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We study an urban bike lane planning problem based on the fine-grained bike trajectory data, which is

made available by smart city infrastructure such as bike-sharing systems. The key decision is where to build

bike lanes in the existing road network. As bike-sharing systems become widespread in the metropolitan

areas over the world, bike lanes are being planned and constructed by many municipal governments to

promote cycling and protect cyclists. Traditional bike lane planning approaches often rely on surveys and

heuristics. We develop a general and novel optimization framework to guide the bike lane planning from bike

trajectories. We formalize the bike lane planning problem in view of the cyclists’ utility functions and derive

an integer optimization model to maximize the utility. To capture cyclists’ route choices, we develop a bilevel

program based on the Multinomial Logit model. We derive structural properties about the base model and

prove that the Lagrangian dual of the bike lane planning model is polynomial-time solvable. Furthermore,

we reformulate the route choice based planning model as a mixed integer linear program using a linear

approximation scheme. We develop tractable formulations and efficient algorithms to solve the large-scale

optimization problem. Via a real-world case study with a city government, we demonstrate the efficiency

of the proposed algorithms and quantify the trade-off between the coverage of bike trips and continuity of

bike lanes. We show how the network topology evolves according to the utility functions and highlight the

importance of understanding cyclists’ route choices. The proposed framework drives the data-driven urban

planning scheme in smart city operations management.
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1. Introduction

Urbanization is a global trend. More than half of the world’s population now lives in towns and

cities. It is projected that about 56% of the developing world and 82% of the developed world

will be urbanized by 2030, which equals to 5 billion people (The Economist 2012). Much of this

urbanization will unfold in Africa and Asia, bringing huge social, economic and environmental

transformations (United Nations Population Fund 2018). The main challenges brought by the fast

urbanization include traffic congestion and air pollution. The growing number of cars exceeds the

city’s traffic carrying capacity and thus causes severe traffic congestion around the city. In the

meanwhile, the vast amount of emissions generated by moving cars worsens the air quality and

poses serious public health problems. For Beijing, cars accounted for 30% of city’s self-generated

pollutants contributing to air pollution (South China Morning Post 2018).

In addition to driving cars, cycling is a popular urban transit mode for daily commute. For

instance, 30% of people go to work by riding bikes in Cambridge, UK (Department for Transport,

UK 2015). According to U.S. Census Bureau (2012), 864,883 people cycled to work in the United

States. Cycling is promoted by many countries as it benefits city residents in many different aspects.

First, cycling is free of pollution and the large-scale adoption of cycling can benefit the urban

environment. Second, the popularity of cycling could alleviate the traffic congestion and improves

the overall traffic condition. Third, cycling is also a more affordable and healthy transit mode than

driving cars. As shown by the City of Copenhagen (2010), mortality is reduced by 30% in adults

who cycle to and from their workplace on a daily basis, which can translate to huge savings of

health care cost. During the COVID-19 pandemic, bike ridership has increased by 21% in US urban

areas as people are shifted from public transit to this open-air mobility mode (The Los Angeles

Times 2020).

To promote cycling and reduce bike crashes, bike lanes have been planned and constructed by

city planners. In Amsterdam, for example, there are 250 miles of dedicated bike lanes in use. In

the U.S., city governments are rolling out better bike lanes in a large scale. For instance, Chicago

has planned to build 50 miles of bike lanes by 2019 (Chicago Tribune 2015). Cities from developing

countries, such as China and India, are also investing heavily in protected bike lanes (The Seattle

Times 2016). To accommodate the booming cycling demand during the 2020 pandemic, municipal

governments across Canada such as Toronto Council have fast-tracked their bike lane expansion
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plans (CBC 2020). The construction of bike lanes improves the safety for cyclists, car drivers as

well as pedestrians. It is reported that fatality rate is less than a tenth as high in the countries with

well designed cycling road networks as in the countries without cycling friendly infrastructures

(Pucker 2001).

Traditionally, bike lanes are planned based on experience and surveys. As smart phones are

widely used, the GPS human mobility data becomes more available and makes it possible to utilize

this fine-grained data in bike lane planning. Most recently, smart city infrastructure such as station-

based and dock-less bike sharing systems are expanding quickly across the world. Some examples

include Citi Bike (New York, USA), Santander Cycles (London, UK) for station-based systems

and Lime Bike (USA), Mobike (China) for dock-less systems. Bay Wheels, the bike sharing system

operated in San Francisco Bay Area, has maintained a mixed fleet of station-based and dock-less

bikes (mainly electric models). In these systems, people can use smart phones to pick up and drop

off bikes at docking stations or arbitrary locations with a built-in smart lock. Bikes in the dock-less

system are often embedded with GPS devices (thus often called ”smart bikes”, e.g., see The New

York Times 2017) so the spatial bike trajectories can be tracked. These bike trajectories record the

detailed travel pattern of bike riders, which can then be used to understand the route choices made

by the cyclists. Compared to the survey statistics and conventional origin-destination data, the

trajectory data generated from the smart city infrastructure reveals cyclists’ footprints on the road

network, which are otherwise difficult to collect and unknown to policy makers. The trajectory

data is essential to bike lane planning as most bike lanes are constructed along the existing road

network.

The bike trajectory data is becoming increasingly accessible to city planning agencies and

researchers as bike sharing system operators are pursuing open data policies. For instance, Mobike

is fully collaborating with municipal governments to facilitate urban management (Xinhuanet 2017,

Mobike 2018). The Los Angeles Department of Transportation has created an open-source software

platform called Mobility Data Specification (MDS) that allows authorities to collect data directly

from mobility service providers (including dock-less bikes and scooters) in real time1. MDS is now

used by more than 50 American cities and dozens more around the globe (The New York Times

1 The detailed description about MDS can be found at https://ladot.io/wp-content/uploads/2018/12/

What-is-MDS-Cities.pdf

https://ladot.io/wp-content/uploads/2018/12/What-is-MDS-Cities.pdf
https://ladot.io/wp-content/uploads/2018/12/What-is-MDS-Cities.pdf
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2020). How to analyze and utilize this high-volume trajectory information to accomplish the smart

city vision will be a critical challenge to city planners.

This paper presents and solves the bike lane planning problem using the detailed bike trajectory

data. The bike lane planning problem decides on which road segments of the existing road network

to construct bike lanes, aiming to balance two main objectives: 1) coverage: cover as many bike

trips as possible and 2) continuity : build more continuous bike lanes to minimize interruptions. We

summarize our main results and contributions as follows.

1. We present the bike lane planning model in view of the cyclist’s utility functions based on the

trajectory data. We start from a simple adjacency-continuity utility function and then discuss the

general class of utility functions. The choice of the utility functions is flexible to characterize the

trade-off between the coverage and continuity objectives. To the best of our knowledge, our work

is the first to formalize the general bike lane planning model built upon the bike trajectory data.

2. For the simple adjacency-continuity utility function, we show that the resulting bike lane

planning model has a supermodular objective function and admits an efficient mixed integer linear

program (MILP) formulation. For the general utility functions, we show that under reasonable con-

ditions, the objective function is also supermodular and the resulting problem yields a polynomial-

time solvable Lagrangian dual. Furthermore, we provide a linear programming approach to the

Lagrangian relaxation subproblem and propose an efficient algorithm for the general utility func-

tions.

3. To capture the interaction between cyclists’ route choices and bike lane design, we propose a

route choice based bike lane planning model and formulate it as a bilevel program. By exploiting

the structure of the lower-level problem, we reformulate the bilevel program as a single-level MILP,

which is asymptotically exact and computationally tractable.

4. We present a real-word case study based on the collaboration with an urban planning institu-

tion and a dock-less bike sharing company. We collect and preprocess a large bike trajectory data

set, and test our models and algorithms via extensive numerical experiments. The numerical exper-

iments validate the efficiency of the proposed algorithms and deliver insightful comparison results

between different models. We show how the topology of bike lane network would change according

to the utility functions and provide quantitative measures to analyze the trade-off between coverage

and continuity. We also highlight the importance of understanding cyclists’ route choice behaviors

in the bike lane planning.
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The remainder of the paper is organized as follows. Section 2 reviews the related literature.

Section 3 develops the bike lane planning model and presents tractable formulations and structural

results, which motivates efficient algorithms. Section 4 is devoted to the real-world case study and

numerical experiments that deliver managerial insights for policy makers. Section 5 concludes the

paper and presents several future research directions.

2. Related Literature

Smart city operations have received growing attention from the operations management commu-

nity. Different aspects of the smart city movement have been studied, including smart grid, smart

transportation, and smart retail. The “smart” parts of these aspects lie in the innovative technolo-

gies that can disrupt the present urban environment and city operations, or new data collection

and data analytics tools to inform better understanding and decisions for city management. For

instance, Zhang et al. (2020) study a promising scheme where vehicle-to-grid (V2G) electricity sell-

ing is integrated in electric vehicle sharing systems, as enabled by new technological development.

They provide important strategic planning and operational tools to support the advancement of

this scheme. Shared mobility, where shared passenger cars are deployed to provide ride and logistics

services, has been examined from various perspectives such as pricing (Taylor 2018, Bai et al. 2018,

Guda and Subramanian 2019), admission control (Afeche et al. 2018), repositioning (He et al. 2020)

and last-mile delivery (Qi et al. 2018), among others. In retailing, recent development of IT and

big data tools have enabled innovative omni-channel strategies (Gao and Su 2016, Harsha et al.

2019) and data-driven pricing and logistics policies (Perakis et al. 2018, Glaeser et al. 2019, Liu

et al. 2019). We refer readers to Mak (2018) and Qi and Shen (2019) for thorough reviews of papers

in smart city operations. Our paper is among the first to develop rigorous analytical models to

tackle an urgent city planning problem built upon new mobility data sources, and thus promotes

the smart city vision.

There has been an increasing focus on the planning and control of bike facilities, in particular, the

optimization of bike-sharing systems in recent years. The majority of the existing literature tackles

the operational problems of bike sharing systems, such as balancing bike stock levels among bike

stations to satisfy temporal and spatial demand. For example, Shu et al. (2013) address the bike

deployment and redistribution problems with network flow formulations. O’Mahony and Shmoys

(2015) study similar rebalancing problems as well as routing and clustering problems with different
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integer programming techniques. In addition, empirical approaches have been applied to shed

lights on the optimal configuration of bike share systems (Kabra et al. 2019). However, few papers

consider the roads used by cyclists to travel between bike stations, which is another fundamental

deciding factor of a bike-sharing system’s success. Noticeably, the above three papers only utilize

the origin-destination information of bike rides while our paper incorporates a fine-grained bike

trajectory data set, which makes it possible to capture more detailed travel patterns of bike riders.

Traditionally, bike lane planning is not built upon reliable real-world data. A prominent approach

of traditional bike-lane planning is to select road segments (on which to construct bike lanes)

by evaluating them with respect to a set of predetermined guidelines and criteria. Dondi et al.

(2011) propose a context sensitive approach and make the selection based on the analysis of the

visual effects, environmental contexts, and traffic considerations of road segments. Rybarczyk and

Wu (2010) select road segments with a modified simple additive weighting method to calculate

an overall score for each road segment based on its rankings among all road segments for each

criterion. Since the guidelines and criteria in these papers are decided based on expertise or specific

needs, there is a potential risk of subjective bias. Another classical approach is to select road

segments based on cyclists survey results that reveal their preferences. One such approach is built

on stated preference surveys, in which respondents are asked to imagine their preferences in some

hypothetical cases (Tilahun et al. 2007, Stinson and Bhat 2003, Hunt and Abraham 2007). However,

results from the stated preference surveys could be inaccurate as they do not represent cyclists’

actual choices. Researchers also adopted revealed preference surveys, in which respondents reveal

their actual choices (Sener et al. 2009, Howard and Burns 2001, Hyodo et al. 2000). Results from

revealed preference surveys are also subject to sampling biases and small sample biases.

In addition to subjective and survey based methods, there are a few papers that develop analyti-

cal methods for the bike lane planning problem. Lin and Yang (2011) consider a strategic designing

problem for bike sharing, in which the location of bike stations and bike lanes are decided to min-

imize the system-wide operating cost. Their model only accounts for the origins and destinations

while ignoring the road network. As a result, their model can not be directly used to guide the

practical bike lane construction. Most recently, Bao et al. (2017) propose several heuristics to decide

the bike lane locations by maximizing a specific score function under budget and connectivity con-

straints. Our paper, on the other hand, proposes a general and tractable modeling framework for
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the bike lane planning, and derives structural results about the resulting planning problem. The

structural results motivate efficient algorithms with empirically validated performance.

From a modeling perspective, our paper is related to the general class of facility loca-

tion problems. While many traditional facility location models are focused on locating ware-

houses/distribution centers/retailing stores to maximize profits or minimize operational costs (Sny-

der and Shen 2019), we consider locating bike lanes on the existing road network to maximize

riders’ utility. Hence our paper echoes the emerging location models in nonprofitable operations

and healthcare operations (Cho et al. 2014, Chan et al. 2017).

3. Bike Lane Planning Model

We first introduce the bike lane planning model based on bike trajectory data with a specialized

utility function in Subsection 3.1. We then analyze the structural properties of the model and

discuss a class of general utility functions in Subsection 3.2. Lastly, we extend the model to consider

cyclists’ route choices in Subsection 3.3.

3.1. Adjacency-Continuity Utility Maximization

Let V be the set of all road segments that have been visited by bike riders in our data set and

M be the set of cyclists. We say two road segments i and j are neighbors, (i, j) ∈N , if they are

connected. We can also interpret (i, j) ∈ N as road intersections. For each road segment i ∈ V ,

we use di to denote the associated number of bike trips. Similarly, each pair of connected road

segment (i, j) ∈N is also associated with the number of trips that go through the corresponding

intersection, dij.

We consider two main objectives of designing bike lanes inspired by the literature and our

communication with the biking community:

1. Constructed bike lanes should be able to cover as many bike trips as possible. (coverage

objective)

2. Constructed bike lane network should enable continuous and smooth riding experience for

cyclists. (continuity objective)

Continuity is preferred for both cyclists and urban planning institutions. Krizek and Roland (2005)

show that the discontinuity of bike lanes can cause great discomfort to cyclists. The discontinuity at

intersections also generates potentially higher crash risks. For the government, discontinuous bike

lanes can pose management challenges as well as construction difficulties. The coverage objective
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and the continuity objective are often conflicting with each other, as shown in Bao et al. (2017).

Maximizing only the coverage may lead to very dispersed bike lanes while maximizing only the

continuity can leave many cyclists uncovered. So we need to find the ideal trade-off between the

two objectives.

Now we formalize the two objectives from the cyclist’s perspective. For a cyclist m, we use

rm = {i1m, . . . , inm
m } to denote the ordered set of road segments (i.e. trajectory) she traveled through,

where i1m, . . . , i
nm
m ∈ V and nm is the number of road segments traveled by m (|rm|). The cyclist

receives a positive utility if there is a bike lane on the road segment, i.e. xi = 1. Also, she gets

an additional λ utility if the bike lanes are continuous along an intersection, i.e. xi = xi+1. So her

gained utility of traveling through rm from the bike lane construction plan x is

vx(rm) =

nm∑
k=1

xikm
+λ

nm−1∑
k=1

xikm
x
ik+1
m

.

Summing over the utility functions of all cyclists gives∑
m∈M

vx(rm) =
∑
i∈V

dixi +λ
∑

(i,j)∈N

dijxixj

where di is the number of trajectories going through road segment i and dij is the number of

trajectories going through the intersection (i, j). So
∑

i∈V dixi stands for the total number of

covered road segments (with bike lanes) weighted by the travel demand, and
∑

(i,j)∈N dijxixj is the

additional continuity utility for two adjacent bike lanes weighted by the travel demand. Since the

above utility function measures the continuity utility along two adjacent road segments, we call

this utility function as the adjacency-continuity (AC) utility function. Note that in our discussion

we treat each road segment equally regardless of the length for the ease of exposition and the

analysis extends straightforwardly to consider the impact of length on the utility.

Based on the AC utility function, we propose a bike lane planning model that takes into account

both the coverage and the continuity requirement. Let xi ∈ {0,1} denote the bike lane construction

decision variable: xi = 1 if a bike lane is planned at road segment i and xi = 0 otherwise. And we

use ci to denote the construction cost of building a bike lane on road segment i. The bike lane

planning model (BL) can be formulated as an integer program (IP):

max
x

∑
i∈V

dixi +λ
∑

(i,j)∈N

dijxixj, (BL-AC)

s.t.
∑
ei∈V

cixi ≤B, (1)

xi ∈ {0,1}, ∀i∈ V. (2)
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The objective function measures the cyclists’ welfare from bike lanes. The parameter λ≥ 0 deter-

mines the relative continuity benefit to the cyclist. A higher λ means continuity is more desirable

and thus a more continuous bike lane network would be proposed. Constraint (1) is the budget con-

straint that ensures the total construction cost does not exceed the allowable government budget

B. In practice, there may be other constraints that limit the construction of bike lanes in certain

regions, which can be incorporated as needed. Furthermore, it is possible that building bike lanes

along certain roads may reduce the capacity for car traffic flows, and hence worsening the traffic

condition. To account for this, we can add additional penalty terms to our objective function. The

detailed modeling of this traffic impact is out of the scope of this paper and we leave it for future

research.

The above model is set up for the scenario when a city is planning bike lanes from scratch.

For cities that already have bike lanes in use (such as New York City), the proposed model can

help guide the network expansion: we can fix the decision variables xi = 1 and set ci = 0 for road

segments that already have bike lanes in use, and B is equal to the expansion budget. The obtained

solution will then identify road segments to build new bike lanes.

3.1.1. Analysis When λ= 0, the problem reduces to the classical Knapsack problem, which is

NP-hard. Otherwise, the problem is a special case of the 0-1 quadratic knapsack problem (QKP),

where the coefficient matrix for the quadratic terms have a sparse structure. If dij is separable

and can be decomposed as dij = d̃id̃j, then the objective function is referred to as the half-product

function. The maximization of the half-product function over a knapsack polytope is known to

admit a Fully Polynomial-Time Approximation Scheme (FPTAS). However, no FPTAS is available

for the general non-separable objective function.

Nevertheless, similar to the general QKP, it can be shown that the objective function with dij ≥ 0

is supermodular.

Lemma 1. When λ≥ 0 and dij ≥ 0 for all (i, j) ∈N , the objective function of BL-AC is super-

modular.

The proofs of Lemma 1 and other results in this section are presented in the Appendix. The

supermodularity result implies that the problem can be solved efficiently without the budget con-

straint. So we can adopt the Lagrangian relaxation methodology to relax the budget constraint.

The resulting Lagrangian dual is given as

min
u≥0

Φ(u), (3)



10 Liu, Shen, and Ji: Bike Lane Planning

where

Φ(u) = max
xi∈{0,1}

∑
i∈V

dixi +λ
∑

(i,j)∈N

dijxixj −u(
∑
i∈V

cixi−B). (4)

Here Φ(u) is the Lagrangian relaxation of BL-AC for dual variable u≥ 0. Based on the result of

Gallo and Simeone (1989) and Chaillou et al. (1989), Φ(u) can be solved in polynomial time.

Proposition 1. When λ≥ 0 and dij ≥ 0 for all (i, j) ∈N , the Lagrangian dual of BL-AC can

be solved in polynomial time.

More specifically, one can show that the Lagrangian dual is a piece-wise linear convex function

with at most |V | break points. And each Φ(u) is equivalent to a maximum flow problem (Chaillou

et al. 1989). There are other Lagrangian relaxation methods for QKP that rely on relaxing different

sets of constraints (e.g. Caprara et al. 1999), we refer readers to Pisinger (2007) for an extensive

review. Since the Lagrangian dual only provides an upper bound, we may still need to perform

branch and bound to get an exact solution. Alternatively, we can get an equivalent mixed integer

linear programming (MILP) formulation to BL-AC, which can deliver satisfactory computational

performance with the commercial MILP solvers.

3.1.2. MILP Formulation Although the objective function of BL-AC is nonlinear, we can

linearize the product terms in BL-AC by replacing xixj with yij, and derive the following MILP

formulation for bike lane planning:

max
x

∑
i∈V

dixi +λ
∑

(i,j)∈N

dijyij, (BL-AC-MILP)

s.t. yij ≥ xi +xj − 1, ∀(i, j)∈N, (5)

yij ≤ xi, ∀(i, j)∈N, (6)

yij ≤ xj, ∀(i, j)∈N, (7)∑
i∈V

cixi ≤B, (8)

0≤ yij ≤ 1, ∀(i, j)∈N, (9)

xi ∈ {0,1}, ∀i∈ V. (10)

Constraints (5)-(7) ensure that yij = 1 if xi = xj = 1 and 0 otherwise. Constraints (5) are redundant

when dij’s are positive. BL-AC-MILP is ready to be solved using commercial solvers such as Gurobi

and CPLEX.
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3.2. General Utility Functions

The AC utility function assumes the continuity utility only applies to two adjacent road segments.

However, to the cyclists, their utility may depend on the size (length) of continuous bike lanes,

which can not be captured by the AC function. It is often the case that a longer continuous bike

lane is more preferable than a few shorter continuous bike lanes. On the other hand, the developed

bike lane system from maximizing over the AC utility may consist of many relatively short bike

lanes since only pair-wise continuity is rewarded. The following example illustrates the case where

the AC utility may fail to reflect the actual utility from cyclists.

Example 1. Consider a cyclist riding through r = {1,2,3,4,5} and two bike lane construction

plans, namely A and B: plan A builds bike lanes on {1,2,4,5} and plan B builds on {1,2,3,5}.

Under the AC utility function, the cyclist’s utility from both plans are the same: 4 + 2λ. However,

plan B may be more preferable to the cyclist if the marginal benefit from the continuity is increasing

in the size of continuous bike lanes.

Hence, in this section, we discuss a more general class of cyclist utility functions with the con-

sideration of continuity beyond adjacency. Given a trajectory r and a bike lane construction plan

x, let Sx(r) denote the set of subsets of maximal continuous road segments with bike lanes on r.

For instance, if r= {1,2,3,4,5} and bike lanes are constructed on {1,3,4,5} (x1 = x3 = x4 = x5 = 1

and x2 = 0), then Sx(r) = {{1},{3,4,5}}. We define a general utility function as

vx(r) =
∑

s∈Sx(r)

f(|s|), (11)

where f(·) is an increasing function. Under the adjacency-continuity utility function, f(|s|) =

|s|+ λ(|s| − 1) = (λ+ 1)|s| − λ, which is a linear function of |s|. And the score function used by

Bao et al. (2017) is a special case of (11), wherein f(|s|) = |s|α|s| with α≥ 1. We will refer the bike

lane planning model with the general utility function as BL-GU. Although maximizing the general

utility function is often challenging due to the nonlinearity, we can show that the utility function

(11) has a desirable structure when f(·) is further assumed to be convex.

Theorem 1. If f(·) is an increasing convex function, vx(r) defined in (11) is supermodular.

The convex assumption of f(·) is consistent with the notion that cyclists receive additionally

more benefits by riding through more continuous bike lanes. For example, utility functions such as

the ones with f(|s|) = |s|α|s| (α > 1) are supermodular. With supermodular utility functions, the

general utility maximization problem over the budget constraint has a polynomial-time solvable

Lagrangian dual problem.
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Corollary 1. If f(·) is an increasing convex function, maximizing the utility function vx(r)

defined in (11) over a budget constraint yields a polynomial-time solvable Lagrangian dual.

However, different from the adjacency-continuity utility function, each iteration of the

Lagrangian relaxation under the general utility function is not equivalent to a maximum flow

problem. Instead, we can use a general supermodular maximization oracle such as Fujishige’s

minimum-norm-point algorithm (Fujishige 2005). Then the computational performance of solving

the Lagrangian dual problem heavily depends on the efficiency of the supermodular maximization

oracle. In our case, the minimum-norm-point algorithm is not computationally efficient.

Nevertheless, the bike lane planning problem using the general utility function (11) can be

formulated as an MILP.

Proposition 2. Under the general utility function (11), the bike lane planning problem can be

solved as an MILP.

Note that the MILP formulation is attainable without assuming f(·) is convex. Specifically, the

general utility function can be represented as

vx(r) =
∑

l∈L(r)

βl

∏
i∈l

xi (12)

with properly chosen coefficients βl, where L(r) is defined to include all the possible subsets of con-

tinuous road segments on r. Each element l ∈L is a subset of continuous road segments. Here L(r) is

different from Sx(r) in the sense that L(r) is independent of x. For instance, given r= {1,2,3}, then

L(r) = {{1},{2},{3},{1,2},{2,3},{1,2,3}} and vx(r) = β1x1 +β2x2 +β3x3 +β1,2x1x2 +β2,3x2x3 +

β1,2,3x1x2x3, where coefficients β’s can be calculated as

β1 = β2 = β3 = f(1)),

β1,2 = β2,3 = f(2)− 2f(1),

β1,2,3 = f(3)− 2(f(2)− 2f(1))− 3f(1) = f(3)− 2f(2) + f(1).

More generally, βl = f(|l|)− 2f(|l|− 1) + f(|l|− 2) for a nonempty l (the proper definition requires

f(−1) = 0). When f(·) is an increasing convex function, all β’s are nonnegative.

The above analysis can be extended to consider heterogeneous road lengths. When the utility

depends on the riding distance, the | · | function in (11) can be interpreted as the total length func-

tion for a given subset of continuous road segments. Now denote the trajectory r as {i1, . . . , in},
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the coefficients βl in Equation (12) can be calculated as follows: (i) When l = {i}, βl = f(|l|) =

f(|{i}|); (ii) When l = {ij, ij+1}, βl = f(|l|)− f(|{ij}|)− f(|{ij+1}|) = f(|{ij, ij+1}|)− f(|{ij}|)−

f(|{ij+1}|); (iii) When l = {ij, ij+1, . . . , ij+k} (k ≥ 2), βl = f(|l|) − f(|{ij, ij+1, . . . , ij+k−1}|) −

f(|{ij+1, ij+2, . . . , ij+k}|) + f(|{ij+1, . . . , ij+k−1}|). Hence, in the example where r = {1,2,3}, we

would have

β1 = f(|{1}|), β2 = f(|{2}|), β3 = f(|{3}|),

β1,2 = f(|{1,2}|)− f(|{1}|)− f(|{2}|), β2,3 = f(|{2,3}|)− f(|{2}|)− f(|{3}|),

β1,2,3 = f(|{1,2,3}|)− f(|{1,2}|)− f(|{2,3}|) + f(|{2}|).

We provide an inductive proof about the validity of the above calculation in Appendix B.

Since function (12) only involves product terms with binary variables, we can linearize them to

get an MILP in a similar manner to BL-AC-MILP. We call this formulation BL-GU-MILP.

max
x

∑
m∈M

∑
l∈L(rm)

βlyl, (BL-GU-MILP)

s.t. yl ≥
∑
i∈l

xi− (|l| − 1), ∀l ∈L(rm),m∈M, (13)

yl ≤ xi, ∀i∈ l, l ∈L(rm),m∈M, (14)∑
i∈V

cixi ≤B, (15)

0≤ yl ≤ 1, ∀l ∈L(rm),m∈M, (16)

xi ∈ {0,1}, ∀i∈ V. (17)

Again, constraints (13) are not necessary if β’s are nonnegative. The number of constraints (14)

may be intimidating, but we can get a simple reduction by utilizing the nested structure of l.

For l ∈ L(r) with |l| > 2, two subsets, l− and l−, can be obtained by removing the first and the

last road segment of l, respectively. Since l−, l
− ∈ L(r), we can use two constraints yl ≤ yl− and

yl ≤ yl− instead of constraints (14). For example, given l= {1,2,3,4}, we can use l− = {2,3,4} and

l− = {1,2,3}. After the reduction, the constraint matrix of BL-GU-MILP boils down to a totally

unimodular matrix along with a budget constraint, as formalized in the following proposition.

Proposition 3. If f(·) is an increasing convex function, BL-GU-MILP with the relaxed budget

constraint has a totally unimodular constraint matrix. Then the corresponding Lagrangian relax-

ation can be solved as a linear program (LP).
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Proposition 3 has several important implications. First, it presents an alternative way to prove the

polynomial-time solvability result of the Lagrangian dual in Corollary 1. Since LP is polynomial-

time solvable and the Lagrangial dual has a limited number of break points, the Lagrangian dual can

be solved in polynomial time. Second, instead of resorting to a general supermodular maximization

oracle, the Lagrangian dual can now be solved with a linear programming solver, which tends to

deliver significantly better computational performance.

Regarding the size of BL-GU-MILP, both the number of continuous variables and the number

of constraints in BL-GU-MILP are O(min{|M |N 2
e , |L(V )|}), where Ne is the size of the longest

trajectory (in terms of the number of road segments). Although |M | can be arbitrarily large, L(V ),

the set of all possible continuous road segments on the entire road network, is limited. And in

practice, many trajectories are similar so the actual number of variables and constraints is limited.

3.2.1. A Lagrangian Relaxation Based Algorithm. Solving BL-GU-MILP directly via

commercial MILP solvers can be challenging due to the large number of variables and constraints

in practical applications. Given that the Lagrangian relaxation subproblem of BL-GU-MILP by

relaxing the budget constraint can be solved as an LP, we propose a simple and efficient Lagrangian

relaxation based algorithm (Algorithm 1) to solve the large-scale bike lane planning problem under

the general supermodular utility functions. Following the notations in Subsection 3.1, u is the dual

variable of the budget constraint and Φ(u) is the dual objective function. For the ease of exposition,

we use S(x) to denote the objective function of BL-GU-MILP, c(x) for the construction cost

(=
∑

i∈V cixi), x(u) for the maximizer of the Lagrangian relaxation at u, and g(u) =−(c(x)−B)

for the subgradient. Furthermore, let e = (1, . . . ,1) ∈ R|V | denote the vector of all ones, which

corresponds to the decision of constructing bike lanes on all road segments.

Algorithm 1 consists of two main parts. In the first part (steps 2-6), we solve the Lagrangian dual

of BL-GU-MILP (after relaxing the budget constraint) with an outer approximation algorithm.

The outer approximation algorithm maintains a lower limit u′ and an upper limit u′′ for the optimal

dual solution such that g(u′)< 0 and g(u′′)≥ 0. Then the function Ψu′,u′′(u) = max{Φ(u′) + (u−

u′)g(u′),Φ(u′′) + (u − u′′)g(u′′)} is an outer approximation of Φ(u) (note that Φ(·) is a convex

piecewise linear function). Observe that Ψu′,u′′(u) has a minimizer of u∗ = [(Φ(u′′)− u′′g(u′′))−

(Φ(u′)− u′′g(u′))]/(g(u′)− g(u′′)) = [S(x(u′′))− S(x(u′))]/(c(x(u′′))− c(x(u′))), and we use it to

update the lower/upper limit. Because Φ(u) has at most |V | break points, this outer approximation
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Algorithm 1 GU-Lag: Lagrangian Relaxation Heuristic for BL-GU-MILP

Input: tolerance level ε > 0.

1: Initialize u′ = 0 and u′′ = maxi
S(e)

ci
. Correspondingly, x(u′) = e, x(u′′) = 0, and so g(u′) =

−(c(e)−B) and g(u′′) =B.

2: Calculate u∗ = S(x(u′′))−S(x(u′))
c(x(u′′))−c(x(u′)) , and solve for x(u∗) with LP.

3: while |Φ(u∗)− (Φ(u′′) + (u∗−u′′)g(u′′)) |/Φ(u∗)> ε do

4: Set u′′ = u∗ if c(x(u∗))>B and u′ = u∗ otherwise;

5: Update u∗ = S(x(u′′))−S(x(u′))
c(x(u′′))−c(x(u′)) , and solve for x(u∗) with LP.

6: end while

7: if c(x(u∗)) =B then

8: return x(u∗);

9: else

10: Set up a new BL-GU-MILP by removing variables xi for i ∈ {j ∈ V : xj(u
∗) = 0} and yl for

l ∈ {l′ ∈ {L(rm)}m∈M : ∃i∈ l′, xi(u
∗) = 0}; solve this BL-GU-MILP and return the solution.

11: end if

algorithm terminates with at most |V |+ 1 iterations (Gallo and Simeone 1989). At termination,

we obtain u∗ and x(u∗), which are the optimal dual solution and its corresponding primal solution,

respectively. If the solution x(u∗) satisfies the budget constraint at equality, then it is also optimal

to BL-GU-MILP; otherwise we select road segments from the subset V (u∗) = {i ∈ V : xi(u
∗) = 1}

by solving a new MILP, as presented in step 10 of the algorithm. Because V (u∗) is smaller than V

(especially when B is not so large), the new MILP involves much less variables and can be solved

more efficiently. We test the efficiency of this algorithm in the numerical study.

3.3. Bike Lane Planning with Route Choices

Up till now our model makes no assumptions about cyclists’ responsive behaviors to the bike

lane construction plan. The aforementioned models maximize the cyclists’ utility assuming their

route choices are fixed (their trajectories will not be impacted by the constructed bike lanes). This

assumption may not be valid if cyclists update their route choices based on the constructed bike

lanes. Since the utility from riding through a route is influenced by the constructed bike lanes,

cyclists may choose to take a different route than the observed trajectory if more bike lanes are

constructed along that route.
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To account for cyclists’ route choices, we assume for a cyclist m riding from i∈ V to j ∈ V , she

can choose from a set of candidate routes/trajectories Cm = {r1m, . . . , rtmm }, where each route starts

with i and ends with j. In addition to the bike lane utility, cyclists’ evaluation of a route also

depends on the travel time, slope, noises, and other physical characteristics. Therefore, we add to

the utility function an exogenous disutility term v̄(r) that mainly captures the travel time cost of

route r. In practice, v̄(r) can be estimated beforehand and assumed to be known.

Given a bike lane construction plan x, cyclist m chooses the route r ∈Cm with probability pmr

according to some choice model. Then the objective of the bike lane planning problem is

max
x

∑
m∈M

∑
r∈Cm

Dmpmr(vx(r)− v̄(r)), (18)

where Dm is the aggregated demand of cyclist m (after aggregation based on origin-destinations).

The bike route choice is often modeled using the Multinomial Logit model (MNL), as shown in

Hood et al. (2011) and Khatri et al. (2016). Under the MNL model, the probability pmr is given

by

pmr =
exp(vx(r)− v̄(r))∑

r′∈Cm
exp(vx(r′)− v̄(r′))

. (19)

Because many alternative routes have overlapping road segments, the assumption of irrelevant

alternatives may not be satisfied. To relieve this concern, a correction term called Path Size factor

(PS) can be added, e.g., see Broach et al. (2012). This correction term can be calculated beforehand

and is independent of the bike lane decision, thus the structure of pmr remains the same.

The consequent bike planning problem is similar to an assortment optimization problem as

decisions in both problems shape the choice probabilities. However, while the assortment decision

influences the choice probabilities by altering the choice set, the bike lane construction decision

transforms the choice probabilities by changing the utility values. That being said, the choice set in

our problem is invariant to the decision variables, which is a critical difference between our problem

and the assortment optimization problem. Furthermore, unlike the assortment optimization where

the marginal profit of each product is exogenously given, the “profit” from bike lanes vx(r) depends

on the decision variables. Hence problem (18) also shares a similar structure to the joint assortment-

pricing optimization problem. However, the decisions here are binary and the analysis in the pricing

literature can not carry on.
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To tackle the above challenges, we propose to solve the bike lane planning problem with cyclists’

route choices as a bilevel program, where cyclists are viewed as followers who make route choices

after observing the bike lane decisions. Equation (19) can be viewed as the solution to a lower-level

(follower) equilibrium problem. Specifically, this equation can be derived by solving the following

convex optimization problem:

min
pmr :m∈M,r∈Cm

∑
m∈M

∑
r∈Cm

[
pmr lnpmr + pmr (v̄(r)− vx(r))

]
(LL)

s.t.
∑
r∈Cm

pmr = 1, ∀m∈M (20)

pmr ≥ 0, ∀m∈M,r ∈Cm. (21)

To see this, first note that the optimal solution to (LL) must be positive, then let γ denote the

dual variable of constraint (20). The optimality condition is

lnpmr + 1 + v̄(r)− vx(r) = γm, ∀r ∈Cm,

which gives pmr = exp(vx(r)− v̄(r))/ exp(1− γm). Combining with Equation (20), we obtain that

pmr =
exp(vx(r)− v̄(r))∑

r′∈Cm
exp(vx(r′)− v̄(r′))

.

Therefore, the original bike lane planning model can be reformulated as a bilevel program with

the lower-level problem (LL). Because (LL) is convex, we can borrow the ideas from convex bilevel

programming to solve the resulting bike lane planning model.

Motivated by Dan and Marcotte (2019), we devise a linear approximation approach that approx-

imates the convex parts in the objective function of (LL) by piecewise linear functions. Specifically,

we sample from [0,1] K points {p1, p2, . . . , pK} such that pi < pj for all i < j. Then the piecewise

linear approximation of pmr lnpmr takes the form of

p(lnpk + 1)− pk, ∀k= 1, . . . ,K.

Therefore, we obtain the linear approximation of (LL) as

min
pmr :m∈M,r∈Cm

∑
m∈M

∑
r∈Cm

[
ωmr + pmr (v̄(r)− vx(r))

]
(LL-Lin)

s.t.
∑
r∈Cm

pmr = 1, ∀m∈M (22)

ωmr ≥ pmr(lnp
k + 1)− pk, ∀m∈M,r ∈Cm, k= 1, . . . ,K, (23)

pmr ≥ 0, ∀m∈M,r ∈Cm. (24)
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Next, we can replace (LL) in the bike lane planning problem by a set of optimality condition

constraints associated with (LL-Lin), i.e., primal/dual feasibility and complementary slackness

constraints. In order to derive an MILP, the final step is to linearize product terms pmrvx(r)

that appear in both (LL-Lin) and the objective function (18). Note that vx(r) is a sum of binary

variables, and we can write pmrvx(r) as

pmrvx(r) = pmr

∑
l∈L(r)

βlyl =
∑

l∈L(r)

βlζmrl,

where auxiliary variables ζmrl are introduced along with the following two linear constraints

ζmrl ≤ pmr, ∀l ∈L(r),

ζmrl ≤ yl, ∀l ∈L(r).

Now the bike lane planning problem with cyclists’ route choices has been transformed into an

MILP. We provide the detailed formulation and more technical details in Appendix C

The performance of our linear approximation approach depends on the linear approximation

accuracy. We prove that this approach is asymptotically exact when K increases, as indicated in

the following result.

Proposition 4. The approximation error of the objective function (18) with (LL-Lin) is O( 1
K

).

4. A Real-World Case Study

We apply the proposed models and algorithms to a real-world trajectory data set. First, we describe

the data set and present its summary statistics. Then we discuss the computational performance

and solution quality of the proposed algorithms. Lastly, we compare the bike lane construction

plans generated by different models with varying parameters, with and without consideration of

cyclists’ route choice models.

4.1. Data Description

We obtain a GPS bike trajectory data set via our collaboration with the urban planning institution

of Zhuhai city and a major bike-sharing company operating in Zhuhai. Zhuhai is a medium-size city

of China with a population of 1.67 million, where both station-based and dock-less bike-sharing

systems have been deployed. We collected bike trajectories in the central urban area of Zhuhai

from our partner bike-sharing company from March 2017 until February 2018. Between Aug 2017
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and Feb 2018, the ridership shrank significantly as the company shifted their operations focus.

Therefore, we decided to only keep the data from March-July 2017. Note that during the collection

period, there were two other dock-less bike-sharing platforms operating in Zhuhai, and the demand

was split between these platforms. Since the competing platforms share a similar business models

(and their bikes have similar designs), we assume our trajectory data can approximately represent

the travel pattern and route preferences of bike riders.

Nevertheless, the data set is potentially biased due to bike availability and infrastructure issues.

The observed demand is censored as potential ride demand may be lost due to the lack of available

bikes or safe bike infrastructure in the neighborhood. To alleviate the the availability bias, we apply

a decensoring approach to reconstruct the true demand, which will be detailed in the sequel. To

uncover the lost demand due to missing infrastructure, we can potentially combine the observed

demand data with user click data (on mobile apps) and survey data to understand the riders’

behaviors and preferences (on safe infrastructure). We will leave this as a future research direction.

The obtained trajectories are mapped to the road network extracted from OpenStreetMap (Geo-

fabrik 2018)2. Each trajectory contains a timestamp that indicates the start time of a trip and a

series of GPS coordinates that were recorded every 5 seconds. After removing trajectories that are

shorter than one minute, there are 109,640 bike trajectories in total.

Data Decensoring Our original trajectory data is subject to the censoring bias from stock-out

events, e.g., potential riders can not fulfill their demand if the neighborhood area has no bikes

available. To address this issue, we follow the idea from O’Mahony and Shmoys (2015) to decensor

the trip demand and the corresponding trajectory data. Specifically, we first identify the stock-out

events from the observed stock evolution in each neighborhood, and then calculate the average

demand conditional on that there are no stock-outs for each neighborhood. Afterwards we reweight

the trajectory data to be aligned with the conditional average demand. We provide additional

details about this decensoring procedure in Appendix E.

Summary Statistics and Spatial Distribution Figure 1 presents the distribution of bike

trajectory duration from our data set. The average trajectory duration is 903.6 seconds (15.1

minutes), and the majority of trajectories have duration shorter than 20 minutes. This is because

2 To map the GPS coordinates to the road network, we generate a near table in ArcGIS that finds the nearest road

segment to a coordinate point. Then each coordinate is associated with a road segment ID.
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most trajectories are limited to the urban and residential areas of Zhuhai. We identify 3,735 road

segments from the trajectories in total. The average length of the road segments is 195.3 m, and

more than 60% of road segments have lengths under 200 meters. Most roads are constructed in

the urban area of Zhuhai with high density of population, and thus intersections are close to each

other in this area.

Figure 1 Bike trajectory duration distribution.

Figure 2 presents the spatial distribution of the road segment usage frequency (the number of

trajectories passing through the road segment). We observe that the locations of the road segments

with high usage levels are located in a few areas in Zhuhai, which include the financial district,

shopping district, and residential districts of the city. We also find that many popular road segments

are spread out over the city, which implies that merely maximizing the coverage of bike trips would

result in a highly discontinuous bike lane system. More details about the data set can be found in

Appendix D.

4.2. Computational Result

We evaluate the computational performance of the proposed models and algorithms on the practical

road network and trajectory data set. For BL-GU, the utility function takes the form of vx(r) =∑
s∈Sx(r)

|s|α|s|. We vary the choices of λ, α, B, and the number of sampled trajectories (cyclists) m.

The experiments were conducted with Gurobi (Gurobi Optimization 2018) and ran on a Windows

10 64-bit machine with a Intel Xeon 4114 2.20 GHz processor and 32.0 GB RAM.
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Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

Figure 2 Road segment usage spatial distribution.

BL-AC can be solved by the MILP solver efficiently (BL-AC-MILP), and the solution time is

within a minute for the studied road network. Different from BL-AC, the general model BL-GU

often involves a much greater number of variables and solving the corresponding MILP formulation

can be time consuming. We compare here the efficiency of the proposed Lagrangian relaxation

based algorithm (denoted as GU-Lag) versus a benchmark greedy heuristic adapted from Bao

et al. (2017), which selects road segments to increase the utility function in a greedy way. The

detailed comparison results are presented in Table 1, in which we test the two algorithms on

different sets of trajectories (e.g., m= 2000 indicates a random sample of 2000 trajectories). The

reported optimality gap is (ZUB − Z)/ZUB, where ZUB is the upper bound derived from the

Lagrangian dual Φ(u∗) and Z is the objective value of the feasible solution found by the algorithm.

The reported performance is averaged across five different runs. We observe that GU-Lag delivers

superior performance in terms of both the running time and solution quality. In particular, the

greedy algorithm does not scale well to the cases with large values of B or α. For example, when

α= 1.1, the solution derived from the greedy algorithm has a relatively large optimality gap. By

contrast, GU-Lag admits a reliable computational performance across all different combinations of

parameters.

Regarding the bike lane planning model with route choices, we implement the linear approxima-

tion scheme and the reformulated MILP as the solution approach. We set the approximation sample
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Table 1 Computational performance of GU-Lag and the greedy algorithm (time in seconds)

m= 2000 m= 4000 all trajectories

B α
GU-Lag Greedy GU-Lag Greedy GU-Lag Greedy

(km) Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap

30

1.02 28.3 0.03% 156 17.26% 63.2 0.03% 382 17.96% 111 0.02% 767 14.47%

1.05 44.1 0.64% 130 17.98% 216 0.70% 317 21.00% 1,046 0.67% 664 14.06%

1.1 35.4 1.64% 106 58.57% 277 1.59% 257 74.51% 243 2.63% 440 70.93%

50

1.02 28.5 0.02% 437 13.69% 65.5 0.03% 1,007 13.08% 118 0.02% 1,893 12.72%

1.05 48.7 0.24% 360 19.16% 249 0.62% 782 21.19% 361 0.69% 1,545 11.01%

1.1 58.7 0.86% 247 45.30% 146 0.93% 602 59.64% 2,449 2.01% 945 50.28%

100

1.02 35.0 0.03% 1,810 8.15% 78.6 0.02% 4,560 5.13% 164 0.03% 8,626 2.97%

1.05 106 0.05% 1,462 15.14% 207 0.04% 3,318 16.90% 412 0.02% 7,167 14.40%

1.1 112 0.20% 973 26.49% 462 0.13% 2,046 43.85% 202 0.03% 3,852 38.15%

size K = 20, and the termination criteria to be: 1) the optimality gap (MIP gap) is below 0.1%;

or 2) the solution time exceeds 6 hours. The computational performance is summarized in Table 2

(we only present the result for BL-GU as it is more difficult to solve than BL-AC in general). We

observe that for practical size problems, a high-quality solution (with a small optimality gap) to

the linear approximation model can be found within a few hours. The optimality gap is less than

0.1% for most instances and is 0.2% in the worst case. Hence the proposed MILP reformulation

model is computationally tractable.

4.3. Bike Lane Planning Result and Discussion

We compare the bike lane planning solutions generated from BL-AC and BL-GU in terms of

quantitative topological measures as well as visualization results. The setup is the same as in

Subsection 4.2 and we use the decensored trajectories (weighted) as the model input. We first focus

on the case with fixed trajectories, and then discuss the effects of incorporating the route choice

model.

4.3.1. Topological Comparisons. We consider five relevant topological features: the number

of selected bike lanes (road segments), the number of continuous bike lane pairs, the mean number
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Table 2 Computational performance of the MILP reformulation of BL-GU with route choices (time in seconds)

m= 2000 m= 4000 all od-pairs

B (km) α Time Gap Time Gap Time Gap

30

1.02 2,060 0.09% 5,437 0.09% 8,299 0.09%

1.05 2,658 0.09% 4,664 0.09% 6,657 0.09%

1.1 6,834 0.07% 16,761 0.10% 21,600 0.12%

50

1.02 1,597 0.09% 5,233 0.09% 21,600 0.11%

1.05 2,708 0.09% 4,182 0.08% 14,651 0.07%

1.1 5,428 0.09% 16,806 0.10% 21,600 0.20%

100

1.02 586 0.07% 3,970 0.08% 8,328 0.07%

1.05 1,683 0.08% 2,245 0.08% 6,622 0.06%

1.1 3,055 0.08% 12,970 0.08% 19,110 0.09%

of connections per bike lane, the mean size of continuous bike lanes (along trajectories), and the max

size of continuous bike lanes (along trajectories). All the features except the number of selected bike

lanes measure the continuity of bike lanes on the road network. Table 3 presents the comparison

results based on these features for BL-AC and BL-GU with different parameter values. Note that

BL-GU with α= 1 is equivalent to GL-AC with λ= 0.

We have several observations. First, in BL-AC (and BL-GU), increasing the value of λ (and

α) leads to fewer selected bike lanes. Because when the continuity is assigned a small weight, the

planning model tends to build bike lanes on more road segments to cover more bike trajectories.

And when the continuity is more preferred, it is beneficial to build bike lanes in a few areas to

make sure the bike lanes are connected to each other. Second, as λ grows in BL-AC, the number of

continuous bike lane pairs increases, which is consistent with the objective function of BL-AC that

maximizes the adjacency continuity. In the meanwhile, the mean size of continuous bike lanes, the

maximum size of continuous bike lanes, and the mean number of connections per bike lane also

increase. By contrast, we observe that the number of continuous bike lane pairs first increases and

then decreases while other continuity measures increase with α in BL-GU. This is because given a

larger value of λ, BL-GU tends to value the size of continuous bike lanes more than the adjacency
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Table 3 Topological comparison of BL-AC and BL-GU with B = 50 km.

# of selected

bike lanes

# of continuous

bike lane pairs

mean # of

connections per

bike lane

mean size of

continuous bike

lanes

max size of

continuous bike

lanes

BL-AC

λ= 0 549 1,716 3.7 3.3 16

λ= 2 472 2,257 5.8 4.7 21

λ= 10 458 2,314 6.1 5.1 26

BL-GU

α= 1.02 515 1,896 4.4 4.4 30

α= 1.05 419 1,916 5.6 5.9 53

α= 1.1 327 1,728 6.6 6.5 65

continuity. Consequently, longer trajectories will play a greater role in the planning decision and

the maximum size of continuous bike lanes grows as well. Furthermore, the mean size of continuous

bike lanes from BL-AC is often smaller than that from BL-GU. Even when λ is very large, BL-AC

can not get the same continuity level as BL-GU (in terms of the mean size of continuous bike

lanes). This highlights the limitation of BL-AC, of which the objective function only considers the

pair-wise continuity. BL-GU, however, measures the size of continuous bike lanes explicitly.

We visualize the bike lane planning results of BL-AC and BL-GU on the road network in Figure

3 and Figure 4, respectively. It can be shown that when λ= 0 (α= 1), the selected bike lanes are

spread out over the city. Consistent with our topological findings, a large value of λ in BL-AC

induces fewer and more continuous bike lanes. Increasing the value of α in BL-GU has a similar

effect that yields a more continuous bike lane network, as shown in Figure 4a. Different from

BL-AC, as indicated by our previous discussion, having a large value of α in BL-GU also tends

to select continuous road segments on the long trajectories, which leads to a different bike lane

system in Figure 4b. Interestingly, the selected bike lanes from Figure 4b are mostly aligned with

the main roads of the city road network connecting different districts while the selected bike lanes

from Figure 3b are more along with the secondary roads.
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Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(a) λ= 0

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(b) λ= 2

Figure 3 Selected bike lanes (in red color) from BL-AC with B = 50 km.

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(a) α= 1.02

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(b) α= 1.05

Figure 4 Selected bike lanes (in red color) from BL-GU with B = 50 km.

4.3.2. Coverage-Continuity Trade-Off. In both BL-AC and BL-GU, we are balancing the

coverage objective versus the continuity objective, which are reflected in the utility functions. When

increasing the value of λ or α, the bike lane planning model puts more weights on the continuity

than the coverage objective. Table 4 presents the percentage changes of the coverage and continuity

measures using BL-AC with λ= 0 as the baseline. The coverage ratio is calculated as the percentage

of trajectories (sets of road segments) that are covered by bike lanes. Indeed, we observe that both

the mean number of connections per bike lane and mean size of continuous bike lanes grow at the
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Table 4 Percentage change in coverage and continuity measures with varying λ and α.

% change in the

coverage ratio

% change in the mean # of

connections per bike lane

% change in the mean size of

continuous bike lanes

BL-AC

λ= 2 -7.15% 56.76% 42.42%

λ= 10 -10.16% 64.86% 54.55%

BL-GU

α= 1.02 -2.26% 18.92% 33.33%

α= 1.05 -20.46% 51.35% 78.79%

expense of the coverage ratio. Notably, the BL-GU with α= 1.02 improves the continuity of bike

lanes significantly while only lowering the coverage ratio slightly.

4.3.3. Varying the Budget, B. Increasing the budget in both BL-AC and BL-GU will

improve coverage and continuity. Figure 5 shows how the coverage ratio and the mean size of

continuous bike lanes evolve with the budget value. As B grows, the two measures increase and the

gap between different models remains non-negligible. This implies that even when a large budget

is allowed, making a good bike lane planning decision is still critical. Since bike lane construction

is often costly, the city government can weigh the benefits from building bike lanes versus the cost

using the quantified measures proposed in this paper.

4.3.4. Route choice model considerations. The previous discussion ignores the interaction

between bike lane planning and cyclists’ route choices. Here we investigate how the planning result

would change when cyclists update their route choices following the discussion in Section 3.3. To

better illustrate and compare the result, we focus on a subarea of the city (Jida Residential District),

which corresponds to the bottom right area on the map. We call the Google Map Directions

API (https://developers.google.com/maps/documentation/directions/start) to generate

the candidate routes for each origin-destination pair in the subarea. Hence the choice set Cm

includes both the observed route as well as the routes returned by Google.

We apply the MILP model developed in Subsection 3.3 and choose the linear approximation

sample size to be 20. The utility function is assumed to take the form of vx(r)− ηLr for a route

r, where Lr is the riding distance (in km) of route r (since travel time is an important factor in

https://developers.google.com/maps/documentation/directions/start
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Figure 5 The impact of B on the coverage ratio and mean size of continuous bike lanes.

cyclists’ choices, see, e.g., Khatri et al. 2016, Datner et al. 2019). The parameter η measures the

disutility per km of riding distance, which can be estimated following the MNL model. Here we

set η= 20 such that vx(r) is comparable with ηLr
3.

Figure 6 presents the bike lane planning results for BL-GU with route choices (B = 30 and

α= 1.02,1.05). We observe that accounting for route choices has a significant impact on the result-

ing bike lane network. Specifically, after incorporating the route choice model, the optimal bike

lane network tends to spread out to cover more routes other than the observed ones, which compro-

mises continuity to some extent. This highlights the importance of understanding cyclists’ routing

choices when bike lanes are present (including both coverage and continuity considerations). Policy

makers can employ empirical approaches to understand the behaviors and integrate them with the

analytical models proposed in this paper.

5. Conclusion

This paper develops a set of novel formulations and algorithms to the bike lane planning problem

that is becoming increasingly important in smart city management. Unlike the previous work that

mainly builds on surveys and heuristics, we present a modeling framework that directly utilizes

the GPS bike trajectory data from emerging dock-less bike sharing systems. Our model formalizes

3 It is hard to identify vx(r) from the current data set so we may revisit the estimation problem once we collect new

data sets after Zhuhai city implements more bike lanes.
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Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(a) Without route choices (α= 1.02)

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(b) Route choice based model (α= 1.02)

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(c) Without route choices (α= 1.05)

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

(d) Route choice based model (α= 1.05)

Figure 6 Selected bike lanes from BL-GU with different responsive behaviors of cyclists (B = 50 km)

the main objectives of bike lane planning in view of the cyclists’ utility functions. Depending

on the utility function structure, we propose efficient algorithms to solve the corresponding bike

lane planning model. In addition, we develop a route choice based bike lane planning model that

considers the interaction between bike lane network and cyclists’ routing behaviors. Based on the

bilevel program reformulation, we obtain a tractable MILP reformulation. We demonstrate the

effectiveness of the proposed models and algorithms on a large-scale real-world data set. We show

how the topology of the bike lane network would change with varying choices of the utility functions

and demonstrate the tension between coverage and continuity quantitatively. Last but not least,

our results reveal the importance of considering cyclists’ route choices to the bike lane planning,

which is often ignored in the existing literature.

There are several promising future research directions. First, it would be interesting to consider

the width of bike lanes as another decision dimension in the model. The width of the bike lanes

can impact the interaction between car flows and bike flows, and eventually change the traffic

equilibrium of the whole urban environment. Second, since cyclists’ responsive behaviors are often

hard to predict before any bike lane is deployed, the city planning agencies may dynamically
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construct bike lanes in the city, e.g., first build a few bike lanes to learn the behaviors and then

add more bike lanes. Then the problem becomes a dynamic strategic planning model with behavior

learning. Third, jointly designing the bike lanes with other bike facilities such as bike sharing

stations and parking areas can be of interest to the municipal governments.
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Appendix

In this appendix we provide the technical proofs of the results in the paper as well as additional

modeling details (the MILP reformulation to BL-GU with route choices, and data decensoring

steps).

Appendix A: Main proofs

Proof of Lemma 1 Let two sets of road segments A and B satisfy A⊆B. Consider adding a road segment

k /∈ B to the two sets. In terms of the first part of the objective function, the change caused by adding k

is the same for A and B because of linearity. For the second part, as λ ≥ 0 and dij ≥ 0 for all (i, j) ∈ N ,

the value of the second part can only increase with the newly added e. Since B can only contain more road

segments than A, there are potentially more neighbors of k that are included in B. As a result, the increase

of objective value caused by adding e is greater for B than A. �

Proof of Proposition 1 Directly from Lemma 1, BL-AC is essentially a supermodular knapsack problem,

which admits a polynomial-time solvable Lagrangian dual, as shown in Theorem 16 of Gallo and Simeone

(1989). �

Proof of Theorem 1 Consider two bike lane construction plans, i.e. sets of road segments A and B to build

bike lanes satisfying A⊆B, and a road segment i /∈B. We prove the supermularity of vx(r) by conditioning

on i: 1) If i /∈ r, then building a bike lane on i does not impact the value of vx(r), so vA∪{i}(r) = vA(r) and

vB∪{i}(r) = vB(r). 2) If i ∈ r, let i− 1 and i+ 1 denote the road segment visited before and after i on the

trajectory r, respectively (when i is at the head or the tail of the trajectory, either i− 1 or i+ 1 is empty

and our analysis can be easily extended). We further consider the following three scenarios:

• If neither i−1 nor i+ 1 belongs to A, then vA∪{i}(r)−vA(r) = f(1). Next, if either i−1 or i+ 1 belongs

to B, we have vB∪{i}(r)− vB(r) = f(|s|+ 1)− f(|s|) for some s∈ SB(r) (note that s must include either i− 1

or i+ 1, thus |s| ≥ 1). By the assumption that f(·) is increasing convex, we have f(|s|+ 1)− f(|s|)≥ f(1).

If both i− 1 and i+ 1 belong to B, then vB∪{i}(r)− vB(r) = f(|s−1|+ |s+1|+ 1)− f(|s−1|)− f(|s+1|), where

s−1, s+1 ∈ SB(r) and i−1∈ s−1, i+1∈ s+1. Because f(·) is increasing convex, f(|s−1|+ |s+1|+1)−f(|s−1|)−

f(|s+1|)≥ f(|s−1|+ |s+1|+ 1)− f(|s−1|+ |s+1|)≥ f(1). Otherwise, when neither i− 1 nor i+ 1 belongs to B,

vB∪{i}(r)− vB(r) = f(1) = vA∪{i}(r)− vA(r). Hence vB∪{i}(r)− vB(r)≥ vA∪{i}(r)− vA(r).

• If either i− 1 or i+ 1 belongs to A, then vA∪{i}(r)− vA(r) = f(|s|+ 1)− f(|s|) for some s ∈ SA(r).

Similarly, for B, as A⊆B we have: i) when either i−1 or i+ 1 belongs to B, vB∪{i}(r)− vB(r) = f(|s′|+ 1)−
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f(|s′|) for some s′ ∈ SB(r); ii) when both i− 1 and i+ 1 belong to B, vB∪{i}(r)− vB(r) = f(|s′−1|+ |s′+1|+

1)− f(|s′−1|)− f(|s′+1|), where s′−1, s
′
+1 ∈ SB(r) and i− 1 ∈ s′−1, i+ 1 ∈ s′+1. Because A⊆ B, we can verify

that |s′| ≥ |s| and |s′−1|+ |s′+1|> |s|. As f(·) is increasing convex, vB∪{i}(r)− vB(r)≥ vA∪{i}(r)− vA(r) .

• If both i− 1 and i+ 1 belong to A, vA∪{i}(r)− vA(r) = f(|s−1|+ |s+1|+ 1)− f(|s−1|)− f(|s+1|), where

s−1, s+1 ∈ SA(r) and i − 1 ∈ s−1, i + 1 ∈ s+1. Similarly, both i − 1 and i + 1 must belong to B as well,

hence vB∪{i}(r)− vB(r) = f(|s′−1|+ |s′+1|+ 1)− f(|s′−1|)− f(|s′+1|), where s′−1, s
′
+1 ∈ SB(r) and i− 1 ∈ s′−1,

i+ 1 ∈ s′+1. Because A⊆ B, |s′−1| ≥ |s−1| and |s′+1| ≥ |s+1|. It follows that |s′−1|+ |s′+1| ≥ |s−1|+ |s+1| and

vB∪{i}(r)− vB(r)≥ vA∪{i}(r)− vA(r).

In all the cases we have shown that vB∪{i}(r)− vB(r)≥ vA∪{i}(r)− vA(r) so vx(r) is indeed supermodular.

�

Proof of Corollary 1 Based on Theorem 1, the utility function vx(r) is supermodular and maximization

of this utility function over a budget constraint is a supermodular knapsack problem, which has a polynomial-

time solvable Lagrangian dual (see Theorem 16 from Gallo and Simeone 1989). �

Proof of Proposition 2 Following the reformulation of vx(r) as a polynomial function (12), we can further

apply standard linearization techniques to get an MILP formulation, as shown in BL-GU-MILP. �

Proof of Proposition 3 When f(·) is an increasing convex function, the coefficients βl in BL-GU-MILP

are all positive: βl = f(|l|)−2f(|l|−1)+f(|l|−2) = f(|l|)−f(|l|−1)−(f(|l|−1)−f(|l|−2))≥ 0. Then we can

remove constraints (13) from the formulation. The remaining constraints are constraints (14) and constraints

(16) in addition to the budget constraints. Our goal is to prove that the constraint matrix consisting of these

two types of constraints is totally unimodular. Note that constraints (16) correspond to an identity matrix

and do not affect the totally unimodularity property. Therefore we focus on the matrix of constraints (14),

which we denote by P . With or without using the reduction techniques, each row of P only includes one 1

and one −1. Then we prove that P T is totally unimodular because it satisfies: 1) Each entry of P T must be

-1, 0, or +1, i.e., P T
ij ∈ {−1,0,+1}; 2) Each column contains at most two non-zero entries; 3) There exists a

partition (M1,M2) of the set M of the set of rows of P T such that each column j containing two non-zero

entries satisfies
∑

i∈M1
P T

ij −
∑

i∈M2
P T

ij = 0. It is obvious that conditions 1) and 2) hold for P T , and the

third condition is satisfied by using the partition (P T ,∅). It follows that P is totally unimodular because the

transpose of a totally unimodular matrix is also totally unimodular. As a result, the Lagrangian relaxation

of BL-GU-MILP with relaxed budget constraint can be solved as an LP. �
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Proof of Proposition 4 Note that the approximation error only comes from the piecewise linear approx-

imation of function p lnp in the lower-level problem (LL). Let p be the solution to (LL) and p′ be the

solution to (LL-Lin) (given decision x). And we use h(·) and h′(·) to denote the objective function of (LL)

and (LL-Lin), respectively. It follows that

∇h(p) = (lnpmr + vx(r)− v̄(r))mr.

It can be easily verified that ∇h(p) is strongly monotone with modulus 1 for 0< p≤ 1 (the Jacobian matrix

is positive definite diagonal, and the smallest possible eigenvalue is 1, see also Dan and Marcotte 2019). From

the definitions of p and p′, we have

〈∇h(p),p′−p〉 ≥ 0, 〈∇h′(p′),p−p′〉 ≥ 0

⇒ 〈∇h′(p′)−∇h(p),p−p′〉 ≥ 0.

By the properties of ∇h(·), it holds that 〈∇h(p)−∇h(p′),p−p′〉 ≥ ||p−p′||2 (from the Jacobian matrix),

hence

〈∇h′(p′)−∇h(p′),p−p′〉 ≥ ||p−p′||2. (25)

Furthermore, the incurred difference in the objective function of the upper-level problem (18) is

∑
m∈M

∑
r∈Cm

Dm |(pmr − p′mr)(vx(r)− v̄(r))| ≤D ·V
∑
m∈M

∑
r∈Cm

|pmr − p′mr|

≤D ·V
√
|M | · |C∗| ||p−p′||

≤D ·V
√
|M | · |C∗| ||∇h′(p′)−∇h(p′)||, (26)

where D = maxmDm, V = maxx,r |vx(r) − v̄(r)|, and C∗ = arg maxm |Cm|. The second inequality fol-

lows directly from the CauchySchwarz inequality, and the third inequality is derived by applying the

CauchySchwarz inequality to (25). Next, we bound the gap between ∇h′(p′) and ∇h(p′).

By the construction of h′(·), each component of ∇h′(p′), ∇h′(p′)mr, is a piecewise constant approximation

of log(pmr). Let the K sampling points {p1, p2, . . . , pK} satisfy: 1) the samples start from pmin to 1; and 2)

the sample points are chosen such that the constant approximations are vertically equidistant. Then we have

|∇h′(p′)mr −∇h(p′)mr| ≤
log 1

pmin

K
.
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Therefore,

||∇h′(p′)−∇h(p′)||=
√∑

m∈M

∑
r∈Cm

|∇h′(p′)mr −∇h(p′)mr|2 ≤
log 1

pmin

√
|M | · |C∗|
K

. (27)

Combining inequalities (26) and (27) leads to

∑
m∈M

∑
r∈Cm

Dm |(pmr − p′mr)(vx(r)− v̄(r))| ≤
D ·V · |M | · |C∗| log 1

pmin

K
.

Thus the approximation error of the upper-level objective function (18) is O( 1
K

). �

Appendix B: The validity about the calculation of the coefficients β in general
utility functions

For any trajectory r= {i1, . . . , in} (n∈N+), the chosen β’s will need to satisfy

f(|r|) = βr +

2∑
j=1

βij ,...,in+j−2 +

3∑
j=1

βij ,...,in+j−3 + · · ·+
n∑

j=1

βij . (28)

We will prove this by induction. It is easy to verify that the calculation presented in Subsection (3.2) satisfy

the above equations for trajectories with cardinality less or equal to three. Now we assume equations (28)

are satisfied with βl = f(|l|)− f(|{ij , ij+1, . . . , ij+k−1}|)− f(|{ij+1, ij+2, . . . , ij+k}|) + f(|{ij+1, . . . , ij+k−1}|)

for trajectories with cardinality less or equal to n− 1. Then for a trajectory r= {i1, . . . , in}, we have

βr +

2∑
j=1

βij ,...,in+j−2 +

3∑
j=1

βij ,...,in+j−3 + · · ·+
n∑

j=1

βij

=βr +

[
βi2,...,in +

3∑
j=2

βij ,...,in+j−3 + · · ·+
n∑

j=2

βij

]
+βi1,...,in−1 +βi1,...,in−2 + · · ·+βi1

=βr + f(|{i2, . . . , in}|) +βi1,...,in−1 +βi1,...,in−2 + · · ·+βi1 , (29)

where the last equality follows by our inductive assumption. Furthermore, note that

βi1 +βi1,i2 + · · ·+βi1,...,in−2 +βi1,...,in−1 =f(|{i1, i2}|)− f(|{i2}|) +βi1,i2,i3 + · · ·+βi1,...,in−1

=f(|{i1, i2, i3}|)− f(|{i2, i3}|) + · · ·+βi1,...,in−1

...

=f(|{i1, . . . , in−1})− f(|{i2, . . . , in−1}), (30)

where the equalities hold by our choices of β’s. Combining the equations (29) and (30) gives

βr +

2∑
j=1

βij ,...,in+j−2 +

3∑
j=1

βij ,...,in+j−3 +· · ·+
n∑

j=1

βij = βr +f(|{i2, . . . , in}|)+f(|{i1, . . . , in−1})−f(|{i2, . . . , in−1}) = f(|r|).

Hence equations (28) hold for trajectories with cardinality equals to n. �
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Appendix C: The detailed MILP formulation of the bike lane planning model with
route choices

The optimality equations for (LL-Lin) can be written as

(22)− (24)

γm−
K∑

k=1

%mrk ≤ v̄(r)− vx(r), ∀m∈M,r ∈Cm, (31)

K∑
k=1

%mrk = 1, ∀m∈M,r ∈Cm, (32)

%mrk ≥ 0, ∀m∈M,r ∈Cm,∀k= 1, . . .K (33)∑
m∈M

∑
r∈Cm

[
ωmr + pmr (v̄(r)− vx(r))

]
=
∑
m∈M

γm−
∑
m∈M

∑
r∈Cm

K∑
k=1

pk%mrk (34)

where γm, %mrk are the dual variables of constraints (22) and (23), respectively. Constraints (31)-(33) are

the dual feasible constraints. Constraint (34) enforces the equivalence between the primal objective value

and the dual objective value, which replaces the complementary slackness constraints. This replacement

leads to better empirical computational performance as it avoids the use of big M and additional binary

variables, which would otherwise be required in linearizing the complementary slackness constraints. Then

we introduce ϕmr = pmrvx(r) with ζmrl and

ϕmr =
∑

l∈L(r)

βlζmrl, ∀m∈M,r ∈Cm (35)

ζmrl ≤ pmr, ∀m∈M,r ∈Cm, l ∈L(r), (36)

ζmrl ≤ yl, ∀m∈M,r ∈Cm, l ∈L(r). (37)

Because the objective is maximizing cyclists’ utility, the above constraints will make ζmrl = pmryl. Therefore,

we obtain an MILP formulation for the bike lane planning model with route choices.

Appendix D: Temporal distribution of trajectory Data

Figure 7a depicts the distribution of bike trajectories across different hours of a day. It can be observed

that there are two demand peaks: one occurs in the morning (7:00 to 9:00 am) and the other occurs in the

evening (5:00 to 8:00 pm). These two peaks correspond to the commute rush hours. We also note that the

bike trip demand falls gradually after the evening peak and still remains substantial until midnight, which

can be attributed to people who engage in leisure activities after work. Figure 7b shows the distribution

of bike trajectories across different days of a week. We observe that the bike trip demand is almost stable

throughout the week while there are two small peaks on Mondays and Saturdays.
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(a) Hour distribution (b) Weekday distribution

Figure 7 Bike trajectory temporal distribution.

Appendix E: The detailed decensoring procedure for bike trajectory data

To minimize the seasonality effect, we pick a two-week period with stable and high ride demand to per-

form decensoring operations. Because there are no docked stations and riders can find available bikes in

their neighborhood with smart phones, we split the urban area into small neighborhoods using the geohash

script, which is a widely used geocode system4. Each neighborhood is about 153 meters by 153 meters

according to geohash of length 7. Given a day, we track the evolution of available bikes (e.g., the stock

level) every 10 minutes in each neighborhood. Then we identify the stock-out events from the stock evo-

lution. A trajectory originating from neighborhood i in period j would be assigned a weight equals to

1/(# of days with no stock-outs in period j from neighborhood i). After aggregation the weighted trajec-

tory data essentially represents the average ride demand conditional on there are no stock-outs, which shares

a similar rationale of O’Mahony and Shmoys (2015).

4 For more information about the geohash system, see https://www.movable-type.co.uk/scripts/

geohash.html. It is used by mobility service providers such as Lyft: https://eng.lyft.com/

matchmaking-in-lyft-line-691a1a32a008

https://www.movable-type.co.uk/scripts/geohash.html
https://www.movable-type.co.uk/scripts/geohash.html
https://eng.lyft.com/matchmaking-in-lyft-line-691a1a32a008
https://eng.lyft.com/matchmaking-in-lyft-line-691a1a32a008
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