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A core problem in the area of revenue management is pricing goods in the presence of strategic customers.

We study this problem when customers are heterogeneous with respect to their initial valuations for the

good and their time sensitivities, i.e., the customers differ in both their initial valuations and the rates at

which their initial valuation decreases with a delay in the purchase. We characterize the optimal mechanism

for selling durable goods in such environments and show that delayed allocation and dynamic pricing can

be effective screening tools for maximizing firm profit. We also investigate the impact of production and

holding costs on the optimal mechanism.

1. Introduction

Dynamic pricing is increasingly prevalent in many industries. One of the main advantages of

dynamic pricing is that it helps mitigate the risk associated with demand uncertainty (see,

for instance, Aviv and Pazgal 2008 and Cachon and Swinney 2011). In this paper, we show

that dynamic pricing (DP) can play an important role in differentiating between customers

over time, even in the absence of demand uncertainty. In many settings, especially in

fashion and electronic retail, a customer’s willingness to pay (or valuation) for a product is

time-sensitive and decreases over time. In these situations, customers are not only different

in terms of their initial willingness to pay for these products when they are first introduced

to the market, but they are also different in terms of how rapidly they lose interest in

these products. Thus, we may have customers who initially value the product at a high

level but as time progresses, they lose interest in the product completely. We may also

have customers who initially value the product at a low level, but still remain interested

in the product as time progresses. That is, the willingness to pay of the lower valuation

customers may diminish at a lower rate relative to that of the higher valuation customers.

This phenomenon is illustrated in Figure 1.

In this paper, we show that when a firm sells to customers who have heterogeneously

decreasing valuations, the firm can achieve significant benefits by incorporating dynamic
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Figure 1 At time 0, customer 1 has a higher value than customer 2. But, his value decreases faster than customer

2, and beyond t0, customer 2 has a higher value.

pricing, even in the absence of demand uncertainty. This is not the case if customers

were homogeneous in their valuation decay rate. In that case, in the absence of demand

uncertainty, the firm’s optimal pricing strategy would be to post a fixed price, and dynamic

pricing would have no benefit. When customer valuations decrease at different rates, the

ranking of customers (in terms of their valuations) changes over time (as in Figure 1). This

allows a firm to generate more profit by revising its initial price to target customers who

currently have higher valuations even though they initially had lower valuations.

Formally, we characterize a profit-optimal selling mechanism for a firm with customers

who have heterogeneous valuations that decrease in a heterogeneous fashion. We assume

that the firm knows the total demand1 and the customer valuation distribution, but does

not know the precise valuation of each individual customer. The firm acquires or produces

the units that it would like to sell to the customers, and it does so prior to the start of

the selling period. The firm may incur production costs to procure the units and holding

costs to hold units in inventory until they are sold. In our setting, the firm commits to a

price trajectory, and the customers are strategic in selecting the best time to purchase so

as to maximize their individual net utility. We assume that customers with higher initial

valuation also have a higher rate of valuation decrease. To the best of our knowledge, this

setting has not been studied in the literature.

We next describe the main characteristics of this optimal mechanism ignoring the pro-

duction and holding costs, i.e., when the firm has no capacity constraints.2 The optimal

1 We investigate the impact of this assumption in Section 5.3.

2 The impact of inventory constraints is studied in Appendix B.
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mechanism consists of the firm posting a series of decreasing prices, which essentially di-

vides the customers into three groups based on their initial valuations. The first group

comprises all customers with initial valuations above a threshold (high-type customers) who

purchase the product immediately. The second group consists of all customers with initial

valuations below a smaller second threshold (low-type customers). For these customers, the

posted prices are designed in a way to extract their entire surplus. Finally, the third group

consists of customers with valuations between the two thresholds (medium-type customers)

who do not purchase the product immediately but purchase before the low-type customers,

and obtain a positive net utility, or surplus.

The low-type customers in our mechanism play an important role in contrast to what

occurs in fixed pricing. In a fixed pricing policy, all customers with valuations above the

price would immediately purchase, and those with valuations below the price would not

purchase. However, in our optimal mechanism, the low-type customers purchase the prod-

uct after some delay and the firm is able to extract their entire surplus. In the absence

of production and holding costs, the firm sells the product to all customers in this fash-

ion. Selling to all the customers can not only increase social welfare but can also generate

significant additional profit. For instance, we show that a firm can increase its profit by

approximately 23% by employing the optimal mechanism (relative to fixed pricing) when

the initial valuation distribution is uniform and the valuation decay rates are proportional

to initial valuations; in fact, more than three quarters of this increase is obtained by selling

to the low-type customers.

We show that our main results and insights extend to more general settings. Namely, we

investigate the impact of the length of the horizon, the production costs, and the holding

costs on the optimal selling mechanism.3

We establish our main results for a setting with no restrictions on the length of the

selling horizon. Then, we generalize these results to the case in which the time horizon is

exogenously fixed. We show that when the length of the time horizon is small, similar to

the optimal unrestricted mechanism, the high-type customers purchase the item at time

zero, and medium-type customers delay their purchase but make a purchase before the

3 We also investigate the impact of the inventory constraints on the structure of the optimal mechanism. We show
that the production costs and inventory constraints affect the optimal mechanism in a similar fashion. Because of
this, in the introduction, we only discuss how the production costs influence the optimal mechanism.
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end of the time horizon. Finally, the low-type customers are the bargain hunters. These

customers get the item at the end of the time horizon at the lowest price. We also present

an approximately-optimal mechanism when the length of the time horizon is “large.” This

mechanism resembles the features of the optimal unrestricted mechanism. Furthermore, we

show that as the length of the horizon increases, the profit of this mechanism approaches

the optimal profit rapidly.

We observe that both production and holding costs motivate the firm to reduce the

length of the selling period but in different ways. Interestingly, we find that the optimal

selling mechanism is rather robust to the production cost. In particular, in the presence of

a production cost, the optimal mechanism naturally introduces a cut-off on the customer

valuations so that the firm sells only to customers with initial valuations higher than this

cut-off. However, all such customers who purchase the product do so at the same time as

in the baseline setting (with no production costs). Thus, production costs only change the

price of purchase, and not the time of purchase.

We find that the optimal mechanism is more sensitive to holding costs. These costs

motivate the firm to price in a manner so that customers are incentivized to make their

purchases earlier (than in the baseline case). We find that depending on the holding cost,

the optimal mechanism takes three forms. If the holding cost is larger than a threshold,

then the firm determines it is too expensive to carry the product and simply posts a fixed

price so that all customers who purchase the product do so immediately. If the holding

cost is moderate (below the previous threshold and above another lower threshold), then

the firm benefits from DP but cannot extract the entire surplus of customers with low

initial valuations. If the holding cost is below the lower threshold, then the structure of the

optimal mechanism is similar to that of the baseline optimal mechanism. There are three

distinct groups of customers and the firm can extract the entire surplus of customers with

low valuations. Overall, the value of DP decreases with increasing production and holding

costs. These results are presented in the appendix.

Finally, we summarize our main technical contribution. In our setting, one of the hur-

dles in characterizing the optimal selling mechanism is the lack of consistent customer

ranking based on customer types. As a result, satisfying the individual rationality and

incentive compatibility constraints is challenging.4 Note that when there is a consistent

4 To characterize the optimal mechanism, using the revelation principle, it suffices to focus only on mechanisms in
which customers have an incentive to participate, that is, the individual rationality constraints hold, and customers are
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ranking of customers, individual rationality constraints are binding for the lowest customer

type that the firm would like to sell the product to, and the mechanism is incentive-

compatible if the allocation rule is monotone in the customer type. In contrast, in our

setting, the individual rationality constraint is binding for a group of customers with low

initial valuation. Furthermore, the monotonicity of the time of purchase in the initial

valuation does not guarantee that the mechanism is incentive-compatible. To character-

ize the optimal mechanism, we first establish necessary and sufficient conditions to thus

have an incentive-compatible mechanism. One of these conditions resembles the traditional

envelope condition (Myerson 1981), which ensures that the mechanism is locally incentive-

compatible. The other condition, called interval condition, ensures that the mechanism is

globally incentive-compatible. We first relax the problem by ignoring the interval condi-

tion and characterizing a profit-optimal mechanism that satisfies the individual rationality

constraints and envelope condition. Then, by establishing several additional properties of

this mechanism, we show that the mechanism indeed satisfies the interval condition, and

thus is optimal.

Related Work

Our work is related to the growing literature on pricing mechanisms for customers who

strategically time their purchases. There is also an extensive literature on dynamic pricing

with myopic customers (see for example Lazear 1984, Wang 1993, Gallego and Van Ryzin

1994, Feng and Gallego 1995, Bitran and Mondschein 1997, Federgruen and Heching 1999,

and Talluri and Van Ryzin 2004). We do not provide a summary of this line of literature

here, but we refer the reader to excellent surveys by Bitran and Caldentey (2003), Chan

et al. (2004), and Shen and Su (2007).

Coase (1972) is one of the first papers to study pricing for strategic customers. Coase

conjectured that when a firm sells a durable good to patient and strategic customers

and cannot commit to a sequence of posted prices, then the prices would converge to

the production cost. Later Stokey (1979), Gul et al. (1986), and Besanko and Winston

(1990) found that with commitment, posting a decreasing sequence of prices is optimal.

In particular, Stokey (1979) showed that when production cost declines over time, posting

a decreasing sequence of prices results in higher profit for the firm. However, when the

willing to reveal their private information to the mechanism designer, that is, the incentive compatibility constraints
hold (see Myerson 1981).
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production cost is zero, DP is not beneficial. In contrast, we show that with heterogeneous

decay rates, DP can improve profit even if the production cost is zero.

In the context of revenue management, several papers show that DP can increase firm

profit when demand is uncertain (see, for example, Su 2007, Aviv and Pazgal 2008, El-

maghraby et al. 2008, Araman and Caldentey 2009, Cachon and Swinney 2011, Aviv et al.

2015, and Yu et al. 2015). Specifically, Aviv and Pazgal (2008) studied a model in which

a firm sells a limited inventory of a product in two periods to an unknown number of

strategic customers who are heterogeneous in their valuations and time of arrival. They

showed that when the level of heterogeneity in customers’ valuation increases, the ben-

efit of customer segmentation using pricing decreases. Conversely, in this work, we show

that as the level of heterogeneity in customers’ decay rates increases, the firm can better

differentiate customers and generate more profit.

One important factor that differentiates our work from the aforementioned research is

that in our work, demand uncertainty is not a key driver of DP. That is, even in the absence

of demand uncertainty, DP increases profit significantly. Furthermore, in the aforemen-

tioned papers, the firm uses the customers’ fear of rationing to extract more profit from

strategic customers (see also Liu and Van Ryzin 2008 and Bansal and Maglaras 2009), but

in our work, customers do not face such a risk. In fact, when the production and holding

costs are zero, all the customers purchase the product.

Other papers have examined intertemporal pricing with new consumers arriving in every

period. Conlisk et al. (1984), Besbes and Lobel (2015), and Chen and Shi (2016) showed

that when customers arrive over time, the firm’s optimal strategy is to use a cyclic pricing

policy. Borgs et al. 2014 studied how to set prices to extract profit while guaranteeing

service availability to all paying customers arriving and departing at different times. See

Board and Skrzypacz (2016) and Garrett (2011) for other papers that study pricing with

heterogeneous arrivals. In these papers, the firm can gain from DP since it can differentiate

customers based on their arrival times. In contrast, in our work, all of the customers are

in the market when the sales starts and they strategically optimize their time of purchase.

That is, we attempt to isolate and capture the impact of heterogeneity of valuation decay

rates on the optimal DP policy, absent any other considerations.5

5 We further discuss this assumption in Section 2.
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One of the closest papers in the literature to ours is that by Chen and Farias (2015),

who studied the design of dynamic selling mechanisms when valuations of the customers

decay over time at possibly different rates and the customers incur monitoring costs. They

proposed an approximately profit-optimal pricing policy that incentivizes customers to

purchase the product immediately rather than waiting to get the product later. In contrast,

we design an optimal pricing policy in a setting in which customers with higher initial

valuations are more time-sensitive than those with lower initial valuations.

Chen and Farias (2016) built on the results in Chen and Farias (2015) by imposing a

constraint on the structure of customer’s disutility from waiting. In particular, they assume

that the customer’s disutility is a non-decreasing and concave function of his valuation.

Under this assumption, they show that posting a fixed price is asymptotically optimal.

This is in contrast with our results where we show dynamic pricing can be significantly

beneficial. Put differently, our work complements Chen and Farias (2016) by showing that

dynamic pricing is beneficial when the customer’s disutility is not concave.

Another closely related work is by Chen and Shi (2016). This paper studied joint pricing

and inventory management for a setting where customers suffer from delay disutility if they

postpone their purchases and wait for the product to get delivered. In their model, unlike

our setting, customers’ valuation does not decrease with time if customers purchase the

item later. However, customers incur waiting costs when the product gets delivered with

a delay. They show that without production and holding costs, adopting dynamic pricing

is not profitable. In contrast to our work, they find that the key driver of dynamic pricing

in their setting is inventory-related costs rather than heterogeneity in delay disutility.

Our work also relates to the growing body of research on dynamic mechanism design;

see Bergemann and Said (2011) for a survey. There, the firm offers a direct mechanism

that allocates the products over time as a function of customers’ reports of their private

valuations. See Akan et al. (2009), Kakade et al. (2013), Pavan et al. (2014), Battaglini and

Lamba (2012), Boleslavsky and Said (2013), Golrezaei and Nazerzadeh (2016), and Lobel

and Xiao (2013) for recent results on designing optimal dynamic mechanisms. In these

papers, the buyer’s value changes with time, as the buyer receives new private information

over time. In contrast, in our work, the buyer value changes with time because of gradual

loss of interest in the product. The paper closest to ours within this literature is Akan et al.

(2009), where customers are heterogeneous in their valuation distribution and in how fast
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they learn their true value. Akan et al. (2009) showed that when high-type customers (such

as business travelers) learn their valuation slower, relative to low-type customers (such as

leisure travelers), in the optimal mechanism, the firm sequentially screens customers by

offering them a menu of expiring refund contracts.

Organization of Paper

The remainder of this paper is organized as follows: In Section 2, we formally introduce our

model. Section 3 performs some preliminary analysis by introducing direct mechanisms in

this setting and the conditions needed for these to be incentive-compatible. In Section 4,

we characterize our key structural results and the optimal mechanism in the absence of

production and holding costs. In Section 5, we show how our results extend when the

simplifying assumptions with respect to the length of time horizon, production cost, and

uncertainty in market are relaxed (we discuss the case of holding costs and inventory

constraints in Appendices A and B). We conclude in Section 6.

2. Model

We consider a firm that sells multiple units of an item (product) to a mass of customers

over a sales period of duration T time units. The firm produces and stores all units just

prior to the start of the sale period. The cost for producing each unit is c, and the holding

cost to store each unit is h per unit time. For convenience, we focus on the case in which

the sales time horizon is unbounded, i.e., T =∞, the production and holding costs are

zero, i.e., c = h = 0, and the firm does not face any inventory constraints. This simpler

version of the model allows us to understand and highlight the key trade-offs. We then

discuss how the results generalize in Section 5.

The firm’s goal is to implement a selling mechanism to maximize its profit. At time 0,

the firm declares and commits to a price trajectory p(t), t≥ 0. Given the pre-announced

prices, customers decide whether and when to purchase the item. Each customer is assumed

to be infinitesimal and demands a single unit of the item. The valuation of a customer

at time t is V (θ, t) where V : R2→ R and θ is the customer type. To capture customer

heterogeneity both on their initial valuation and time sensitivity in a tractable manner, we

consider a multiplicative model V (θ, t) = θe−g(θ)t. Here, V (θ,0) = θ is the initial valuation,

and g represents the (exponential) rate of decay of the initial valuation.
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We note that in our model, we assume that customer decay rate, g(θ), is the same across

all the customers with the same type, and as a result, consumer private information can

be represented by a one-dimensional signal. This assumption simplifies our problem, as

multidimensional mechanism design problem has shown to be very challenging to solve

(Briest et al. 2010, Chawla et al. 2010, and Alaei et al. 2012). There are papers that have

made some progress in designing optimal/suboptimal multidimensional mechanisms by

imposing some assumptions; see, for example, Cai et al. (2012), Chen and Farias (2015,

2016), and Hart and Nisan (2017).

Our focus is on cases in which there is some structure on this decay rate g. In particular,

g should be positive so that valuations decay over time. We further assume that g is

strictly increasing. This implies that customers with higher initial valuations lose interest

in the item much faster than customers with lower initial valuations. Furthermore, the

monotonicity of g implies that for any θ1 6= θ2 > 0, there exists a unique intersection point

τ > 0 that solves V (θ1, τ) = V (θ2, τ).6 That is, any two valuation curves cross each other

exactly once.7 Because of this, the customers are not ranked in a persistent manner over

time; see Figure 1. The fact that a persistent ranking for customers does not exist makes

the problem of designing an optimal mechanism challenging. Furthermore, as we will show

later, it allows the firm to extract more profit by revisiting its prices over time.

We make two additional assumptions on g that give us analytical tractability: we assume

that g is log-concave and further that θg′(θ) is increasing. The log-concavity assumption

implies that g′(x)
g(x)

is decreasing.8 We will further discuss the log-concavity assumption in

Section 4. The condition that θg′(θ) is increasing ensures that the time of allocation in the

optimal mechanism is decreasing in θ. This condition will be further discussed in Section 4.

Roughly speaking, this condition, which is satisfied by all the convex and increasing func-

tion g(·), implies that function g(·) cannot be “too concave”. Note that θg′(θ) is increasing

if g′′(θ)≥−g′(θ)
θ

.

We would like to add that our valuation function satisfies the following assumptions that

have been made in the seminal work by Stokey (1979): (i) ∂1V (θ, t) ≤ 0 and (ii) for any

6 Equation V (θ1, τ) = V (θ2, τ) gives us τ = log(θ2)−log(θ1)
g(θ2)−g(θ1)

.

7 In Section 5.4, we use an example to discuss situations in which this assumption may not hold.

8 Every positive concave function is log-concave. However, the reverse does not necessarily hold (Boyd and Vanden-
berghe 2004).
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t≤ 1
g′(θ)θ

, ∂2V (θ, t)≤ 0 and ∂1,2V (θ, t)≤ 0. As it becomes clear later, 1
g′(θ)θ

is the maximum

delay in purchase that customers of type θ experience in the optimal mechanism. Further,

∂iV (θ, t), i= 1,2, is the derivative of the valuation function V (θ, t) w.r.t. its i-th argument,

and ∂1,2V (θ, t) = ∂2V (θ,t)
∂θ∂t

.

To summarize, we make the following assumptions on g:

Assumption 1. For any θ ∈ [Θ, Θ̄], function g(θ) is differentiable, positive, strictly in-

creasing, and log-concave. Furthermore, θg′(θ) is increasing in θ.

In our model, the valuation function V , which includes function g, is known to the

firm and customers. However, the customer type is the customer’s private information,

and these types are independently drawn from a known distribution F with probability

density function f , where F : [Θ, Θ̄]→ [0,1] and Θ≥ 0. The negative inverse hazard rate

associated with distribution F is denoted by α : [Θ, Θ̄]→ R, and is defined as α(x) =

−1−F (x)
f(x)

. Throughout the paper, we make the following assumption, which implies α is

non-decreasing.

Assumption 2. The type distribution F has a non-decreasing hazard rate. That is, α(·)

is non-decreasing.

This is a common assumption in the literature and is satisfied by several common distri-

butions such as uniform, exponential, gamma, etc.

In our model, all customers are present in the market at time 0 and exit after making a

purchase. That is, customers can make a purchase at any time t≥ 0. We would like to point

out that this model is very common in the literature of dynamic pricing. Stokey (1979) was

one of the first papers that adopted such a model. Later, such a model has been used in

a series of work; see for example Besanko and Winston (1990), Elmaghraby et al. (2008),

Levin et al. (2009), Liu and Van Ryzin (2008), Dasu and Tong (2010), Liu and Van Ryzin

(2011), Cachon and Swinney (2011), and Aviv et al. (2015). That is, in all aforementioned

papers as well as our work, the customers are not heterogeneous in their time of arrival.9

This allows us to focus on the impact of the customer heterogeneity in their valuations and

valuation decay rates. We note that this is a good model for electronic products such as

iPhones and iPods. For these products, potential customers wait for a new product launch

9 There have been some other papers in the literature that consider such heterogeneity; see for example Su (2007)
and Aviv and Pazgal (2008).
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and a new launch is often announced publicly. Because of these, it is fair to assume that

all the potential customers are in the market when the product is launched.

Customers are fully strategic about whether and when they purchase the item from the

firm. Specifically, each customer either does not purchase the item, or purchases a unit

in the period in which his utility gets maximized. Customers are risk neutral, and utility

of a customer with type θ who purchases the item at time t at price p is V (θ, t) − p.
Furthermore, all customers are present during the entire time horizon. Then, given prices

p = {pt : t ≥ 0}, a customer with type θ purchases a unit of the item at time t∗(θ) :=

arg maxτ≥0{V (θ, τ)− pτ} if V (θ, t∗(θ))− pt∗(θ) ≥ 0, and she does not purchase otherwise.

Here, pt is the price for the item at time t.

We consider a deterministic baseline model where the firm knows the total mass of

customers, i.e., the market size. The assumption of deterministic demand is justified when

the number of customers is large and fairly predictable. This modeling choice allows us to

study the impact of strategic customers and decay in customer valuation, but it deliberately

removes the element of uncertainty from the model. That is, we seek to understand if the

firm gains from DP when there is no demand uncertainty. In Section 5.3, we relax this

assumption and show that our results can hold even with uncertainty in the market size.

3. Direct Mechanisms and Optimality

To characterize a profit-maximizing (optimal) selling mechanism, by the revelation princi-

ple, we focus on direct incentive-compatible and individually rational mechanisms where

customers first report their type and then the mechanism determines their payment and

time of allocation.

More precisely, any direct mechanismM consists of a tuple (t, ς,p), where p : [Θ, Θ̄]→R

is a transfer scheme and (t, ς) : [Θ, Θ̄]→R×{0,1} is an allocation rule. That is, p(θ) and

t(θ) are respectively the price for a unit of the item and time of purchase for a customer

with type θ.10 Further, ς(θ) = 1 when the customer of type θ purchases the item, and is

zero otherwise. One can assume that t(θ) =∞ when ς(θ) = 0.

We note that the mechanism design theory enables us to focus on specifying the alloca-

tion rule policy rather than the pricing rule. In fact, once the allocation rule is determined,

by the revenue equivalence theorem, we can characterize the pricing rule. Due to this

10 Note that the allocation rule t for a customer is only a function of the customer type, and does not depend on the
type of other customers, because in our model, each customer is infinitesimal and there is no inventory constraint.

Electronic copy available at: https://ssrn.com/abstract=2992112



Golrezaei, Nazerzadeh, and Randhawa: Dynamic Pricing for Heterogeneous Time-Sensitive Customers
12

property, mechanism design approach has been widely used in the literature of dynamic

pricing; see, for example, Gershkov and Moldovanu (2012), Chen and Farias (2015, 2016),

and Board and Skrzypacz (2016). We further note that as it becomes more clear later, we

use direct mechanism to propose optimal posted price mechanisms, which are widely used

in practice.

We start by defining incentive compatibility and individual rationality. Let u(θ, θ̂) be

the expected utility of a customer with type θ when she reports θ̂. That is,

u(θ, θ̂) = ς(θ̂)(V (θ, t(θ̂))− p(θ̂)) .

Then, mechanismM is incentive-compatible (IC) if for each customer with type θ ∈ [Θ, Θ̄],

truthfulness is a best response, that is, u(θ, θ̂)≤ u(θ, θ). Roughly speaking, in IC mecha-

nisms, no customer wants to deviate from the truthful strategy.

We can now define the individual rationality constraints for the mechanism. IC mecha-

nisms are individually rational (IR) if for each customer with type θ, his utility under the

truthful strategy is nonnegative, i.e., for any θ ∈ [Θ, Θ̄], we have u(θ, θ)≥ 0.

The following lemma presents the necessary and sufficient conditions under which a

mechanism is IC.

Lemma 1 (Necessary and Sufficient Conditions for IC). Consider mechanism

M with allocation rule (t(·), ς(·)). Then, the mechanism is IC if and only if both conditions,

stated below, are satisfied.

• Envelope Condition: For any θ, θ̂ ∈ [Θ, Θ̄],

u(θ, θ)−u(θ̂, θ̂) =

∫ θ

z=θ̂

ς(z)e−g(z)t(z)(1− g′(z)t(z)z)dz . (1)

• Interval Condition: For any θ̂ < θ,∫ θ

z=θ̂

ς(θ̂)e−g(z)t(θ̂)(1− g′(z)t(θ̂)z)dz ≤ u(θ, θ)−u(θ̂, θ̂)≤
∫ θ

z=θ̂

ς(θ)e−g(z)t(θ)(1− g′(z)t(θ)z)dz .

(2)

All the proofs are provided in the appendix.

Lemma 1 is analogous to the characterization of incentive compatibility in standard

static settings, where an envelope condition and monotonicity of allocation rule are used to

characterize incentive compatibility (see Myerson (1981)). The envelope condition above

Electronic copy available at: https://ssrn.com/abstract=2992112



Golrezaei, Nazerzadeh, and Randhawa: Dynamic Pricing for Heterogeneous Time-Sensitive Customers
13

is a standard one and can be rewritten as u(θ, θ)−u(θ̂, θ̂) =
∫ θ
z=θ̂

ς(z)∂1V (z, t(z))dz, where

∂1V (θ, t) = ∂V (θ,t)
∂θ

. But, the interval conditions, which can written as∫ θ

z=θ̂

ς(θ̂)∂1V (z, t(θ̂))dz ≤
∫ θ

z=θ̂

ς(z)∂1V (z, t(z))dz ≤
∫ θ

z=θ̂

ς(θ)∂1V (z, t(θ))dz ,

replace the monotonicity conditions. The interval conditions compare the utility obtained

by the truthful strategy (middle term in Eq. (2)) with untruthful strategies (the rightmost

and leftmost terms in Eq. (2)).

We are now ready to characterize the firm’s profit under any IC mechanism. Note that

the profit of a mechanism M from a customer of type θ is the customer’s payment minus

the production and holding costs, which can be written as ς(θ)(p(θ)− c−ht(θ)). Thus, the

expected payment is given by
∫ Θ̄

θ=Θ
f(θ)ς(θ)(p(θ)−c−ht(θ))dθ= E[ς(θ) · (p(θ)−c−ht(θ))].

Note that throughout the manuscript, unless stated otherwise, all expectations are with

respect to customer type θ. Then, the total profit of the mechanism is the market size

times the expected profit from selling the item to one customer. Considering that the

market size is constant, that is, demand is deterministic, the total profit of the mechanism

is maximized if we maximize the expected profit from a single customer.

An IC and IR mechanism is optimal if it maximizes the expected profit among all IC

and IR mechanisms.

The following lemma characterizes the firm’s profit in any IC mechanism M.

Lemma 2 (Profit of IC Mechanisms). In any IC mechanism, the expected firm

profit from a single customer is given by

E
[
ς(θ)

(
e−g(θ)t(θ)

(
θ+α(θ)

(
1− g′(θ)t(θ)θ)

))
−ht(θ)− c

)
−u(Θ,Θ)

]
, (3)

where the expectation is taken with respect to the customer type θ.

Lemma 2 suggests that in order to optimize profit, the optimal mechanism should

maximize virtual profit, that is, E
[
ς(θ)

(
e−g(θ)t(θ)

(
θ+α(θ)

(
1− g′(θ)t(θ)θ)

))
− ht(θ)− c

)
−

u(Θ,Θ)
]
, and pick a transfer scheme that makes it both IC and IR. Throughout the paper,

we refer to
(
e−g(θ)t

(
θ+α(θ)

(
1− g′(θ)tθ)

))
− ht− c

)
as virtual value/profit of a customer

with type θ at time t.

In the next section, we present an optimal mechanism for the case when both production

and holding costs are zero. We discuss generalizations of this in Section 5.
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4. Optimal Mechanism

We begin with characterizing an optimal mechanism when both the production and holding

costs are zero. By Lemma 2, an optimal mechanism should maximize virtual profit subject

to IC and IR constraints. Given that c = h = 0, the expected virtual profit is given by

E
[
ς(θ)

(
e−g(θ)t(θ)

(
θ+α(θ)

(
1− g′(θ)t(θ)θ

)))
−u(Θ,Θ)

]
:= E [ς(θ)R(θ, t(θ))−u(Θ,Θ)] ,

(4)

where R(θ, t) = e−g(θ)t
(
θ+α(θ)(1− g′(θ)tθ)

)
is the virtual value of a customer of type θ at

time t. Note that the initial virtual value, i.e., R(θ,0) = θ+ α(θ), is equal to the virtual

value in a standard static setting (c.f. Myerson 1981).

To characterize the optimal mechanism, we need to solve the following optimization

problem.

max
{u(Θ,Θ)≥0, (t,ς,p)}

{E [ς(θ)R(θ, t(θ))−u(Θ,Θ)]}

s.t. IC and IR constraints . (OPT)

Solving the above optimization problem is rather involved because we are maximizing over

the allocation and payment functions t(·), ς(·), and p(·). For this reason, we characterize

the optimal solution of the above equation in two steps. Recall that by Lemma 1, satisfying

the IC constraints is equivalent to satisfying the envelope and interval conditions. In the

first step, we relax the problem by ignoring the interval conditions. That is, in the first

step, we only focus on satisfying the envelope conditions and IR constraints. In particular,

we consider the following relaxed problem:

max
{u(Θ,Θ)≥0, (t,ς)}

E
[
ς(θ)R(θ, t(θ))−u(Θ,Θ)

}]
s.t. u(θ, θ) = u(Θ,Θ) +

∫ θ

Θ

ς(z)e−g(z)t(z)(1− g′(z)t(z)z)dz ≥ 0 , θ ∈ [Θ, Θ̄] .

(relaxed)

Note that the constraint follows from the envelope conditions. In the second step, we show

that the solution to the relaxed problem satisfies the interval conditions. This implies that

the optimal solution of Problem relaxed is also an optimal solution of Problem OPT.

Electronic copy available at: https://ssrn.com/abstract=2992112



Golrezaei, Nazerzadeh, and Randhawa: Dynamic Pricing for Heterogeneous Time-Sensitive Customers
15

Next, we characterize the optimal solution of the relaxed problem. We need one more

definition to present our result. Let

tf(θ) =
1

α(θ)g′(θ)
+

1

g(θ)
+

1

g′(θ)θ
(5)

be the solution to the first-order (necessary) optimality conditions. That is, tf(θ) =

arg maxt≥0R(θ, t) and solves ∂1R(θ, tf(θ)) = 0.Then, we have the following result.

Lemma 3 (Optimal Solution of Problem relaxed). If Assumptions 1 and 2 hold,

then in an optimal solution of Problem relaxed, u(Θ,Θ) = 0, ς(θ) = 1, θ ∈ [Θ, Θ̄], and

the allocation time, denoted by tg, is given by

tg(θ) =


0 if θ≥ θH High-type;

tf(θ) if θ ∈ [θL, θH ] Medium-type;

1
g′(θ)θ

if θ ∈ [Θ, θL] Low-type,

(6)

where tf(θ) is defined in Eq. (5), θH solves θH + α(θH) + α(θH)g′(θH)θH
g(θH)

= 0, and θL solves

g(θL) +α(θL)g′(θL) = 0.

As we will show in the proof of Lemma 3, the log-concavity of g(·) implies that
(

1−

tg(θ)g
′(θ)θ

)
≥ 0 for any θ. This allows us to conclude that the described mechanism is

IR; that is u(θ, θ)≥ 0. This also leads to monotonicity of u(θ, θ) in θ.

The following theorem shows that the optimal solution of the relaxed problem, charac-

terized in Lemma 3, fulfills the interval conditions, and thus is optimal.

Theorem 1 (Optimal Mechanism). Suppose that Assumptions 1 and 2 hold. Then,

the optimal mechanism sells to customers of type θ ∈ [Θ, Θ̄] at time tg(θ), defined in Eq.

(6), and at price p(θ) = θe−g(θ)tg(θ) −
∫ θ

Θ
e−g(z)tg(z)

(
1 − tg(z)g

′(z)z
)
dz. In addition, in the

optimal mechanism, ς(θ) = 1 for any θ ∈ [Θ, Θ̄].

We next discuss the main insights of Theorem 1. We first note that the firm sells the item

to all customers. In addition, as we will prove in Lemma 7, the purchase time of customers

tg(θ) is decreasing in customer type; that is, customers with lower initial valuation purchase

the item later than customers with higher initial valuation.

We note that the optimal mechanism divides the customers into three groups: high-type,

medium-type, and low-type. The high-type customers who have high initial valuation (θ≥
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θH) purchase the item immediately. The low-type customers who have low initial valuation

(θ ≤ θL) delay their time of purchase. We note that the purchase time of high-type and

low-type customers does not depend on the distribution of the customer type, F , directly.

The time of purchase of these customers depend on F only through thresholds θH and θL.

We also observe that low-type customers with type θ purchase the item at time 1
g′(θ)θ

and more importantly, get zero utility. To understand why, note that customers with type

θ < θL pay

p(θ) = V (θ, tg(θ))−
∫ θ

Θ

e−g(z)tg(z)
(
1− tg(z)g

′(z)z
)
dz = V (θ, tg(θ)) ,

where the second equality holds because tg(z) = 1
g′(z)z

for any z ≤ θL. Note that this is

in contrast with the traditional static mechanism design. In the static mechanism design,

customers whose type is high enough get the product and enjoy a positive surplus, whereas

low-type customers do not get the product at all. In fact, there is typically one customer

type on the boundary that gets zero utility after purchasing the product. However, in our

setting, there exists a group of customers who purchase the item and obtain zero utility.

The medium-type customers who have medium initial valuation θ ∈ [θL, θH ] do not pur-

chase the item immediately. However, unlike the low-type customers, these customers enjoy

a positive utility.

The optimal mechanism presented in Theorem 1 highlights the fact that the firm benefits

from the positive correlation between the valuation decay rate and the initial valuation by

adopting DP and delaying allocation. In fact, the extra profit that the firm makes comes

partly from the low-type customers from whom the firm extracts their entire surplus.

We would also like to point out that the optimal mechanism of Theorem 1 has an

equivalent dynamic pricing interpretation. Specifically, it recommends the firm to post

prices p(·), and consequently, customers with type θ will find it incentive compatible to

purchase at time tg(θ).

Comparison to a Model with Homogeneous Valuation Decay Rate: Assume that customer val-

uation decay rate is homogeneous, that is, V (θ, t) = θe−βt or equivalently g(θ) = β where

β ≥ 0 is a constant. Note that with homogeneous decay rates, the valuation curves do not

cross each other. In this case, the optimal mechanism posts a fixed price of θ0, where θ0

solves θ0 +α(θ0) = 0. Thus, customers with type greater than θ0 purchase the item at time

zero, and in contrast with the optimal mechanism under heterogeneous valuation decay,
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customers with type θ < θ0 do not purchase the item at all. The reason is that, with ho-

mogeneous decay rates, these customers have negative virtual value throughout the time

horizon. Thus, the firm is not willing to sell the item to these customers.

To shed more light on Theorem 1, we study the following example.

Example 1. Assume that θ follows the uniform distribution in the range of [0,1]; that is,

θ∼U(0,1). Here, we present the optimal mechanism when g(θ) = θa, a≥ 0, and h= c= 0.

It is clear that when a = 0, the decay rates are homogeneous across customers. Further,

as a increases, the customers’ decay rates become more heterogeneous. For this valuation

function, thresholds θH and θL are respectively a+1
a+2

and a
a+1

. Note that both θH and θL

are increasing in a and converge to 1 as a grows without bound. Thresholds θH and θL

are depicted in Figure 2a. We observe that as a increases, the high-type and medium-type

regions shrink while the low-type region expands. Recall that low-type customers get zero

utility. Thus, when heterogeneity among customers increases, that is, a increases, the firm

can extract the entire surplus of more customers. As a result, as depicted in Figure 2b, the

firm’s profit grows when the decay rate of customers gets more heterogeneous.

Figure 2b shows the profit gain of the optimal mechanism relative to the fixed price

(FP) policy. Note that the profit-maximizing FP policy posts a price of θ0 = 1
2

at time

zero. We observe that as a increases, by employing DP, the firm increases its profit by

more than 23% and 90% at a= 1 and 10, respectively. The reason is that by increasing a,

the valuation decay rates become more heterogeneous, which, in turn, increases the value

of differentiating customers via DP.

Figure 2b also shows that the social welfare of the customers and the firm increases when

a increases. Note that for allocation time tg(·), the social welfare equals E
[
θe−g(θ)tg(θ)

]
,

where θe−g(θ)tg(θ) is the valuation of a customer with type θ who purchases the item at time

tg(θ). Observe that, for any value of a, DP outperforms FP in terms of obtained social

welfare. However, the customer’s surplus (utility)11 under DP is lower than that under FP.

This is so because by adopting DP, the firm can extract high profit from the customers,

see the profit gain of the DP in Figure 2b.

11 By Lemma 1, the expected customers’ surplus (utility) is E[u(θ)] = E
[∫ θ

Θ
e−g(z)tg(z)

(
1− tg(z)g

′(z)z
)
dz
]
.
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Next, we discuss the purchase time, payment, and utility of customers. Given that g(θ) =

θa, the purchase time in the optimal mechanism is given by

tg(θ) =


0 if θ≥ a+1

a+2
;

(a+2)θ−(a+1)
a(θ−1)θa

if θ ∈ [ a
a+1

, a+1
a+2

];

1
aθa

if θ ∈ [0, a
a+1

] .

(7)

The purchase time is shown in Figure 3a for a = 0,0.5, and 1. We note that a = 0 cor-

responds to homogeneous decay rates. Recall that under homogeneous decay rates, a FP

policy is optimal. The figure shows that under FP (a= 0), there is a one-time sale where

only customers with a type greater than θ0 = 1
2

purchase the item immediately. However,

this is no longer the case under DP when a > 0. Under DP, the purchase time, tg(θ), is

decreasing in customer type; see also Eq. (7). We also observe that when a increases, the

purchase time of low-type and high-type customers increases, whereas the purchase time

of other customers does not vary remarkably.

Figures 3b and 3c, respectively, show the payment and utility of customers as a function

of their types in the optimal mechanism. In Figure 3b, we observe that the payment of

customers under DP (a > 0) increases as their type increases. High-type customers pay

more when the firm uses DP rather than FP. However, this may not be the case for the

medium-type customers. This group of customers delay their purchase and their valuation

at the purchase time is not as high as their initial valuation. Therefore, the firm may reduce

their payments. Furthermore, the DP policy enables the firm to extract more profit from

low-type customers. Figure 3b also shows that customer payments are not monotone in a.

Figure 3c shows that under both DP and FP policies, the utility of customers, u(θ, θ),

is an increasing function of θ. But, the customers earn higher utility under the FP policy.

Moreover, the utility of customers decreases when a increases. The reason is that when

a is large, the firm can better differentiate the customers in order to extract more profit

from them.

�

Example 1 shows that the DP policy earns significantly more profit than the FP policy.

Motivated by this, we present a lower bound on the profit gain of DP over FP in Appendix

E.1 when g(θ) = θa. We derive the lower bound on the profit gain by characterizing the

extra profit the firm extracts from the low-type customers. The bound implies that for

Electronic copy available at: https://ssrn.com/abstract=2992112



Golrezaei, Nazerzadeh, and Randhawa: Dynamic Pricing for Heterogeneous Time-Sensitive Customers
19

0 2 4 6 8 10
Exponent a

0

0.2

0.4

0.6

0.8

C
us

to
m

er
 T

yp
e

H
g

L
g

Medium-
Type

High-Type

Low-Type

(a)

0 2 4 6 8 10
Exponent a

-100

-50

0

50

100

R
el

at
iv

e 
G

ai
n 

to
 F

ix
ed

 P
ric

in
g 

(%
)

Profit
Social Welfare
Customer's Surplus

(b)

Figure 2 (a) The thresholds θH and θL as a function of the exponent a for the mechanism described in Theorem

1; (b) Relative gain of profit, social welfare, and customer’s surplus of DP (relative to the FP policy)

in percentage, as a function of the exponent a. The customer type θ∼U(0,1), V (θ, t) = θe−g(θ)t,

g(θ) = θa, and h = c = 0.
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Figure 3 The time of purchase (a), payment (b), and utility of customers (c) in the optimal mechanism described

in Theorem 1. Customer type θ∼U(0,1), V (θ, t) = θe−g(θ)t, g(θ) = θa, and h = c = 0.

the setting in Example 1, the DP policy earns at least 50 · e− 1
a percent more profit than

FP. Thus, the profit gain of the DP for a = 0.5,1,1.5, 2, is at least 6.8, 18.4, 25.7, and

30.3 percent, respectively. Another interpretation of this result is if the firm ignores the

heterogeneity in decay rates and follows the optimal mechanism under the homogeneous

model, it will suffer from at least 50 · e− 1
a percent profit loss.

5. Extensions

In this section, we relax some of the simplifying assumptions we made for our analysis in

the previous section. Namely, in Section 5.1, we consider the case of a finite selling horizon.

In Section 5.2, we consider the case of non-zero production costs. Finally, in Section 5.3,

we consider the case in which there is uncertainty in the number of customers of each type.
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In Section 5.4, we use an example to discuss situations in which customers with higher

initial type do not necessarily have higher decay rates. We consider additional extensions

of non-zero holding costs and inventory constraints in Appendices A and B, respectively.

5.1. Finite Time Horizon

In Section 4, we characterized the optimal mechanism when the length of the time horizon

T is infinite. In practice, because of seasonality and changing the popular trends, the length

of the time horizon can be finite and exogenous. Here, we seek to understand how an

exogenous time horizon impacts the structure of the optimal mechanism.

In the following, we first present an optimal mechanism when the length of the time

horizon is small, specifically, the case T ≤ 1
g′(θL)θL

where θL solves g(θL) +α(θL)g′(θL) = 0.

We will show that the optimal mechanism bears a resemblance to the mechanism presented

in Section 4 in which the length of the time horizon is ∞. We then focus on the case

when the length of the time horizon T > 1
g′(θL)θL

. Motivated by the structure of the optimal

mechanism in Theorem 1, we present an approximately optimal mechanism. We show that

the gap between the profit of the our mechanism and that of the optimal mechanism

converges to zero as T increases.

Proposition 1 (Small Time Horizon). If Assumptions 1 and 2 hold, the production

and holding costs are zero, and the length of the time horizon T ≤ 1
g′(θL)θL

, then the optimal

mechanism sells one unit of the item to customers with type θ≥ θTL at time

tT (θ) =


0 if θ≥ θH
tf(θ) if θ ∈ [θTH , θH ]

T if θ ∈ [θTL , θ
T
H ]

(8)

and at price p(θ) = θe−g(θ)tT (θ)−
∫ θ
θTL
e−g(z)tT (z)

(
1− tT (z)g′(z)z

)
dz. Here, θTH solves tf(θ

T
H) =

T , θTL solves R(θTL , T ) = 0, tf(θ) and R(θ, t) are defined in Eq. (5) and Eq. (4), respectively,

and θH and θL are defined in Lemma 3. Further, for any θ < θTL , ς(θ) = 0 and p(θ) =∞,

and for θ≥ θTL , ς(θ) = 1.

Observe that similar to the mechanism in Section 4, high-type customers, i.e., those

with type θ≥ θH , get the item at time zero. Medium-type customers, i.e., those with type

θ ∈ (θTH , θH), get the item at the solution to the first order condition (FOC), i.e., tf(θ). Note
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that at type θTH , the FOC solution is T .12 Then, low-type customers, i.e., those with type

θ ∈ [θTL , θ
T
H ] get the item at time T , where θTL is the smallest type that the firm would like

to sell the item to at time T . We point out that low-type customers are bargain hunters:

They wait till the end of the time horizon to get a good deal. Finally, customers with type

θ < θTL do not get the item at all.

We now focus on the case when the length of the time horizon T > 1
g′(θL)θL

. We will

propose a mechanism, denoted byMT , that only sells to customers with type greater than

θTL at the following time

tT (θ) =


0 if θ≥ θH
tf(θ) if θ ∈ [θL, θH ]

1
g′(θ)θ

if θ ∈ [θTH , θL]

T if θ ∈ [θTL , θ
T
H ]

(9)

and charges the customers with type θ ≥ θTL , p(θ) = θe−g(θ)tT (θ) −
∫ θ
θTL
e−g(z)tT (z)

(
1 −

tT (z)g′(z)z
)
dz. Here, with a slight abuse of notation, we use θTH to refer to the solution of

1
g′(θTH)θTH

= T and we use θTL to denote the solution to R(θTL , T ) = 0. Note that the allocation

rule of mechanismMT is very similar to the allocation rule of the mechanism in Theorem

1. However, in mechanism MT , we ensure that the sale ends at time T and customers

that have a very low type, i.e., those with type θ < θTL do not purchase the item. For these

customers, the firm gets a negative virtual value regardless of their time of purchase, i.e.,

R(θ, t)< 0 for any θ < θTL and t∈ [0, T ].

We note that when the selling horizon is small, the optimal mechanism posts the

prices in such a way that the customers who purchase the item do so at time tT (θ) =

min(max(0, tf(θ)), T ). However, when the selling horizon is large, one cannot design

prices in a manner to incentivize customers of type θ to purchase the item at time

min(max(0, tf(θ)), T ). Similar to the optimal mechanism in Theorem 1 where T =∞, the

time of purchase of low-type customers should be distorted to make the selling mechanism

truthful. Recall that in Theorem 1, low-type customers of type θ purchase the item at time

1
g′(θ)θ

. While such a distortion does not hurt the seller’s profit when T =∞, it can slightly

12 In fact, the assumption that T ≤ 1
g′(θL)θL

ensures that θTH ≥ θL. To see why observe that tf (θL) = 1
g′(θL)θL

, and by

Lemma 7, tf (θ) is decreasing in θ. This implies that tf (θ)≤ 1
g′(θL)θL

for any θ ≥ θL. Thus, when T ≤ 1
g′(θL)θL

, θTH
that solves tf (θTH) = T is greater than θL.
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reduce the seller’s profit when T is large but finite. This is the case because with a finite

selling horizon, the seller cannot afford to sell to all customers. The following proposition

shows that mechanism MT is approximately optimal.

Proposition 2 (Large Time Horizon). Suppose that Assumptions 1 and 2 hold, and

the production and holding costs are zero, and the length of the time horizon T > 1
g′(θL)θL

.

Then,

Revopt−RevMT
≤ θTL exp

(
− g(θTL)

g′(θTL)θTL

)
F (θTL) ,

where Revopt and RevMT
are the optimal profit and profit of mechanism MT , respectively.

To get a better understanding of the bound in Proposition 2, let us assume that g(θ) = θa

and θ ∼ U(0,1), where a > 0. Then, Revopt−RevMT
≤ (θTL)2e−

1
a . As we show in the proof

of the proposition, 1− Tg′(θTL)θTL ≥ 0. This gives us an upper bound on θTL . In particular,

we get θTL ≤ 1
(Ta)1/a . By applying this in our bound, we yield

Revopt−RevMT
≤ 1

(Ta)2/a
e−

1
a =O

(
1

T 2/a

)
.

Thus, when a= 0.5,1, and 1.5, the maximum profit loss of mechanism MT converges to

zero at the rates of 1
T 4 , 1

T 2 , and 1
T 4/3 , respectively.

In the following, we revisit Example 1 to evaluate mechanism MT . Note that when

T ≤ 1
θLg′(θL)

, we also refer to the mechanism in Proposition 1 as mechanism MT . Then,

MT is optimal when T ≤ 1
θLg′(θL)

.

Example 2 (Revisiting Example 1: Finite Time Horizon). We evaluate mecha-

nismMT for the setting in Example 1. The allocation and payment rules of this mechanism

are depicted in Figures 4a and 4b, respectively, with T = 1,2,3, 4, and g(θ) = θ. Recall

that mechanism MT is optimal when T ≤ 1
g′(θL)θL

= 2. We observe that as T decreases,

more customers wait until the end of the time horizon to avail the lower price. In addition,

as T decreases, the high-type customers’ payment decreases, whereas that of the low-type

customers increases. Overall, the spread in the customer payments decreases when the firm

needs to end the sale earlier.

Figure 4c illustrates the maximum profit loss of this mechanism as a percentage of an

upper bound on the optimal profit when g(θ) = θa with a= 0.5,1, and 1.5. For the upper
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bound, we use the tighter bound, which is provided in the proof of Proposition 2; see Eq.

(22). In particular, when T > 1
g′(θL)θL

= 1
a(θL)a

, we have

Revopt ≤ RevMT
+

∫ θTL

Θ

e−g(z)T
(
z− (1− g′(z)Tz) g(z)

g′(z)

)
f(z)dz ,

where θL = a
1+a

. For T < 1
a(θL)a

, we have Revopt = RevMT
. Figure 4c illustrates the upper

bound on the profit loss of mechanism MT (in percentage), i.e., 100 · gap(T )
gap(T )+RevMT

, where

gap(T ) =
∫ θTL

Θ
e−g(z)T

(
z− (1− g′(z)Tz) g(z)

g′(z)

)
f(z)dz. We observe that the upper bound on

the profit loss decreases as a gets smaller. In addition, the upper bound decreases as T

increases, and it gets maximized at T = 1
a(θL)a

. However, the upper bound does not exceed

0.4%, 3.3%, and 7.2% when a= 0.5,1, and 1.5. respectively. The upper bound is maximized

at T = 1
a(θL)a

and the jump in the plot occurs at T = 1
a(θL)a

because the upper bound on

the optimal profit is not tight when T is close to 1
a(θL)a

. We note that despite the fact that

the bound is not tight, the profit loss of mechanism MT is insignificant.
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Figure 4 The time of purchase (a) and payment of customers (b) in mechanism MT when g(θ) = θ, h= c= 0,

and θ∼U(0,1). The profit loss of the mechanism MT (c) as a percentage of the upper bound when

g(θ) = θa with a= 0.5,1, and 1.5.

�

5.2. Production Costs

In this section, we present an optimal mechanism when the production cost c ≥ 0, and the

holding cost h is zero. We show that when the firm faces production costs, it ends the sale

sooner, compared to when the production cost is zero. In particular, the production cost

introduces a cut-off such that customers whose type θ is greater than the cut-off purchase

at time tg(θ), and other customers do not purchase the item at all. That is, a positive
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production cost does not change the time of allocation of customers who purchase the

item.

Defining θc as the smallest value that solves R
(
θc, tg(θc)

)
= c, we present the main result

of this section. Here, R
(
θ, t) and tg(·) are defined in Equations (4) and (6), respectively.

Theorem 2 (Production Costs). If Assumptions 1 and 2 hold, the production cost

c ∈ [0, Θ̄], and the holding cost h = 0, then the optimal mechanism only sells to cus-

tomers with type θ ≥ θc at time tg(θ), given in Eq. (6), and at price p(θ) = θe−g(θ)tg(θ) −∫ θ
θc
e−g(z)tg(z)

(
1− tg(z)g

′(z)z
)
dz. Furthermore, for θ < θc, ς(θ) = 0 and p(θ) =∞, and for

θ≥ θc, ς(θ) = 1.

In Theorem 2, we assume that the production cost c is less than Θ̄, as the firm has

no incentive to produce and sell the items when the production cost is greater than the

maximum valuation of customers Θ̄.

The main idea of the proof is to show that the virtual value of a customer with type θ at

time tg(θ), that is, R
(
θ, tg(θ)

)
, is increasing in θ. Then, provided that R

(
θc, tg(θc)

)
−c = 0,

we have R
(
θ, tg(θ)

)
− c < 0 for any θ < θc. This implies that the firm would rather not

sell the item to customers with type θ < θc.

Theorem 2 suggests that the production cost will not change the allocation time of

customers with type θ≥ θc; rather, it only changes the payment rule such that the lower-

type customers are not willing to purchase the item. In other words, the payment rule is

designed to enforce a cut-off, θc, in the allocation rule. For more insight into Theorem 2,

we revisit Example 1.

Example 3 (Revisiting Example 1: Production Costs). Consider the same set-

ting in Example 1. Figure 5a illustrates the cut-off θc as a function of the production

cost when g(θ) = θa and a = 0,0.5,1. Here, with a = 0, the optimal mechanism can be

implemented via an FP policy. For any a > 0, FP policies are no longer optimal. Figure

5a compares the threshold θc with that in the FP policy. Note that in the FP policy, the

threshold θc,f solves R(θc,f , t = 0) = c. We observe that the threshold is smaller than in

the DP policy for a = 0.5,1, which suggests that the DP policy sells to more customers

than the FP policy. In addition, the cut-off is decreasing in exponent a. That is, the firm

is willing to sell to lower-type customers when a gets larger and differentiating customers

gets easier. However, when the production cost increases, the difference in the cut-off gets

smaller and converges to that of the FP policy.
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Figure 5b shows the payment of the customers in the optimal mechanism when the

production cost is 0.1,0.2,0.3, and 0.4, and g(θ) = θ. Note that in the figures, the cut-offs

are depicted via dashed vertical lines. Figure 5b shows that when the production cost

increases, the firm increases the payment of the customers who purchase the item. By

increasing the payment, the firm can enforce the cut-off and ensure that customers with

type less than θc do not purchase the item. Note that as the production cost increases from

0.1 to 0.2, the payments of customers with type greater than θ0.2, the cut-off at c= 0.2,

remain the same. The reason for this is that all the extra customers who make a purchase at

the production cost of 0.1, i.e., those with type θ ∈ [θ0.1, θ0.2], buy at time 1
g′(θ)θ

and receive

zero utility (see the time of purchase of the optimal mechanism presented in Theorem 1).

Therefore, selling to these customers does not impact the utility and payment of other

customers. Recall that by Lemma 1, in any IC mechanism with the allocation rule t(·), the

utility of a customer with type θ is u(θ) = u(Θ) +
∫ θ
z=Θ

ς(z)e−g(z)t(z)(1− g′(z)t(z)z)dz, and

here (1− g′(z)t(z)z) = 0 for any z ∈ [θ0.1, θ0.2].
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Figure 5 (a) Cut-off θc as a function of the production cost c in the optimal mechanism with g(θ) = θa and

a= 0,0.5,1; (b) The payment of customers as a function of their type with c= 0.1,0.2,0.3, and 0.4 and

g(θ) = θ. Customer type θ∼U(0,1) and the holding cost h= 0.

�

5.3. Uncertainty in the Market

In this section, we investigate the impact of uncertainty in the market. We consider a

market of finite size with customers belonging to a set of discrete number of possible types
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(there may be infinite types). There is uncertainty both in the total market size and the

number of customers of each type.

In particular, we compare the profit of the firm under two scenarios. In the first scenario,

the firm is not aware of the exact market size and only knows the expected number of

customers, i.e., the average market size. In the second scenario, the firm is fully aware of

the market size and based on this knowledge, it designs an optimal selling mechanism.

We show that the profit of the firm under these two scenarios is very close to each other.

Specifically, the difference between these two profits converges to zero as the market size

grows without bound.

We use M to denote the total number of customers, where M is drawn from distribution

D. We use Θ = {θ1, θ2, . . . , θK} for any K > 0 to denote the set of all possible customer

types. We say that a customer is of type k when his type is θk. Then, conditional on M ,

the number of customers of each type, denoted m = {m1,m2, . . . ,mK}, is drawn from a

multinomial distribution with M trials and probabilities q = {q1, q2, . . . , qK}, where qk is

the probability that a customer is of type k ∈ [K] := {1, . . . ,K}.

We consider the following two scenarios:

Scenario 1 (Unknown Market Size): In this scenario, the firm is not aware of the market

size M and exact number of customers of each type, {mk : k = 1, . . . ,K}. The firm is

only aware of the distribution D and the probabilities {qk : k = 1, . . . ,K}. Let Rev1
opt(M)

denote the expected profit that firm can obtain from a single customer under scenario 1,

conditional on the market size realization beingM . We refer to Rev1
opt(M) as the normalized

profit under scenario 1. This profit can be calculated by solving the following optimization

problem:

max
{(tk,pk,ςk), k∈[K]}

∑
k∈[K]

ςkpkqk (Rev)

s.t. ςk(θke
−g(θk)tk − pk) ≥ ςj(θke

−g(θk)tj − pj), j, k ∈ [K], (IC)

ςk(θke
−g(θk)tk − pk) ≥ 0, k ∈ [K]. (IR)

Here, pk and tk are the payment and time of allocation of customer of type k ∈ [K], respec-

tively. Finally, ςk = 1 if the customer of type k purchases the item and is zero otherwise.

The first set of constraints ensures that customers do not have an incentive to be untruth-

ful and the second set of constraints guarantees that the utility of the customers under
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truthful strategy is nonnegative. For convenience, we denote the optimal solution to (Rev)

by Rev(q), and we note that Rev1
opt(M) = Revopt(q), and is a constant independent of M .

Thus, in the following, we denote Rev1
opt(M) by Rev1

opt.

Scenario 2 (Known Market Size): In this scenario, the firm is fully aware of both the

market size M and the number of customers of each type, {mk : k = 1, . . . ,K}. Then,

defining q̃ = {q̃1, q̃2, . . . , q̃K}, where q̃k =mk/M , the optimal profit from a single customer in

this scenario, denoted by Rev2
opt(q̃,M), equals Rev(q̃). We note that given q̃, Rev2

opt(q̃,M)

is independent of M . Hence, we denote Rev2
opt(q̃,M) by Rev2

opt(q̃).

In the following proposition, we show that E[Rev2
opt(q̃) |M ] = Rev1

opt where the expecta-

tion is w.r.t. q̃. We further show that for large market sizes, the gap between the normalized

profits in the two scenarios converges to zero.

Proposition 3 (Uncertainty in the Market). The expected normalized profits in

the two scenarios (with known market size and unknown market size) are equal, i.e.,

Rev1
opt = E[Rev2

opt(q̃) |M ]. In addition, for market size distributions such that M ≥ n a.s.,

for some n, we obtain

E
[∣∣Rev1

opt−E[Rev2
opt(q̃) |M ]

∣∣]≤ Θ̄

√
logn

2n
+

Θ̄

n
, (10)

where Θ̄ = maxk∈[K] θk and the inner and outer expectations is with respect to q̃ and market

size M , respectively.

By Proposition 3, the gap between the expected normalized profits in the two scenarios

converges to zero as n, the lower bound on M , increases. Furthermore, the bound in

Proposition 3 is not a function of the number of types K and holds for any value of K.

Thus, for large markets, the normalized profits in the two scenarios are quite close to each

other. Proposition 3 can be extended to show that the gap between total profits is also

small (sub-linear) for a sequence of systems with increasing market sizes, in which each of

the individual profits increases in a linear fashion.

5.4. Generalizing Customer Valuation Model

In this paper, we assume that customers with higher initial valuations have higher valuation

decay rates compared with customers with lower initial valuations. We briefly discuss the

impact of relaxing this assumption using an example.
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Figure 6 Example with three customer types: LP represents low initial valuation patient customers, HP represents

high initial valuation patient customers, and HI represents high initial valuation impatient customers.

Consider three customer types: low initial value and patient (LP), high initial value and

impatient (HI), and high initial value and patient (HP). Customer valuations decay over

time as V (ab, t) = vae
−δbt, where a∈ {L,H} and b∈ {I,P}. We set vL = 0.6, vH = 1, δP = vL,

and δI = vH ; see Figure 6. We denote the intersection point of HI and LP valuation curves

by τ = 1.28. Further, we set the mass of LP-customers at unity, the mass of HI-customers

at 1− γ and that of HP-customers at γ for some 0≤ γ ≤ 1.

Notice that at γ = 0, this model reduces to a discretized version of our original model with

high initial valuation customers being more impatient than low initial valuation customers.

Further, at γ = 0, the optimal mechanism comprises two price points with HI-customers

purchasing at t= 0 at price p1 = 0.93, and LP-customers purchasing at t= 0.82 at price

p2 = 0.37.13 In this mechanism, LP-customers receive zero net utility, whereas HI-customers

receive a positive surplus.

Now if we consider the case of γ > 0, then the firm has no means of separating HP

customers from both HI and LP customers. If the firm sets price p1 at t = 0 and price

p2 = V (LP, t2) for some t2 ≤ τ such that it can sell to HI and LP customers at time 0 and

t2, respectively, then HP customers strictly prefer to purchase at time t2 than to purchase

at time 0. Thus, this model becomes effectively equivalent to one in which the LP-customer

13 We note that to characterize the optimal mechanism, it suffices to consider the mechanisms that offer p1 at t= 0,
and p2 = V (LP, t2) at some t2 ≤ τ such that the mechanism incentivizes HI-customers to purchase at t = 0 and
LP-customers to purchase at t= t2. That is, to obtain the optimal mechanism, we only need to optimize on p1 and
t2.
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mass equals (1 + γ). Consequently, as γ increases, the optimal mechanism changes such

that p2 increases (with the corresponding time of purchase also decreasing so that LP

customers receive zero net utility), and p1 decreases (with a time of purchase zero). We

find that at γ = 0.3, the optimal mechanisms sets p1 = p2 = vL and sells to all customers at

t= 0. This example provides some intuition as to how one can tackle situations in which

Assumption 1 does not hold.

6. Conclusion

Dynamic pricing is a common practice in many industries and has proven to be an effective

tool in mitigating the negative impact of demand uncertainty. This work contributes to

the literature by showing that dynamic pricing can have significant benefit even in the

absence of demand uncertainty. Specifically, we show that when customers’ valuations are

time-sensitive and decay at different rates, the firm can increase its profit by implementing

dynamic pricing even when the firm knows the overall market size with certainty. We find

that the heterogeneity in customer time sensitivities allows the firm to differentiate between

customers more effectively. In addition to extracting more profits, this differentiation also

increases product allocations so that customers with low initial valuations can also procure

the product. In this fashion, we show that a firm can successfully embrace a seemingly

unfavorable scenario of decaying customer valuations to improve its profit and customers’

welfare.

In our setting, the customers’ strategic nature is an essential ingredient required to

extract the aforementioned benefits. The fact that each customer is forward-looking and

times his purchase to obtain the best value for himself is what allows the firm to set a

price trajectory that can effectively differentiate between the customers over time. In this

sense, our work also illustrates how dynamic pricing can be beneficial when customers are

forward-looking.
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Appendix
This appendix is organized as follows. In Appendix A, we generalize our optimal mechanism to include

positive holding costs. Appendix B is dedicated to the optimal mechanism with inventory constraints. Ap-

pendix C proves Theorem 1. Appendix D proves the results in Section 5. Appendix E proves the results in

Sections 3 and 4, and also establishes an additional supporting result. Appendix F proves Theorem 3 (of

Appendix A). Supporting lemmas in the proof of Theorems 1 and 3 are proved in Appendices G and H,

respectively.

Appendix A: Holding Costs

In this section, we characterize an optimal mechanism for a setting with positive holding cost. Similar to

production costs, holding costs motivate the firm to end the sale sooner. However, with a positive holding

cost, the firm incentivizes customers to purchase the item earlier, as carrying the items in inventory is costly.

This is in contrast with the optimal mechanism with a positive production cost. There, the purchase time

for all customers who make a purchase remain the same, whereas with a positive holding cost, customers

are incentivized to purchase the item sooner. To simplify the exposition, here, we focus on an exponential

valuation function V (θ, t) = θe−θt; that is, we assume that g(θ) = θ.14

Before presenting the optimal mechanism with a positive holding cost, to get intuition on the impact of

the holding cost, we revisit Example 1 when h> 0 and g(θ) = θ.

Example 4 (Revisiting Example 1: Holding Costs). We present the optimal mechanism for the

setting in Example 1 when the holding cost h> 0, the production cost c= 0, and g(θ) = θ. Figure 7a shows

how the optimal mechanism divides customers into different regions. A precise definition of the boundaries

of these regions will be given later in Eqs. (11) and (13).

Observe that when the holding cost is small (h <Hl := 0.04), there are four regions: high-type, medium-

type, low-type, and no-allocation. We later define Hl in Eq. (11) for any type distribution F . While customers

in the high-type region get the item immediately, customers in the low-type and medium-type regions delay

their purchase time. Moreover, customers in the no-allocation region do not purchase the item at all. These

customers and customers in the low-type region get zero utility. We note that as the holding cost increases,

the low-type region shrinks, whereas other regions grow. This pattern continues until the holding cost hits Hl.

At h=Hl, the low-type region vanishes and there will be only three regions: high-type, medium-type, and

no-allocation. As we increase the holding cost further from Hl to Hh := 0.25, the high-type region gets larger

while the medium-type region gets smaller; see the definition of Hh in Eq. (11) for any type distribution F .

In fact, at h=Hh, the medium-type region disappears. Finally, for h≥Hh, only two regions remain: those

of high-type and no-allocation. That is, when the holding cost is high enough, the firm posts a fixed price,

which only incentivizes the high-type customers to purchase the item at time zero.

Figure 7b shows the customers’ surplus, social welfare, and profit gain of DP in percentage (relative to the

FP policy) as a function of the holding cost. We note that the FP policy does not change as the holding cost

14 All the results can be generalized to g(θ) = βθ where β > 0 is a constant.
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varies. For any value of the holding cost, the FP policy posts a price of θ0 = 1
2
. Thus, the social welfare of

the FP policy equals E[θ×1{θ≥ θ0}]. The social welfare of the DP policy is the expected value of customers

at the time of purchase th(·) minus the holding cost, that is, E[(θe−θth(θ)− hth(θ))×1{θ≥ θh}] where θh is

the lowest type that purchases the item. We formally define th(θ) and the cut-off θh in Eqs. (13) and (11),

respectively.

Interestingly, social welfare is not monotone in the holding cost. At first glance, we expect social welfare

to decrease when the holding cost gets larger, but this is only the case when the holding cost is not too large.

For larger holding cost values, social welfare increases in h. To understand why, note that by increasing the

holding cost, the firm incentivizes customers to purchase earlier as holding the items is costly.This, in turn,

enhances the social welfare as the net value increases for customers at their time of purchase. Furthermore,

we observe that when the holding cost is not too large, the social welfare of the optimal DP mechanism is

greater than that of FP. Thus, for small holding cost values, DP not only increases the firm’s profit but also

the social welfare.

Figure 7b shows that DP outperforms FP by a higher percentage when the holding cost is small, because

a smaller holding cost allows the firm to lower prices and further delay the time of allocation to customers.

This enables the firm to earn more profit from the customers. Due to the same reason, the customer surplus

is increasing in the holding cost.
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Figure 7 (a) Structure of the optimal mechanism as a function of the holding cost h; (b) Customer surplus,

social welfare, and profit gain of the optimal mechanism (relative to the FP policy) in percentage as

a function of the holding cost. The customer type θ∼U(0,1), V (θ, t) = θe−θt, and the production

cost c= 0.

�

Example 4 illustrates how the holding cost influences the structure of the optimal mechanism. Next, we

formalize these observations by presenting the optimal mechanism with a positive holding cost. We will show

that the optimal mechanism only sells to customers with initial valuation θ ≥ θh. That is, ς(θ) = 1 when

θ≥ θh and zero otherwise. Here, the cut-off θh depends on the holding cost, h, and is given by

θh :=

max{θL,Θ} if h<Hl Low Holding Cost;
θM if h∈ [Hl,Hh] Medium Holding Cost;
θH if h>Hh High Holding Cost.

(11)
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Here, Hl = (θ̃)2e−1 and Hh = θ2
L = θ2

0 where θ̃ solves 2θ̃ + α(θ̃) = 0 and θL is defined in Lemma 3. In

particular, when g(θ) = θ, θL solves θL +α(θL) = 0; that is θL = θ0. Noting that θ̃≤ θ0, it is easy to observe

that Hl <Hh. We refer to the holding cost as low and medium when h <Hl and h ∈ [Hl,Hh], respectively,

and we refer to it as high when h >Hh. For low holding costs h≤Hl, the cut-off θh = θL, where θL solves

e−1(θL)2 = h. Observe that at h=Hl, the cut-off θL = θ̃, and at h= 0, we have θL = 0.

When the holding cost is medium, only customers with initial valuation θ ≥ θM purchase the item where

θM solves R(θM , tf (θM))−htf (θM) = 0, R(θ, t) is defined in Eq. (4), and tf (θ) is the FOC solution. We note

that when g(θ) = θ, we have

R(θ, t) = e−θt
(
θ+α(θ)(1− tθ)

)
. (12)

Further, the FOC solution, tf (θ), solves ∂R(θ,t)−ht
∂t

∣∣
tf (θ)

= 0. One can show that when h = Hl, θ̃ solves

R(θ̃, tf (θ̃))−htf (θ̃) = 0.

We show that in the optimal mechanism, the purchase time of a customer with type θ ≥ θh is

th(θ) =

 0 if θ ≥ θhH High-Type;
tf (θ) if θ ∈ [θhL, θ

h
H ] Medium-Type;

1
θ

if θ ∈ [Θ, θhL] Low-Type.
(13)

Note that when θ ∈ [Θ, θhL], the time of purchase is 1
g′(θ)θ

= 1
θ
. In Eq. (13),{

θhH = θ0 if h>Hh;
tf (θhH) = 0 if h≤Hh.

(14)

That is, for h≤Hh, the FOC solution at θhH ∈ [θ0, θH ] is zero:

∂(R(θhH , t)−ht)
∂t

∣∣
t=0

= −θhH (θhH + 2α(θhH))−h = 0 . (15)

We note that for any θ < θhH , the FOC solution is negative, and R(θ, t)− ht is maximized at t= 0. We also

observe that at h = 0 and h = Hh, θhH is respectively θH and θ0. Furthermore, θhH is decreasing in h,

indicating that as the holding cost increases, more customers purchase the item at time zero.

We now define θhL in Eq. (13): {
θhL = θ̃ if h>Hl;
tf (θhL) = 1

θh
L

if h≤Hl.
(16)

That is, for h≤Hl, θ
h
L ∈ [θ̃, θ0] solves

∂(R(θhL, t)−ht)
∂t

∣∣
t= 1

θh
L

= −θhL e−1(θhL +α(θhL))−h = 0 . (17)

We note that at h = 0 and h = Hl, θ
h
L equals θ0 and θ̃, respectively. Furthermore, θhL is decreasing in h.

This suggests that as the holding cost increases, the highest customer type who purchases and obtains zero

utility decreases. That is, the low-type group gets smaller. Figure 7a in Example 4 shows how θhL and θhH

vary as the holding cost h increases.

We now describe the optimal mechanism by consolidating the time of purchase th(·) and the cut-off θh.

In the optimal mechanism, when the holding cost is low, that is, h ≤ Hl, the firm sells to high-type and

medium-type customers and some low-type customers with θ ∈ [max{Θ, θL}, θhL]. Thus, with low holding
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costs, the firm can extract the full surplus of some of low-type customers. However, under medium and high

holding costs, the firm has no such opportunity, as it must end the sale early due to the high cost of carrying

the items. In particular, when the holding cost is medium, h∈ [Hl,Hh], the firm only sells to high-type and

some of medium-type customers, that is, those with θ ∈ [θM , θ
h
H ]. Finally, when the holding cost is high, the

firm does not benefit from the heterogeneity of valuation decay rates, and it simply posts a fixed price of

θ0. Then, only customers with a type greater than θh = θ0 purchase the item at time zero. The following

theorem formally characterizes the optimal mechanism.

Theorem 3 (Holding Costs). Suppose that V (θ, t) = θe−θt. If Assumption 2 holds and θ̃ is the unique

solution of R(θ, tf (θ))−Hltf (θ) = 0, then the optimal mechanism sells to customers of type θ ≥ θh at time

th(θ) and at price p(θ) = V (θ, th(θ))−
∫ θ
θh
e−zth(z)(1− zth(z))dz where R(θ, t), th(θ), and θh are defined in

Equations (12), (13), and (11), respectively. Further, for any θ < θh, ς(θ) = 0 and p(θ) =∞, and for θ≥ θh,

ς(θ) = 1.

In Theorem 3, we assume that at h = Hl, the solution of R(θ, tf (θ))− htf (θ) = 0 is unique. In Lemma

21 in Appendix F.4, we show that if R(θ, tf (θ)) − Hltf (θ) = 0 has a unique solution, then the solution

of R(θ, tf (θ))− htf (θ) = 0 is also unique for any h ∈ [Hl,Hh]. We use this assumption to characterize the

optimal mechanism when the holding cost is medium and large (h ≥ Hl). This assumption ensures that

R(θ, tf (θ))− htf (θ)≤ 0 for any θ < θh = θM . We note that this holds when the virtual value of customers,

that is, R(θ, tf (θ))−htf (θ) is increasing in the customer type θ. In this sense, this assumption resembles the

standard assumption in the standard mechanism design literature where it is assumed that the virtual value

of customers is monotone in their types.

In Appendix F.4, we provide sufficient conditions to satisfy this assumption. We show that if for any θ≤ θ̃,

α′(θ) is small enough, then this assumption holds. The aforementioned condition is satisfied for the uniform,

exponential, and truncated normal distributions.

Theorem 3 shows that holding costs, similar to production costs, introduces a cut-off θh. That is, the

mechanism only sells the item to customers with type greater than or equal to θh. However, unlike the

production cost, the holding cost changes both the purchase time and the price. Moreover, the thresholds

that divide customers into different groups, that is, θhH and θhL, also change with h.

Observe that when h = 0, we can recover the optimal mechanism with no holding cost, as presented in

Theorem 1. To understand why, note that θ0
H = θH , θ0

L = θL = θ0, and θ0
L = 0. Furthermore, the FOC solution,

tf (θ) = tg(θ) = θ+2α(θ)

θα(θ)
. Note that when we increase the holding cost from 0 to ε > 0 with ε ≈ 0, the

purchase time remains the same for low-type and high-type customers, but medium-type customers purchase

the item sooner; see Example 4.

The proof of Theorem 3 is presented in Appendix F.

Appendix B: Inventory Constraints

In this section, we study the impact of the inventory constraints on the structure of the optimal mechanism.

Here, the firm has X units of the item at time zero, and would like to sell them to the customers. For
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convenience and without loss of generality, we normalize the market size to one, and correspondingly, we

assume that X ∈ [0,1]; we refer to X as the normalized capacity. Then, given X ∈ [0,1], the firm can only

sell the item to X fraction of the customers. In the following proposition, we show that the firm prefers to

sell to customers with type above a threshold.

Proposition 4 (Inventory Constraints). Suppose that Assumptions 1 and 2 hold, the production and

holing costs are zero. Let θX solve Pr[θ ≥ θX ] = X.15 Then, the optimal mechanism only sells to cus-

tomers with type θ ≥ θX at time tg(θ), given in Eq. (6), and at price p(θ) = θe−g(θ)tg(θ)−
∫ θ
θX
e−g(z)tg(z)

(
1−

tg(z)g
′(z)z

)
dz. Furthermore, for θ < θX , ς(θ) = 0 and p(θ) =∞, and for θ≥ θX , ς(θ) = 1.

Observe that the impact of the inventory constraint here is similar to that of the production cost in

the sense that the inventory constraint does not change the allocation time of the customers who make a

purchase. That is, customers of type θ≥ θX purchase at the same time as they would have if there were no

inventory constraint.

We only provide a sketch of the proof of Proposition 4, because this proof is similar to that of Theorem 2.

To establish Proposition 4, we apply the weak duality theorem. Specifically, we characterize an upper bound

on the profit of the firm by dualizing the inventory constraint, and we then show that the mechanism in

Proposition 4 obtains the upper bound. Thus, it is optimal. To dualize the inventory constraints, we use the

Lagrangian multiplier of λX = R(θX , tg(θX)). Then, considering the fact that R(θ, tg(θ)) is increasing in θ

(see the proof of Theorem 2), we have R(θ, tg(θ))− λX ≥ 0 for θ ≥ θX , and R(θ, tg(θ))− λX < 0 for θ < θX ,

where R(θ, t) is the virtual value of customer of type θ at time t, and is defined in Eq. (4). This implies that

the firm prefers to sell the item to customers with type θ > θX . Then, by definition of θX , we ensure that the

inventory constraint is binding, and as a result, by the weak duality theorem, the mechanism in Proposition

4 is optimal.

Appendix C: Proof of Theorem 1

We start with presenting the proof of Lemma 3. That is, we first show that tg(·), given in Eq. (6), and

u(Θ) = 0 solve Problem relaxed. Then, we show that this solution satisfies the interval condition. Therefore,

it is an optimal solution of Problem OPT.

C.1. Proof of Lemma 3

Throughout the proof, to simplify the notation, we denote u(θ, θ) with u(θ).

The proof has two parts. In the first part, we need to show that tg(θ) and u(Θ) = 0 construct a feasible

solution of Problem relaxed. To this aim, we use our assumption that g(·) is log-concave; that is, g′(θ)
g(θ)

is

decreasing in θ. In the second part, we show that the solution is optimal. To this end, we find an upper

bound on the relaxed problem by dualizing the IR constraints. Then we show that tg(θ), ς(θ) = 1, θ ∈ [Θ, Θ̄],

and u(Θ) = 0 achieves the upper bound.

First Part: Here, we show that the allocation rule (tg(θ, ς(θ)) and u(Θ) = 0 construct a feasible solution of

Problem relaxed. Here, ς(θ) = 1 for any θ ∈ [Θ, Θ̄]. To this aim, we show that u(θ) =
∫ θ

Θ
ς(z)e−g(z)tg(z)(1−

15 If the solution is not unique, we choose the smallest one.
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g′(z)tg(z)z)dz = 0 for any θ ≤ θL, and u(θ)> 0 otherwise. The former is easy to verify as tg(θ) = 1
θg′(θ)

for

θ≤ θL. To verify that u(θ)> 0 for any θ > θL, we make use of the following lemma.

Lemma 4. For any θ ∈ [Θ, Θ̄], we have (1− g′(θ)tg(θ)θ)≥ 0.

To show Lemma 4, we use the assumption that g(·) is log-concave; that is, g′(θ)
g(θ)

is decreasing.

In what follows, we do not show dependency to ς(θ), as ς(θ) is one for any θ and we simplify denote the

allocation rule by tg(·). Lemma 4 shows that u(θ) =
∫ θ

Θ
e−g(z)tg(z)(1− g′(z)tg(z)z)dz ≥ 0 for any θ ∈ [Θ, Θ̄].

Next, we show that (tg(·), u(Θ) = 0) is an optimal solution of Problem relaxed. In the following, we find

an upper bound for the optimal value of Problem relaxed using the weak duality theorem. Then, we will

show that (tg(·), u(Θ) = 0) achieves the upper bound, thus it is optimal.

In the proof, with a slight abuse of notation, we denote the optimal value of Problem relaxed with

relaxed.

Second Part: Here, we present an upper bound on relaxed. For any allocation time t(·), and Lagrangian

function λ : [Θ, Θ̄]→R+, we define the following function.

L(t(·), λ(·), u(Θ)) = E[R(θ, t(θ))] +

∫ Θ̄

Θ

λ(z)u(z)dz−u(Θ) ,

where u(θ) = u(Θ) +
∫ θ

Θ
e−g(z)t(z)(1 − g′(z)t(z)z)dz. Then, considering the fact that λ(θ) ≥ 0, for any

(t(·), u(Θ)) such that u(θ) = u(Θ) +
∫ θ

Θ
e−g(z)t(z)(1− g′(z)t(z)z)dz ≥ 0, we have we have

E[R(θ, t(θ))−u(Θ)] ≤ L(t(·), λ(·), u(Θ))

Therefore, for any λ : [Θ, Θ̄]→R+,

max
(t(·),u(Θ))∈T

{E[R(θ, t(θ))]−u(Θ)} ≤ max
(t(·),u(Θ))∈T

{L(t(·), λ(·), u(Θ))} , (18)

where

T =
{

(t(·), u(Θ)) : u(Θ)≥ 0, t(θ)≥ 0, and u(Θ) +
∫ θ

Θ
e−g(z)t(z)(1− g′(z)t(z)z)dz ≥ 0 for any θ ∈ [Θ, Θ̄]

}
is the set of feasible solution. In the following, we will characterize an upper bound for Problem relaxed

by evaluating the r.h.s. of the above equation for a specific Lagrangian function, defined below.

λg(θ) =

{(
f(θ)( g(θ)

g′(θ)
+α(θ))

)′
if θ≤ θL;

0 otherwise;
(19)

Lemma 5. If Assumptions 2 and 1 hold, for any θ ∈ [Θ, Θ̄], λg(θ)≥ 0.

In the proof of Lemma 5, we use our assumption that g′(θ)≥ 0 and g′(θ)
g(θ)

is decreasing in θ.

Then, the proof is completed by the following claim.

Claim: With a slight abuse of notation, let (tλ(·), uλ) = arg max(t(·),u(Θ))∈T {L(t(·), λg(·), u(Θ))}. Then,

tλ(θ) = tg(θ) for any θ ∈ [Θ, Θ̄] and uλ = 0. Furthermore, L(tg(·), λg(·), u(Θ) = 0) = E[R(θ, tg(θ))], where the

expectation is taken w.r.t. θ.
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Proof of the Claim: By Eq. (19),

L(t(·), λg(·), u(Θ)) =

∫ Θ̄

z=θL

R(z, t(z))f(z)dz+

∫ θL

Θ

(
R(z, t(z))f(z) +λg(z)u(z)

)
dz−u(Θ) , (20)

where the second term can be rewritten as∫ θL

Θ

R(z, t(z))f(z)dz+

∫ θL

Θ

u(z)d

(
f(z)

(
g(z)

g′(z)
+α(z)

))
.

=

∫ θL

Θ

f(z)e−g(z)z
(
z+α(z)(1− g′(z)t(z)z)

)
dz

+u(z)f(z)

(
g(z)

g′(z)
+α(z)

)∣∣θL
Θ
−
∫ θL

Θ

e−g(z)z
(
1− g′(z)t(z)z

)
f(z)

(
g(z)

g′(z)
+α(z)

)
dz

=

∫ θL

Θ

f(z)e−g(z)t(z)
(
z− (1− g′(z)t(z)z) g(z)

g′(z)

)
dz−u(Θ)f(Θ)

(
g(Θ)

g′(Θ)
+α(Θ)

)
, (21)

where the second equation follows from Eq. (4) and integrating by part, and the last equation follows from

definition of θL; that is, g(θL)

g′(θL)
+α(θL) = 0. By plugging Eq. (21) in Eq. (20), we have

L(t(·), λg(·), u(Θ)) =

∫ Θ̄

θL

R(z, t(z))f(z)dz

+

∫ θL

Θ

f(z)e−g(z)t(z)
(
z− (1− g′(z)t(z)z) g(z)

g′(z)

)
dz−u(Θ)f(Θ)

g(Θ)

g′(Θ)
.

Considering that the coefficient of u(Θ), i.e., −f(Θ) g(Θ)

g′(Θ)
≤ 0, to maximize the above equation, we set

u(Θ) = 0. That is, uλ = 0. Then,

max
(t(·),u(Θ)=0)∈T

{L(t(·), λg(·), u(Θ) = 0)} ≤
∫ Θ̄

θL

f(z) max
t≥0

{
R(z, t)

}
dz

+

∫ θL

Θ

f(z) max
t≥0

{
e−g(z)t

(
z− (1− g′(z)tz) g(z)

g′(z)

)}
dz .

In Lemma 6, stated below, we show that for any θ≥ θL, we get arg maxt≥0

{
R(z, t)

}
= tg(z). Then the result

follows because for any z ≤ θL, we have

arg max
t≥0

{
e−g(z)t

(
z− (1− g′(z)tz) g(z)

g′(z)

)}
=

1

g′(z)z
.

Lemma 6. For any θ≥ θL, we have arg maxt≥0{R(θ, t)} = tg(θ).

C.2. Optimal Solution of Problem OPT

In this section, we show the optimal solution of the relaxed problem satisfies the interval conditions. This

implies the solution given in Theorem 1 is an optimal solution of Problem OPT. Note that the interval

conditions hold if for any θ̂, θ ∈ [Θ, Θ̄] such that θ̂≤ θ:∫ θ

θ̂

Ag(z, tg(θ̂))dz ≤
∫ θ

θ̂

Ag(z, tg(z))dz ,∫ θ

θ̂

Ag(z, tg(z))dz ≤
∫ θ

θ̂

Ag(z, tg(θ))dz ,

where Ag(z, t) = e−g(z)t(1− g′(z)tz). To this aim, we show that for any z ≥ θ̂, Ag(z, tg(θ̂))≤Ag(z, tg(z)) and

for any z < θ, Ag(z, tg(z))≤Ag(z, tg(θ)).
We make use of the following lemma.
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Lemma 7. The allocation rule tg(·), given in Eq. (6), is decreasing.

We start by showing that Ag(z, tg(θ̂)) ≤ Ag(z, tg(z)) for any z ≥ θ̂. We consider two cases: 1- (1 −
g′(z)tg(θ̂)z)≤ 0 and 2- (1− g′(z)tg(θ̂)z)> 0.

Assume that (1− g′(z)tg(θ̂)z)≤ 0. Then,

e−g(z)tg(θ̂)(1− g′(z)tg(θ̂)z) ≤ 0 ≤ e−g(z)tg(z)(1− g′(z)tg(z)z) ,

where the second inequality follows from Lemma 4 given in the proof of Lemma 3. There, we show that for any

z ∈ [Θ, Θ̄], we have e−g(z)tg(z)(1−g′(z)tg(z)z)≥ 0. The above equation implies that Ag(z, tg(θ̂))≤Ag(z, tg(z)).
Now, assume that (1− g′(z)tg(θ̂)z)> 0. By Lemma 7, tg(·) is decreasing. This leads to

(1− g′(z)tg(z)z) ≥ (1− g′(z)tg(θ̂)z) ≥ 0, and e−g(z)tg(z) ≥ e−g(z)tg(θ̂).

By the above equations, we have Ag(z, tg(θ̂)) ≤ Ag(z, tg(z)).

Next, we will verify that Ag(z, tg(z)) ≤ Ag(z, tg(θ)), for z < θ. Since tg(·) is decreasing, for any z < θ, we

get

0 ≤ (1− g′(z)tg(z)z) ≤ (1− g′(z)tg(θ)z), and e−g(z)tg(z) ≤ e−g(z)tg(θ),

where the first inequality holds because as we showed in Lemma 3, for any z ∈ [Θ, Θ̄], we have e−g(z)tg(z)(1−
g′(z)t(z)z)≥ 0. The above equations lead to Ag(z, tg(z))≤Ag(z, tg(θ)).

Appendix D: Proof of Results in Section 5

D.1. Proof of Proposition 1

To show the result, we use Lemma 2. That is, we maximize the virtual profit subject to IC and IR

constraints. We start with ignoring both IC and IR constraints and for any θ ∈ [Θ, Θ̄], we character-

ize arg maxt∈[0,T ]R(θ, t). We show that for any θ ≥ θTL , arg maxt∈[0,T ]R(θ, t) = tT (θ) and for θ < θTL ,

arg maxt∈[0,T ]R(θ, t) = T and R(θ,T ) < 0. To complete the proof, we show that the mechanism that only

sells the item to customer of type θ > θTL at time tT (θ) and price p(θ), defined in the proposition, is IR and

IC. Thus, it is optimal.

First of all, using the proof of Theorem 1, it is easy to show that arg maxt∈[0,T ]R(θ, t) = tT (θ) for θ < θTL .

Thus, in the following, we show that for θ < θTL , arg maxt∈[0,T ]R(θ, t) = T and R(θ,T )< 0. Observe that for

any θ < θTL , tf (θ) = arg maxt≥0R(θ, t)≥ T . This follows from the fact that tf (θTH) = T and tf (·) is decreasing;

see Lemma 7. Then, as we show in the proof of Lemma 6, R(θ, t) has an inverted u-shape in t. This implies

that the unique maximum of R(θ, t), tf (θ), is greater than T , and as a result, arg maxt∈[0,T ]R(θ, t) = T , for

any θ < θTL . Next, we show that R(θ,T )< 0 when θ < θTL . To do so, we confirm that eg(θ)TR(θ,T ) is increasing

in θ. Then, the result follows because by definition, R(θTL , T ) = 0.

The derivative of eg(θ)TR(θ,T ) w.r.t. θ is given by

∂(eg(θ)TR(θ,T ))

∂θ
=

∂(θ+α(θ)(1− g′(θ)θT ))

∂θ
= 1 +α′(θ)(1− g′(θ)θT )−α(θ)(g′(θ)θ)′T > 0 ,

where the inequality holds because by Assumption 1, g′(θ)θ is increasing. By the monotonicity of g′(θ)θ and

the fact that (1− g′(θTL)θTLT )≥ 0, we have (1− g′(θ)θT )> 0 for any θ < θL.

So far, we characterized arg maxt∈[0,T ]R(θ, t). To complete the proof, we need to show the mechanism is

IR and IC. We start with showing the mechanism is IR. Given the payment rule of the mechanism, the

mechanism is IR if 1− g′(θ)θtT (θ)≥ 0 for any θ≥ θTL . To show this, we consider the following cases:
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• Case 1 (θ≥ θH): For this range of θ, 1− g′(θ)θtT (θ) = 1> 0.

• Case 2 (θ ∈ [θTH , θH ]:) For this range of θ, 1− g′(θ)θtT (θ) = 1− g′(θ)θtf (θ). To show the result, we make

use of Lemma 4, where we have that 1− g′(θ)θtf (θ)≥ 0 for any θ ∈ [θL, θH ]. The result then follows by the

fact that θTH ≥ θL.

• Case 3 (θ ∈ [θTL , θ
T
H ]:) For this range of θ, 1− g′(θ)θtT (θ) = 1− g′(θ)θT . By Case 2 and the fact that

tf (θTH) = T , we have 1− g′(θTH)θTHT ≥ 0. Then, the monotonicity of g′(θ)θ implies that 1− g′(θ)θT ≥ 0 for

any θ ∈ [θTL , θ
T
H ].

Finally, the mechanism is IC because for any θ ≥ θTL , 1− g′(θ)θtT (θ)≥ 0 and tT (·) is decreasing; see the

proof of Theorem 1 for details.

D.2. Proof of Proposition 2

First observe that mechanism MT is IR and IC because tT (·) is decreasing and 1− g′(θ)θtT (θ)≥ 0 for any

θ≥ θTL ; see the proof of Proposition 1. Next, we show that mechanismMT is approximately optimal. To this

aim, we dualize the IR constraints to construct an upper bound on the profit of the optimal mechanism and

we then compare the profit of mechanism MT with the upper bound.

To dualize the IR constraints, we use λg(·), defined in Eq. (19). Following the proof of Theorem 1, one can

show that

Revopt−RevMT
≤
∫ θTL

Θ

max
t∈[0,T ]

{
e−g(z)t

(
z− (1− g′(z)tz) g(z)

g′(z)

)
f(z)

}
dz

≤
∫ θTL

Θ

e−g(z)T
(
z− (1− g′(z)Tz) g(z)

g′(z)

)
f(z)dz ≤

∫ θTL

Θ

ze
− g(z)

g′(z)z f(z)dz , (22)

where the equality follows because arg maxt∈[0,T ]

{
e−g(z)t

(
z− (1− g′(z)tz) g(z)

g′(z)

)}
= T and the second in-

equality holds because arg maxt≥0

{
e−g(z)t

(
z− (1− g′(z)tz) g(z)

g′(z)

)}
= 1

g′(z)z
. To get the desired bound, we

show that z 7→ ze
− g(z)

g′(z)z is increasing. This implies that Revopt−RevMT
≤ θTL exp

(
− g(θTL )

g′(θT
L

)θT
L

)
F (θTL).

The derivative of ze
− g(z)

g′(z)z w.r.t. z is given by

e
− g(z)

g′(z)z

(
1− z (g′(z))2z− (g′(z)z)′g(z)

(g′(z)z)2

)
= z

(g′(z)z)′g(z)

(g′(z)z)2
≥ 0 ,

where the inequality holds because by Assumption 1, g(z)≥ 0 and g′(z)z is increasing.

D.3. Proof of Theorem 2

We need to find an optimal solution of Problem OPT where the objective function is replaced with

E [ς(θ)(R(θ, t(θ))− c)−u(Θ,Θ)].

The proof of this theorem is similar to that of Theorem 1. We first relax the problem by ignoring the

interval conditions. We will show that in an optimal solution of the relaxed problem, ς(θ) = 1 for θ≥ θc, and

is zero otherwise. Here, θc solves R(θc, tg(θc)) = c. We further show that for customers with type θ≥ θc, the

optimal allocation time is tg(θ).

To show the result, we make use of Lemma 8, stated at the end of this section, where we show that

R(θ, tg(θ)) is an increasing function of θ ∈ [Θ, Θ̄]. Then, to complete the proof, we show that the optimal

solution of the relaxed problem satisfies the envelope conditions. This part of the proof is similar to that of

Theorem 1. Thus, it is omitted.
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Lemma 8. R(θ, tg(θ)) is increasing in θ where R(θ, t) and tg(θ) are defined in Equations (4) and (6).

Proof of Lemma 8 By definition, we have

R(θ, tg(θ)) =


θ+α(θ) if θ≥ θH ;
R(θ, tf (θ)) if θ ∈ [θL, θH ];

e
− g(θ)

g′(θ)θ θ if θ ∈ [Θ, θL];

R(θ, tg(θ)) is obviously increasing in θ when θ≥ θH . Furthermore, given that θ≤ θL, then R(θ, tg(θ)) is also

increasing. To see why note that for any θ≤ θL,

dR(θ, tg(θ))

dθ
=

d(e
− g(θ)

g′(θ)θ θ)

dθ
= e

− g(θ)

g′(θ)θ
θg(θ)(g′(θ)θ)′

(g′(θ)θ)2
≥ 0 ,

where the inequality holds because g′(θ)θ is increasing. Furthermore, observe that R(θ, tg(θ)) is a continuous

function of θ because tg(θ) is continuous. Thus, it suffices to show that R(θ, tg(θ)) is increasing in θ ∈ [θL, θH ].

Recall that tg(θ) = tf (θ) for θ ∈ [θL, θH ]. That is, tg(θ) is the FOC solution. Thus, by the Envelope theorem,

the derivative of R(θ, tf (θ)) w.r.t. θ is given by

∂
(
R(θ, tf (θ))

)
∂θ

= e−g(θ)tf (θ)
(
− g′(θ)tf (θ)

(
θ+α(θ)(1− g′(θ)tf (θ)θ)

)
+ 1 +α′(θ)(1− g′(θ)tf (θ)θ))− tfα(θ)(g′(θ)θ)′

)
= e−g(θ)tf (θ)

(
(1− g′(θ)tf (θ)θ)

(
α′(θ)−α(θ)

)
− tf (θ)α(θ)(g′(θ)θ)′

)
≥ 0 ,

where the inequality holds because, as we show in Lemma 4, (1− g′(θ)tf (θ)θ)≥ 0 for any θ ∈ [θL, θH ], and

by Assumption 1, g′(θ)θ is increasing in θ. �

D.4. Proof of Proposition of 3

Recall that Rev1
opt = Rev(q) and Rev2

opt(q̃) = Rev(q̃). Therefore, any feasible solution of Problem Rev(q) is a

feasible solution of Problem Rev(q̃) and vice versa. In fact, for any feasible solution of Problem Rev, we have

Rev(q)−Rev(q̃) =
∑
k∈[K]

ςkpk(qk− q̃k)

⇒ Rev(q)−E[Rev(q̃) |M ] =
∑
k∈[K]

ςkpk E[(qk− q̃k) |M ] = 0 ,

where the above equation is the desired result.

Next, we prove claim (10). Let xik be 1 if customer i is of type k and zero otherwise. Note that for any

i∈ [M ], we have
∑

k∈[K] xik = 1. Then, for any feasible solution of Problem Rev(q̃), we get

Rev(q)−Rev(q̃) =
∑
k∈[K]

ςkpk(qk− q̃k) =
∑
k∈[K]

ςkpk

(
qk−

1

M

∑
i∈[M]

xik

)
=

∑
k∈[K]

ςkpk

(
E[xik]−

1

M

∑
i∈[M]

xik

)
=

∑
k∈[K]

ςk
pk
M

∑
i∈[M]

(
E[xik]−xik

)
=

1

M

∑
i∈[M]

∑
k∈[K]

ςkpk
(
E[xik]−xik

)
.

Define yi =
∑

k∈[K] ςkpk
(
E[xik]− xik

)
. Note that E[yi] = 0, i ∈ [M ]. For any M , let ε= Θ̄

√
log(M)

2M
and define

the following event

A=
{ 1

M

∑
i∈[M]

yi−E[yi]≥ ε
}
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We will show that Pr
(
A |M

)
≤ 1

M
. This implies that with high probability Rev(q)− Rev(q̃)≤ Θ̄

√
log(M)

2M
.

Then, we get

E
[
E
[
|Rev(q)−Rev(q̃)|

∣∣M] ] = E
[
E
[
|Rev(q)−Rev(q̃)|1{A}+ |Rev(q)−Rev(q̃)|1{Ac}

∣∣M] ]
≤ E

[
Θ̄

M
+ Θ

√
log(M)

2M

]
≤ Θ

√
log(n)

2n
+

Θ̄

n
, (23)

where Ac is the complement of event A. To obtain the first inequality, we used the fact that (i) under

event Ac, |Rev(q)−Rev(q̃)| ≤ ε= Θ
√

log(M)

2M
, (ii) |Rev(q)−Rev(q̃)| ≤ Θ̄, and (iii) Pr(A|M)≤ 1

M
. Further, the

second inequality, which is the desired result, holds because M ≥ n a.s.

To complete the proof, we show that Pr
(
A |M

)
≤ 1

M
. To do so, we use the Azuma-Hoeffding inequality:

Pr
(
A |M

)
= Pr

( 1

M

∑
i∈[M]

yi−E[yi]≥ ε |M
)
≤ exp

(
− 2Mε2

maxi∈[M] |yi|2

)
(24)

In the following, we present an upper bound on maxi∈[M] |yi|2. Let k′ ∈ [K] be the type of customer i; that

is xik′ = 1 and xik = 0 for k ∈ k′. Then,

yi =
∑
k∈[K]

ςkpk
(
E[xik]−xik

)
=

∑
k∈[K]

ςkpkqk− ςk′pk′

⇒ |yi| ≤ max
k∈[K]

pk ≤ max
k∈[K]

θk = Θ̄ , (25)

where the last inequality follows from the IR constraints. Applying (25) in (24), we get,

Pr
(
A|M

)
≤ exp

(
− 2Mε2

Θ̄2

)
= 1

M
.

Appendix E: Proofs and Additional Result for Sections 3 and 4

Proof of Lemma 1 The proof falls naturally into two parts. In the first part, we show that in an incentive-

compatible mechanism conditions in Equations (1) and (2) hold. In the second part, we show that if Equations

(1) and (2) hold, the mechanism is IC.

First Part: Consider a customer with type θ that reports θ̂. Without loss of generality, we assume that

θ≥ θ̂. Then, the utility of the customer is given by u(θ, θ̂) = ς(θ̂).
(
V (θ, t(θ̂))− p(θ̂)

)
. Incentive compatibility

implies that

u(θ, θ)−u(θ̂, θ̂) ≤ u(θ, θ)−u(θ̂, θ) = ς(θ).
(
V (θ, t(θ))−V (θ̂, t(θ))

)
=

∫ θ

z=θ̂

ς(θ)∂1V (z, t(θ))dz =

∫ θ

z=θ̂

ς(θ)e−g(z)t(θ)(1− g′(z)t(θ)z)dz , (26)

and

u(θ, θ)−u(θ̂, θ̂) ≥ u(θ, θ̂)−u(θ̂, θ̂) = ς(θ̂).
(
V (θ, t(θ̂))−V (θ̂, t(θ̂))

)
=

∫ θ

z=θ̂

ς(θ̂)∂1V (z, t(θ̂))dz =

∫ θ

z=θ̂

ς(θ̂)e−g(z)t(θ̂)(1− g′(z)t(θ̂)z)dz , (27)

where ∂1V (θ, t) = ∂V (θ,t)

∂θ
. Then, using the above equations, we have∫ θ

z=θ̂
ς(θ̂)e−g(z)t(θ̂)(1− g′(z)t(θ̂)z)dz

θ− θ̂
≤ u(θ, θ)−u(θ̂, θ̂)

θ− θ̂
,∫ θ

z=θ̂
ς(θ)e−g(z)t(θ)(1− g′(z)t(θ)z)dz

θ− θ̂
≥ u(θ, θ)−u(θ̂, θ̂)

θ− θ̂
.
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Finally by taking the limit as θ̂→ θ−, we get Eq. (1).16 Then, by Equations (1), (26), and (27), we get the

second condition, given in Eq. (2).

Second Part: Here, we will show that if in a mechanism Equations (1) and (2) hold, the mechanism is

IC. By Eq. (1),

u(θ, θ)−u(θ̂, θ̂) =

∫ θ

z=θ̂

ς(z)e−g(z)t(z)(1− g′(z)t(z)z)dz ≥
∫ θ

z=θ̂

ς(θ̂)e−g(z)t(θ̂)(1− g′(z)t(θ̂)z)dz

= ς(θ̂)
(
θe−g(θ)t(θ̂)− θ̂e−g(θ̂)t(θ̂)

)
= u(θ, θ̂)−u(θ̂, θ̂) , (28)

where the inequality follows from Eq. (2). The final equation implies that u(θ, θ)≥ u(θ, θ̂). Similarly,

u(θ, θ)−u(θ̂, θ̂) =

∫ θ

z=θ̂

ς(z)e−g(z)t(z)(1− g′(z)t(z)z)dz ≤
∫ θ

z=θ̂

ς(θ)e−g(z)t(θ)(1− g′(z)t(θ)z)dz

= ς(θ)
(
θe−g(θ)t(θ)− θ̂e−g(θ̂)t(θ)

)
= u(θ, θ)−u(θ̂, θ) , (29)

That is, u(θ̂, θ̂)≥ u(θ̂, θ). The above equation along with Eq. (29) imply that the mechanism is IC.

�

Proof of Lemma 2 Consider any IC mechanism. Then, the expected profit of the firm from selling to a

single customer is given by

E[ς(θ)(p(θ)−ht(θ)− c)] = E
[
ς(θ)

(
θe−g(θ)t(θ)−u(θ, θ)−ht(θ)− c

)]
, (30)

where the expectation is with respect to the customer type θ. In the following, we compute E[u(θ, θ)]. By

Lemma 1

E[u(θ, θ)] = u(Θ,Θ) +

∫ Θ̄

θ=Θ

dF (θ)

∫ θ

z=Θ

ς(z)e−g(z)t(z)(1− g′(z)t(z)z)dz

= u(Θ,Θ) +

∫ Θ̄

z=Θ

∫ Θ̄

θ=z

dF (θ)ς(z)e−g(z)t(z)(1− g′(z)t(z)z)dz

= u(Θ,Θ) +

∫ Θ̄

z=Θ

(1−F (z))ς(z)e−g(z)t(z)(1− g′(z)t(z)z)dz

= u(Θ,Θ) + E

[
(1−F (θ))

f(θ)
ς(θ)e−g(θ)t(θ)(1− g′(θ)t(θ)θ)

]
. (31)

By replacing Eq. (31) in Eq. (30), we get the desired result. �

E.1. Lower Bound on the Profit Gain of the Dynamic Pricing Policy

Here, we compare the profit of the optimal mechanism given in Theorem 1 with that of the optimal FP

policy when g(θ) = θa, a≥ 0. We note that the FP policy is optimal when a= 0. Under the FP policy, the

firm only sells to customers with type θ ≥ θ0 at time zero by posting a fixed price of θ0 where θ0 solves

θ0 +α(θ0) = 0.

Lemma 9 (Lower Bound on the Profit Gain of DP). Suppose that g(θ) = θa. Then, we have

Revopt−Revf
Revf

≥ e−
1
a

E [θ1{θ≤ θ0}]
θ0(1−F (θ0))

,

where Revf and Revopt are the expected profit of the firm under the FP policy and optimal DP policy, respec-

tively, and θ0 solves θ0 +α(θ0) = 0.

16 By Theorem 2 in Milgrom and Segal (2002), to satisfy Eq. (1), t(·) is not required to be continues.
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Proof of Lemma 9 is given at the end of this section.

Assume that the customer type θ is drawn from the uniform distribution in the range of [0,1]; that is,

θ∼U(0,1). Then, θ0 = 1
2
, and Revf = 1

4
. Lemma 9 implies that the firm can increase its profit by more than

100.e−
1
a .

∫ θ0
0 xdx

θ0(1−θ0)
= 50.e−

1
a percent by using DP. The profit gain of the DP (in %) for a= 0.5,1,1.5, and 2 is

at least 6.8, 18.4, 25.7, and 30.3, respectively.

Proof of Lemma 9 By Lemma 2, under the FP policy (a= 0),

Revf = E [ς(θ)R(θ,0)] = E [(θ+α(θ))1{θ≥ θ0}] , (32)

where the last inequality holds because in the FP policy, t(θ) = 0 for θ≥ θ0 and ς(θ) = 1 only for customers

of type θ≥ θ0.

Similarly, under the mechanism described in Theorem 1, we have

Revopt = E [R(θ, tg(θ))] = E
[
e−g(θ)tg(θ)

(
θ+α(θ)(1− g′(θ)tg(θ)θ)

)]
= E

[
e−θ

atg(θ)
(
θ+α(θ)(1− aθatg(θ))

)]
= E

[
(θ+α(θ))×1{θ≥ θH}+ e−θ

atg(θ)
(
θ+α(θ)(1− aθatg(θ))

)
×1{θ ∈ (θL, θH)}+ e−

1
a θ×1{θ≤ θL}

]
,

where the second equation holds because g(θ) = θa and the third equation follows from the time of purchase

in the optimal DP policy, i.e., tg(·), which is given in Eq. (6).

We consider the following two cases.

• θL ≤ θ0: We start with rewriting Revopt as follows.

Revopt = E
[
(θ+α(θ))×1{θ≥ θH}+ e−θ

atg(θ)
(
θ+α(θ)(1− aθatg(θ))

)
×1{θ ∈ (θ0, θH)}

+ e−θ
atg(θ)

(
θ+α(θ)(1− aθatg(θ))

)
×1{θ ∈ (θL, θ0)}+ e−

1
a θ×1{θ≤ θL}

]
.

In the above equation, we broke down the middle term of Revopt into two terms. Considering that θ ∈ (θL, θH),

tg(θ) is the FOC solution, i.e., tg(θ) = arg maxt≥0{R(θ, t)}, we get

Revopt ≥ E
[
(θ+α(θ))×1{θ≥ θH}+ (θ+α(θ))×1{θ ∈ (θ0, θH)}

+ e−
1
a θ×1{θ ∈ (θL, θ0)}+ e−

1
a θ×1{θ≤ θL}

]
,

= E
[
(θ+α(θ))×1{θ > θ0}+ e−

1
a θ×1{θ≤ θ0}

]
By the above equation and Eq. (32), we get Revopt−Revf ≥ e−

1
aE [θ×1{θ≤ θ0}]. Then the result follows

because Revf = θ0(1−F (θ0)).

• θL > θ0: Since for θ ∈ (θL, θH), tg(θ) is the FOC solution, we have

Revopt ≥ E
[
(θ+α(θ))×1{θ > θL}+ e−

1
a θ×1{θ≤ θL}

]
This leads to

Revopt−Revf ≥ e−
1
aE
[
(θe−

1
a − θ−α(θ))×1{θ ∈ (θ0, θL]}+ θe−

1
a1{θ≤ θ0}

]
To complete the proof, we show that for any θ ∈ (θ0, θL], (θe−

1
a − θ − α(θ)) ≥ 0. This gives us Revopt −

Revf ≥ e−
1
aE [θ×1{θ≤ θ0}], which is the desired result.
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To show (θe−
1
a − θ−α(θ))≥ 0 for any θ ∈ (θ0, θL], we will verify that (i) (θe−

1
a − θ−α(θ))≥ 0 at θ= θL, and

(ii) (θe−
1
a − θ−α(θ)) is decreasing in θ. By definition, tg(·) is continuous at θ= θL. This implies tg(θ) = 1

aθa

when θ = θL. Then, considering the fact that tg(θL) is the FOC solution, we have R(θL, tg(θL))≥R(θL,0).

Thus, we get θe−
1
a − θ−α(θ)≥ 0 at θ= θL. Finally, θe−

1
a − θ−α(θ) is decreasing in θ because e−

1
a − 1≤ 0

and α(·) is increasing.

�

Appendix F: Proof of Theorem 3 of Appendix A

The proof of Theorem is divided into three lemmas: Lemma 10, 11, and 12. In Lemma 10, 11, and 12, we

characterize the optimal mechanism for when the holding cost is low, medium, and high, respectively.

To characterize the optimal mechanism, by Lemma 2, we should solve the following optimization problem.

max
{u(Θ,Θ)≥0, (t,ς,p)}

E
[
ς(θ)(R(θ, t(θ))−ht(θ))

]
−u(Θ,Θ)

s.t. u(θ, θ) ≥ u(θ, θ̂) θ, θ̂ ∈ [Θ, Θ̄] (IC)

u(θ, θ) ≥ 0 θ ∈ [Θ, Θ̄] (IR) (OPT-H)

Here, the objective function is the virtual profit and R(θ, t(θ)) is defined in Eq. (12). The first and second

sets of constraints ensure that the mechanism is IC and IR, respectively.

Lemma 10 (Low Holding Cost). If Assumption 2 holds, the valuation function V (θ, t) = θe−θt, and

the holding cost h≤Hl, then the optimal mechanism sells to the customer of type θ ≥max{θL,Θ} at time

th(θ) and at price p(θ) = V (θ, th(θ))−
∫ θ

max{θL,Θ}
e−th(z)z(1− th(z)z)dz where Hl, th(·), and θL are defined in

Equations (11) and (13). Further, for θ < max{θL,Θ}, p(θ) = ∞ and ς(θ) = 0, and for θ ≥ max{θL,Θ},

ς(θ) = 1.

The proof of Lemma 10 is given in Appendix F.1.

Lemma 11 (Medium Holding Cost). If Assumption 2 holds, the valuation function V (θ, t) = θe−θt, the

holding cost h∈ [Hl,Hh], and R(θ, tf (θ))−htf (θ) = 0 has a unique solution, then the optimal mechanism sells

to the customer of type θ≥ θM at time th(θ) and at price p(θ) = V (θ, th(θ))−
∫ θ
θM

e−th(z)z(1− th(z)z)dz where

R(θ, t) is defined in Eq. (12) and Hl, Hh, θM , th(·), and the FOC solution tf (·) are defined in Equations

(11) and (13). Further, for θ < θM , p(θ) = ∞ and ς(θ) = 0, and for θ ≥ θM , ς(θ) = 1.

The assumption in Lemma 11 is discussed in Appendix F.4, and the proof of Lemma 11 is provided in

Appendix F.2.

Lemma 12 (High Holding Cost). If Assumption 2 holds, the valuation function V (θ, t) = θe−θt, the

holding cost h≥Hh, and R(θ, tf (θ))−Hhtf (θ) = 0 has a unique solution, then the optimal mechanism sells

to customers with type θ ≥ θ0 at time zero and at price p(θ) = θ0 where θ0 solves θ0 + α(θ0) = 0, R(θ, t)

is defined in Eq. (12), and Hl, Hh, and the FOC solution tf (·) are defined in Eq. (11). Further, for θ < θ0,

p(θ) =∞ and ς(θ) = 0, and for θ≥ θ0, ς(θ) = 1.

The proof is given in Appendix F.3.
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F.1. Optimal Mechanism for a Low Holding Cost

In this section, we present the proof of Lemma 10. Throughout the proof, for convenience, we assume that

θL ≥Θ. We need to show that the time of allocation in the optimal mechanism is given by

t∗(θ) :=

{
th(θ) if θ≥max{θL,Θ};
∞ if θ <max{θL,Θ}

=


0 if θ≥ θhH ;
tf (θ) if θ ∈ [θhL, θ

h
H ];

1
θ

if θ ∈ [θL, θ
h
L];

∞ if θ < θL.

(33)

Note that t∗(θ) =∞ implies that the mechanism does not allocate the item to customers with type θ; that

is ς(θ) = 0.

To characterize the optimal mechanism, by Lemma 2, we need to solve the optimization Problem OPT-H.

That is, we need to maximize the expected virtual profit subject to IR and IC constrains. Lemma 1 shows

that a mechanism is IC if and only if the interval and envelope conditions hold. In the following, we relax

Problem OPT-H and only consider the IR and envelope conditions. We then show that the solution of the

relaxed problem also satisfies the interval condition. Thus, it is optimal.

The relaxed problem can be formulated as follows.

max
{u(Θ,Θ)≥0, (t,ς)}

E [ς(θ)(R(θ, t(θ))−ht(θ))]−u(Θ,Θ)

s.t. u(θ, θ) = u(Θ,Θ) +

∫ θ

Θ

ς(z)e−zt(z)(1− t(z)z)dz ≥ 0 for θ ∈ [Θ, Θ̄] , (IR) (OPT-H-R)

where the maximization is taken over the purchase time t(θ) and utility of a customer with type Θ, i.e.,

u(Θ,Θ). Here, R(θ, t) is the virtual value of customer of type θ at time t, and is defined in Eq. (12).

The following lemma characterizes the optimal solution of the relaxed problem.

Lemma 13. Suppose that V (θ) = θe−θt. Then, if Assumptions 2 hold and the holding cost h≤Hl, in an

optimal solution of Problem OPT-H-R, u(Θ,Θ) = 0, the optimal allocation rule is t∗(·) where t∗(·) is defined

in Eq. (33).

The proof is provided in Appendix F.1.1. In the proof, we first show that t∗(·) is a feasible solution of the

relaxed problem. Then, we show that it is optimal.

To verify that t∗(·) is an optimal solution of Problem OPT-H, we show that the interval condition specified

in Lemma 1 is fulfilled. That is, for any θ̂, θ ∈ [Θ, Θ̄] such that θ̂≤ θ,∫ θ

θ̂

A(z, t∗(θ̂))dz ≤
∫ θ

θ̂

A(z, t∗(z))dz ,∫ θ

θ̂

A(z, t∗(z))dz ≤
∫ θ

θ̂

A(z, t∗(θ))d ,

where A(z, t) = ∂1V (z, t) = e−zt(1 − zt). Note that A(z, t) = 0 when t goes to infinity. Thus, for

any z < θL and t ≥ 0, we have A(z, t∗(z)) = ς(z)A(z, t). Further, for any z ≥ θL, we have A(z, t∗(z)) =

ς(z)A(z, th(z)). Thus, showing the above equations is equivalent to verifying the interval conditions in Lemma

1. In addition, note that
∫ θ
θ̂
A(z, t∗(z))dz = u(θ, θ) − u(θ̂, θ̂). To this aim, we show that for any z ≥ θ̂,

A(z, t∗(θ̂)) ≤ A(z, t∗(z)) and for any z ≤ θ, A(z, t∗(z)) ≤ A(z, t∗(θ)).

We will make use of the following preliminary results.
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Lemma 14. The FOC solution tf (θ), defined in Eq. (11), is a decreasing function of θ as long as

R(θ, tf (θ))−htf (θ) ≥ 0. In addition, for any θ ∈ [Θ, Θ̄], 0≤A(θ, th(θ))≤ 1 where A(z, t) = e−zt(1− zt).

Lemma 15. For any h≥ 0, R(θ, th(θ))−hth(θ) is increasing in θ≥ θh. Furthermore, R(θ, th(θ))−hth(θ)≥

0 for any θ≥ θh.

Unless stated otherwise, the proof of all technical lemmas is given in Appendix H.

By Lemma 15, R(θ, tf (θ))−htf (θ) ≥ 0 for any θ ∈ [θhL, θ
h
H ]. This and Lemma 14 imply that th(θ) = tf (θ) is

decreasing for any θ ∈ [θhL, θ
h
H ]. Then, considering the fact that th(θ) = 0 for θ≥ θhH , th(θ) = 1

θ
for θ ∈ [θL, θ

h
L],

th(θhH) = 0, and th(θhL) = 1
θh
L

, we can conclude that th(θ) is decreasing in θ≥ θL.

Now, we are ready to show that the interval conditions are satisfied.

We first note that when θ̂ ≤ θL, it easy to show that for any z ≥ θ̂, A(z, t∗(θ̂)) ≤ A(z, t∗(z)). This holds

because A(z, t∗(θ̂)) = 0 and as shown in Lemma 14, A(z, t∗(z)) ≥ 0. In addition, when θ ≤ θL, we have

A(z, t∗(z)) ≤ A(z, t∗(θ)) for any z ≤ θ. This follows from the fact that both A(z, t∗(z)) and A(z, t∗(θ)) are

both zero.

Next, we assume that both θ and θ̂ are greater than θL. Recall that for θ≥ θL, t∗(θ) = th(θ). We start with

showing A(z, th(θ̂))≤ A(z, th(z)), z ≥ θ̂. We consider two cases: 1- (1− th(θ̂)z)≤ 0 and 2- (1− th(θ̂)z)> 0.

Assume that (1− th(θ̂)z)≤ 0. Then, we have

e−zth(θ̂)(1− th(θ̂)z) ≤ 0 ≤ e−zth(z)(1− th(z)z) ,

where the second inequality follows from Lemma 14 where we show that A(z, th(z)) = e−zth(z)(1− th(z)z)≥ 0.

By the above equation, we get A(z, th(θ̂))≤A(z, th(z)).

Now, assume that (1 − th(θ̂)z) > 0. Then, considering the fact that th(·) is decreasing, for any z ≥ θ̂,

we have (1 − th(z)z) ≥ (1 − th(θ̂)z), and e−th(z)z ≥ e−th(θ̂)z. By multiplying these two equations, we get

A(z, th(θ̂))≤A(z, th(z)).

Next, we will verify that A(z, th(z))≤A(z, th(θ)). Given that th(·) is decreasing, for any z ≥ θ, we have

0≤ (1− th(z)z)≤ (1− th(θ)z), and e−th(z)z ≤ e−th(θ)z ,

where the first inequality follows from Lemma 14 where we show A(z, th(z)) = e−zth(z)(1− th(z)z)≥ 0. By

multiplying these two equations, we have A(z, th(z))≤A(z, th(θ)).

F.1.1. Proof of Lemma 13 Here, with some abuse of notation, we denote t∗(·) with th(·). Recall that

t∗(θ) = th(θ) when θ≥ θL and is ∞ otherwise. In addition, for simplicity, we denote u(θ, θ) by u(θ).

The proof has two parts. In the first part, we show that the solution given in Lemma 13 is a feasible

solution of Problem OPT-H-R. In the second part, we verify that this solution is an optimal solution of this

problem.

Feasibility: To show that th(·) is a feasible solution of Problem OPT-H-R, we will verify that u(θ)≥ 0

for any θ ∈ [Θ, Θ̄]. For any θ≤ θhL, it is easy to verify that u(θ) = u(Θ) = 0. Thus, we only need to show that

u(θ)≥ 0 for any θ ≥ θhL. To prove that u(θ)≥ 0 for θ ≥ θhL, we make use of Lemma 14 where we show that

e−th(θ)θ(1− th(θ)θ)≥ 0. This implies that u(θ) =
∫ θ

Θ
e−th(z)z(1− th(z)z)dz ≥ 0
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Optimality: Here, we will show that the solution given in Lemma 13, is an optimal solution of Problem

OPT-H-R. To this end, we find an upper bound for the optimal value of Problem OPT-H-R by dualizing

the IR constraints. Then, we will show that the solution given in Lemma 13 achieves the upper bound and

thus is optimal.

Upper Bound of OPT-H-R: For any purchase time t(·) and Lagrangian function λ : [Θ, Θ̄]→ R+, we

define the following function.

Lh(t(·), λ(·), u(Θ)) = E[R(θ, t(θ))−ht(θ)−u(Θ)] +

∫ Θ̄

Θ

λ(z)u(z)dz ,

where u(z) =
∫ z

Θ
e−t(θ)θ(1 − t(θ)θ)dθ + u(Θ), and R is defined in Eq. (12). Note that E[ς(θ)(R(θ, t(θ)) −

ht(θ))− u(Θ)] is the objective function of Problem OPT-H-R. However, here we remove ς(θ) and instead,

we assume that R(θ, t(θ))−ht(θ) = 0 when t(θ) =∞. Recall that given that th(θ) =∞, we have ς(θ) = 0.

Then, considering the fact that λ(·)≥ 0, for any (t(·), u(Θ)) such that u(θ) = u(Θ)+
∫ θ

Θ
e−zt(z)(1−zt(z))≥

0, we have

Lh(t(·), λ(·), u(Θ)) ≥ E[R(θ, t(θ))−ht(θ)−u(Θ)]

One can think of λ(θ) as a dual variable for the IR constraints. Therefore, for any λ : [Θ, Θ̄]→R+,

max
(t(·),u(Θ))∈T

{E[R(θ, t(θ))−ht(θ)−u(Θ)]} ≤ max
(t(·),u(Θ))∈T

{Lh(t(·), λ(·), u(Θ))} , (34)

where

T =
{

(t(·), u(Θ)) : u(Θ)≥ 0, t(θ)≥ 0, and u(Θ) +
∫ θ

Θ
e−zt(z)(1− zt(z))≥ 0 for any θ ∈ [Θ, Θ̄]

}
is the set of feasible solutions. In the following, we will characterize an upper bound for

max(t(·),u(Θ))∈T {E[R(θ, t(θ))−ht(θ)−u(Θ)]} by considering a specific Lagrangian function, defined below.

λh(θ) =


0 if θ > θhL;(
f(θ)(θ+α(θ) + h

θe−1 )
)′

if θ ∈ [θL, θ
h
L];(

f(θ)(2θ+α(θ))
)′

if θ ∈ [Θ, θL];

(35)

where
(
f(θ)(2θ + α(θ))

)′
and

(
f(θ)(θ + α(θ) + h

θe−1 )
)′

are respectively the derivative of
(
f(θ)(2θ + α(θ))

)
and

(
f(θ)(θ+α(θ) + h

θe−1 )
)

with respect to θ. The following lemma establishes that λh(θ)≥ 0.

Lemma 16. When h≤Hl, for any θ ∈ [Θ, Θ̄], λh(θ), defined in Eq. (35), is nonnegative.

The following claim shows that (th(·), u(Θ) = 0) is an optimal solution of Problem OPT-H-R.

Claim: With a slight abuse of notation, let

(tλ(·), uλ) = arg max
(t(·),u(Θ))∈T

{Lh(t(·), λh(·), u(Θ))} .

Then, tλ(·) = th(θ) for any θ ∈ [Θ, Θ̄] and uλ = 0. Furthermore, Lh(th(·), λh(·), uλ) = E[R(θ, th(θ))− hth(θ)−
uλ].

Proof of the Claim: By definition, λh(θ) = 0 for θ > θhL. Thus, we get

Lh(t(·), λh(·), u(Θ)) =

∫ Θ̄

z=θh
L

(
R(z, t(z))−ht(z)

)
f(z)dz

+

∫ θhL

z=Θ

((
R(z, t(z))−ht(z)

)
f(z) +λh(z)u(z)

)
dz−u(Θ) . (36)
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From definition of λh(·), the last two terms of Eq. (36) can be written as∫ θhL

θL

(
R(z, t(z))−ht(z)

)
f(z)dz+

∫ θhL

θL

u(z)d

(
f(z)(z+α(z) +

h

ze−1
)

)
∫ θL

Θ

((
R(z, t(z))−ht(z)

)
f(z)dz+

∫ θL

Θ

u(z)d
(
f(z)(2z+α(z))

)
−u(Θ) . (37)

We first focus on the first two terms where z ∈ [θL, θ
h
L]. By integrating by part and using the definition of R,

the first two terms can be rewritten as∫ θhL

θL

(
e−t(z)z

(
z+α(z)(1− t(z)z

)
−ht(z)

)
f(z)dz

+u(z)f(z)(z+α(z) +
h

ze−1
)
∣∣θhL
θL
−
∫ θhL

θL

e−t(z)z
(
1− t(z)z

)
f(z)

(
z+α(z) +

h

ze−1

)
dz .

In the above equation, we use the fact that du(z)

dz
= e−t(z)z

(
1− t(z)z

)
. Then, by definition of θhL, i.e., the fact

that (θhL +α(θhL) + h

θh
L
e−1 ) = 0, the above equation is simplified as

−u(θL)f(θL)(θL +α(θL) +
h

θLe
−1

)

+

∫ θhL

θL

f(z)

(
e−t(z)zz2t(z)−ht(z)− e−t(z)z

(
1− t(z)z

) h

ze−1

)
dz . (38)

Now, we focus on the last three terms of Eq. (37). Again, by integrating by part and using definition of R,

the last two terms of Eq. (37) can be rewritten as∫ θL

Θ

f(z)
(
e−t(z)z

(
z+α(z)(1− t(z)z)

)
−ht(z)

)
dz

+u(z)f(z)(2z+α(z))
∣∣θL
Θ
−
∫ θL

Θ

e−t(z)z
(
1− t(z)z

)
f(z) (2z+α(z))dz−u(Θ)

= u(θL)f(θL)(2θL +α(θL)) +u(Θ)
(
− 1− f(Θ)(2Θ +α(Θ))

)
+

∫ θL

Θ

f(z)
(
ze−t(z)z(−1 + 2t(z)z)−ht(z)

)
dz . (39)

Note that the coefficient of u(Θ), i.e.,
(
− 1− f(Θ)(2Θ + α(Θ))

)
, can be simplified as −2Θf(Θ) ≤ 0. By

plugging Equations (38) and (39) into Eq. (36), and by using definition of θL, we get

Lh(t(·), λh(·), u(Θ)) =

∫ Θ̄

θh
L

(
R(z, t(z))−ht(z)

)
f(z)dz

+

∫ θhL

θL

f(z)

(
e−t(z)zz2t(z)−ht(z)− e−t(z)z

(
1− t(z)z

) h

ze−1

)
dz

+

∫ θL

Θ

f(z)
(
ze−t(z)z(−1 + 2t(z)z)−ht(z)

)
dz− 2Θf(Θ)u(Θ) .

First of all, since the coefficient of u(Θ) is negative, to maximize the above equation, we need to set u(Θ) to

zero. That is, uλ = 0. Then, max(t(·),u(Θ))∈T {Lh(t(·), λh(·), u(Θ))} can be upper-bounded as follows

max
(t(·),u(Θ))∈T

{Lh(t(·), λh(·), u(Θ) = 0)} ≤
∫ Θ̄

θh
L

f(z) max
t≥0

{
R(z, t)−ht

}
dz

+

∫ θhL

θL

f(z) max
t≥0

{(
e−tzz2t−ht− e−tz

(
1− tz

) h

ze−1

)}
dz

+

∫ θL

Θ

f(z) max

{
max
t≥0
{(ze−tz(−1 + 2tz)−ht)} ,0

}
dz . (40)

We take advantage of the following lemma to simplify the first term of the above equation.
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Lemma 17. If Assumption 2 holds and the holding cost h ≤ Hl, then for any z ≥ θhL, we have

arg maxt≥0

{
R(z, t)−ht

}
= th(z), where R(θ, t) is defined in Eq. (12).

Note that the optimal solution characterized in Lemma 17 is the maximum of the FOC solution and zero.

We now simplify the second term of Eq. (40). It is easy to verify that for any z ∈ [θL, θ
h
L], we have

arg max
t≥0

{(
e−tzz2t−ht− e−tz

(
1− tz

) h

ze−1

)}
=

1

z
= th(z) . (41)

Finally, the following lemma characterizes an optimal solution of the third term of Eq. (40).

Lemma 18. If Assumption 2 holds and the holding cost h≤Hl, for any z ≤ θL, we have

max
t≥0
{(ze−tz(−1 + 2tz)−ht)} ≤ 0 .

Lemmas 17, 18, and Eq. (41) show that tλ(θ) = th(θ) and uλ = 0. Then, the proof is completed by observing

that Lh(th(·), λh(·),0) = E[R(θ, th(θ))−hth(θ)].

F.2. Optimal Mechanism for a Medium Holding Cost

Here, we present the proof for Lemma 11. We show that in the optimal solution of Problem OPT-H, the

time of purchase is given by

t∗(θ) =

{
th(θ) if θ≥ θM ;
∞ if θ < θM

=

 0 if θ≥ θhH ,
tf (θ) if θ ∈ [θM , θ

h
H ],

∞ if θ < θM ,
(42)

and u(θ, θ) =
∫ θ
θM

e−zth(z)(1−zth(z))dz. Here, t∗(θ) =∞ implies that customer with type θ does not purchase

the item; that is, ς(θ) = 0.

The proof has three main steps. In the first step, we relax the problem by ignoring both IC and IR

constraints and we find an allocation rule that maximizes the virtual profit. Then, we show that the solution

of this relaxed problem can construct a mechanism that satisfy the IR and envelope conditions. Finally, we

show that the aforementioned solution also satisfies the interval conditions, as a result, it is optimal.

• Maximizing virtual profit without IC and IR constraints: Consider that following optimization problem.

max
{t(θ)≥0: θ∈[Θ,Θ̄]}

E [R(θ, t(θ))−ht(θ)] , (OPT-H-1)

where R(θ, t) is defined in Eq. (12).17 The following lemma shows that t∗(·), given in Eq. (42), is an optimal

solution of Problem OPT-H-1.

Lemma 19. The optimal solution of Problem OPT-H-1 is given by t∗(·) where t∗(·) is defined in Eq. (42).

The proof is similar to the proof of Lemma 17; thus, it is omitted. The main idea of the proof is to show

that R(θ, t)−ht as a function of t has an inverted u-shape. Thus, it obtains its maximum at max{0, tf (θ)},
where tf (θ) is the FOC solution. Note that to show Lemma 19, we need the assumption that θM , i.e., the

solution of R(θ, tf (θ))−htf (θ) = 0, is unique. By this assumption, for any θ < θM we get

max
t≥0

{
R(θ, t)−ht

}
= R(θ, tf (θ))−htf (θ) < 0 for θ < θM .

This implies that it is optimal not to allocate the item to customers with type θ < θM and set ς(θ) =∞.

17 Again, we assume that R(θ, t(θ))−ht(θ) = 0 when t(θ) =∞.
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• Maximizing virtual profit with IR and envelope constraints: Here, we show that the purchase time t∗(·)
is an optimal solution of Problem OPT-H-R. 18 To this aim, we verify that

u(θ, θ) =

∫ θ

θM

e−th(z)z(1− th(z)z)dz ≥ 0 .

Particularly, we show that for any θ≥ θM , (1−θth(θ))≥ 0. Since th(θ) = 0 for θ≥ θhH , it suffices to show that

(1− θth(θ))≥ 0 for any θ ∈ [θM , θ
h
H ].

Lemma 20. For any h∈ [Hl,Hh] and θ ∈ [θM , θ
h
H ], we have 1− θth(θ)≥ 0.

In the proof, we show that when h≥Hl and θ≥ θ̃, we have 1− tf (θ)θ≥ 0. Then, we show that θM ≥ θ̃. This

implies that 1− tf (θ)θ≥ 0 for any θ ∈ [θM , θ
h
H ], which is the desired result.

• Maximizing virtual profit with IR and IC constraints: Here, we need to show that the time of purchase

t∗(·) and its associated payment, given in Lemma 11, satisfy the interval conditions presented in Lemma 1.

This part of the proof is very similar to that of Lemma 10. Thus, we do not repeat it here.

F.3. Optimal Mechanism for a High Holding Cost

In this section, we present the proof of Lemma 12.

In the following, we show that maxt≥0{R(θ, t)− ht} = R(θ,0) = θ+α(θ) ≥ 0 for θ ≥ θ0, and for any

θ < θ0, maxt≥0{R(θ, t)−ht} < 0 where R is defined in Eq. (12). This implies that in the optimal mechanism,

the firm only sells to customers with type θ≥ θ0.

We first show that for any θ ≥ θ0, arg maxt≥0{R(θ, t) − ht} = 0. To this aim, we will verify that
∂(R(θ,t)−ht)

∂t

∣∣
t=0
≤ 0. This will give us the desired result because as we show in Lemma 17, R(θ, t)− ht as a

function of t has an inverted u-shape. Therefore, if ∂(R(θ,t)−ht)
∂t

∣∣
t=0
≤ 0, we have arg maxt≥0{R(θ, t)−ht}= 0.

By definition,
∂ (R(θ, t)−ht)

∂t
= −θe−tθ(θ+α(θ)(2− θt))−h ,

and at t= 0 and for any θ≥ θ0, we have

∂ (R(θ, t)−ht)
∂t

∣∣
t=0

= −θ(θ+ 2α(θ))−h ≤ 0 , (43)

where the inequality holds because

h ≥ Hh = θ2
0 = −θ0(θ0 + 2α(θ0)) = max

θ∈[θ0,Θ̄]
{−θ(θ+ 2α(θ))} .

The first equality follows because θ0 + α(θ0) = 0 and last equality holds because arg maxθ∈[θ0,Θ̄]{−θ(θ +

2α(θ))}= θ0. To see why the latter holds note that(
− θ(θ+ 2α(θ))

)′
= −2(θ+α(θ))− 2θα′(θ) ≤ 0 ,

where the inequality follows because for any θ≥ θ0, we have (θ+α(θ))≥ 0.

Next, we will verify that for any θ < θ0, maxt≥0{R(θ, t)− ht} < 0. Note that it suffices to show that

maxt≥0{R(θ, t)−Hht} < 0 considering the fact that R(θ, t)−ht is decreasing in h.

18 It is easy to observe that in an optimal solution of Problem OPT-H-R, we need to set u(Θ,Θ) to zero.
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By Eq. (43), at h=Hh we have tf (θ0) = 0, and

max
t≥0
{R(θ, t)−Hht} = R(θ0, tf (θ0))−Hhtf (θ0) = θ0 +α(θ0) = 0 .

Then, by our assumption that R(θ, tf (θ))−Hhtf (θ) = 0 has unique solution, we have

R(θ, tf (θ))−Hhtf (θ) = max
t≥0
{R(θ, t)−Hht} < 0 for any θ < θ0 .

F.4. Discussing the Assumption in Theorem 3

In this section, we discuss the assumption in Theorem 3. This assumption requires that the solution of

equation R(θ, tf (θ))−htf (θ) = 0 to be unique, where R(θ, t) is defined in Eq. (12).

The following lemma shows that for any h ∈ [Hl,Hh], R(θ, tf (θ)) − htf (θ) = 0 has a unique solution if

the solution of R(θ, tf (θ))−Hltf (θ) = 0 is unique. In addition, it shows that R(θ, tf (θ))−Hltf (θ) = 0 has a

unique solution when α′(θ) is small enough.

Lemma 21. If the solution of R(θ, tf (θ))−Hltf (θ) = 0 is unique, then, for any h∈ [Hl,Hh], R(θ, tf (θ))−
htf (θ) = 0 has a unique solution. Furthermore, the solution of R(θ, tf (θ)) − Hltf (θ) = 0 is unique if

α′(θ) ≤ (
√

5+1)2

2
≈ 5.2 for any θ≤ θ̃ where θ̃ solves 2θ̃+α(θ̃) = 0 and Hl and the FOC solution tf (·) are

defined in Eq. (11).

The proof of Lemma 21 is given at the end of this section. Note that for the uniform and exponential

distributions, we have α′(θ) ≤ 5.2. In fact, for the uniform distribution U(a, b), we have α′(θ) = 1 for any

θ ∈ [a, b] where a < b and a, b ∈R. For the exponential distribution with rate λ≥ 0, α′(θ) = 0 for any θ ≥ 0.

Furthermore, for a truncated normal distribution with mean µ, standard deviation σ, and cut-off greater than

µ− σ, we have α′(θ)≤ 4.48 for any θ≥ (µ− σ). Note that the domain of the truncated normal distribution

with cut-off C is [C,∞).

Proof of Lemma 21 First, we show that if the solution of Eq. (44) is unique at h=Hl, then this equation

has a unique solution for any h∈ [Hl,Hh].

R(θ, tf (θ))−htf (θ) = 0 . (44)

By Lemma 11, θ̃ solves R(θ̃, tf (θ̃)) − Hltf (θ̃) = 0 where 2θ̃ + α(θ̃) = 0 and 1 − tf (θ̃)θ̃ = 0. Then, by our

assumption, θ̃ is the unique solution of Eq. (44) at h = Hl. This assumption and the proof of Lemma 20

imply that for any h>Hl, any solutions of Eq. (44) satisfy the following property: 1− θtf (θ)≥ 0.

Next, we use this property to show that for any h∈ [Hl,Hh], there is only one solution to Eq. (44). Let θ∗

solve Eq. (44). By the Envelope theorem, the derivative of R(θ, tf (θ))−htf (θ) w.r.t. θ at θ∗ is given by

∂
(
R(θ, tf (θ))−htf (θ)

)
∂θ

∣∣
θ=θ∗

= −tf (θ∗)e−tf (θ∗)θ∗(θ∗+α(θ∗)(2− tf (θ∗)θ∗))

+ e−tf (θ∗)θ∗(1 +α′(θ∗)(1− tf (θ∗)θ∗))

= h
tf (θ∗)

θ∗
+ e−tf (θ∗)θ∗(1 +α′(θ∗)(1− tf (θ∗)θ∗)) > 0 , (45)

where the second equality follows from the FOC, i.e., ∂(R(θ∗,t)−ht)
∂t

∣∣
tf (θ∗)

= 0 and the inequality holds because

(1− tf (θ∗)θ∗)≥ 0. By the above equation, the derivative of R(θ∗, tf (θ∗))−htf (θ∗) w.r.t. θ∗ is always positive.

This implies that Eq. (44) has a unique solution.
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Next, we show that at h=Hl, the solution of Eq. (44) is unique if for any θ≤ θ̃, α′(θ) ≤ (
√

5+1)2

2
≈ 5.2.

We first argue that any θ > θ̃ cannot solve Eq. (44). To this end, we use the proof of Lemma 11 where we

show 1− tf (θ)θ≥ 0 for any θ≥ θ̃. The fact that 1− tf (θ)θ≥ 0 for any θ≥ θ̃ implies that
∂

(
R(θ,tf (θ))−Hltf (θ)

)
∂θ

>

0; see Eq. (45). Then, considering the fact that R(θ̃, tf (θ̃))−Hltf (θ̃) = 0, we have R(θ, tf (θ))−Hltf (θ)> 0

for any θ≥ θ̃.

Next, we show that any θ < θ̃ cannot solve Eq. (44). Let ζ(θ) = θtf (θ). For simplicity, we denote ζ(θ) by

ζ. Then, Eq. (44) at h=Hl can be written as

G(θ, ζ) := θe−ζ(θ+α(θ)(1− ζ))−Hlζ = 0 .

We assume, contrary to our result, that there exists θ∗ < θ̃ that solves Eq. (44). Then, we show that we have

∂G
∂θ

∣∣
θ=θ∗

> 0 and ∂G
∂θ

∣∣
θ=θ̃

> 0. This implies that there cannot exist θ∗ < θ̃ that solves Eq. (44).

We consider the following two cases: i- 1− ζ ≥ 0 and ii- 1− ζ < 0.

Case i- By the FOC, we have ∂G
∂ζ

= 0. This implies that

∂G

∂θ

∣∣
θ=θ∗

= e−ζ(θ∗+α(θ∗)(1− ζ)) + θ∗e−ζ(1 +α′(θ∗)(1− ζ))

=
Hlζ

θ∗
+ θ∗e−ζ(1 +α′(θ∗)(1− ζ)) ≥ 0 , (46)

where the second equation holds because G(θ∗, ζ) = 0 and the inequality holds because 1− ζ ≥ 0. Note that

the above equation also implies that ∂G(θ,ζ)

∂θ

∣∣
θ=θ̃

> 0 considering the fact that at θ= θ̃, we have 1− ζ = 1−

θ̃tf (θ̃) = 0.

Case ii- Next we focus on the case of 1 − ζ < 0. In the following, we show when 1 − ζ < 0 and

α′(θ) ≤ (
√

5+1)2

2
≈ 5.2 for any θ≤ θ̃, we get ∂G

∂θ

∣∣
θ=θ∗

> 0. This implies that θ∗ does not exist.

By definition,

∂G

∂θ

∣∣
θ=θ∗

= e−ζ (2θ∗+ (θ∗α′(θ∗) +α(θ∗))(1− ζ))

≥ e−ζ (2θ∗+ (θ∗α′(θ∗)− 2θ∗)(1− ζ)))

= e−ζθ∗ (α′(θ∗)(1− ζ) + 2ζ) . (47)

The inequality holds because 1− ζ < 0 and θ∗ ≤ θ̃. Note that for any θ∗ ≤ θ̃, α(θ∗)≤−2θ∗. To complete the

proof, we show that (α′(θ∗)(1− ζ) + 2ζ)≥ 0 when α′(θ∗) ≤ (
√

5+1)2

2
.

First assume that α′(θ∗)≤ 2. Then, we get

(α′(θ∗)(1− ζ) + 2ζ) ≥ 2(1− ζ) + 2ζ = 2 > 0 ,

where the first inequality holds because 1− ζ < 0.

Now, assume that α′(θ∗)∈ [2, (
√

5+1)2

2
]. We make use of the following claim.

Claim: Let θ∗ < θ̃ solve Eq. (44). Then, ζ = 1− tf (θ∗)θ∗ ≤ 1+
√

5
2

.

The proof of the claim is given at the end of the proof of this lemma.
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Given that α′(θ∗)∈ [2, (
√

5+1)2

2
], then ζ 7→ (α′(θ)(1− ζ) + 2ζ) is decreasing. Then, by the claim, we get

α′(θ)(1− ζ) + 2ζ ≥ α′(θ)

(
1− 1 +

√
5

2

)
+ 2

(
1 +
√

5

2

)
≥ 0 ,

where the second inequality holds because α′(θ) ≤ (
√

5+1)2

2
≈ 5.2.

Proof of Claim: Since θ∗ solves Eq. (44) and tf (θ∗) is the FOC solution, we get

θ∗e−ζ(θ∗+α(θ∗)(1− ζ)) = Hlζ and − θ∗e−ζ(θ∗+α(θ∗)(2− ζ)) = Hl ,

where the second equation implies that ζ ≤ 2. By dividing these two equations, we get− (θ∗+α(θ∗)(1−ζ))
(θ∗+α(θ∗)(2−ζ))−ζ = 0.

This can be simplified as

θ∗+α(θ∗)
1 + ζ − ζ2

1 + ζ
= 0 ,

where for any ζ ∈ [1,2], ζ 7→ 1+ζ−ζ2
1+ζ

is decreasing, 1+ζ−ζ2
1+ζ

crosses zero at 1+
√

5
2

, and at ζ = 1, 1+ζ−ζ2
1+ζ

∣∣
ζ=1

= 1
2
.

We note that θ∗+α(θ∗) 1+ζ−ζ2
1+ζ

∣∣
ζ=1

= θ∗+ 1
2
α(θ∗) < 0 for any θ∗ < θ̃, and θ∗+α(θ∗) 1+ζ−ζ2

1+ζ

∣∣
ζ= 1+

√
5

2

= θ∗ ≥ 0.

Then, we can conclude that ζ that solves θ∗+α(θ∗) 1+ζ−ζ2
1+ζ

= 0 should be less than 1+
√

5
2

.

�

Appendix G: Proof of Supporting Results of Appendix C

G.1. Proof of Lemma 4

It is easy to verify that (1− g′(θ)tg(θ)θ) = 1 for any θ > θH , and it is zero for any θ≤ θL. Thus, it suffices to

show that (1− g′(θ)tg(θ)θ)≥ 0 when θ ∈ [θL, θH ].

By definition, for any θ ∈ [θL, θH ], we have

(1− g′(θ)tg(θ)θ) = −θ
(

1

α(θ)
+
g′(θ)

g(θ)

)
.

Since θ > 0, to show (1− g′(θ)tg(θ)θ)> 0, we only need to verify that 1
α(θ)

+ g′(θ)
g(θ)
≤ 0. To that end, we show

that 1
α(θ)

+ g′(θ)
g(θ)

is decreasing in θ. Then by the fact that 1
α(θL)

+ g′(θL)

g(θL)
= 0, we have 1

α(θ)
+ g′(θ)

g(θ)
≤ 0 for any

θ ∈ [θL, θH ].

The derivative of 1
α(θ)

+ g′(θ)
g(θ)

w.r.t. θ is given by

−α′(θ)
α(θ)2

+ (
g′(θ)

g(θ)
)′ ≤ 0 .

The inequality holds because by Assumption 2, we have α′(θ)≥ 0, and by Assumption 1, g′(θ)
g(θ)

is decreasing

in θ.

G.2. Proof of Lemma 5

To show the result, we will verify that λg(θ)≥ 0 for any θ≤ θL.

By Eq. (19), for any θ≤ θL,

λg(θ) = f ′(θ)

(
g(θ)

g′(θ)
+α(θ))

)
+ f(θ)

((
g(θ)

g′(θ)

)′
+α′(θ)

)
.

We consider the following cases:
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1- f ′(θ)≤ 0: Observe that the first term of λg(θ) is nonnegative. This is the case because by Assumption

1, g(θ)

g′(θ)
+α(θ)≤ 0 for any θ≤ θL. To see why note that g(θ)

g′(θ)
+α(θ) is increasing in θ, and g(θL)

g′(θL)
+α(θL) = 0.

In addition, note that the second term of λg(θ), i.e., f(θ)
((

g(θ)

g′(θ)

)′
+α′(θ)

)
, is greater than or equal to zero.

This holds because by Assumption 1,
(
g(θ)

g′(θ)

)′
≥ 0.

1- f ′(θ)≥ 0: Since g′(θ)≥ 0, we have

λg(θ) ≥ f ′(θ)α(θ) + f(θ)α′(θ) = (f(θ)α(θ))′ ≥ 0 .

The last inequality holds because f(θ)α(θ) = F (θ)− 1 is increasing in θ.

G.3. Proof of Lemma 6

Here, we show that for any θ ≥ θL, arg maxt≥0

{
R(θ, t)

}
= tg(θ). To this end, we show that the objective

function, i.e., R(θ, t), has an inverted u-shape in t. Then, we show that for θ ≥ θH , R(θ, t) achieves its

maximum at t= 0, and for θ ∈ [θL, θH ], R(θ, t) gets maximized at tg(θ), where tg(θ) solves the FOC; that is,

tg(θ) = arg maxtR(θ, t) for θ ∈ [θL, θH ].

R(θ, t) Has an Inverted U-shape: Let t0 = g(θ)θ+2α(θ)g′(θ)θ+α(θ)g(θ)

α(θ)g(θ)g′(θ)θ
. We will show that R(θ, t) is concave for

any t≤ t0 and is convex otherwise. We further show that R(θ, t) is decreasing for any t≥ t0 and is increasing

at t=−∞. This implies that R(θ, t) has an inverted u-shape and arg maxtR(θ, t)< t0.

The second derivative of R(θ, t) w.r.t. t is given by

∂2R(θ, t)

∂2t
= −g(θ)e−g(θ)t(−g(θ)θ−α(θ)g(θ)(1− g′(θ)θt)− 2α(θ)g′(θ)θ)

It is easy to observe that the second derivative is negative for any t≤ t0, and positive otherwise. This implies

that the objective function is concave for any t≤ t0.

Next, we discuss the first derivative of R(θ, t) w.r.t. t. By definition,

∂R(θ, t)

∂t
= e−g(θ)t

(
− g(θ)θ−α(θ)g(θ)(1− g′(θ)θt)−α(θ)g′(θ)θ

)
. (48)

This leads to

∂R(θ, t)

∂t

∣∣
t=t0

= e−g(θ)t0
(
α(θ)g′(θ)θ

)
≤ 0

Then, considering the fact that limt→∞
∂R(θ,t)

∂t
= 0 and R(θ, t) is convex for any t≥ t0, we can conclude that

∂R(θ,t)

∂t
≤ 0 for any t≥ t0. The proof of this part is completed by observing limt→−∞

∂R(θ,t)

∂t
> 0.

So far, we established that R(θ, t) has an inverted u-shape in t. This implies that the unique maximizer

of the R(θ, t), i.e., arg maxtR(θ, t) solves the FOC. Let us call the unique maximizer, the FOC solution and

denote it by tf (θ). We will show that for any θ ≥ θH , the FOC solution is negative. Then, by the fact that

R(θ, t) has an inverted u-shape, we can conclude that for any θ ≤ θH , R(θ, t) gets maximized at tg(θ) = 0.

Similarly, one can show that the FOC solution is positive for any θ ∈ [θL, θH ].

By Eq. (48), the FOC solution, which solves ∂R(θ,t)

∂t
= 0, is equal to tf (θ) = α(θ)g(θ)+g(θ)θ+α(θ)g′(θ)θ

α(θ)g(θ)g′(θ)θ
. Since

g′(θ)≥ 0, the FOC solution is negative if

g′(θ)tf (θ) =
1

α(θ)
+
g′(θ)

g(θ)
+

1

θ
≤ 0 .

By Assumptions 1 and 2, 1
α(θ)

+ g′(θ)
g(θ)

+ 1
θ

is decreasing in θ. Then, considering this and the fact that

g′(θH)tf (θH) = 0, we have g′(θ)tf (θ)≤ 0 for any θ≥ θH . This implies that tf (θ)≤ 0 for any θ≥ θH .
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G.4. Proof of Lemma 7

First of all, it is easy to observe that tg(θ) is continuous and by definition of tg(·) and Assumption 1, tg(θ)

is decreasing for θ ≥ θH and θ < θL. Considering this, in the following we will show that tf (θ) is decreasing

when θ ∈ [θL, θH ]. Recall that for this range of θ, tf (θ) is the FOC solution.

By Eq. (48), the FOC solution, tf (θ) solves Q(θ, tf (θ)) = 0, where

Q(θ, t) = θ+α(θ)
(

1− g′(θ)θt+
g′(θ)

g(θ)
θ
)
. (49)

This implies that ∂1Q(θ, tf (θ)) + ∂2Q(θ, tf (θ))
dtf (θ)

dθ
= 0, where ∂iQ(θ, tf (θ)), i= 1,2, is the derivative of Q

w.r.t. to its ith argument. This leads to

dtf (θ)

dθ
= −∂1Q(θ, tf (θ))

∂2Q(θ, tf (θ))
=

1 +α′(θ)
(

1− g′(θ)θtf (θ) + g′(θ)
g(θ)

θ
)

+α(θ)∂1H(θ, tf (θ))

g′(θ)θα(θ)
(50)

where H(θ, t) = 1− g′(θ)θt+ g′(θ)
g(θ)

θ. Next, we will show that ∂1H(θ, tf (θ))≤ 0. This confirms that
dtf (θ)

dθ
≤ 0.

This is so because α′(θ)≥ 0 and
(
1− g′(θ)θtf (θ) + g′(θ)

g(θ)
θ
)

=− θ
α(θ)
≥ 0.

We consider the following cases:

• θ+α(θ)≥ 0: By definition,

∂1H(θ, tf (θ)) =−(g′(θ)θ)′tf (θ) +

(
g′(θ)

g(θ)

)′
θ=−

(
g′(θ)

g(θ)
θg(θ)

)′
tf (θ) +

(
g′(θ)

g(θ)

)′
θ

=−
((

g′(θ)

g(θ)

)′
θg(θ) + (θg(θ))′

(
g′(θ)

g(θ)

))
tf (θ) +

(
g′(θ)

g(θ)

)′
θ

=−
(
g′(θ)

g(θ)

)′
θ(tf (θ)g(θ)− 1)−

(
(θg(θ))′

(
g′(θ)

g(θ)

))
tf (θ)

To show ∂1H(θ, tf (θ))≤ 0, it suffices to verify that (tf (θ)g(θ)−1)≤ 0. To see why note that g′(θ)
g(θ)

is decreasing

and g(θ) is increasing in θ. By Eq. (5), we have

tf (θ)g(θ)− 1 =
g′(θ)

g(θ)

(
θ+α(θ)

α(θ)θ

)
≤ 0

The inequality, which is the desired result, holds because θ+α(θ)≥ 0.

• θ+α(θ)< 0: By definition, H(θ, t) = 1− g′(θ)θ
(
t− 1

g(θ)

)
. Then, by taking derivative w.r.t. θ, we have

∂1H(θ, tf (θ)) =−(g′(θ)θ)′
(
tf (θ)− 1

g(θ)

)
− (g′(θ))2θ

g2(θ)

To show ∂1H(θ, tf (θ)) ≤ 0, it suffices to show the first term, i.e., −(g′(θ)θ)′
(
tf (θ)− 1

g(θ)

)
, is negative. By

Assumption 1, (g′(θ)θ) is increasing. Thus, we only need to verify (tf (θ)− 1
g(θ)

)
≥ 0. By Eq. (5),

tf (θ)− 1

g(θ)
=

1

g′(θ)

(
θ+α(θ)

α(θ)θ

)
≥ 0,

where the inequality holds because θ+α(θ)< 0.
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Appendix H: Proof of Supporting Results of Appendix F

H.1. Proof of Lemma 14

• tf (θ) is decreasing in θ: Since tf (θ) is the FOC solution, we have

∂(R(θ, t)−ht)
∂t

∣∣
t=tf (θ)

=−θe−tf (θ)θ(θ+α(θ)(2− θtf (θ)))−h = 0 .

Define W (θ, t) := ∂(R(θ,t)−ht)
∂t

= −θe−tθ(θ+α(θ)(2− θt))−h. Then, the FOC implies that W (θ, tf (θ)) = 0.

Thus,

∂tf (θ)

∂θ
=−Wθ(θ, tf (θ))

Wt(θ, tf (θ))
,

where Wθ(θ, tf (θ)) = ∂W (θ,t)

∂θ

∣∣
t=tf (θ)

and Wt(θ, tf (θ)) = ∂W (θ,t)

∂t

∣∣
t=tf (θ)

. Throughout the proof, for simplicity,

we denote tf (θ) by t. In the following, we will show that both Wθ(θ, t) and Wt(θ, t) are non-positive. This

implies that
∂tf (θ)

∂θ
≤ 0.

By definition, we get

Wθ(θ, t) =−(1− tθ)e−tθ
(
θ+α(θ)(2− tθ)

)
− θe−tθ(1 +α′(θ)(2− tθ)− tα(θ))

= (1− tθ)h
θ
− θe−tθ(1 +α′(θ)(2− tθ)− tα(θ)) ,

where the second equality follows because W (θ, t) = 0. Again, by the fact that W (θ, t) = 0, we can replace

−θe−tθ by h
(θ+α(θ)(2−θt)) . Then,

Wθ = (1− tθ)h
θ

+
h

θ+α(θ)(2− tθ)
− θe−tθ(α′(θ)(2− tθ)− tα(θ))

= h(2− tθ) θ+α(θ)(1− tθ)
θ
(
θ+α(θ)(2− tθ)

) − θe−tθ(α′(θ)(2− tθ)− tα(θ)) ≤ 0 . (51)

The inequality holds because by the FOC condition, i.e., W (θ, t) = 0, we have 2− t≥ 0 and
(
θ+α(θ)(2−

tθ)
)
≤ 0, and by our assumption that R(θ, t) − ht ≥ 0, we have θ + α(θ)(1 − tθ) ≥ 0. Note that since

R(θ, t)−ht = e−tθ
(
θ+α(θ)(1− tθ)

)
−ht≥ 0, we get θ+α(θ)(1− tθ)≥ 0.

Next, we show that Wt(θ, t)≤ 0. By definition,

Wt(θ, t) =2 θ2e−tθ
(
θ+α(θ)(2− tθ)

)
+2 θ2α(θ)e−tθ ≤ 0 ,

where the inequality holds because by the FOC condition,
(
θ+α(θ)(2− tθ)

)
≤ 0. The above equation along

with Eq. (51) imply that tf (·) is decreasing.

• A(θ, th(θ)) ∈ [0,1]: Note that A(θ, th(θ)) = 0 for θ≤ θhL and is 1 for θ≥ θhH . Thus, it suffices to show

that A(θ, th(θ))∈ [0,1] for any θ ∈ [θhL, θ
h
H ]; see Lemma 22.

Lemma 22. When h≤Hl, then (1− th(θ)θ) ≥ 0 for any θ ∈ [θhL, θ
h
H ].
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H.1.1. Proof of Lemma 22 Here, we show that set {θ : θ > θhL, and 1− tf (θ)θ = 0} is empty. That

is, there does not exists any θ > θhL with 1− tf (θ)θ = 0. Then, by the fact that 1− tf (θhH)θhH = 1 and

1− tf (θhL)θhL = 0, we have 1− θtf (θ) ≥ 0 for any θ ∈ [θhL, θ
h
H ].

Assume, contrary to our result, that there exists θ∗ > θhL that solves 1− tf (θ∗)θ∗ = 0. Then, we show that

this cannot happen.

Let θ ∈ {θhL, θ∗}. Since tf (θ) is the FOC solution, we have ∂(R(θ,t)−ht)
∂t

∣∣
t=tf (θ)

= 0. This condition can be

rewritten as

W (θ, ζ, h) := −θe−ζ(θ+α(θ)(2− ζ))−h = 0 ,

where ζ = θtf (θ). In the following, we will show that for θ ∈ {θhL, θ∗}, we have ∂ζ

∂θ
= −Wθ

Wζ
≤ 0 , where Wθ :=

∂W (θ,ζ,h)

∂θ
and Wζ := ∂W (θ,ζ,h)

∂ζ
. This implies that there does not exists θ∗ > θhL that solves 1− tf (θ∗)θ∗ = 0.

To show ∂ζ

∂θ
≤ 0, we will verify that Wθ ≤ 0 and Wζ ≤ 0. By definition,

Wζ = θe−ζ
(
θ+α(θ)(2− ζ)

)
+ θα(θ)e−ζ ≤ 0 ,

where the inequality follows from the FOC, i.e., the fact that W (θ, ζ, h) = 0. To make it more clear, by the

FOC, (θ+α(θ)(2− ζ))< 0 and as a result, Wζ ≤ 0.

Next, we show that Wθ ≤ 0 for θ ∈ {θhL, θ∗}. By definition,

Wθ = −e−ζ
(
2θ+

(
α(θ) + θα′(θ)

)
(2− ζ)

)
.

By the fact that for θ ∈ {θhL, θ∗}, we have 1− θtf (θ) = 0, and thus ζ = 1. This shows that

Wθ = −e−1 (2θ+α(θ) + θα′(θ)) ≤ 0 ,

where the inequality holds because θhL ≥ θ̃ and as a result 2θ+α(θ)≥ 0 for θ ∈ {θhL, θ∗}. Recall that θ∗ > θhL.

H.2. Proof of Lemma 15

We show the result for h≤Hl where Hl is defined in Eq. (11). A similar argument holds for h>Hl.

By definition, for any h≤Hl, we have

R(θ, th(θ))−hth(θ) =

 θ+α(θ) if θ≥ θhH ;
R(θ, tf (θ))−htf (θ) if θ ∈ [θhL, θ

h
H ];

e−1θ− h
θ

if θ ∈ [θL, θ
h
L];

R(θ, th(θ))−hth(θ) is obviously increasing when and θ≥ θhH and θ≤ θhL. Furthermore, R(θ, th(θ))−hth(θ) is

a continuous function of θ because th(θ) is continuous. Thus, it suffices to show that R(θ, th(θ))− hth(θ) is

increasing in θ ∈ [θhL, θ
h
H ].

Recall that th(θ) = tf (θ) for θ ∈ [θhL, θ
h
H ]. That is, th(θ) is the FOC solution. Thus, by the Envelope theorem,

the derivative of R(θ, tf (θ))−htf (θ) w.r.t. θ is given by

∂
(
R(θ, tf (θ))−htf (θ)

)
∂θ

= −tf (θ)e−tf (θ)θ(θ+α(θ)(2− tf (θ)θ))

+ e−tf (θ)θ(1 +α′(θ)(1− tf (θ)θ))

= h
tf (θ)

θ
+ e−tf (θ)θ(1 +α′(θ)(1− tf (θ)θ)) ≥ 0 ,
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where the inequality holds because, as we show in Lemma 14, 1− tf (θ)θ ≥ 0 for any θ ∈ [θhL, θ
h
H ], and the

second equality follows from the FOC, i.e., by the fact that

∂R(θ, t)

∂t

∣∣
t=tf (θ)

−h = −θe−tf (θ)θ(θ+α(θ)(2− θtf (θ)))−h = 0 .

Finally, since R(θL, th(θL))−hth(θL) = 0, we have R(θ, th(θ))−hth(θ)≥ 0 for θ≥ θL; see definition of θL in

Eq. (11).

H.3. Proof of Lemma 16

The proof is naturally divided into two parts. In the first part, we show that λh(θ)≥ 0 for any θ < θL and in

the second part, we show that λh(θ)≥ 0 for any θ ∈ [θL, θ
h
L].

First Part: By Eq. (35), for any θ≤ θL, we have

λh(θ) = f ′(θ) (2θ+α(θ)) + f(θ) (2 +α′(θ)) . (52)

We note that by definition, we have e−1(θL)2 = h. Thus, given that h≤Hl = θ̃2e−1, we have θL ≤ θ̃. This

implies that for any θ≤ θL, we have 2θ+α(θ)≤ 0. Then, if f ′(θ)≤ 0, we have λh(θ)≥ 0. Now, assume that

f ′(θ)> 0. Then,

λh(θ) ≥ f ′(θ)α(θ) + f(θ)α′(θ) = (f(θ)α(θ))′ = (F (θ)− 1)′ ≥ 0 , (53)

where the first inequality holds because f ′(θ)≥ 0.

Second Part: By definition, for any θ ∈ [θL, θ
h
L], we have

λh(θ) = f ′(θ)

(
θ+α(θ) +

h

θe−1

)
+ f(θ)

(
1 +α′(θ)− h

θ2e−1

)
≥ f ′(θ)

(
θ+α(θ) +

h

θe−1

)
+ f(θ)

(
1 +α′(θ)− h

(θL)2e−1

)
= f ′(θ)

(
θ+α(θ) +

h

θe−1

)
+ f(θ)α′(θ) ,

where the inequality holds because θ≥ θL, and the last equation follows from definition of θL. We consider

the following two cases.

Case i: f ′(θ) ≤ 0: To show λh(θ) ≥ 0, we use the fact that for θ ≥ θL, function θ 7→ θ + α(θ) + h
θe−1 is

increasing in θ. Then, considering the fact that θhL +α(θhL) + h

θh
L
e−1 = 0, we have

(
θ+α(θ) + h

θe−1

)
≤ 0 for

θ ∈ [θL, θ
h
L]. This implies that λh(θ)≥ 0 when f ′(θ)≤ 0.

The derivative of θ+α(θ) + h
θe−1 w.r.t. θ is given by

1 +α′(θ)− h

θ2e−1
≥ 1 +α′(θ)− h

(θL)2e−1
= α′(θ) ≥ 0 ,

where the first inequality holds because θ≥ θL, and the second inequality follows from the definition of θL.

Case ii: f ′(θ)> 0: In this case, we have

λh(θ) ≥ f ′(θ)α(θ) + f(θ)α′(θ) = (f(θ)α(θ))′ = (F (θ)− 1)′ ≥ 0 .

The last inequality completes the proof.
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H.4. Proof of Lemma 17

Here, we will show that for any θ, the objective function, R(θ, t)− ht is a unimodular function of t and

achieves its maximum at the FOC solution, denoted by tf (·). Then, we show that arg maxt≥0{R(θ, t)−ht}=

max{tf (θ),0}= th(θ).

To show that the objective function is unimodular, we will make the following observations: 1- The deriva-

tive of the objective function w.r.t. t at t= θ+3α(θ)

θα(θ)
is negative, at t=−∞ is ∞, and at t=∞ is negative. 2-

For any t≤ θ+3α(θ)

θα(θ)
, the objective function is a concave function of t, and for any t > θ+3α(θ)

θα(θ)
, the objective

function is a convex function of t. These two observations imply that for any given θ, R(θ, t) is a unimodular

function of t, and achieves its maximum at t < θ+3α(θ)

θα(θ)
.

First Part: The derivative of the objective function with respect to t is given by

∂R(θ, t)

∂t
−h = −θe−tθ(θ+α(θ)(2− θt))−h . (54)

Note that as t approaches −∞, the derivative of the objective function with respect to t converges to ∞.

Furthermore, as t converges to ∞, the derivative goes to −h. In addition, one can easily show that the

derivative is negative at t= θ+3α(θ)

θα(θ)
.

Second Part: The second derivative of the objective function with respect to t is given by

(θ)2e−tθ(θ+α(θ)(3− θt)) . (55)

It is easy to observe that the second derivative is negative for any t < θ+3α(θ)

θα(θ)
, and is nonnegative otherwise.

This implies that the objective function is concave for any t≤ θ+3α(θ)

θα(θ)
and it is convex for any t > θ+3α(θ)

θα(θ)
.

So far, we established that R(θ, t)− ht is a unimodular function of t and achieves its maximum at the

FOC solution, denoted by tf (·). By Lemma 14, the FOC solution is decreasing in θ. This and the fact that

tf (θhH) = 0 lead to max{tf (θ),0}= 0 for any θ≥ θhH and max{tf (θ),0}= tf (θ) = th(θ) for any θ ∈ [θhL, θ
h
H ].

H.5. Proof of Lemma 18

Let G(z, t) := ze−tz(−1+2tz)−ht. We show that for any z ≤ θL, we have maxt≥0{G(z, t)} ≤ 0. First observe

that G(z, t = 0) = −z ≤ 0 and G(z, t =∞) = −∞. Then, to show that maxt≥0{G(z, t)} ≤ 0, we will verify

that G(z, t)≤ 0 at the FOC solution, i.e., t that solves

∂G(z, t)

∂t
= e−tzz2(3− 2tz)−h = 0 .

We denote the FOC solution by tF (z), and we show that G(z, tF (z))≤ 0.

To this aim, we show that i- ∂G(z,tF (z))

∂z
≥ 0 when (−1 + 2tF (z)z)≥ 0, ii- ztF (z) is increasing in z, and iii-

G(θL, tF (θL)) = 0. The fact that ztF (z) is increasing in z implies either (−1 + 2tF (z)z)≥ 0 for any z ≤ θL,

(−1 + 2tF (z)z)≤ 0 for any z ≤ θL, or there exists ẑ ∈ [Θ, θL) such that (−1 + 2tF (z)z)> 0 for any z > ẑ and

(−1 + 2tF (z)z)≤ 0. We will focus on the third case, as the proof for this case encompasses that of the other

two cases.

First we show that G(z, tF (z)) for any z > ẑ. Since G(θL, tF (θL)) = 0 and ∂G(z,tF (z))

∂z
≥ 0 when (−1 +

2tF (z)z)≥ 0, for any z > ẑ, we have G(z, tF (z))≤G(θL, tF (θL)) = 0, which is the desired result. Furthermore,

for any z ≤ ẑ, G(z, tF (z))≤ 0 as for this range of z, we have (−1 + 2tF (z)z)≤ 0.
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• Claim i: ∂G(z,tF (z))

∂z
≤ 0 when (−1 + 2tF (z)z)> 0. By the envelope theorem, we get

∂G(z, tF (z))

∂z
= e−tF (z)z

(
−1 + tF (z)z

(
5− 2tF (z)z

))
≥ 0 ,

where the inequality holds because (−1 + 2tF (z)z)> 0 and by the FOC (3− 2tF (z)z)≥ 0. To see why note

that x 7→ −1 +x
(
5− 2x

)
is positive when x∈ [ 1

2
, 3

2
].

• Claim ii: z 7→ (ztF (z)) is an increasing function. Define ζ = ztF (z). By the FOC, we have W (z, ζ) :=

e−ζz2(3− 2ζ)−h = 0. Then,

∂ζ

∂z
= −

∂W (z,ζ)

∂z

∂W (z,ζ)

∂ζ

=
e−ζz2(5− 2ζ)

2ze−ζ(3− 2ζ)
≥ 0 ,

where the inequality holds because by the FOC 3− 2ζ ≥ 0.

• Claim iii: G(θL, tF (θL)) = 0. Note that tF (θL) = 1
θL

and as a result,

G(θL, tF (θL)) = θLe
−1− h

θL
= 0 ,

where the last equation follows from definition of θL.

H.6. Proof of Lemma 20

The proof has two parts. In the first part, we show that when h≥Hl and θ≥ θ̃, we have 1− tf (θ)θ≥ 0. Then,

in the second part of the proof, we show that θM ≥ θ̃. This implies that 1− tf (θ)θ ≥ 0 for any θ ∈ [θM , θ
h
H ],

which is the desired result.

First Part: Here, we show that any solution of 1− tf (θ)θ= 0, denoted by θ∗, is less than equal to θ̃. Let

θ̄∗ be the maximum of such solution; that is θ̄∗ = max{θ : 1− tf (θ)θ = 0}. Then, considering the fact that

θ̄∗ ≤ θ̃, 1− θhHtf (θhH) = 1, and 1− θ̄∗tf (θ̄∗) = 0, we can conclude that 1− θtf (θ) > 0 for any θ ∈ [θ̃, θhH ].

Suppose, contrary to our claim, that there exists θ∗ > θ̃ that solves 1− tf (θ∗)θ∗ = 0. By the FOC, we have

∂R(θ∗, t)

∂t

∣∣
t=tf (θ∗)

= −θ∗e−θ∗tf (θ∗)(θ∗+α(θ∗)(2− θ∗tf (θ∗)))−h = 0

Since θ∗ solves 1− tf (θ∗)θ∗ = 0, we get

∂R(θ∗, t)

∂t

∣∣
t=tf (θ∗)

= −θ∗e−1(θ∗+α(θ∗)) − h . (56)

We note that θ∗ 7→ −θ∗e−1(θ∗+α(θ∗)) is decreasing in θ∗. This holds because

d(−θ∗(θ∗+α(θ∗)))

dθ∗
= −(2θ∗+α(θ∗))− θ∗α′(θ∗) ≤ 0 ,

where the inequality follows because θ∗ > θ̃. This implies that

max
θ∗≥θ̃
{−θ∗e−1(θ∗+α(θ∗))} = −θ̃e−1(θ̃+α(θ̃)) = θ̃2e−1 = Hl .

Then, by Eq. (56), we can conclude that when h>Hl, there does not exists any θ∗ > θ̃ such that 1−tf (θ∗)θ∗ =

0.

Second Part: Here, we show that θM ≥ θ̃. To this aim, we show that
∂θM
∂h
≥ 0 when 1− tf (θM)θM ≥ 0.

This verifies that θM increases as we increase h from Hl. The reason is that at h=Hl, we have θM = θ̃ and

1− tf (θM)θM = 0. This implies at h=Hl, when h is increased, we have θM ≥ θ̃. Then, by the first part of
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the lemma, we know that 1− tf (θM)θM ≥ 0 when we increase h. This allows us to repeat this procedure to

show that
∂θM
∂h
≥ 0 for any h≥Hl.

Let θ= θM and ζ = tf (θ)θ. Then, by definition, we have

G(θ, ζ, h) := θe−ζ(θ+α(θ)(1− ζ))−hζ = 0 ,

W (θ, ζ, h) :=−θe−ζ(θ+α(θ)(2− ζ))−h = 0 .

The first equation follows from the fact that at θ= θM , R(θM , tf (θM))−htf (θM) = 0 and the second equation

follows from the FOC, i.e., ∂(R(θ,t)−ht)
∂t

∣∣
t=tf (θ)

= 0. In the following, we show that ∂θ
∂h
≥ 0 when 1− ζ ≥ 0.

The aforementioned equations imply that

∂G

∂θ

∂θ

∂h
+
∂G

∂ζ

∂ζ

∂h
= ζ ,

∂W

∂θ

∂θ

∂h
+
∂W

dζ

∂ζ

∂h
= 1 .

This leads to

∂θ

∂h
=

∣∣∣∣ ζ ∂G
∂ζ

1 ∂W
∂ζ

∣∣∣∣∣∣∣∣ ∂Gdθ ∂G
dζ

∂W
dθ

∂W
dζ

∣∣∣∣ =
ζ ∂W
∂ζ
− ∂G

∂ζ

∂G
∂θ

∂W
∂ζ
− ∂G

∂ζ
∂W
∂θ

,

It is easy to observe that ∂G
∂ζ

= W (θ, ζ, h) = 0. Thus, ∂θ
∂h

= ζ
∂G
∂θ

. In the following, we will show that ∂θ
∂h
≥ 0

by verifying ∂G
∂θ
≥ 0. By definition,

∂G

∂θ
= e−ζ(θ+α(θ)(1− ζ)) + θe−ζ(1 +α′(θ)(1− ζ)) .

We note that the first term, i.e., (θ+α(θ)(1− ζ)), is nonnegative because G(θ, ζ, h) = θe−ζ(θ+α(θ)(1− ζ))−

hζ = 0. In addition, the second term is positive as 1− ζ ≥ 0. This gives us ∂G
∂θ
≥ 0 and thus ∂θ

∂h
≥ 0.
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