ah)2 is sufficiently greater than 1 (with an aver-
age value of 6,590, while ranging between 4,196 and
9,399), and so the condition η/(ah)2 + 1 ≈ η/(ah)2 in
Propositions 7 and 8 is satisfied. Second, M1/M2 is very
high in our numerical instances (with an average value
of 2,838, while ranging from 439 to 10,676), and so the
condition M1/M2 − 1 ≈M1/M2 in Proposition 8 is also
satisfied. Another implication of this observation is
that the processing margin is significantly higher than
the storage margin in each period. Recall that, in each
period, M1 is characterized by the maximum of the
processing and storage margins, while M2 is character-
ized simply by the storage margin. These observations
will be critical in delineating the intuition behind the
results that follow.

Table 1 summarizes the percentage profit loss
∆hp × 100 incurred under each heuristic policy using a
classification of the numerical instances based on the
optimal capacity investment policy (storage dominat-
ing or high yield balanced). We now present our key
findings.

1. If the production yield uncertainty is ignored, then
capacity planning should be based on the average yield and
not on the maximum yield. In all numerical instances,
the profit loss under the DYM heuristic is greater than
the corresponding loss under the DYA heuristic. This
observation is consistent with Proposition 6. As dis-
cussed in Section 4.2, a firm that uses the DYM heuris-
tic will overestimate the processing margin, while a
firm that uses the DYA heuristic will underestimate
the storage margin per input. Yet, because the pro-
cessing margin dominates the storage margin in our
numerical instances, this latter underestimation is less
consequential—that is, a firm that uses theDYAheuris-
tic does not significantly deviate from the optimal
processing capacity level. Consistent with these argu-
ments, we observe that the maximum absolute per-
centage misspecification of processing capacity with
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Table 1. Performance of Heuristic Capacity Investment Policies in the Palm Industry

Percentage loss (%)�∆hp × 100

Optimal policy (% instances) DYM DYA DP NB HYBP

K∗ is storage dominating (87.9%) 67.68 0 5.95 65.12 0.57
η/(ah)2 > (M1/M2 − 1) (6.99, 161.97) (0, 0) (5.35, 8.78) (61.86, 66.96) (0, 3.50)
K∗ is high yield balanced (12.1%) 73.98 14.53 5.31 67.32 0
η/(ah)2 ≤ (M1/M2 − 1) (7.83, 162.65) (1.78, 23.70) (5.30, 5.36) (66.14, 67.51) (0, 0)

Note. For each of these heuristics, the boldface values report the average percentage loss observed in the relevant numerical instances, while
the other values report the minimum and the maximum percentage loss observed.

the DYA heuristic, i.e., |(KI ∗ − KI
DYA)/KI ∗ | × 100, is only

0.06% in our numerical instances, while the mini-
mum absolute percentage misspecification of process-
ing capacity with the DYM heuristic is 26.97%. There-
fore, the profit loss is lower when using the DYA
heuristic than the profit loss when using the DYM
heuristic.
2. Ignoring the production yield uncertainty while using

the average yield when planning for capacity does not affect
profitability when the relative (processing-to-storage) capac-
ity investment cost is high; otherwise, it leads to a signif-
icant loss of profit. Table 1 shows that in all numeri-
cal instances with sufficiently high η (i.e., such that
the firm invests in a storage-dominating portfolio with
the optimal policy), the loss under the DYA heuristic
is negligible (0%), whereas in the numerical instances
with sufficiently low η (i.e., such that the firm invests in
a high yield–balanced portfolio with the optimal pol-
icy), the average profit loss is 14.53%. Because process-
ing capacity under the DYA policy differs little from
the optimal level, these observations are driven by the
magnitude of storage capacity misspecification. In a
storage-dominating portfolio, per Proposition 2, stor-
age capacity is determined by the storage margin per
output, i.e., −pO

t − h + δƐt[p̃O
t+1]. Because this margin

is not affected by the DYA heuristic, the firm chooses
the same storage capacity level as under the optimal
policy. Therefore, there is no loss of profit. In a high
yield–balanced portfolio, the firm underinvests in stor-
age capacity under the DYA policy because that capac-
ity is determined by KO � āKI rather than by KO � ahKI .
In the relevant numerical instances, we observe an
average percentagemisspecification of storage capacity
with the DYA heuristic, i.e., [(KO ∗−KO

DYA)/KO ∗]×100, of
7.23%. That storage capacity misspecification leads to
a sizable profit loss. These numerical observations are
consistent with our analytical results in Proposition 7.
In particular, the proposed upper bound with suffi-
ciently high η (Case (i))—and thus, the actual profit
loss ∆DYA—is practically zero because M1/M2 is very
large (as discussed before), and it significantly out-
weighs ā/ah (which ranges between 0.88 and 0.97 in our
numerical instances). Moreover, the proposed lower
bound with sufficiently low η (Case (ii)) on ∆DYA × 100

is larger than 5.91%—that is, the actual loss is sig-
nificant. In this case, the proposed upper bound on
∆DYA×100 ranges from 6% to 24%.We observe that this
upper bound is tight in our numerical instances where
the maximum deviation from the actual ∆DYA × 100 is
only 0.01%.

3. Ignoring the spot price uncertainty when planning for
capacity leads to a relatively small loss of profit. Table 1
shows that the average profit loss under the DP heuris-
tic is 5.87% (which is obtained from the two average
profit losses 5.95% and 5.31% reported in the table) in
our numerical instances. As discussed in Section 4.2,
when the output spot price uncertainty is ignored, the
incentive for holding inventory will be lower, and thus
total expected storage profit over the planning horizon
(as captured by —M2) will be considerably small. Con-
sistent with this observation, in all numerical instances
we observe —M2 ≈ 0 and the firm invests in high yield–
balanced portfolio when DP heuristic is employed.
Because —M2 � 0 condition is satisfied, the analytical
results in Proposition 8 are relevant. In particular, the
proposed lower bound on ∆DP ×100 ranges from 5.34%
to 5.47% in numerical instances with sufficiently high
η (Case (ii)). One may argue that the profit loss under
the DP heuristic is not as high as what is expected.
This result crucially depends on two key observations.
First, the processing margin when input and output
spot prices are at their long-term means is sufficiently
high in the palm industry (37.16 RM/mt in our base-
line scenario). Recall that this margin is the main deter-
minant of —M1 because the expected storage margin in
each period is practically zero. Second, FFB (input) and
CPO (output) prices are highly positively correlated
(ρ̂ � 0.734 in our baseline scenario) and so the variabil-
ity of processing margin in each period is low. Recall
that higher processing margin variability is beneficial
for the firm under the optimal policy. Therefore, ignor-
ing the price uncertainty does not lead to a sizable loss
of profit.

4. Although by-product revenue constitutes a small por-
tion of a palm oil mill’s total revenues, ignoring it dur-
ing capacity planning substantially reduces the firm’s profit.
In our baseline scenario, the processing cost is ˆ

¯
c �

40 RM/mt and the effective processing cost is ĉ �
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ˆ
¯
c − âB p̂B � −39.47 RM/mt, and so the by-product rev-
enue is 79.47 RM/mt. When the production yield is
assumed to be at its average and the output spot price
is assumed to be at its long-termmean, by-product rev-
enue constitutes to only 13% of the total revenues. Yet,
as confirmed by the values reported in Table 1, ignor-
ing by-product revenue when planning for capacity
leads to substantial profit loss—an average of 65.39%
in our numerical instances. As discussed in Section 4.2,
the relative magnitude of the processing and storage
margins plays a key role in the profit loss experi-
enced under this heuristic policy. In our numerical
instances, because the processing margin significantly
outweighs the storage margin, not accounting for the
by-product revenue in the processing margin leads (on
average) to a 81% reduction in M1/M2, i.e., —M

NB
1 /M2 �

0.19(M1/M2). Therefore, the proposed upper bound in
Proposition 9 is not small (the average lower bound on
∆NB × 100 is 65.61%).
5. Using a high yield–balanced portfolio in capacity plan-

ning is a near-optimal heuristic policy. Table 1 shows
that for those numerical instances in which η is high
enough to result in positive profit loss (because the
optimal policy is storage dominating), the average
profit loss is only 0.57%. This observation can be
explained by our proposed upper bound on the actual
profit loss ∆HYBP in Proposition 10. This upper bound
is low because, as established previously, M1/M2 is
very large (since the processing margin is substantially
higher than the storage margin) and so (M1/M2)2 sig-
nificantly outweighs η/(ah)2. In the relevant numerical
instances, we observe that the average upper bound on
∆HYBP × 100 is only 0.73% within a range from 0.02%
to 3.88%.

6. Conclusion
This paper contributes to the operations management
literature by studying the joint processing and storage
capacity investment decisions of a commodity proces-
sor in the context of agricultural industries. Previous
work on commodity processors has focused on oper-
ating decisions (e.g., processing and inventory) and
usually assumed exogenously given capacity levels for
processing and storage resources. We study how these
capacity levels are chosen. Toward this end,we develop
a stylized multiperiod model to help devise a charac-
terization of capacity investment policy that has useful
ramifications in terms of numerical computation and
sensitivity analysis. We provide insights on how spot
price uncertainty shapes the firm’s capacity investment
policy and profitability, and insights on the benefits
of using the optimal capacity investment policy rather
than heuristic policies.
Our work has several limitations due to our spe-

cificmodeling assumptions. Further research is needed
to validate the relevance of our insights when those

assumptions are relaxed. First, we assume that the
capacity levels, once chosen, remain fixed during the
planning horizon. In practice, however, it is not uncom-
mon for firms to own multiple processing facilities
(e.g., Wilmar in the palm industry). In that case, the
firm can temporarily increase one facility’s processing
capacity by shifting processing to other facilities. Incor-
porating flexible capacity into our framework would
be a promising avenue for future research. Second, our
model assumes that the firm does not face frictions in
transportation. In practice, however, there may be con-
straints (on input procurement or output sales) that
arise from limits to transportation capacity (Devalkar
et al. 2011). There could also be marginal costs asso-
ciated with transferring output from the storage facil-
ity to the market, resulting in a spread between the
output’s marginal spot procurement cost and marginal
spot sales revenue (Kazaz and Webster 2011). When
these frictions in transportation are of a significant
nature, they will provide another rationale for the firm
to hold inventory.6 Incorporating these frictions into
our model should prove to be an interesting avenue
for future research. Third, our model calibration was
based on the palm industry. Because other oilseeds and
grain industries share common characteristics with the
palm industry—for instance, a significantly higher cost
of processing capacity than of storage capacity and the
expected dominance of the processing margin over the
storage margin—we expect that the majority of our
findings are valid for those industries as well.7 That
being said, future research is still needed to verify
this conjecture by using our paper’s methodology to
calibrate the model based on a different agricultural
industry.

Acknowledgments
The authors are grateful to the review team for offeringmany
constructive suggestions for improvement.

Endnotes
1 In a general processing environment, the convexity of the capacity
investment costs can also be attributed to limits on production tech-
nology and increasing managerial complexity or maintenance cost
with additional investment.
2 In our model, decisions are made under the true pricing measure
that reflects the firm’s actual expectations of the spot market prices.
A stream of papers (e.g., Devalkar et al. 2011) considers models in
which decisions are made under the risk-neutral pricing measure
that reflects the spot price expectation in a competitive equilibrium.
3 In the unabridged version of this paper (which is available from
http://ink.library.smu.edu.sg/cgi/viewcontent.cgi?filename=0&article
=4187&context=lkcsb_research&type=additional), we relax this as-
sumption and show that it is not a critical assumption in ourmodel.
4 In the literature, correlated mean-reverting processes are also used
to model the evolution of the natural logarithm of commodity spot
prices; see, for example, Secomandi (2010b) and Secomandi and
Wang (2012).
5See http://www.simedarby.com/clients/simedarby_group/
assets/contentMS/img/template/editor/Sime_Darby_AR2013
_Lowres.pdf (accessed July 7, 2017).
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6 In our model, the firm’s rationale for holding inventory is to ben-
efit from fluctuations in the output spot price, which is one of the
most common reasons for holding inventory in agricultural indus-
tries (Westlake 2005).
7As a first attempt to address the relevance of our insights outside
of the palm industry, we conduct additional numerical experiments
in which we alter several key parameters that were kept constant
at their calibrated values in Section 5. The details of this analysis
are relegated to the unabridged version of this paper. We find that
our main insights about the heuristic capacity investment policies
continue to hold except for one: in contrast with the palm setting,
ignoring the spot price uncertainty when planning for capacity leads
to a substantial loss of profit.
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