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Opaque Queues: Service Systems with Rationally

Inattentive Customers

Caner Canyakmaz
ESMT Berlin, European School of Management and Technology, caner.canyakmaz@esmt.org,

Tamer Boyac�
ESMT Berlin, European School of Management and Technology, tamer.boyaci@esmt.org,

Classical models of service systems with rational and strategic customers assume queues to be either fully

visible or invisible. In practice, however, most queues are only �partially visible� or �opaque�, in the sense that

customers are not able to discern precise queue length upon arrival. This is because assessing queue length

and associated delays require time, attention, and cognitive capacity which are all limited. Service �rms may

in�uence this information acquisition process through their choices of physical infrastructure and technology.

In this paper, we study rational queueing behavior when customers have limited time and attention. Following

the theory of rational inattention, customers optimally select the type and amount of information to acquire

and ignore any information that is not worth obtaining, trading o� the bene�ts of information against its

costs before deciding to join. We establish the existence and uniqueness of a customer equilibrium and

delineate the impact of information costs. We show that although limited attention is advantageous for a

�rm in a congested system that customers value highly, it can be detrimental for less popular services that

customers deem unrewarding. These insights remain valid when the �rm optimally selects the price. We also

discuss social welfare implications and provide prescriptive insights regarding information provision. Our

framework naturally bridges visible and invisible queues, and can be extended to analyze richer customer

behavior and complex queue structures, rendering it a valuable tool for service design.

Key words : service operations, rational inattention, strategic customers, rational queueing, information

costs, system throughput, social welfare

1. Introduction

In many service settings, customers do not have perfect information about the queue size and associated

delays. This stems mainly from the potential information frictions that are present, due to the physical

environment and/or the limited cognitive capabilities of the customers. In some instances, like in

supermarkets and ticketing booths for events, even though the queue is in theory completely observable,

physical obstructions such as shelves, walls or pillars may make it di�cult or impossible to judge the
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extent of the queue. Such designs could even be due to strategic �rm decisions. For many other services

like call-centers or health services, information about the queue size may not be readily available. Today,

advances in information technology enable service providers or third-party �rms to provide real time

delay information or predictions of it. For example, many hospitals in Canada and US post emergency

room (ER) wait times online. In a similar vein, Disney o�ers a mobile app that provides wait time

information for rides in its theme parks. Third-party �rms like Touring Plans utilize advanced analytics

techniques and real time customer reporting to provide similar estimates. Even then, the provided

information does not completely resolve customer's uncertainty about queue size and delays. First,

the delay information may be deemed as not necessarily accurate, prompting customers to privately

learn and validate it. For example, in the context of ER wait times, Ang et al. (2015) empirically show

that hospital posted wait times are extremely unreliable, and can be o� by as much as an hour and

a half for much of the time. Second, and perhaps more importantly, customers have limited time and

attention to devote to acquiring such data and processing the obtained data in useful information.

Since information acquisition and processing is �costly�, customers are bound to make decisions based

on partial information. Our paper is based on this premise of customer behavior in services.

In classical models of queuing behavior, customers are assumed to be rational and strategic. That

is, they maximize expected utility, which is negatively in�uenced by expected delays. They are also

strategic, implying that they consider the actions of other customers when deciding to join or to balk.

The equilibrium analysis of these models mainly di�ers depending on queue visibility, termed as visible

(observable) and invisible (unobservable) queues. The visible and invisible queues are canonical and

orthogonal representations. Visible queues captures the case where customers can freely and accurately

assess the length of the queue upon arrival and hence can also estimate the expected waiting costs

perfectly. Invisible queues, on the other hand, represents the other extreme scenario under which

customers cannot observe the length of the queue and hence cannot estimate waiting costs. In this case,

customers act completely based on beliefs. However, as emphasized above, in practice most queues are

arguably opaque, i.e., they are only partially visible to the customers. In the end, determining the exact

number of customers ahead in the queue requires time, attention, and cognitive capacity, which are all
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limited in quantity. Rational customers should trade-o� the bene�ts of acquiring better information

with the cost associated with it. It may simply turn out to be impossible to make these calculations

with certainty and in some cases it may not make sense to spend any e�ort to determine it.

In this paper, we develop a general framework for opaque queues. We capture the salient character-

istics of limited attention and cognitive capabilities of customers through a model based on the rapidly

growing theory of rational inattention1 in economics. Following the seminal works of Sims (2003) and

Sims (2006), this theory quanti�es information as reduction in Shannon entropy and assumes that

utility-maximizing customers optimally select the type and quantity of information they need, and

ignore the information that is not worth obtaining. In other words, information acquisition process is

completely endogenized. Rationally inattentive customers know that they are not going to be able to

resolve all uncertainties and make perfect queuing decisions, but they are able to decide (optimally) on

what to learn and to what detail. Naturally, this selection depends on all key factors - how much time

and attention customers have (i.e., information costs), prior beliefs, as well the nature of uncertainties

faced (i.e., what's at stake). We embed rationally inattentive behavior of customers in a strategic queu-

ing model that naturally bridges the well-studied visible and invisible queues. Utilizing this framework

of opaque queues, we seek answers to the following fundamental research questions:

• What equilibrium behavior will prevail (if any) if customers have limited attention and optimally

acquire costly information about queue size prior to joining or balking? How is the equilibrium shaped

by service characteristics such as service rates, delay costs, rewards as well as information costs?

• How does limited attention and information costs impact throughput, social welfare as well as the

�rm's optimal pricing decision?

• Can the �rm bene�t from customer's limited attention? When does it have the most detrimental

e�ects? What are the implications on the �rm's queue information provision strategy?

In order to address these questions, we develop a baseline model of a single service provider facing a

homogeneous population of customers with limited attention. Customers arriving to the queue are not

able to discern the exact number of customers ahead of them and hence the expected delay cost. They

1 Throughout the paper we use limited attention and rational inattention interchangeably.
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have some belief about the queue size (which is formed in equilibrium) and can improve their assessment

by optimally acquiring and processing costly information, and decide to join or balk accordingly. We

show that there is a unique equilibrium that emerges and establish the directional properties with

respect to service characteristics. We �nd that impact of information costs is more involved, resulting

in non-trivial and possibly non-monotone queuing behavior in equilibrium. Elaborating more on such

cases, we identify service characteristics that make opaque queues particularly preferable for the service

provider. At the same time, we discuss optimal pricing and welfare implications of limited attention.

Finally, we demonstrate the versatility of our proposed framework by considering natural extensions

of the baseline model including �nite queue capacity and uncertainty in other service characteristics

such as service reward and service rates.

Our contribution to the literature is three-fold. First, from a theoretical perspective, we develop a

micro-founded, tractable framework for service systems that accounts for customers limited attention

and information processing capabilities. With visible and invisible queues sitting on the two limiting

ends, this framework covers the entire spectrum of �queue transparency� and provides a uni�ed view of

the e�ects of information costs on service performance, �rm pro�tability and social welfare. It o�ers a

natural and systematic way to describe customer's limitations and behavioral adjustments to changes in

the service environment. Furthermore, there are natural connections with approaches based on search

costs and bounded rationality, which provides a rich context to interpret and position our results.

Second, utilizing our framework, we provide descriptive results on rational customers' queuing deci-

sions in the presence of information frictions. On one hand, these results con�rm the validity of intuitive

facts such as to why a customer who expects a higher utility (due to higher service reward, lower price,

lower delay costs) or who encounters a faster queue (due to faster service rate) is more likely to join the

service, regardless of how constrained she is in attention. On the other hand, we provide a normative

foundation for more subtle and less intuitive �ndings, especially related to the impact of information

costs. In particular, the e�ects of information costs on equilibrium joining rates (i.e. throughput) can

be non-monotone and rather complex. Nevertheless, we are able to glean structural observations and

identify clearly the conditions under which throughput is unimodal in the information costs.
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Our descriptive results have prescriptive insights for practicing managers. We �nd that service �rms

should be most concerned about information costs when the reward that customers obtain from joining

the service is positively correlated with congestion (demand or o�ered load). In particular, when cus-

tomers attach high value to the service that is also popular (high demand), the �rm can bene�t from

the limited attention of customers. The throughput of an opaque queue is higher than fully visible or

invisible cases. In sharp contrast, when the service �rm faces relatively low demand from customers

who do not particularly value the service, limited attention of customers can be detrimental. In this

case, the �rm is better o� by either making the queue fully visible or by completely obstructing it.

Interestingly, these insights remain valid when the service �rm sets prices optimally. As a matter of

fact, customer inattentiveness has accentuated e�ects in this case. This is because the �rm can bene�t

from inattention by overcharging customers when they are more willing to join the queue. Pricing also

enables the �rm to moderate the throughput losses when customers are less willing to join the queue.

From a welfare perspective, consumer surplus su�ers from limited attention. However, when �rm sur-

plus is taken into account, welfare implications can change. Obstructing queue information partially

can result in win-win outcomes for both the consumer and the �rm (and hence improve social welfare)

when �rm pro�tability (margin), congestion, and customer's reward from service are all high.

Finally, we believe our approach and proposed framework can serve as the building block for mod-

eling and analyzing richer contexts that involve strategic customer behavior in service industries. We

present a number of extensions in this direction. For example, limited attention and costly information

acquisition does not need to be con�ned to queue size or delays. Customer can spend time and e�ort

to learn additional factors that may be uncertain, such as service speed or customer reward (service

quality). In this case, customers have to allocate their attention among di�erent elements and acquire

information appropriately before making their decisions. It may even be easier to learn some elements

(e.g., queue size) than others (e.g., speed). In a similar vein, the service system can have physical

capacity constraints, the customer behavior may be more complex involving potential retrials. These

can also be incorporated into our proposed framework, which would pave the way for new applications

that deepen our understanding on how consumer's limited attention and information costs impact

service design and performance.
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2. Literature Review

There is a long standing literature on strategic behavior in queueing, starting with the pioneering

works of Naor (1969) and Edelson and Hilderbrand (1975) for the cases of visible and invisible queues

respectively. Hassin and Haviv (2003) and Hassin (2016) present excellent coverage of various extensions

and comprehensive review of related literature. There are two streams within this literature that our

work relates to the most: i) bounded rationality and ii) information acquisition and control.

Bounded rationality postulates that customers are not always able to make perfect rational choices

and therefore make errors. Huang et al. (2013) adapts this to a service context by assuming that cus-

tomers are not able to perfectly estimate their expected waiting times and investigate the revenue,

pricing and welfare implications for both visible and invisible queues. As customary in the bounded

rationality literature, customers face additive noise terms in their estimation and make joining deci-

sions according to the multinomial logit (MNL) formula. The degree of bounded rationality is an

exogenous parameter (standard deviation of the additive noise term) in this model. On one extreme,

customers are fully rational, recovering the Naor (1969) and Edelson and Hilderbrand (1975) models.

On the other extreme, customers are fully irrational and join or balk with equal probability. Along

similar lines, Huang and Chen (2015) and Ren et al. (2018) assume customers resort to a heuristic,

which involves sampling experiences of previous customers (referred to as anecdotal reasoning). In our

model based on rational inattention, customers can also make mistakes. The main distinction is that

customers decide on what they learn and to what detail, e�ectively controlling what type and extent

of mistakes they make. This is analogous to customers forming optimal heuristics (Ma¢kowiak et al.

2018). Furthermore, customer behavior is adaptive to the business environment; changes in rewards,

prices, delay cost, uncertainty as well as available time and attention all endogenously determine the

amount of information processed and shape the resulting behavior. Our framework also fundamentally

di�ers from bounded rationality models in its natural ability to connect the visible and invisible queues,

through information costs.

The second stream of literature investigates the impact of additional queue size or delay information

on queue joining behavior. One approach is to incorporate heterogeneity among customers in terms
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information they have about queue length. In a recent work, Hu et al. (2017) assume that an exoge-

nously speci�ed proportion of customers have perfect information about queue size, while the rest is

completely uninformed about it (but they know the fraction of informed customers). They characterize

the equilibrium and examine how heterogeneity impacts throughput and social welfare. Unlike Hu et al.

(2017), customers are homogeneous in our model. But they optimally determine how much information

they will acquire about the queue size. In this regard, we capture a desirable element that Hu et al.

(2017) acknowledge as missing in their framework (see pp. 2654). We characterize and analyze the

equilibrium that emerges from this micro-founded private learning e�orts of customers.

An alternative approach assumes homogeneous customers can inspect the queue at a predetermined

cost, upon which queue size is fully revealed. In a multi-server setting, Xu and Hajek (2013) assume

customers inspect k out of N queues (randomly selected) at a �xed inspection cost linear in k and

join the shortest one. The authors characterize the conditions of unique equilibrium. A closely related

paper to ours that adopts the same approach is Hassin and Roet-Green (2017). They consider an

invisible single-server service system where customers are allowed to inspect the queue and obtain full

information at a �xed cost, leading to a model with three distinct decisions: join, balk, or inspect.

The existence and uniqueness of an equilibrium strategy is proven and the e�ect of inspection cost

on throughput and social revenue are discussed. We go a step further and allow the customers choose

their information strategy and improve their knowledge on the state of the queue, which in optimality

is never fully-informative (some uncertainty always remains). Customers can also decide to not acquire

any information, if processing it is deemed to be not useful or too costly. Interestingly, this approach also

avoids the complications caused in equilibrium analysis when customers make a choice between three

distinct actions as in Hassin and Roet-Green (2017); once customers acquire information optimally,

their eventual decisions is between joining or balking only.

We remark that both Hassin and Roet-Green (2017) and Hu et al. (2017) present results on how

di�erent levels of customer information might impact throughput and social welfare. In particular,

the former shows that an intermediate level of inspection (information) cost can bene�t throughput,

while the latter shows that throughput can be unimodal in the proportion of informed customers.
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We make the natural connections and draw parallels whenever possible. For example, consistent with

earlier �ndings, we �nd that for high demand service systems, customers' limited information about

the queue size can be bene�cial for the �rm (improve throughput). Our framework helps identifying

the business conditions when this is most likely to happen. More importantly, unlike earlier studies,

we are able to also identify cases where servicing customers with limited information has adverse

e�ects on throughput; it �rst decreases and then increases in information costs (and levels). We achieve

these insights through a unifying lens that combines customer inattention, endogenous information

acquisition and strategic queueing behaviour in a natural and consistent manner.

It is worth noting that there are other papers that examine the e�ect of some form of delay infor-

mation or information disclosure strategies from the service �rm's perspective (e.g., Chen and Frank

2004, Dobson and Pinker 2006, Guo and Zipkin 2007, Economou and Kanta 2008, Simhon et al. 2016,

among others). For a comprehensive survey of the literature related to delay announcements, we refer to

Ibrahim (2018). We di�er fundamentally from these works since there is no predetermined information

disclosure strategy of the �rm, rather customers obtain and process information that is optimal for

them. Likewise, there are many other papers that study strategic queuing decisions, but with a di�erent

focus such as, queue size as a signal of quality (Debo et al. 2012, Kremer and Debo 2015), uncertain

quality and queue choice (Veeraraghavan and Debo 2009), uncertain service rate and customer beliefs

(Cui and Veeraraghavan 2016).

Our paper also contributes to the literature on rational inattention. With recent advances made in

both theoretical and empirical grounds, there is a surge in the interest on rational inattention and its

applications. Examples include, consumer (discrete) choice (Mat¥jka and McKay 2015, Hüttner et al.

2018), pricing (Boyac� and Akçay 2017, Mat¥jka 2015a, Mat¥jka 2015b), energy e�ciency (Sallee 2014),

portfolio selection (Huang and Liu 2007), organizational focus (Dessein et al. 2016). To our knowledge,

our paper is the �rst study that incorporates rational inattention in a service queueing setting with

strategic customers.

3. Model

Consider a service system modeled as a basic single-server queue operating under FCFS (�rst-come-

�rst-served) discipline, with Poisson arrival rate λ and exponentially distributed service times with
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mean 1/µ. Let R denote the unit reward a customer obtains upon being served and p denote the price

charged by the �rm. A customer arriving to the queue incurs a delay cost of C per time unit. Without

loss of generality suppose that customers incur this cost only when they are waiting for the service

(and not during service). Suppose that a customer arrives when there are n customers in the system.

Then the pay-o�, expected reward net of the delay cost, is given as

vn
.
=R− p− C

µ
n. (1)

Let the value of the outside option of balking (not joining ) from the queue is normalized to 0. Clearly,

if n is known, the customer will only join if vn ≥ 0. Alternatively, if all customers can observe the queue

length freely, then they will only join if

n≤ ne =

⌊
(R− p)
C

µ

⌋
. (2)

This is essentially the threshold in Naor (1969) for visible queues. Let us assume that R > p so that

v0 > 0, ruling out the uninteresting case where customers have no incentive to join the queue. In our

setting, customers are not able to use this threshold policy because they are not able to discern the

queue length precisely due to limited attention and cognitive capacity. We �rst describe how such

customers would optimally acquire information and decide to join the queue or not. Subsequently, we

characterize the equilibrium.

3.1. Join or Balk Decisions Under Limited Attention

Customers know that the number of customers ahead in the queue is a random variable and have a

prior belief about its distribution (common to all). Let us denote the cdf of customers' prior belief as

G and its pdf as g. Suppose for now that the belief distribution G is speci�ed. One can view this as

the anticipated queue size distribution, which in equilibrium will coincide with the actual distribution.

Rationally inattentive customers can ask questions and receive signals s to update their beliefs. Let

ω denote the unknown state of the system at any time. The customer is free to select an information

processing strategy, which is represented as the joint distribution F (s, ω) of signals and states. The only

requirement is that the marginal distribution over the states equals the prior distribution G, so that
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the customer's posterior beliefs are consistent with their priors. The customer chooses this distribution

to maximize her ex-ante expected payo� minus the total cost of information c(F ) associated with

generating signals of di�erent precision levels. Following the works of Sims (2003) and Sims (2006),

models of rational inattention quantify information acquisition and processing in terms of reduction

in uncertainty, measured by the Shannon entropy. More speci�cally, let H(B) denote the uncertainty

of belief B measured by entropy. For a discrete distribution, H(B) =−
∑

ω Pω log(Pω) where Pω is the

probability of state the world ω ∈Ω. Then the total cost of information associated with the information

strategy F is given as

c(F ) = θ(H(G)−Es[H(F (·|s)]) (3)

Here, θ > 0 is the marginal cost of acquiring and processing information that the customer deems useful

(simply referred to as cost of information hereon), and F (·|s) is the posterior belief about state after

receiving the signal s. Note that the total cost of information is de�ned as the mutual information

between customer's prior and posterior beliefs, multiplied by the marginal information cost parameter

θ. This cost function is well supported by information theory, since from Shannon's coding theorem

it relates to the expected number of questions needed to be asked for implementing a particular

information strategy (see Mat¥jka and McKay 2015, Cover and Thomas 2012).

In the context of our queuing system, a customer has two discrete choices, either to �join� or to

�balk �. Given the prior belief G, she solves a two-stage problem. In the �rst stage, she selects an

information strategy to re�ne her beliefs and in the second stage she selects the best option given her

posterior belief. Let V (B) denote the expected payo� from choosing the best option given some belief

B and Ω = {ω0, ω1, ...} denote the state space of the total number of customers in the system. Then, a

rationally inattentive customer's decision-making problem can be formally stated as:

max
F

∞∑
n=0

∫
s

V (F (.|s))F (ds|ωn)g (ωn)−C (F ) (4)

s.t.

∫
s

F (ds|ωn) =G (ωn) for n≥ 0.

The �rst term in (4) is the ex-ante expected payo� from selecting the best option based on the generated

posterior belief and the second term is the total cost of information given by (3). According to this
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model, the customer is optimally choosing (i) what and how much information to process (what to pay

attention, how much attention to pay) and (ii) what action to select given the information.

A central result in rational inattention theory that helps to simplify the customer's problem is that

each action can be selected in at most one posterior belief. In the context of queueing, this means that

receiving distinct signals that lead to the same posterior is suboptimal, since it implies the acquisition

of ample information that is not acted upon. The immediate consequence is that choosing signals

is equivalent to choosing actions. As such, the mutual information between the signal and the state

can be replaced with the mutual information between the chosen actions and state. Thanks to this

property, it becomes possible to write an alternative maximization problem for the customer that uses

state-dependent choices as decision variables, without any referencing to signals. Speci�cally, let SJ

denote the set of signals that lead to joining decision. Then the induced conditional joining probability

when there are n customers in the system can be represented πn =
∫
s∈SJ F (ds|ωn) . Let Π = {πn;n≥ 0}

denote the collection of conditional joining probabilities; i.e. customer's joining policy. Based on this,

it is also possible to write the unconditional joining probability as

π=
∑
n

πngn (5)

where gn is the customer's prior probability about state ωn. Then, for our queuing system, customer's

equivalent optimization problem can be reformulated as

max
Π={πn;n≥0}

∞∑
n=0

vnπngn−C (Π,G) (6)

s.t. πn ≥ 0 ∀n≥ 0 and

∞∑
n=0

πn = 1.

Here πngn is simply the joint probability that the customer joins and the state is ωn. Since the utility

of balking is normalized to 0, the �rst term is the total expected utility obtained under joining policy

Π = {πn;n≥ 0} . The second terms is the total cost of information C (Π,G) = θ (H (G)−E[H (G |Π))

quantifying the reduction in entropy, i.e. mutual information between the action and state, scaled by

information cost θ. Due to symmetry of mutual information, C (Π,G) can also be written as

C (Π,G) = θ (H (Π)−E [H (Π |G)])

= θ

(
−π logπ− (1−π) log (1−π) +

∞∑
n=0

gn (πn logπn + (1−πn) log (1−πn))

)
. (7)
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It is established in the rational inattention literature that the optimal information processing strategy

for any θ > 0 results in conditional choice that follows a generalized multinomial logit (GMNL) formula

(Mat¥jka and McKay 2015). In particular, when the choice is about joining a queue or not as described

above, the conditional probability πn of joining the queue when there are n customers satisfy

πn =
πevn/θ

πevn/θ + 1−π
almost surely for θ > 0 (8)

where π is the unconditional probability of joining the queue that needs to satisfy equation (5) for

consistency. If θ= 0, then with probability 1, the customer joins or balks deterministically, depending

on which one yields the higher payo� in that state.

The conditional joining probabilities characterized by the GMNL equation (8) capture the intricate

relationship between three central drivers of customer's decision, namely the payo�s, beliefs, and infor-

mation costs. Observe �rst that according to (8) if the customer has a positive probability of joining in

at least one state (i.e., π > 0), then she has a positive probability to join in all other states of the system.

However, the higher is her payo� (vn), the more likely she will join. In our queuing system, this will also

imply that state-dependent joining probabilities increase as n decrease (as vn increase). The impact of

prior beliefs are captured through the unconditional probability π. It is crucial to note that π is not an

exogenous parameter; rather it is part of customer's endogenous decision making process. One needs

to solve the above optimization problem together with (8) to arrive at a complete explicit solution.

Rewriting (8) as πn =
(
evn/θ+ln(π)

)
/
(
evn/θ+ln(π) + 1−π

)
it is evident that unconditional probability π

e�ectively shifts the customer's payo�. Hence, her joining decision is swayed by how �attractive� it is

a-priori to join the queue. Information costs play a strong role on how much emphasis the customer

puts on the beliefs. When θ is low, the customer can acquire more information about each state and the

payo�. In the limit, the queue is visible, and she deterministically makes the best choice in each state.

In contrast, as θ increases, she acquires less information and relies more on her belief. In the limit, the

queue is invisible, and the customer deterministically joins or balks based on her ex-ante beliefs.

Continuing with the analysis, we can plug the conditional joining probability πn given by (8) into

customer's optimization problem in (6) , which yields a simpli�ed representation:

max
π∈[0,1]

θEG
[
log
(
πevn/θ + 1−π

)]
. (9)
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Hence, in e�ect, the customer is choosing the unconditional probability π. It is clear that problem in (9)

is concave in π with linear constraints and can be easily solved. Once unconditional joining probability

π is found, conditional joining probabilities are calculated using (8).

It is worth noting that equation (8) constitute the necessary conditions for optimality but they

are not su�cient. For instance the queueing policy Π1 = {πn = 1;n≥ 0} where everyone joins and the

policy Π0 = {πn = 0;n≥ 0} where everyone balks at each state automatically satisfy these conditions.

Hence, it holds trivially when actions (join or balk) are not chosen at all, but does not specify when

this may occur. The next lemma presents the complete characterization of customer's optimal joining

policy, including both the necessary and su�cient conditions. The proofs for the next and subsequent

results are relegated to the appendix.

Lemma 1 (Necessary and Su�cient Conditions). The policy Π = {πn;n≥ 0} is optimal if and

only if the implied unconditional choice probabilities π=
∑

n πngn for actions Join and Balk satisfy

∞∑
n=0

evn/θgn
πevn/θ + 1−π

≤ 1 (for �Joining�) (10)

∞∑
n=0

gn
πevn/θ + 1−π

≤ 1 (for �Balking�) (11)

and both equations (10) and (11) have to hold with equality if 0 < π < 1. Otherwise, the su�cient

conditions are

EG
[
evn/θ

]
≤ 1 for π= 0, (12)

EG
[
e−vn/θ

]
≤ 1 for π= 1. (13)

Lemma 1 establishes that there are cases that yield join or balk decisions with certainty, i.e., without

the need for processing any information. For instance it is possible that condition in (12) is satis�ed

when the customer's prior belief on low states (i.e., when there are few customers in the queue) is very

weak and it is optimal for the customer to balk with certainty, i.e., π= 0. A similar e�ect may also take

place when the customer attaches a very low value to the service provided, i.e., a low service reward.

On the contrary, when the customer strongly believes that there will be few customers in the queue
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and/or her reward from service is high enough, then she may decide to join with certainty without

obtaining further information, i.e., π= 1 and (13) is satis�ed.

At this point it is also worthwhile to make connections with more traditional search models. A

prominent example is the model by Hassin and Roet-Green (2017), where arriving customers have the

opportunity to buy perfect information at a �xed cost. In our framework, receiving perfect information

is equivalent to reducing the posterior entropy Es[H(F (·|s)] to zero. This is tantamount to customers

paying a �xed cost of θH(G) and deciding to join based on the current queue size (or not pay and

decide on the basis of prior belief G). However, this is a suboptimal strategy when information strategy

is endogenized. Generating perfect signals is never optimal since this is prohibitively expensive (leads

to an unbounded information cost, as per (3)). This is why the optimal decision is always probabilistic

if the customer chooses to acquire and process information. Nevertheless, the customer can also choose

not to process any information (see Lemma 1).

3.2. Queueing Behaviour in Equilibrium

Until this point, we have assumed that customers have exogenously speci�ed prior beliefs, representing

the anticipated queue distribution. In fact customers are strategic in our framework; they are aware

of the other rationally inattentive customers and anticipate their actions. As a result, customer beliefs

are formed by queuing behavior in equilibrium. Queuing behavior itself is shaped by the optimal

information acquisition and joining decisions of rationally inattentive customers in each state. Next, we

de�ne such an equilibrium. To this end, let G̃ and g̃ denote the cumulative and probability distribution

functions for the number of customers in the system in equilibrium and ρ= λ/µ is the utilization factor.

Definition 1. In the queueing system with rationally inattentive customers with information cost

θ > 0, the equilibrium probability of joining the queue when there are n customers present is

π̃n =
π̃evn/θ

1− π̃+ π̃evn/θ
, where (14)

π̃=
∑
n

π̃ng̃(n) (15)
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is the equilibrium unconditional joining probability, i.e., equilibrium fraction of customers joining the

queue. Denoting λn = λπ̃n as the state-dependent equilibrium arrival rates, the equilibrium steady-state

distribution g̃ is characterized as

g̃0 =
1

1 +
∑∞

k=1

λ0λ1...λk−1

µk

and g̃n = g̃0

λ0λ1...λn−1

µn
for n≥ 1.

The more critical question is whether such an equilibrium exists. In the next theorem, we show that

it indeed does for any θ > 0 and it is unique.

Theorem 1. There exists a unique equilibrium satisfying De�nition 1.

Although our framework involves nontrivial customer behaviour in terms of queueing, Theorem 1

establishes a strong result that a unique equilibrium exists despite the complexity of the model. Finding

this equilibrium requires solving a �xed point equation since it requires a consistency between the

joining probabilities (which is a solution of the rational inattentive customer's optimization problem)

and resulting queue distribution (which is an input to the same optimization problem).

There still remains the question of whether rationally inattentive customers can form the correct

beliefs about the queue size distribution, i.e., whether the equilibrium can be attained. We show in the

appendix that such an equilibrium can be attained via adaptive learning in a setting where customers

can observe the joining behaviour of past customers. More speci�cally, consider a model with multiple

periods and suppose that in each period, customers form their beliefs about the queue size distribution

based on the average of joining probability of past periods, and then make the optimal joining decision

contingent on that belief in a rationally inattentive manner. In a �nite number of periods, joining

probabilities converge to the equilibrium in De�nition 1.

An immediate corollary of Theorem 1 is the limiting cases of the information cost, which bridge the

two extreme scenarios in strategic queueing, namely visible and invisible queues.

Corollary 1. The following are true:
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1. (Visible queues) When θ= 0, customers can determine the queue length exactly and decide to join

only if the number of people in the system is less than or equal to the critical number ne de�ned in (2).

Corresponding equilibrium joining fraction is

π̃= 1− ρne+1

1 +
∑ne+1

k=1
ρk

=
1− ρne+1

1− ρne+2
. (16)

2. (Invisible queues) When θ=∞, customers base their queuing decisions on their prior beliefs only,

resulting in the following outcomes (when λ< µ)

(a) (Always join) If R− p− Cλ
µ(µ−λ)

≥ 0, then all customers join the queue.

(b) (Mixed strategy) Otherwise, unique equilibrium joining fraction is π̃ =
[
ρ
(

1 + C
µ(R−p)

)]−1

.

Complete characterization of equilibrium joining fraction when θ=∞ is;

π̃= min

{
π̃=

[
ρ

(
1 +

C

µ(R− p)

)]−1

,1

}
. (17)

The two extreme cases of our framework covered in Corollary 1 retrieve the classical models and

results in the literature. The �rst case is precisely the scenario with visible queue model of Naor (1969),

where the equilibrium is a threshold policy. The latter case is precisely the invisible queue model of

Edelson and Hilderbrand (1975). In particular, if the bene�t of joining the queue is positive even if

everyone else joins, then customers join with probability 1. Otherwise, customers join with a �xed

probability. Note that given our assumption that R > p, the case where all customers balk does not

occur.

Next, we investigate the impact of salient characteristics of service systems, including the reward

from service R, price p, delay cost per unit time C, and service rate µ on customer joining behaviour

π̃ (or equivalently system throughput λπ̃).

Proposition 1. Equilibrium joining fraction π̃ and throughput increases in R and µ and decreases

in p and C.

Intuitively, customer joining probability in equilibrium should increase in the utility customers obtain

from joining. This is surely the case when the reward from service R is higher, and the price p and/or
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waiting cost per unit time C are lower. For this reason, we de�neR= (R−p)/C as the service attractive-

ness. Proposition 1 con�rms that equilibrium joining probability improves with service attractiveness.

The e�ect of service rate µ, on the other hand, is not as straightforward. Although a faster service

may potentially mean less congestion, it also incentivizes customers to join which in turn may increase

congestion. It turns out that the �rst a�ect is always stronger, and a faster service rates yields more

joining customers in equilibrium.

The impact of the information cost on queuing behavior is more subtle and cannot be analytically

ascertained. We take a deeper look into it through numerical experiments in the next section.

4. Impact of Information Cost on Throughput

Information costs impact the extent of learning customers can a�ord to (or able to) undertake regarding

queue size. At a �rst glance, it seems quite plausible that the e�ects of θ should be monotonic, and its

direction should depend whether in equilibrium visible or invisible queues have higher joining fractions.

This intuition turns out to be only partially correct. To illustrate this, in the following discussion, we

use π̃(θ) to denote the equilibrium joining fraction when the unit information cost is θ.

We �nd that the impact of information cost on throughput is governed by both the level of demand

(congestion) for service and the attractiveness R of the service to the customers. Speci�cally, we

observe that for any demand level, there is a range for service attractiveness in which throughput is

either decreasing-increasing or increasing-decreasing in information cost θ. If R is below this range,

then throughput is decreasing in θ, while if R is beyond this range, then throughput is increasing in

θ. Furthermore, the range where this non-monotone impact is observed also depends on the level of

demand for the service.

In order to see this, note that when service is quite attractive to the customers, they will tend to

join without processing information (based on beliefs), and hence equilibrium joining fraction for an

invisible system will be very high. When the queue is visible, however, some customers will still not

join due to congestion. In such cases, π̃(0) is relatively low compared to π̃(∞), and equilibrium joining

fraction π̃(θ) is monotonically increasing in θ. In contrast, when service is quite unattractive, customers

are unlikely to join an invisible queue, π̃(∞) will be low. For a visible queue however, some (lucky)
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customers will still be able to �nd the queue short enough to warrant joining. In such cases, π̃(0) is

relatively higher compared to π̃(∞), and equilibrium joining probability π̃(θ) is monotonically decreasing

in θ. When the equilibrium joining fractions under visible and invisible queues are not very distinct,

then we observe quite di�erent, and possibly non-monotone behavior with respect to information costs.

This occurs within an intermediate range of service attractiveness R. We elaborate more on these

ranges in the following two examples for low demand and high demand scenarios respectively.
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Figure 1 Impact of information cost on equilibrium joining fraction and throughput: low demand (λ= 0.2, µ= 1,C = 1)

Figure 1 illustrates three di�erent cases when the demand rate is low. Evidently, when service attrac-

tiveness R is very low, higher information costs lead to lower throughput. Interestingly, when R is

intermediate (but still relatively low), throughput �rst decrease and then increases. The intuition is as

follows. When θ = 0, customers can observe the queue length and deterministically join. When infor-

mation cost θ is slightly increased, customers process information and due to their limited attention,

they may not be able to discern queue size when it is in fact relatively short, and balk. This has a

negative impact on throughput. Arguably, for the same reason, customers may not discern queue size

when it is longer, and erroneously join instead of balking. However, this is less likely to happen because

of low demand and congestion. Hence, initially throughput decreases in θ. When information cost is

further increased and customers start to weigh more their beliefs, they join with a higher probability

because they believe the system is not congested and despite the low reward it makes sense to join
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instead of balking. As a result, throughput starts increasing in θ. Finally, when service attractiveness

is high enough, as explained earlier, throughput is monotonically increasing in θ.
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Figure 2 Impact of information cost on equilibrium joining fraction and throughput: high demand (λ= 0.85, µ= 1,C = 1)

Figure 2 illustrates three di�erent cases when the demand rate is high. As in the case of low demand,

there is an intermediate level of service attractiveness that makes throughput non-monotone in infor-

mation costs. Strikingly, here the e�ect is opposite; throughput �rst increases and then decreases, i.e.,

unimodal. The intuition follows a logic very similar to the low demand case, but the e�ects are reversed.

This is because when demand is high, longer queue sizes are more likely, and therefore (erroneous)

joining decisions at higher queue lengths due to limited attention outnumber (erroneous) balking deci-

sions at lower queue lengths. Furthermore, for higher demand levels, the intermediate range for which

non-monotone behavior is observed is wider, and occurs for higher information cost levels. Nevertheless,

as before, when service attractiveness is outside of this range, information costs have a uniform e�ect

and either decrease or increase throughput (Figures 2a,2c). The above pattern persists for moderate

demand levels as well. It is also possible to observe a combination pattern with decreasing-increasing

followed by a decreasing throughput in this range.

Our numerical investigation demonstrates clearly that the complex, non-monotone behavior prevails

when demand and service attractiveness are strongly coupled (one can also think of it as positive

correlation). We can substantiate this by focusing on a case where the equilibrium joining fractions
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for visible and invisible queues are identical. To this end, suppose that the threshold ne = 0. Then,

π̃(0) = π̃(∞) whenever (1 + ρ)
−1

= [ρ (1 +C/ (µ(R− p))]−1
, or equivalently; ρ= (R−p)µ/C. Normalizing

µ= 1, it becomes evident that equilibrium joining fractions under visible and invisible queues are the

same when λ=R= (R− p)/C, i.e., when demand and service attractiveness display perfect positive

correlation. Figure 3 illustrates the e�ect of θ on π̃(θ), for various values of λ for this case. Note that as

demand increases, equilibrium joining probability starts to turn from ��rst decreasing, then increasing�

to ��rst increasing, then decreasing�.
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Figure 3 Impact of information cost on equilibrium joining fraction when π̃(0) = π̃(∞)(C = 1, µ= 1,R= λ)

Here we also remark that there are some other papers that �nd that throughput might be unimodal

in terms of information prevalence. Hassin and Roet-Green (2017) conclude that a positive and �nite

inspection cost might achieve a higher throughput. Similarly, Hu et al. (2017) �nds that having a portion

of uninformed customers in the society might be better in terms of throughput. Our framework is able

to explain these results using a simple model that is rooted in the �rst principles and systematically

links the main drivers of human decision making such as beliefs, payo�s and information costs. More

importantly, our framework is also able to explain counter cases where throughput su�ers from limited

attention alluding to the potential dangers of deliberate obstruction of information acquisition. To the

best of our knowledge, this is not noted in the strategic queueing literature.
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Our results o�er a compounding insight on the e�ect of information prevalence on customer behaviour

and hence have signi�cant managerial implications for service �rms. It establishes that when customers

highly value a service that is already popular, the �rm can bene�t from an opaque queue and �nd in

its best interest to make information acquisition di�cult or even to deliberately obstruct it to some

extent, rather than providing a completely visible or invisible system. The opposite is true when the

�rm faces low demand from customers who do not value the service much. In this case, it is optimal for

the �rm to employ an �all-or-nothing� kind of an information strategy in terms of �queue transparency�.

5. Social Welfare

We now investigate how customers' rational inattention a�ects social welfare. For a given price p and

information cost θ, social welfare is de�ned as the expected net utility of society (including customers

and service provider) per unit time. In other words, it is the sum of consumer and �rm surplus. Note

that information cost is a real cost that customers incur so it is included in social welfare. Service fee p,

on the other hand, is merely a transfer payment between customer and service provider, and therefore

does not directly impact social welfare. However, it still has a strong impact through the queueing

joining behaviour it induces. De�ning Lq =
∑∞

n=1(n−1)g̃n as the expected number of customers in the

queue at a given time, we can write the social revenue as:

W = λπ̃R−λC
(

Π̃, G̃
)
−CLq (18)

where total information cost for a customer C
(

Π̃, G̃
)
is de�ned in (7) .

When p= 0, social welfare only consists of customer surplus in equilibrium. In this case, we observe

that social welfare is decreasing in information cost θ. This is fairly intuitive as customers bene�t from

making more informed decisions at a lower cost and both capacity and demand are better matched. This

results in less congested queues where every customer bene�ts. This �nding is also largely consistent

with social welfare results in the literature (Hu et al. 2017, Hassin and Roet-Green 2017). In Hassin and

Roet-Green (2017), service fee is zero, and social welfare decreases as the cost of inspecting the queue

increases. In Hu et al. (2017) social welfare increases as the proportion of informed customers in the

population increases. An exception occurs when uninformed customers choose to balk with certainty,
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Figure 4 Impact of information cost on social welfare (c= 1, µ= 1, λ= 0.85)

but in this case the market consists only of informed customers and increasing their proportion is

mainly about increasing demand and not about information prevalence.

When p 6= 0 and �rm surplus is taken into account, social welfare may not exhibit monotonicity in

terms of information prevalence. Indeed, we know that the �rm may bene�t from limited attention and

information costs. In such cases, the decrease in customer surplus due to increased information cost

may not o�set the increase in �rm surplus. To see this clearly, let us disentangle social welfare into its

two components, consumer and �rm surplus. Let W (R,p, θ) and π̃ (R,p, θ) denote the social welfare

and equilibrium joining fraction for consumers when service reward is R, fee is p and information cost

is θ. Then we can write social welfare as the sum of social welfare that would have been obtained

with e�ective service reward R−p and and zero service fee, and �rm surplus, i.e., W (R,p, θ) =W (R−

p,0, θ)+λπ̃ (R− p,0, θ)p. Note that π̃ (R,p, θ) = π̃ (R− p,0, θ). Mathematically speaking, social welfare

is the sum of a decreasing function (consumer surplus) and a potentially non-monotone function (�rm

surplus). Hence, it is possible to generate di�erent social reward behaviour by keeping R− p constant

and increasing p. An illustration is provided in Figure 4 where the non-monotone equilibrium joining

probability is coupled with a high service fee p to generate a unimodal social welfare function. Hence,

if a popular service that is highly valued by customers is also very pro�table for the �rm, the total

social welfare might bene�t from information frictions.
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6. Revenue Maximization

We now examine revenue maximization from the �rm's perspective. We assume that the �rm charges

a single, state-invariant price to maximize its revenue per unit time and solves

max
p≥0

RI (p) = λpπ̃ (p) (19)

where π̃ (p) is the equilibrium unconditional joining probability as a function of price. In the following

proposition, we show that revenue function in (19) is unimodal in price.

Proposition 2. RI (p) is unimodal in p and there exists a unique maximizer p∗ ≥ 0.

We explore the behaviour of revenue-maximizing price and corresponding optimal �rm revenue with

respect to information cost numerically. First, we observe that the optimal price and revenue can be

quite erratic. Second, the nuanced impact of information cost on customer joining behaviour (hence

throughput) remain prominent when the �rm optimally sets the price. More speci�cally, when both

service attractiveness and potential demand are high, customers join more often when queue is opaque.

(see Figures 2b,3). Given this tendency, the �rm can a�ord to increase price and extract a premium

from the customers. In contrast, when both demand is low and service is not attractive, it is optimal

for the �rm to reduce to price and moderate the customer losses due to limited attention. Nevertheless,

the optimal price and revenue display the same non-monotone behavior of the throughput in both

cases (albeit in narrower ranges due to pricing). An illustration is provided in Figure 5.

A �nal remark is in order here regarding the comparison of �rm-optimal and socially optimal (i.e.,

social welfare maximizer) prices. It is known that for visible queues, a pro�t-maximizing �rm charges

a higher price than socially optimal. On the other hand, for invisible queues �rm's optimal price is also

socially optimal (Naor (1969), Edelson and Hilderbrand (1975)). Our model with inattentive customers

also retrieves these results. We also observe that for any �nite information cost θ≥ 0 the �rm continues

to charge a higher price than socially optimal, and as θ approaches in�nity, the two prices converge to

the same value, conforming the equivalence result for invisible queues. We omit details for brevity.

7. Versatility of the Framework

Our framework can be easily modi�ed to include di�erent service system characteristics and customer

behavior. We now present some variations and extensions, and highlight their potential applications.
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Figure 5 Impact of information cost on �rm-optimal price and revenue (µ= 1,C = 1)

7.1. Finite Queue Capacity

Consider a service system with a �nite waiting capacity N . An arriving customer is not admitted to

the system when it is full, and to re�ect this inconvenience, there's a rejection cost T ≥ 0. The state

space (total number of customers) for this queueing system is then {0,1, ..,N}. Similar to the baseline

model, the value of not joining is normalized to 0, while the pay-o� in each stage n = 1, ..,N − 1 is

given by (1). For state N , vN = −T . The equilibrium of the �nite capacity queueing system can be

de�ned analogous to De�nition 1, with the only change being the limited state space {0,1, ..,N}. Note

that this framework can also be readily adapted for a service system with multiple servers. In both

cases, it can be veri�ed that a unique equilibrium strategy exists.

The baseline model we analyzed corresponds to the limiting case with N =∞. In order to shed light

on the impact of �nite queue capacity, we elaborate on the other limiting scenario with zero waiting

capacity, N = 1. This implies that arriving customers can not join when the server is busy. In this

model, customers aim to learn whether the server is busy or not to make a �joining� decision. Since

they are rejected when the queue is full, these are rather �trying� decisions. The states for this queueing

system is clearly {0,1} and the equilibrium is characterized as follows.



25

Theorem 2. In a queueing system with no waiting capacity and rationally inattentive customers

with information cost θ > 0, the unique equilibrium unconditional joining (trying) probability π̃ is

π̃= min

{ (
ev0/θ− 1

)
(1− ev1/θ) (ρev0/θ + ev0/θ− 1)

,1

}
. (20)

The conditional joining probabilities in equilibrium are π̃n =
(
π̃evn/θ

)
/
(
π̃evn/θ + 1− π̃

)
, for n ∈ {0,1}

and the equilibrium steady-state probability of the server being idle is g̃0 = (1 + ρπ̃0)
−1
.

Throughput in equilibrium is de�ned as λ
∑N−1

k=0 π̃ng̃n for a service system with capacity N . It is

clear that throughput is not proportional to the equilibrium joining fraction since there is no entrance

in state N . Next proposition characterizes the e�ect of information cost on both equilibrium joining

probability and throughput for the zero-capacity case.

Proposition 3. The following are true:

(1) If R− p≥ T, the equilibrium joining fraction π̃ is increasing in information cost θ. Otherwise,

π̃ takes its maximum value when θ= 0.

(2) Throughput takes its maximum value when θ= 0.

Proposition 3 states that in a service system with no waiting room, the �rm should make the system

completely visible to maximize throughput, regardless of the rejection cost to the customers. The

rationale is that obstructing information acquisition for customers can only deter them joining the

system when it is empty, which is de�nitely undesirable for the �rm. At the other extreme with in�nite

waiting room, we already know that throughput may exhibit non-monotone behavior. Putting these

together, it is evident that queue capacity can be an important design consideration when customers

have limited attention. This is corroborated in Figure 6a, which depicts the impact of information costs

on throughput for di�erent queue capacity levels (N = 20 is practically identical to our baseline case).

Most notably, our extended framework elucidates the possibility for the �rm to bene�t from limiting

waiting room capacity. As evident in Figure 6b, throughput may be maximized at an intermediate,

�nite waiting room capacity.
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Figure 6 Impact of �nite capacity level on customer behaviour (R= 2.8, p= 0,C = 1, µ= 1, λ= 0.9, T = 2)

7.2. Environmental Uncertainty

There could be aspects of the service system other than the queue size that are not easily discernible

by customers, such as service speed, quality and reward, among others. Consider an extension of our

framework where the scope of �environmental uncertainty� is expanded to include both service value

R (quality of service) and service rate µ. Suppose that customers optimally allocate their attention to

learn about the uncertain service reward and service speed, along with the uncertain queue size. Let

us assume that R and µ are discrete random variables with �nite support; state space for R consists

of KR distinct values ΩR = {Rk : k= 1, ..,KR} and state space for µ consists of Kµ distinct values

Ωµ = {µk : k= 1, ..,Kµ} both in ascending order. State of the queuing system at any time is the a triplet

Ω = {X = (N,R,µ) :N ≥ 0,R ∈ΩR, µ∈Ωµ} with prior joint distribution h (.). We use hX to denote the

marginal probability of X ⊂Ω. Both Ω and h are assumed to be common knowledge in the population.

Note that queue size distribution depends on service rate realization. Hence, we need to de�ne

state-dependent queue distributions in equilibrium. In particular, let g̃ (j) = {g̃n (j) ;n≥ 0, j = 1, ..,Kµ}

denotes the conditional steady-state queue distribution in equilibrium given service rate µj. We also use

π̃n (i, j) to denote the conditional probability of joining in equilibrium when service reward is Ri, service

rate is µj and number of customers in the system is n≥ 0. State-dependent utility of joining is denoted

as vn (i, j) =Ri− p− cn/µj and value of balking is normalized to zero. For a given prior h, rationally
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inattentive customers solve the extended version of the optimization problem (9) to arrive at the

optimal unconditional joining probability: max
π∈[0,1]

[
θ
∑∞

n=0

∑KR
i=1

∑Kµ
k=1 h (n, i, j) log

(
πevn(i,j)/θ + 1−π

)]
.

The di�erence is that the expectation is now taken with respect to the generalized joint distribution

h. We de�ne the equilibrium as follows:

Definition 2. In the queueing system with rationally inattentive customers with information cost

θ > 0, the equilibrium probability of joining the queue when there are n customers present, service

reward is Ri and service rate µj is

π̃n (i, j) =
π̃evn(i,j)/θ

1− π̃+ π̃evn(i,j)/θ
for i∈ {1, ..,KR} , j ∈ {1, ..,Kµ} , n≥ 0

where π̃ =
∑∞

n=0

∑KR
i=1

∑Kµ
k=1 π̃n (i, j) g̃n (i, j)hR,µ (i, j) is the unconditional joining probability in equi-

librium. Denoting λn (i, j) = λπ̃n (i, j) as the state-dependent arrival rates, the equilibrium conditional

steady-state distribution given service reward Ri and service rate µj is

g̃0 (i, j) =
1

1 +
∑∞

n=1

λ0(i,j)λ1(i,j)...λn−1(i,j)

µnj

,

g̃n (i, j) = g̃0 (i, j)
λ0 (i, j)λ1 (i, j) ...λn−1 (i, j)

µnj
for n≥ 1.

Resulting conditional joining probabilities π̃n (i, j) form the state dependent arrival rates λn (i, j)

which in turn de�ne the queue size distribution.

Theorem 3. For any θ > 0, there exists a unique equilibrium satisfying De�nition 2.

Theorem 3 establishes the existence of an equilibrium for the most general scenario where customers

have to allocate their attention and acquire information about multiple aspects of the service environ-

ment. It is then also possible to compare equilibria that would emerge under di�erent combinations of

these uncertain dimensions. For example, it is possible to compare the equilibria when i) both service

rate and queue length are uncertain, ii) only service rate is uncertain, and iii) only queue length is

uncertain. Comparison of throughput under these scenarios would reveal insights as to whether it is

better for the �rm to provide information on service speed or queue length. We give a �avor of these

insights in Figure 7. Note that �knowing more� (i.e., less uncertainty) does not necessarily lead to higher
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Figure 7 Impact of learning service speed and/or queue length (R= 2.4, p= 0,C = 1, λ= 0.85,Ωµ = {0.5,1,1.5})

throughput. We consistently �nd that throughput is higher when customers learn queue length instead

of service speed, implying that providing visibility on service speed is more e�ective for the �rm.

The extended model discussed in this section assumes that information cost is the same for each

uncertain element of the environment the customer is learning about. In reality, however, some aspects

of the service system may be easier to learn than others. For example, it is commonly argued that

determining queue length is relatively easier than service speed. A rational customer should optimally

allocate her attention taking into account the time-and-cost e�ciency associated with learning about

di�erent aspects of the service system. The resulting choice behaviour would be more complex, but can

be speci�ed as a generalization of the GMNL choice (8), as shown in Hüttner et al. (2018). We can

incorporate this choice function into our framework to characterize the equilibrium joining behavior

with non-uniform information costs as well. Application of such models can produce more re�ned

insights on optimal information provision strategies of the �rm. Finally, we remark that our model

can be enriched to include decisions beyond joining and balking. For example, it is possible that some

customers may decide to �retry� joining the queue if they �nd it congested. Under mild conditions, it

can be shown that an equilibrium exists under retrials. We omit further details in the interest of space.

8. Concluding Remarks

Limited attention is ubiquitous and learning is costly. In service systems, customers have to spend

time and cognitive resources to determine queue lengths, estimate associated delays and translate this
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information into decisions. As information is costly, rational customers need to trade-o� the bene�ts

of information against its costs and have to make joining decisions based on partial information. Due

to these information frictions, most queues are not fully visible or invisible, but rather opaque in

operation. In this paper, we propose a tractable framework for opaque queues. At the core of our

framework is rationally inattentive choice, which o�ers a micro-founded model of strategic customer

behavior linking beliefs, rewards and information costs. Our framework covers the entire spectrum of

queue opaqueness, naturally connecting the two well-known models of visible and invisible queues in

the limits. Accordingly, we are able to provide a uni�ed perspective and a comprehensive view on the

e�ect of information cost (information prevalence) on throughput, revenue and social welfare.

We establish the existence and uniqueness of an equilibrium, and explore its sensitivity with respect

to the underlying service characteristics. We identify perspicuous conditions for an opaque queue to be

bene�cial or detrimental to the �rm from a throughput perspective, validate the robustness of these

results when the service �rm conducts price optimization, and also test social welfare implications.

Instead of replicating these descriptive results here, it is perhaps better to focus on the managerial

prescriptions they translate into, with some examples. Our results strongly suggest that �rms should be

most cautious about customer limited attention and their information provision strategies when there

is a positive correlation between demand/congestion and how attractive the service is to the customers.

This is because the e�ects of information frictions and hence information provision implications are

reversed for high and low congested services.

When customers value a service highly and there is strong demand for it, service �rms should inten-

tionally leave some uncertainty around queue length, but not completely obstruct the information

acquisition process. Disney, for example, is known to adopt such practices in theme parks via special

layouts like serpentine lines that are partially blocked to disguise the length of the queue. Neither

providing very clear queue length and delay information nor completely blocking queue visibility is

productive, as they both lead to throughput losses. Service �rms can take further advantage of cus-

tomers' limited attention and presence of information costs by charging higher prices and increasing



30

revenues in this case. If �rm pro�ts are relatively more signi�cant compared to customer surplus, this

might even be bene�cial from a total social welfare perspective.

In contrast to above, for less congested �rms o�ering a service that is not highly valued, opaque

queues and partial hindrance of information acquisition is precisely what the �rm should try to avoid.

To the best of our knowledge, this has not been identi�ed and noted in the extant literature. It is

therefore in the interest of a low-congested public service o�ce or drive-through fast-food restaurant

to create a completely visible and transparent queuing system. It may even be better to completely

obstruct the observation of the queue, but this may not be possible due to very nature of the process or

physical constraints. It is optimal for a service �rm operating in this regime to try to curb throughput

losses by reducing prices, but we �nd that even that may not be su�cient to completely eradicate the

losses due to information frictions.

We believe that our strategic queuing framework with rationally inattentive customers can serve

as a useful instrument for service design. This is substantiated by the fact that the baseline model

can be easily extended to accommodate �nite waiting line capacity, multiple servers, as well as more

complicated environments with multiple uncertain attributes where limited time and attention has to

be allocated appropriately, among others. As we have shown with preliminary examples, these models

can exploit trade-o�s and provide valuable insights on the physical design attributes (number of servers,

waiting room capacity) as well optimal provision of information about queue lengths, service speed,

service quality, and possibly other salient characteristics of the service.

References

Ang E, Kwasnick S, Bayati M, Plambeck EL, Aratow M (2015) Accurate emergency department wait time

prediction. Manufacturing & Service Operations Management 18(1):141�156.

Boyac� T, Akçay Y (2017) Pricing when customers have limited attention.Management Science 64(7):2973�3468.

Caplin A, Dean M, Leahy J (2016) Rational inattention, optimal consideration sets and stochastic choice, NYU

working paper.

Chen H, Frank M (2004) Monopoly pricing when customers queue. IIE Transactions 36(6):569�581.



31

Cover TM, Thomas JA (2012) Elements of information theory (John Wiley & Sons, Hoboken, NJ).

Cui S, Veeraraghavan S (2016) Blind queues: The impact of consumer beliefs on revenues and congestion.

Management Science 62(12):3656�3672.

Debo LG, Parlour CA, Rajan U (2012) Signaling quality via queues. Management Science 58(5):876�891.

Dessein W, Galeotti A, Santos T (2016) Rational inattention and organizational focus. American Economic

Review 106(6):1522�36.

Dobson G, Pinker EJ (2006) The value of sharing lead time information. IIE Transactions 38(3):171�183.

Economou A, Kanta S (2008) Optimal balking strategies and pricing for the single server markovian queue with

compartmented waiting space. Queueing Systems 59(3-4):237.

Edelson NM, Hilderbrand DK (1975) Congestion tolls for poisson queuing processes. Econometrica: Journal of

the Econometric Society 43(1):81�92.

Guo P, Zipkin P (2007) Analysis and comparison of queues with di�erent levels of delay information.Management

Science 53(6):962�970.

Hassin R (2016) Rational queueing (CRC press, Boca Raton, FL).

Hassin R, Haviv M (2003) To queue or not to queue: Equilibrium behavior in queueing systems (Kluwer Academic

Publishers, Boston, MA).

Hassin R, Roet-Green R (2017) The impact of inspection cost on equilibrium, revenue, and social welfare in a

single-server queue. Operations Research 65(3):804�820.

Hu M, Li Y, Wang J (2017) E�cient ignorance: Information heterogeneity in a queue. Management Science

64(6):2473�2972.

Huang L, Liu H (2007) Rational inattention and portfolio selection. The Journal of Finance 62(4):1999�2040.

Huang T, Allon G, Bassamboo A (2013) Bounded rationality in service systems. Manufacturing & Service

Operations Management 15(2):263�279.

Huang T, Chen YJ (2015) Service systems with experience-based anecdotal reasoning customers. Production

and Operations Management 24(5):778�790.

Hüttner F, Boyac� T, Akçay Y (2018) Consumer choice under limited attention when alternatives have di�erent

information costs, ESMT working paper 16-04 (R2).



32

Ibrahim R (2018) Sharing delay information in service systems: a literature survey. Queueing Systems 89(1-

2):49�79.

Kremer M, Debo L (2015) Inferring quality from wait time. Management Science 62(10):3023�3038.

Ma¢kowiak B, Mat¥jka F, Wiederholt M (2018) Rational inattention: A disciplined behavioral model, CERGE-EI

working paper.

Mat¥jka F (2015a) Rationally inattentive seller: Sales and discrete pricing. The Review of Economic Studies

83(3):1125�1155.

Mat¥jka F (2015b) Rigid pricing and rationally inattentive consumer. Journal of Economic Theory 158(Part

B):656�678.

Mat¥jka F, McKay A (2015) Rational inattention to discrete choices: A new foundation for the multinomial

logit model. American Economic Review 105(1):272�98.

Naor P (1969) The regulation of queue size by levying tolls. Econometrica 37(1):15�24.

Ren H, Huang T, Arifoglu K (2018) Managing service systems with unknown quality and customer anecdotal

reasoning. Production and Operations Management 27(6):1038�1051.

Sallee JM (2014) Rational inattention and energy e�ciency. The Journal of Law and Economics 57(3):781�820.

Simhon E, Hayel Y, Starobinski D, Zhu Q (2016) Optimal information disclosure policies in strategic queueing

games. Operations Research Letters 44(1):109�113.

Sims CA (2003) Implications of rational inattention. Journal of monetary Economics 50(3):665�690.

Sims CA (2006) Rational inattention: Beyond the linear-quadratic case. American Economic Review 96(2):158�

163.

Veeraraghavan S, Debo L (2009) Joining longer queues: Information externalities in queue choice.Manufacturing

& Service Operations Management 11(4):543�562.

Xu J, Hajek B (2013) The supermarket game. Stochastic Systems 3(2):405�441.



33

Appendix

Proof of Lemma 1 Note that (10) and (11) are from a direct application of Proposition 1 in Caplin

et al. (2016) which provides necessary and su�cient conditions for a general discrete choice problem.

Plugging π= 0 in (10) and π= 1 in (11), we obtain (12) and (13), respectively.

Proof of Theorem 1 Let us �rst show that the equilibrium in De�nition 1 is stable. Assume that

π̃ < 1 and θ ∈ [0,∞). Then note that the queue distribution in steady-state is well-de�ned as the series

∞∑
k=1

λ0λ1...λk−1

µk
=
∞∑
k=1

ak

converges. To see this let us use the ratio test. Note that

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣= lim
k→∞

∣∣∣∣λµπ̃k
∣∣∣∣= lim

k→∞

∣∣∣∣λµ π̃evk/θ

1− π̃+ π̃evk/θ

∣∣∣∣= 0

as vk = R− p− ck/µ approaches to minus in�nity as k→∞. This is true for any �nite λ > 0. Note

that when λ≥ µ, equilibrium joining probability can not be 1 as expected waiting time for a customer

is in�nite. When θ=∞, the series is convergent if λ< µ. Now we prove the existence and uniqueness.

Existence: Let us de�ne

πn (q) =
qevn/θ

1− q+ qevn/θ

g0(q) =

(
1 +

∞∑
k=1

ρkπ0 (q)π1 (q) ...πk−1 (q)

)−1

,

gn(q) = g0(q)ρnπ0 (q)π1 (q) ...πn−1 (q) for n≥ 1. (21)

Our aim is to show that there exists at least a point satisfying π (q) = q where

π (q) =
∑
n

πn(q)gn(q). (22)

Let h (q) = π (q)− q. Note that πn (0) = 0 for all n≥ 0 and consequently g0(0) = 1 and gn(0) = 0 for all

n≥ 1. Using this and (22), it is clear that unconditional joining probability satis�es

π (0) =
∑
n

π (0)evn/θ

1−π (0) +π (0)evn/θ
gn(0) =

π (0)ev0/θ

1−π (0) +π (0)ev0/θ
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whose solution gives π (0) = 1. This results in h (0) = π (0) = 1> 0, which is strictly positive. On the

other hand, h (1) = π (1)−1≤ 0 since π (1)∈ [0,1] . Since h (q) is continuous in [0,1] , by the intermediate

value theorem, there exists at least one point q ∈ [0,1] satisfying h (q) = 0.

Uniqueness: To show uniqueness, it is enough to show that h (q) is decreasing in q in the interval [0,1] .

By (9) , the unconditional joining probability is the solution to the following problem;

π (q) := arg max
π∈[0,1]

f (π; q) where (23)

f (π; q) = θ
∑
n

gn (q) log
(
πevn/θ + 1−π

)
. (24)

For given q ∈ [0,1] , f is concave in π. As shown in Mat¥jka and McKay (2015), there always exists a

solution to (23) and if the vectors evn/θ are linearly independent the solution is unique, which is exactly

our case since vn is strictly monotone in n. Taking partial derivative of f with respect to π gives

∂

∂π
f (π; q) = θ

∑
n

gn (q)ϕn (π;θ) where

ϕn (π;θ) =
evn/θ− 1

πevn/θ + 1−π
. (25)

Note that ϕn (π;θ) is decreasing in n. 2 Now assume that q is increased to q′. By Lemma 2 below, it is

clear that there exists a threshold n∗ ≥ 0 such that for all n≤ n∗, gn(q)−εn = gn(q′) and for all n>n∗,

gn(q′) = gn(q) + εn, for some sequence of εn > 0 with

n∗∑
n=0

εn−
∞∑

n=n∗+1

εn = 0. (26)

Rewriting the �rst order derivative,

∂

∂π
f (π; q′) = θ

n∗∑
n=0

gn (q′)ϕn (π;θ) + θ
∞∑

n=n∗+1

gn (q′)ϕn (π;θ)

= θ
n∗∑
n=0

(gn(q)− εn)ϕn (π;θ) + θ
∞∑

n=n∗+1

(gn(q) + εn)ϕn (π;θ)

=
∂

∂π
f (π; q)− θ

n∗∑
n=0

εnϕn (π;θ) + θ
∞∑

n=n∗+1

εnϕn (π;θ)≤ ∂

∂π
f (π; q)

since ϕn (π;θ) is decreasing in n. Then the value π (q) that satis�es the �rst order condition (i.e., the

maximizer) is decreasing in q. Therefore, there is a unique q∗ ∈ [0,1] that satis�es π (q∗) = q∗. �

2We can rewrite ϕn (π;θ) = 1

π+ 1−π
evn/θ

− 1

πevn/θ+1−π . Observe that the �rst term is decreasing in n, whereas the second

term is increasing in n.
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Lemma 2. For any 0≤ q1 < q2 ≤ 1, gn(q2)− gn(q1) is �rst negative, then positive as n increases.

Proof Note that for n= 0, g0(q2)− g0(q1)< 0 since g0(q) is decreasing in q. We now consider two

cases. Assume that gn(q2) = gn(q1) + εgn for some n≥ 1 where εgn > 0. Similarly, assume that πn(q2) =

πn(q1) + επn for some επn > 0. Then, using (21) , we show that

gn+1(q2)− gn+1(q1) = ρπn(q2)gn(q2)− ρπn(q1)gn(q1) = ρπn(q2) (gn(q1) + εgn)− ρ (πn(q2)− επn)gn(q1)

= ρπn(q2)gn(q1) + ρπn(q2)εgn− ρπn(q2)gn(q1) + επnρgn(q1)

= εgnρπn(q2) + επnρgn(q1)> 0. (27)

Now assume that gn+1(q2) + εgn+1 = gn+1(q1) for some n≥ 0 where εgn+1 > 0. Assume to the contrary

that gn(q2) = gn(q1) + εgn with εgn > 0. Using (27) with gn(q2) = gn(q1) + εgn and πn(q2) = πn(q1) + επn,

gn+1(q2)− gn+1(q1) = εgnρπn(q2) + επnρgn(q1)> 0

which is a contradiction. �

Proof of Corollary 1

1. When θ= 0, for a given prior distribution g on queue size, the optimal solution to the maximization

problem in (6) is πn = 1 for all n≤ ne and πn = 0 for all n≥ ne + 1 as vn is decreasing in n. This is a

visible queue which results in a capacitated M/M/1/ne system which gives (16) .

2. When θ =∞, (14) implies that in equilibrium π̃n = π̃ for all n ≥ 0 and by (6) , the problem is

the same as in that of invisible queues. Let λ̃= λπ̃ be the equilibrium e�ective arrival rate. Note that

λ̃ ≤ λ. We look for a symmetric Nash equilibrium where customers maximize EG(λ̃) [R− p− cn/µ] =

R− p− cWq(λ̃) with Wq(λ̃) = λ̃

µ(µ−λ̃)
. Then, it is clear that if R− p− cWq(λ)≥ 0, then everyone joins.

If, on the other hand, λ≥ µ, Wq =∞ and no one joins. Otherwise, unique equilibrium mixed strategy

π̃ satis�es R− p− cWq(λ̃) = 0 which yields the characterization in (17) .

Proof of Proposition 1 The e�ect of R, p and c are unilateral since they only a�ect the utility.

Therefore, we prove here that equilibrium joining fraction increases in utility, in general. Consider the

optimization problem in (23). First we note that (25) is increasing in vn for any π. Let us de�ne the



36

vector v= [vn;n≥ 0] and use the notation v
′ ≥ v≡

{
v
′
n ≥ vn;n≥ 0

}
. Using exactly the same arguments

in Lemma 2, one can show that for any v < v′, gn(v′) − gn(v) is �rst negative, then positive as n

increases. Then, it is clear that ∂
∂π
f (π; q, v) is increasing in v, which implies that the maximizer de�ned

in (23) will be increasing in v. Service rate µ, on the other hand, a�ect both utility values and congestion

in the queue, i.e., queue size distribution. We proceed with a contradictory argument and utilize similar

arguments in the proof of uniqueness of equilibrium. Let us denote π̃ (µ) as the equilibrium joining

fraction as a function of service rate µ. Let µ1 <µ2, and assume that π̃ (µ1)> π̃ (µ2) . Since π̃ is a �xed

point of (23) , π (π̃ (µ1))>π (π̃ (µ2)) where

π (π̃ (µi)) =

{
π ∈ [0,1] : θ

∑
n

gn (π̃ (µi))ϕn (π;θ,µi) = 0

}
, for i∈ {1,2} and

ϕn (π;θ,µ) =
e(R−p−cn/µ)/θ− 1

πe(R−p−cn/µ)/θ + 1−π
.

First note that ϕn (π;θ,µ1) < ϕn (π;θ,µ2) . Furthermore, by Lemma 2, we know that gn(π̃ (µ1)) −

gn(π̃ (µ2)) is �rst negative, then positive as n increases, i.e., there exists a threshold n∗ ≥ 0 such that

for all n ≤ n∗, gn(π̃ (µ2)) = gn(π̃ (µ1)) + εn and for all n > n∗, gn(π̃ (µ2)) = gn(π̃ (µ1))− εn, for some

sequence of εn > 0 that satisfy (26) . Rewriting the �rst order derivative,

∂

∂π
f (π;µ2) = θ

n∗∑
n=0

gn (π̃ (µ2))ϕn (π;θ,µ2) + θ
∞∑

n=n∗+1

gn (π̃ (µ2))ϕn (π;θ,µ2)

= θ
n∗∑
n=0

(gn(π̃ (µ1)) + εn)ϕn (π;θ,µ2) + θ
∞∑

n=n∗+1

(gn(π̃ (µ1))− εn)ϕn (π;θ,µ2)

= θ
∞∑
n=0

gn(π̃ (µ1)ϕn (π;θ,µ2) + θ
n∗∑
n=0

εnϕn (π;θ,µ2)− θ
∞∑

n=n∗+1

εnϕn (π;θ,µ2)≥ ∂

∂π
f (π;µ1)

since ϕn (π;θ,µ) is decreasing in n. But this means that π̃ (µ2)> π̃ (µ1) , which is a contradiction. �

Proof of Proposition 2 From the �rst order condition, we obtain

R′I (p) = λ [π̃ (p) + pπ̃′ (p)] = 0⇒ π̃′ (p) =− π̃ (p)

p
(28)

where π̃′ (p) denotes �rst order derivative with respect to p. Recall that π̃ is the point that satisfy the

�xed point equation π (q) = q where π (q) is de�ned in (23). Let,

F (p, π̃ (p)) = π (π̃ (p) , p)− π̃ (p) = 0 where
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π (q, p) :=

{
x∈ [0,1] : θ

∑
n

gn (q, p)
evn(p)/θ− 1

xevn(p)/θ + 1−x
= 0

}
and the dependence of gn (q, p) and vn (p) to p is clear from their de�nitions. To show that RI (p) is

unimodal, it is enough to show that ∂
∂p
F (π̃ (p) , p) = 0 has a unique solution at point p that satis�es

R′I (p) = 0. Using the chain rule, we take the �rst order derivative of F (p, π̃ (p)) and use (28) to obtain

∂
∂p
F (π̃ (p) , p) = ∂

∂π̃(p)
F (π̃ (p) , p) π̃′ (p) =

(
∂

∂π̃(p)
π (π̃ (p) , p)− 1

)
π̃′ (p) = 0⇒ ∂

∂π̃(p)
π (π̃ (p) , p) = 1 (29)

since π̃′ (p)< 0 (i.e., π̃ (p) is decreasing in p by Corollary 1). We also know that π (q, p) is decreasing

in q for a given p, which we proved in uniqueness part of Theorem 1. Furthermore, π (0, p) = 1 which

means that there is a unique point that satisfy (29) . �

Proof of Theorem 2 Using necessary and su�cient conditions in Lemma 1, for a given belief g0

(steady-state probability of zero customers in the system), the solution to the rational inattention

problem with v0 =R− p > 0 and v1 =−T is

π=


0 if g0

1−ev1/θ
− 1−g0

ev0/θ−1
< 0

1 if g0
1−ev1/θ

− 1−g0
ev0/θ−1

> 1

g0
1−ev1/θ

− 1−g0
ev0/θ−1

otherwise.

. (30)

Noting g̃0 = (1 + ρπ̃0)
−1
, the �rst element in (20) is the solution to the �xed point equation

1

1+ρ π∗ev0/θ

1−π∗+π∗ev0/θ

1− ev1/θ
−

1− 1

1+ρ π∗ev0/θ

1−π∗+π∗ev0/θ

ev0/θ− 1
= π∗.

Note that this point can not be negative since v0 is assumed positive.However, it can be greater than

one and in this case the unique equilibrium point is in the boundary, i.e., π∗ = 1. �

Proof of Proposition 3

(1) Let us rewrite the �rst element in π̃ in (20) as

π̃=

(
e(R−p)/θ− 1

)
(eT/θ− 1) (ρe(R−p−T )/θ + e(R−p−T )/θ− e−T/θ)

.

When R− p≥ T, it is clear that
(
e(R−p)/θ− 1

)
/
(
eT/θ− 1

)
is increasing in θ. Furthermore, the denom-

inator is decreasing in θ, which makes π̃ increasing. When R− p < T, on the other hand, π̃ may not
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be monotone, yet, π̃ is maximum when θ = 0. To show this, let us �rst denote π̃ (θ) as a function of

information cost. Assume to the contrary that for some θ > 0, π̃ (0)< π̃ (θ) , i.e.

1

1 + ρ
<

(
e(R−p)/θ− 1

)
(1− e−T/θ) (ρe(R−p)/θ + e(R−p)/θ− 1) .

After some manipulation, it reduces to

ρ<
e(R−p−T )/θ− e−T/θ

(1− e(R−p−T )/θ)
.

Note that for R− p < T, the right hand side is increasing in θ and in the limit

lim
θ→∞

e(R−p−T )/θ− e−T/θ

(1− e(R−p−T )/θ)
= lim

θ→∞

(R− p−T )/θe(R−p−T )/θ +T/θe−T/θ

− (R− p−T )/θe(R−p−T )/θ
=

(R− p)
T − (R− p)

.

However, π̃ (0)> π̃ (∞) when ρ> (R− p)/ (T − (R− p)) which is a contradiction. �

(2) For any θ ≥ 0, throughput is λπ̃0/ (1 + ρπ̃0) = λ/ (1/π̃0 + ρ) . When θ = 0, throughput is

λ/ (1 + ρ) . Since π̃0 ∈ [0,1], λ/ (1 + ρ)≥ λ/ (1/π̃0 + ρ) . �

Proof of Theorem 3 Let ρj = λ/µj and de�ne

πn (q; i, j) =
qevn(i,j)/θ

1− q+ qevn(i,j)/θ
for i∈ {1, ..,KR} , j ∈ {1, ..,Kµ} , n≥ 0 and

πn (q; j) =

KR∑
i=1

πn (q; i, j)gn (q; j)hR,µ (i, j) for n≥ 0 and j ∈ {1, ..,Kµ}

with queue size distribution

g0 (q; j) =
1

1 +
∑∞

n=1 ρ
n
j π0 (q; j)π1 (q; j) ...πn−1 (q; j)

,

gn (q; j) = g0 (q; j)ρnj π0 (q; j)π1 (q; j) ...πn−1 (q; j) for n≥ 1.

Consider the following maximization problem:

π (q) = arg max
π∈[0,1]

[
f (π; q) = θ

∞∑
n=0

KR∑
i=1

Kµ∑
k=1

gn (q; j)hR,µ (i, j) log
(
πevn(i,j)/θ + 1−π

)]
(31)

Let h (q) = π (q) − q. Note that h (0) = π (0) ≥ 0 and h (1) = π (1) − 1 ≤ 0 since π (q) ∈ [0,1] . Since

h (q) is continuous in [0,1] , by the intermediate value theorem, there exists at least one point q ∈ [0,1]

satisfying h (q) = 0.
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Uniqueness: For a given q ∈ [0,1] , the objective function in (31) is concave in π. We can write the �rst

order derivative of the objective in (31) with respect to π as

∂

∂π
f (π; q) = θ

KR∑
i=1

Kµ∑
k=1

hR,µ (i, j)
∞∑
n=0

gn (q; j)ϕn (π;θ) where

ϕn,k (π;θ) =
evn(i,j)/θ− 1

πevn(i,j)/θ + 1−π
. (32)

Observe that for �xed i, j, ϕn,k (π;θ) is decreasing in n and by Lemma 2 and by the same arguments

in the proof of Theorem 1,
∑∞

n=0 gn (q; j)ϕn (π;θ) is decreasing in π. Note that ∂
∂π
f (π; q) is just

expectation of this value and hence it also decreases in π. The same arguments follow as in Theorem

1 and there exists a unique q∗ ∈ [0,1] that satis�es π (q∗) = q∗. �

Stability of the Equilibrium

In this section, we show how the equilibrium in De�nition 1 can be attained in an adaptive way.

We use time periods indexed as t ∈ {0,1,2, ...} and assume that each period is long enough for the

system to reach steady-state. At t = 1, assume that customers start with an arbitrary belief about

percentage of joining customers (market share) q0 by which they form their prior belief G (q0) about

queue size distribution which is de�ned in (21). Customers' best response in period t= 1 given G (q0)

is then q1 = π (q0) which is de�ned in (23) . At any period t ≥ 1, customers use the average market

share to form their prior belief about queue size distribution. More speci�cally, their prior belief is

G
(
qt−1

)
where qt−1 =

∑t−1

k=0 qk/t. Then, the resulting unconditional joining probability is qt = π
(
qt−1

)
.

In the following proposition, we show that customer behaviour qt converges to the equilibrium joining

probability q∗ that satis�es π (q∗) = q∗, i.e., equilibrium given in De�nition 1. However, before that

we give the following useful lemma that connects optimal rational inattentive behaviour to the prior

distribution which is a slightly modi�ed version of the Lemma 16.1.1 in Cover and Thomas (2012) for

log-optimal portfolios.

Lemma 3. π (q) is convex in q.

Proof First note that f (π; q) in (24) is linear in distribution, i.e., G (q). Let G (q1) and G (q2) be

two distributions with corresponding joining probabilities π (q1) and π (q2) . From linearity,

π (λq1 + (1−λ) q2) = f (π (λq1 + (1−λ) q2) , λq1 + (1−λ) q2)
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= λf (π (λq1 + (1−λ) q2) , q1) + (1−λ)f (π (λq1 + (1−λ) q2) , q2)

≤ λf (π (q1) , q1) + (1−λ)f (π (q2) , q2)

where the last inequality is due to optimality. �

Proposition 4. The sequence q= {qt; t≥ 0} converges to q∗ which satis�es π (q∗) = q∗.

Proof Using Lemma 3, we can write

qt+1 = π

(
t∑

k=0

qk
t

)
= π

((
t

t+ 1

) t−1∑
k=0

qk
t

+

(
1

t+ 1

)
qt

)

≤
(

t

t+ 1

)
π

(
t−1∑
k=0

qk
t

)
+

(
1

t+ 1

)
π (qt)

(
t

t+ 1

)
qt +

(
1

t+ 1

)
π (qt) .

Then, note that

qt+1− qt ≤
π (qt)− qt
t+ 1

.

Since for any t, qt and π (qt) are in [0,1], as t→∞, qt+1 − qt → 0. That is, the resulting joining

probabilities converge to the same number, i.e., lim
t→∞

qt = q∗. It is clear that, π (q∗) = q∗. �

0 10 20 30

0.6

0.8

1

Number of periods

E
q
u
il
ib
ri
u
m

jo
in
in
g
p
ro
b
ab
il
it
y

θ=1

adaptive learning

true equilibrium

0 10 20 30

0.6

0.8

1

Number of periods

E
q
u
il
ib
ri
u
m

jo
in
in
g
p
ro
b
ab
il
it
y

θ=10

adaptive learning

true equilibrium

Figure 8 Convergence to the system equilibrium (R= 2.8, p= 0, c= 1, µ= 1, λ= 0.9)

In Figure 8, we provide an illustrative example on convergence to the equilibrium for two di�erent

information cost values. We arbitrarily assume that customers at period t= 1 start constructing their

beliefs using q0 = 0.5. The horizontal line represents the true equilibrium value in these �gures. Note

that customers construct the true belief and hence equilibrium is reached very quickly. As θ gets higher,

convergence speed gets slightly slower.
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