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Abstract. Problem definition: Warranty reserves are funds used to fulfill future warranty
obligations for a product. In this paper, we investigate the warranty reserve planning prob-
lem faced by a manufacturing firm who manages warranties for multiple products. Aca-
demic/practical relevance: It is nontrivial to determine a proper amount of reserves to
hold, because warranty expenditures are random in nature and reserving either excess or
insufficient cash would incur losses. How can warranty reserve levels be optimized and
promptly adjusted is a focal issue, especially for firms selling multiple products.Methodol-
ogy: Inspired by the general pattern of empirical warranty claims data, we first develop an
aggregate warranty cost (AWC) forecasting model for a single product by coupling sto-
chastic product sales and failure processes, which can be used to plan for warranty reserves
periodically. The reserve levels are then optimized via a distributionally robust approach,
because the exact distribution of AWC is generally unknown. To reduce the losses gener-
ated from managing the funds, we further investigate two potential loss-reduction
approaches: demand learning and funds pooling. Results: For the demand learning algo-
rithm, we prove that, as the sales period grows, the optimal learning parameter asymptoti-
cally converges to a constant in a fairly fast rate; our simulation experiments show that the
performance of demand learning is promising and robust under general warranty claim
patterns. Moreover, we find that the benefits of funds pooling change over different stages
of the warranty life cycle; in particular, the relative pooling benefit in terms of reserve
losses is nonincreasing over time.Managerial implications: This study offers guidelines on
how manufacturers should adaptively forecast and dynamically plan warranty reserves
over the warranty life cycle.

Funding: This work was supported by the National Natural Science Foundation of China [Grants
71971085, 71871097, and 72071138] and the Natural Science Foundation of Guangdong Province
[Grant 2020A1515011270].

Supplemental Material: The online supplement is available at https://doi.org/10.1287/msom.2022.1086.
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1. Introduction
As one of the most important after-sales services,
product warranty, which provides protection against
premature failures for customers, has been adopted
by most manufacturers to signal the quality and reli-
ability of their products. In general, a warranty con-
tract defines a specific protection period, in which free
rectifications of or refund compensations for failed
units will be offered by the manufacturer (Gallego
et al. 2015, Pinçe et al. 2016). Although warranty serv-
ices can address customers’ concerns, managing a
warranty program is costly from the manufacturer’s
perspective, which can account for as much as 15% of
net sales. Essentially, warranty expenses are random

in nature, because they are closely related to two
coupled stochastic processes—product sales and fail-
ure processes. For the manufacturer, servicing future
warranty claims can incur liquidity risk, such as a
shortage of cash, when unanticipated claims occur. A
common solution to these issues adopted by manufac-
turers is to create an independent warranty reserve
fund to cover contingent liabilities that arise from
warranty obligations. As an industry practice, the
main functions of a warranty reserve fund include: (1)
signaling the firm’s future performance to the stock
market; (2) fulfilling contingent liabilities for future
warranty service demands; and (3) playing as a tool of
earnings management (Cohen et al. 2011).
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However, an ever-increasing warranty reserve level is
a major challenge for many manufacturers, especially the
big ones. For example, Apple had a $3.834 billion balance
in its warranty reserve fund at the end of September
2017, and the figures for Ford and General Motors were
$5.031 billion and $8.479 billion, respectively.1 Many
manufacturers, especially automakers, tend to keep
much more money in their reserve funds. According to a
report by Warranty Week,2 U.S.-based manufacturers put
aside 1.8% of product sales (on average) for future war-
ranty claims, which is 17.2 times the amount they
actually pay out in warranty claims per month. One of
the main reasons is that many manufacturers are unable
to accurately predict future warranty expenses, causing
an over stock in warranty reserves. Conversely, it
presents a bad image to customers if a manufacturer’s
actual warranty expense is beyond its expectation, which
reduces its earnings and upsets its shareholders.3 There-
fore, warranty reserve forecasting and management is an
urgent yet challenging problem for manufacturers.

Typically, the warranty life cycle4 of a product follows
the product life cycle to support the associated service
claims (Murthy et al. 2004, Khawam et al. 2007). Serv-
icing field warranty claims accounts for the biggest
share of reserve consumptions, because the manufac-
turer is fully or partially responsible for the associated
servicing expenses. Figure 1 shows the monthly war-
ranty claims for three products of a leading electronics
manufacturer over their warranty life cycles. One can
observe that the warranty life cycle can be roughly
partitioned into three stages: ramp-up, steady, and
ramp-down. In the first stage, a new product is intro-
duced to the market and its sales start growing. As a
result, more and more potential failures will occur,
resulting in an increasing number of warranty claims.
After that, the warranty life cycle enters a mature stage
in which both the number of units under warranty and

the number of claims remain roughly stable but with
considerable variability. The reason is that new sales
consecutively occur and warranties on earlier-sold units
expire. Finally, the cycle reaches a ramp-down stage
when the manufacturer discontinues the product, that
is, no new sales are observed and the warranties on
remaining units in service gradually expire. This pat-
tern of warranty claims is quite general and has been
reported by some existing studies (Khawam et al. 2007,
Calmon and Graves 2017, Calmon et al. 2021). Despite
the generality of this time-varying pattern, how to
adaptively forecast future warranty claims and then
dynamically schedule necessary warranty reserves, at
the operational level, is underexplored.

This research is motivated by the warranty reserving
issues faced by the aforementioned electronics manufac-
turer. The firm would like to determine optimal reserve
levels throughout the warranty life cycles of its products
to reduce the corresponding reserve losses. One should
distinguish warranty costs from reserve losses: The former
stands for the expenses resulting from the servicing of
warranty claims, whereas the latter represents the costs
or losses resulting from reserving excess and/or insuffi-
cient funds. In this work, we first develop an adaptive
aggregate warranty cost (AWC) forecasting model to
explicitly capture the underlying mechanism of war-
ranty claim generation. In particular, to synthesize the
uncertainties induced by product sales and failure proc-
esses, we derive two important statistics, the mean and
(approximate) variance of AWC increment within an
arbitrary time interval (Theorem 1), which are two key
metrics for warranty reserve planning. The proposed
model is a discrete variation of the AWC forecasting
model in Xie and Ye (2016) and raises an obvious
advantage compared with theirs (only focused on the
AWC within [0, t]); that is, one can dynamically forecast
the AWC increment and then plan the associated
reserves within an arbitrary time interval (e.g., a fiscal
quarter) to facilitate short-term and faster liquidity.
Then, given the mean and variance of AWC increments,
we derive optimal reserve levels periodically for a prod-
uct throughout its warranty life cycle via a distribution-
ally robust approach (Proposition 2). In addition, we
compare the total reserve losses generated by the worst-
case scenario with those by a benchmark—the simu-
lated “true-distribution” scenario. The result shows that
the worst-case reserving policy performs fairly well.

We further investigate two efficient approaches—
demand learning and funds pooling—to explore
potential reserve-loss-reduction opportunities. The
demand learning model dynamically updates the
reserving plan with field warranty data through an
exponential smoothing-type mechanism. We prove
that, as the sales period grows, the optimal learning
parameter asymptotically converges to a constant in
probability in a fairly fast rate (Propositions 3 and 4).

Figure 1. (Color online)MonthlyWarranty Claims for Three
Electronic Products
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The performance of demand learning for general
claim patterns is demonstrated via simulation experi-
ments. Moreover, we analyze the benefits of funds
pooling for a manufacturer who manages warranties
for multiple products (e.g., Apple handles warranty
claims for Mac, iPhone, and iPad). Under some mild
conditions, we obtain an important finding, that is,
the relative pooling benefit in terms of reserve losses
decreases as the relative range of standard deviations
increases (Proposition 6). In particular, we examine
how pooling benefits change over different stages of
the warranty life cycle. An interesting result is that
when there are only two products, the relative pooling
benefit in terms of reserve losses shows a nonincreas-
ing trend (Corollary 2). Finally, a case study using a
field data set is presented to demonstrate the effective-
ness of the proposed reserve planning methodologies.

The remainder of this paper is structured as follows.
Section 2 briefly reviews the relevant literature. Sec-
tion 3 presents the adaptive AWC forecasting techni-
que and the distributionally robust reserve planning
model. The potential loss reduction approaches, that
is, demand learning and funds pooling, are investi-
gated and discussed in Sections 4 and 5, respectively.
Section 6 presents a real-world case study. Section 7
concludes the paper. Some extended results and all
proofs are relegated to the online supplement.

2. Literature Review
Warranty reserve management has been a crucial
topic in the literature since the 1960s. Early efforts
were mostly devoted to the estimation/prediction of
warranty reserve demand (Menke 1969, Patankar and
Worm 1981, Thomas 1989, Eliashberg et al. 1997, Ja
et al. 2002). These studies focus predominately on esti-
mating/predicting total warranty expenses over the
warranty period or the entire product life cycle, which
overlook the time-varying characteristics of warranty
expenses and can only be used to determine warranty
reserves from a long-term perspective. Nevertheless,
the research related to (dynamic) cash management of
warranty reserves is still scarce. Tapiero and Posner
(1988) study a warranty reserving problem to specify
the fraction of revenues added to the reserve fund after
each sale. They define a compound Poisson process
for warranty claims, which is generally not the case in
reality. Buczkowski and Kulkarni (2006) aim at opti-
mizing the initial reserve level and the contribution
amount from each sale to ensure that the fund covers
warranty liabilities over a given time period with a pre-
specified probability. Gurgur (2011) tackles dynamic
cash management of warranty reserves with the objec-
tive of minimizing total reserve losses. It is found that
when there is no contribution after each sale, the opti-
mal policy is a base reserve policy—resembling the base

stock policy in the inventory theory—that achieves a
base reserve level at the beginning of each period by
cash deposits or withdrawals. Fundamentally, our
work is closely related to the papers that analogously
treat cash flows as “commodity inventories” (i.e., mod-
eling the cash management problem in a mathemati-
cally equivalent form to an inventory control problem).
As an early attempt to exploit this analogy, Baumol
(1952) applies the classical lot size model to solve a
deterministic cash transactions problem. Then, Miller
and Orr (1966) propose a two-parameter control limit
policy for a stochastic cash balance problem. Following
the two seminal works, cash management problems
have received much attention (Eppen and Fama 1969,
Neave 1970, Gormley and Meade 2007, Chen and
Simchi-Levi 2009). In essence, warranty reserve man-
agement falls into the broad scope of corporate cash
management that focuses on the control and planning
of cash balance for business firms.

Our research differs from the previously mentioned
ones in the following aspects: First, their models can-
not characterize the dynamics in the process of gener-
ating warranty claims over the entire warranty life
cycle, whereas the proposed AWC forecasting model
overcomes this issue by fully coupling stochastic sales
and failure processes. Second, because it is difficult to
derive the exact distribution of warranty costs, they
usually use the normal approximation technique to
address this problem. In contrast, our research adopts
a distributionally robust approach for reserve planning
purposes, which is more conservative yet robust. Third,
although our research simplifies the decision-making
process involved in the dynamic reserve management
problem to a static approximation, the exponential
smoothing–type learning mechanism incorporates the
“dynamics” into our model and improves its perform-
ance significantly. Finally, we take the same inventory
view (precisely, in a “newsvendor” framework) as in
the aforementioned cash management literature but
deal with a distinct type of stochastic demand source—
warranty reserve demand—that exhibits a general
increasing-stable-decreasing pattern.

Another research stream—demand learning in
inventory management (see Mišić and Perakis (2020)
for a recent overview)—is also closely related to our
work. Existing studies on this topic focus on either
single-period or multiperiod inventory control set-
tings. In the former (i.e., newsvendor) setting, demand
distribution is generally assumed to be unknown
while historical data are available (Huber et al. 2019,
Besbes and Mouchtaki 2021, Keskin et al. 2021). In the
latter setting, demands across periods are usually
assumed to be independent and identically distributed
(Chen and Chao 2019, Zhang et al. 2020). In general,
the warranty reserving problem is a multiperiod prob-
lem and, from Figure 1, the reserve demands across

Wang et al.: Warranty Reserve Management: Demand Learning and Funds Pooling
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periods are essentially dependent and nonidentically
distributed. This necessitates new data-driven methodol-
ogies that are capable to learn such demand from data.
In this work, we propose an exponential smoothing–
type learning mechanism, in which the optimal learning
parameter is sequentially optimized by minimizing
empirical total reserve losses directly. By leveraging the
optimization problem structure (i.e., the objective func-
tion) in the learning process, we combine learning and
optimization together to generate a better reserving plan.
This also provides a response to Mišić and Perakis (2020)
who call for new approaches to predict-then-optimize in
operations management applications.

Finally, the paper contributes to the risk pooling litera-
ture in operations management as well. The idea of
funds pooling is similar to that of inventory pooling,
where demand variability is mitigated by aggregating
demands across products or locations to reduce safety
stocks and consequently inventory costs (Eppen 1979,
Benjaafar et al. 2005, Berman et al. 2011). In recent years,
many efforts have been devoted to studying the behav-
iors of risk pooling in various inventory settings, for
example, heavy-tailed demands (Bimpikis and Markakis
2016), multilocation newsvendor (Govindarajan et al.
2021, Yang et al. 2021), and resource allocation (Karsten
et al. 2015, Zhong et al. 2018). Nevertheless, most pre-
vious literature on inventory pooling deals only with
the variability of product sales and considers relatively
simple forms of demand distributions. The time-varying
characteristics of warranty reserve demands—a new
finite horizon demand source—over the warranty life
cycle distinguish our problem from traditional inventory
pooling issues andpose a challenge tomodeling and anal-
ysis. In addition, the benefits of risk pooling in amultiper-
iod inventory setting have received limited attention
(Tagaras and Cohen 1992, Bimpikis and Markakis 2016).
In this research, we are particularly interested in an
important perspective of risk pooling, time-varying benefit
behavior, inmultiperiodwarranty reservemanagement.

3. Warranty Reserve Forecasting
and Planning

In this section, we first develop a discrete-time reserve
demand forecasting model that is adaptive to the uncer-
tainties from product sales and failure processes. Then,
we use a distributionally robust optimization model to
periodically determine optimal reserve levels and evalu-
ate the performance of the worst-case reserving model.

3.1. Warranty Reserve Demand Forecasting
Let L be the life cycle (sales period) of a product, that
is, from its launch time to the date it is discontinued.
Empirically, sales periods are finite and short for con-
sumer electronics, due to fast technology obsolescence.
For instance, Apple releases new generations of its

products every year while previous generations are
soon discontinued. Denote N(t) as the cumulative
number of units sold within [0, t], t ∈ [0,L].
Assumption 1. The cumulative product sales N(t) fol-
lowsa homogeneous Poisson process (HPP) with rate λ
(i.e., HPP(λ)).

This assumption is relatively strong, especially when
the magnitude of sales volume is large. However, it is
most natural to assume that new-product demand arrivals
follow an HPP, when sales curves do not exhibit obvious
patterns. In addition, this assumption might also be
acceptable for the sales of parts, which is relatively station-
ary due to their long life cycles.5 Nevertheless, we
acknowledge that this assumption is to make the problem
analytically tractable. To relax the HPP assumption and
generalize the adaptivity of our method to a larger scope
of products with nonstationary sales, in Section 4.3, we
will incorporate a nonhomogeneous Poisson process
(NHPP)—which can capture a variety of time-varying
patterns—to simulate real-world sales processes to further
validate the robustness of the proposedmethodologies.

Assumption 2. The time to first failure of this product fol-
lows an exponential distribution G(t;θ) with a constant
failure rate θ.

The failure processes of most products exhibit three
phases—infant mortality, useful life, and wear out,
which correspond to a decreasing failure rate, a con-
stant failure rate, and an increasing failure rate,
respectively. In real applications, a constant failure
rate has been demonstrated to be a good approxima-
tion for a unit that is under warranty (Blischke and
Murthy 2000). This is because (i) the units must pass
quality and reliability testing (e.g., burn-in and screen-
ing tests) before being released into the market, for
which most of them have passed through the infant
mortality period and entered the useful life period,
and (ii) the warranty periods for most products are
much shorter than their useful life periods. In particu-
lar, the failure rates for most electronics are, inher-
ently, almost constant (Blischke and Murthy 2000).

Assumption 3. The product is sold with a nonrenewing
free replacement warranty policy of length W.

Under this policy, if a unit is sold at time zero
and fails at time t ∈ [0,W], then the manufacturer will
provide a free replacement that comes with a remain-
ing warranty period of W– t. The nonrenewing free
replacement warranty policy has been widely adopted
for products that are nonrepairable or, economically,
not worth repairing—for example, smartphones, bat-
tery packs, and some electric tools. Under this war-
ranty policy, a failed unit or its critical component will
be restored to a functioning state that is as good as
new, through replacement by an identical new one.

Wang et al.: Warranty Reserve Management: Demand Learning and Funds Pooling
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Based on the aforementioned assumptions, we now
introduce an adaptive model that can fully capture
the interaction of product sales and under-warranty
failures to forecast the AWC increments, which forms
the foundation for short-term warranty reserve plan-
ning. Suppose that the warranty period is shorter than
the sales period (i.e., W ≤ L), which is quite common in
practice. The warranty life cycle [0,W + L] is of interest
to us. Let Ti (i ∈ {1, 2, : : : ,N(t)}) be the random purchase
date of the ith sold unit. Let Ci(τi) (τi �min{t−Ti,W})
quantify the random warranty cost of the ith sold unit
up to time t ≥ Ti. Given Ti, the expected warranty cost of
the ith sold unit up to time t can be calculated by the
well-known renewal equation:

E[Ci(τi)] � CWm(τi) � CW G(τi;θ) +
∫ τi

0
m(τi − x)dG(x;θ)

[ ]
� CWθτi, i ∈ {1,2, : : : ,N(t)}, (1)

where CW is the average replacement cost per failure
and m(·) is the renewal function associated with
G(t;θ). Servicing a warranty claim incurs various
costs: administration, transportation, labor, and mate-
rials, among others. For the sake of convenience, we
combine these costs into a single term CW.

Define warranted base as the number of sold units
that are still under warranty. Figure 2 illustrates the
counting process of AWC during the warranty life
cycle. It is important to point out that all units are eligi-
ble to generate warranty claims during their warranty
periods, whereas the warranted base is changing over
time. Because different units have different dates of
purchase, the AWC up to time t can be formulated as

WC(t) �

∑N(t)

i�1
Ci(τi), 0 ≤ t ≤ L,

∑N(L)

i�1
Ci(τi), L < t ≤ L +W:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

Industry practice shows that warranty reserves are
planned periodically, for example, quarterly, semiyearly,
or yearly, for accounting purposes (Cohen et al. 2011). In
accordance with this practice, we need to evaluate the
AWC increments within a sequence of equal-length time
intervals over the warranty life cycle. Suppose that
the length of reserve planning cycle is Δ, say, one quar-
ter. We assume that the ratios of warranty periodW and
sales period L to Δ are integers, which is a common prac-
tice. Without loss of generality, we rewrite W �mΔ
(m ≥ 1), L � nΔ (n ≥m as L ≥W), and L+W � (n+m)Δ.
Hence, the total number of planning periods is n + m
over the warranty life cycle. Let WCk �WC(kΔ) −
WC((k− 1)Δ) denote the AWC increment in the kth
planning period (k ∈ {1, 2, : : : ,n+m}). In general, it is
difficult, if not impossible, to obtain the exact distribu-
tion of WCk because of the complexity of warranty costs
(Ja et al. 2002, Buczkowski and Kulkarni 2006, Gurgur
2011). Fortunately, we can derive closed-form expres-
sions of the mean and approximate variance of WCk,
which are two essential statistics for further analysis.

Theorem 1. Let μk and σ2k be the mean and variance of WCk,
namely, μk � E[WCk] and σ2k � Var(WCk). Then, one has

μk �
CWλθΔ2 k− 1

2

( )
, k � 1, : : : ,m,

CWλθΔ2m, k �m+ 1, : : : ,n,

CWλθΔ2 n+m− k+ 1
2

( )
, k � n+ 1, : : : ,n+m,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

and

σ2k �

C2
Wλθ Δ2 k− 1

2

( )
+θΔ3 k2 − k+ 1

3

( )[ ]
, k � 1, : : : ,m,

C2
Wλθ(1+θmΔ)Δ2m, k �m+ 1, : : : ,n,

C2
Wλθ

Δ2 n+m− k+ 1
2

( )
+θΔ3 m2 − n2 − n+ k+ 2nk− k2 − 1

3

( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, k � n+ 1, : : : ,n+m:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

Figure 2. (Color online) AWCAccumulation Process During theWarranty Life Cycle

T1 T1+W

T2 T2+W…
…

Ti Ti+W …
…

TN(L) TN(L) +W

Warranted Base

…
…

Aggregate Warranty Cost……

Wang et al.: Warranty Reserve Management: Demand Learning and Funds Pooling
Manufacturing & Service Operations Management, 2022, vol. 24, no. 4, pp. 2221–2239, © 2022 INFORMS 2225

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
4.

59
.1

24
.1

13
] 

on
 1

1 
O

ct
ob

er
 2

02
2,

 a
t 0

3:
13

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



It is worth pointing out that the asymptotic approxi-
mation in (4) is fairly accurate under practical settings.6

Hereafter, we will use the terms approximate variance and
variance interchangeably. Themean μk and variance σ2k are
inherently correlated, because both are dependent on k,
CW, λ, and θ. In this scenario, we cannot change onewhile
keeping the other unchanged. This property renders the
warranty reserving problem different from traditional
inventory problems, in which the mean and variance of
product demands aremostly assumed to be independent.

In practice, it is not uncommon that the means and
variances of AWC increments for different planning peri-
ods or products might have distinct magnitudes. As a
consequence, the coefficient of variation, CVk � σk=μk, is
a useful alternative to measuring the risks and compar-
ing the uncertainties involved in AWC increments for
different planning periods or products. The following
lemma shows the role of CVk.

Lemma 1. For any ε > 0, we have

Pr
WCk

μk
− 1

∣∣∣∣∣
∣∣∣∣∣ > ε

{ }
≤ CV2

k

ε2
, k � 1, 2, : : : ,n +m:

Lemma 1 tells us that given an acceptable error ε, the
variability ofWCk relative to estimatedμk can bewell con-
trolled by the bound CV2

k=ε
2. This means that the risks of

relative forecast errors follow the same pattern as that of
CVk for different periods and/or products. According to
Equations (3) and (4),CVk can be approximated by

CVk �

������������������������������������(k− 1=2) +θΔ(k2 − k+ 1=3)√ ����
λθ

√
Δ(k− 1=2) , k � 1, : : : ,m,

������������
1+θmΔ

√ �������
λθm

√
Δ

, k �m+ 1, : : : ,n,

��������������������������������������������������(n+m− k+ 1=2)
+θΔ(m2 − n2 − n+ k+ 2nk− k2 − 1=3)

√
����
λθ

√
Δ(n+m− k+ 1=2) , k � n+ 1, : : : ,n+m:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

Proposition 1. The terms μk and σ2k are increasing in
k ∈ {1, : : : ,m}, constant in k ∈ {m+ 1, : : : ,n}, and decreas-
ing in k ∈ {n+ 1, : : : ,n+m}. In contrast, with respect to
the same counting sets, CVk shows an opposite decreasing-
constant-increasing trend.

The tendencies of mean μk, variance σ2k , and coefficient
of variationCVk over thewarranty life cycle are illustrated
in Figure 3. One can observe that the curves of both μk

and σ2k exhibit an upside-down bathtub shape, whereas
that of CVk is bathtub shaped. Basically, the trends of μk

and σ2k are analogous to the pattern in Figure 1, whereas
the time-varying behavior of CVk over the warranty life
cycle is an interesting result. In the first stage of the war-
ranty life cycle (i.e., 1 ≤ k ≤m), the variability indicated by
CVk shows a downward trend as time goes by. This is
because the larger the warranted base, the lower the
risk (Calmon and Graves 2017). Then, in the second stage
(i.e.,m+ 1 ≤ k ≤ n), demandvariability becomes stable be-
cause the warranted base moves into a relatively steady
state. Finally, thewarranted base shrinks in the third stage
(i.e., n+ 1 ≤ k ≤ n+m), which in turn increases the risk
caused by uncertainties. That is to say, the AWC variabil-
ity measured by the coefficient of variation decreases
(respectively, increases) as the expected AWC increases
(respectively, decreases). This result is consistent with our
investigation of the behavior of warranted base over the
warranty life cycle. It demonstrates the importance and
necessity of adopting the coefficient of variation to capture
demandvariability in relation tomeanμk.

3.2. Distributionally Robust Warranty
Reserve Planning

Based on the previous reserve demand forecast, we
develop an optimization model to periodically plan for
warranty reserves over the warranty life cycle. Setting a
proper amount of warranty reserves is nontrivial in

Figure 3. (Color online) Patterns of μk, σ2k , and CVk for Three Products

Notes. The parameters are arbitrarily set as W � 2 years, L � 5 years, Δ � 1=4 year, λ1 � 210, 000, θ1 � 0:024, CW1 � $100, λ2 � 120, 000, θ2 �
0:015, CW2 � $150, λ3 � 135, 000, θ3 � 0:010, and CW3 � $75, for illustrative purposes. In this setting, the warranty life cycle is L+W � 7 years,
m �W=Δ � 8, and n � L=Δ � 20.
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general, because the warranty expenditures are ran-
dom—induced by stochastic product sales and failure
processes—and both over reserving and under reserv-
ing may cause additional losses. More specifically, over
reserving results in an opportunity cost in the form of
lost interest, whereas under reserving might necessitate
calling for emergency funds from other sources at an
above-average interest rate (Gurgur 2011). Therefore,
the risk of holding excess or insufficient reserves should
be taken into consideration when optimizing the war-
ranty reserve levels.

In the previous section, we have derived the mean
and variance of the AWC increment in any reserve
planning period. Under the assumption that there is
no cash contribution to the reserve fund from each
sale, the AWC increment in each period is exactly the
reserve demand. As mentioned earlier, however, its
exact distribution is generally unknown. To overcome
this difficulty, we adopt the well-known distribution-
ally robust approach in Scarf (1958) to determine the
optimal warranty reserve level for each period. Let Ch

be the unit over reserving cost and Cb be the unit
under reserving cost, which can be estimated by the
time values of money.7 Unlike the material property
of commodity inventories, the monetary property of
warranty reserves allows the manufacturer to calcu-
late reserve levels for different periods independently
(without leftover from previous periods). For a spe-
cific period k ∈ {1, 2, : : : ,n+m}, the manufacturer
should determine an optimal amount of warranty
reserves to minimize the associated expected reserve
loss πk(WRk), which is expressed as

πk(WRk) � E[Ch(WRk −WCk)+ +Cb(WCk −WRk)+]
� ChE (WRk −WCk) + (WCk −WRk)+

[ ]
+CbE[WCk −WRk]+

� ChWRk −Chμk + (Ch +Cb)E[WCk −WRk]+,
(6)

where x+ �max{0,x}.
Because deriving the exact distribution of WCk is

highly intractable, we minimize Equation (6) against
the worst case. According to Gallego and Moon
(1993), the following lemma holds.

Lemma 2. The following inequality holds.

E[WCk −WRk]+ ≤
�����������������������
σ2k + (WRk − μk)2

√
− (WRk − μk)

2
:

(7)

Moreover, for each WRk, there exists a distribution of WCk
in which the bound (7) is tight.

Based on Lemma 2, the distributionally robust war-
ranty reserving problem turns to minimize the following

upper bound:

π̂k(WRk) � ChWRk − Chμk +
1
2
(Ch + Cb)

×
�����������������������
σ2k + (WRk − μk)2

√
− (WRk − μk)

[ ]
: (8)

In general, it is reasonable to assume Ch<Cb in real
applications. Then, the following result can be obtained.

Proposition 2. The distributionally robust optimal war-
ranty reserve level for the kth planning period is given by

WR∗
k � μk +

1
2
Aσk, (9)

where A � ���������
Cb=Ch

√ − ���������
Ch=Cb

√
> 0.

Substituting Equation (9) into Equation (8), we can
obtain the minimized expected reserve loss in the kth
period as

π̂
∗
k(WR∗

k) �
1
2
Bσk, (10)

where B � Ch(
������������
1+A2=4

√ +A=2) +Cb(
������������
1+A2=4

√ −A=2) > 0.

Remark 1. The optimal warranty reserve level WR∗
k

increases as Cb=Ch, μk, or σk increases, whereas the
expected reserve loss π̂

∗
k(WR∗

k) is independent of μk

but increasing in σk.
An intuitive result from Remark 1 is that in any plan-

ning period, if the ratio of Cb=Ch or the mean and/or
standard deviation of AWC increment becomes larger,
the manufacturer should specify a higher reserve level,
whereas the expected reserve loss resulting from over-
reserving and/or under-reserving depends only on the
standard deviation of AWC increment. Figure 4 shows
the warranty reserve levels and the associated losses
for the three products (with the same parameter setting
as in Figure 3). As observed, the warranty reserve levels
exhibit similar trends over the warranty life cycle,
which can be well explained by the time-varying war-
ranted base. In addition, the tendency of expected
reserve losses is related to, yet slightly different from,
that of warranty reserves.

Although the distributionally robust optimization
technique can generate a robust reserving plan against
the worst case, the plan tends to be conservative in
most cases, possibly causing additional losses. To
assess the performance of the proposed worst-case
reserving model, we compare it with a benchmark—
the simulated nonparametric reserving model. Specifi-
cally, based on Assumptions 1–3, we implement
Monte Carlo simulation to generate an empirical dis-
tribution of the AWC increment in each period, which
can be regarded as the “true distribution” and serves
as a perfect benchmark for the worst-case performance
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assessment. Our simulation studies show that, com-
pared with the benchmark, the distributionally robust
reserving model performs fairly well under a wide
range of practically reasonable parameter settings. For
more details, please refer to Section EC.1 in the online
supplement.

In what follows, based on the worst-case reserving
model, we investigate two possible reserve-loss-reduc-
tion approaches: demand learning and funds pooling.
The results will be discussed in two separate sections
for the sake of convenience.

4. Reserve Loss Reduction via
Demand Learning

In real applications, warranty claims data are usually
subject to a high degree of variability due to complex
sales and failure patterns. For instance, if the sales
record of a product presents a nonstationary pattern,
then the reserving model under the HPP sales assump-
tion cannot guarantee a satisfactory performance. As a
result, although the proposed simple model in Section
3 delivers a fairly good performance under some spe-
cific assumptions, there is still a potential to improve
its adaptivity and performance for general claims data.
In this section, we aim to augment the performance of
our simple reserving model through demand learning.

4.1. Exponential Smoothing–Type Learning
As discussed before, most of the existing demand learn-
ing models in the inventory literature cannot be directly
applied in our context, because warranty reserve
demands across periods are dependent and nonidenti-
cally distributed. Another practical hurdle is that one
cannot repeatedly collect warranty claims data for a
specific product; actually, only one single data point
can be collected in each planning period. Therefore,

there is not enough data to learn the distributional
properties of warranty reserve demands across periods.

Inspired by the demand-chasing heuristics in Bolton
and Katok (2008) and Bostian et al. (2008), we imple-
ment a simple exponential smoothing–type mechanism
to update the reserving plan derived from the distribu-
tionally robust model using observed warranty data, in
which the smoothing factor is learnt dynamically to
chase the time-varying reserve demands. Specifically,
the adjusted reserve level ŴRk in the kth planning
period is formulated as

ŴRk �WR∗
k +φk(ΔQk−1 −μk−1), k � 2, 3, : : : , (11)

where φk ≥ 0 is the smoothing/learning factor (which
is dynamically updated from period to period), WR∗

k
is the “optimal” reserve level given by Equation (9),
and ΔQk represents actual warranty expenses (i.e., the
AWC increment) in period k. In essence, the learning
model anchors on the reserve level WR∗

k derived from
the distributionally robust model and tends to pull
the reserve level down when the forecasted mean μk−1
in the previous period is high and vice versa.

It is worth noting that, unlike the smoothing factor in
a classic exponential smoothing model, the learning
parameter φk could take a value that is greater than one.
The optimal value of φ∗

k in period k ∈ {3, 4, : : : } is
obtained by solving the following optimization problem:

minφ

∑k−1
i�1

{Ch[WR∗
i +φ(ΔQi−1 −μi−1) −ΔQi]+

+Cb[ΔQi −WR∗
i −φ(ΔQi−1 −μi−1)]+}:

(12)

In the first period, we set ŴRi �WR∗
i , whereas the

learning parameter φ2 in the second period could be
arbitrarily chosen (say, φ2 � 1) for setup purposes. In
this manner, we learn the parameter φ∗

k by minimizing

Figure 4. (Color online) Warranty Reserve Levels and Expected Reserve Losses of the Three Products (Ch � $0:02 and
Cb � $0:05)
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empirical total reserve losses directly, using the collected
data from the first k – 1 periods. By leveraging the objec-
tive function in the learning process, we attempt to com-
bine learning and optimization together to generate a
better reserving plan. It is straightforward to verify that
the optimization problem in (12) is convex; thus, an opti-
mal φ∗

k exists.

4.2. Convergence of the Learning Algorithm
We are now in a position to explore some properties
of the proposed learning mechanism. We first examine
its asymptotic characteristic. To this end, define a con-
vex function H(φ) � 1

2ChAσm+2 + (Cb +Ch)E[ΔQm+2−
WR∗

m+2 −φ(ΔQm+1 −μm+1)]+, and let φ∗ be its mini-
mizer. Then, we have the following result.

Proposition 3. Given the assumed model and planning
cycle Δ, φ∗

k converges to φ∗ in probability when the sales
period L � nΔ→∞.

Proposition 3 shows that under the aforementioned
assumptions, the optimal learning parameters obtained
from successive periods asymptotically converge to a con-
stant in probability if the sales period is long enough. This
asymptotic characteristic guarantees a stable output of the
learningmechanism in the long run. In practice, however,
warranty reserve planning horizons (precisely, the war-
ranty life cycles) are never “infinitely long,” especially for
consumer electronics that are depreciating quickly. Con-
sequently, the rate of learning, that is, the convergence
rate of φk in our case, provides a more important indica-
tion thatwhether the learningmechanismwould perform
well for productswith shortwarranty life cycles.

Proposition 4. Given the assumed model and planning
cycle Δ, suppose φ �→H(φ) is second order differentiable at
φ � φ∗. Then, φ∗

k −φ∗ �OP(1=
��
k

√ ) and
��
k

√ (φ∗
k −φ∗) con-

verges weakly to a mean-zero Gaussian distribution with a
finite asymptotic variance.

Proposition 4 reveals that the rate of convergence of
the learning parameter is 1=

��
k

√
and is asymptotically

normal. This is to be expected since φ∗
k can be

regarded as anM-estimator. Our finite sample simula-
tion in Section 4.3 also reveals that when k is greater
than 10, φ∗

k is close enough to φ∗ in most cases. This
demonstrates that the proposed demand learning
mechanism is expected to deliever an acceptable per-
formance for products with short warranty life cycles.

In addition, Propositions 3 and 4, combined together,
provide a meaningful guidance to algorithmic imple-
mentation in real applications. That is, when a manufac-
turer collects historical warranty claims data of a prod-
uct for a relatively long period of time, it is expected
that the optimal learning parameter φ∗

k will converge to
a constant φ∗ in probability as time goes by. In this sit-
uation, the optimization step in Equation (12) can be

skipped and the adjusted reserve level ŴRk can be
updated by directly substituting φ∗ into Equation (11),
which simplifies the process.

4.3. Performance Evaluation with General Sales
and Failure Patterns

The results in Propositions 3 and 4 hinge heavily on
the underlying assumptions on product sales and fail-
ure processes (i.e., Assumptions 1 and 2). However, it
is difficult, if not impossible, to explore the case when
the assumptions are violated. Thus, we resort to simu-
lation experiments to evaluate the performance of the
demand learning mechanism. For this purpose, a gen-
eral setting of sales and failure patterns is adopted to
generate warranty claims.

In the simulation experiment, we first simulate sales
data by synthesizing the NHPP and the well-known
Bass model (Bass 1969). The Bass model is probably
the most influential new-product diffusion model. It
postulates that the trajectory of expected cumulative
sales of a new product follows a deterministic function
of time with three parameters: the potential market
size κ, the innovator factor p, and the imitator factor q.
For the NHPP-Bass model, the expected cumulative
sales can be expressed as

Λ(t) � κ
1 − e−(p+q)t

1 + q
p e

−(p+q)t , (13)

and the saturation point is t∗ � ln (q=p)=(p+ q), that is,
the sales rate reaches its peak at t∗. Given the ith pur-
chase date ti (i ∈ {1, 2, : : : }), we can generate the ith
interpurchase time xi from the distribution function
Zi(x) � 1− exp (−Λ(ti + x) +Λ(ti)). Then, the (i+ 1)th
purchase date is simply ti+1 � ti + xi.

Moreover, to relax the product failure assumption,
we assume that the product’s time to first failure
follows a Weibull distribution with G(t;η,β) � 1−
exp{−(t=η)β}, where η and β are scale and shape
parameters, respectively. Simulation is conducted in
the following steps. For each simulation run, follow-
ing the illustration in Figure 2, we first generate all the
purchase dates within [0,L] according to the NHPP-
Bass model. Given the purchase date of each sold
unit, we then generate the associated under-warranty
failure instant(s) based on the Weibull distribution
G(t;η,β). Finally, counting the total number of war-
ranty claims and the corresponding costs within each
planning period yields the simulated AWC incre-
ments over the entire warranty life cycle.

Let S be the total number of simulation runs and
ΔQi,k (i ∈ {1, 2, : : : ,S}, k ∈ {1, 2, : : : ,m+ n}) be the simu-
lated AWC increment for planning period k in simula-
tion run i. For each simulation run i, we need to esti-
mate the parameters λi and θi through least squares
(see Section 6 for details). With estimated λ̂i and θ̂i,

Wang et al.: Warranty Reserve Management: Demand Learning and Funds Pooling
Manufacturing & Service Operations Management, 2022, vol. 24, no. 4, pp. 2221–2239, © 2022 INFORMS 2229

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
4.

59
.1

24
.1

13
] 

on
 1

1 
O

ct
ob

er
 2

02
2,

 a
t 0

3:
13

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



we can calculate the mean μi,k and variance σ2i,k of the
AWC increment in period k by Equations (3) and (4) and
then determine the corresponding optimal reserve level
WR∗

i,k by Equation (9). Based on {ΔQi,k}k∈{1,2,: : : ,m+n} and
{WR∗

i,k}k∈{1,2,: : : ,m+n}, the adjusted reserve level ŴRi,k

can be obtained by Equation (11). Then, substituting
ŴRi,k and WR∗

i,k into π̃i,k(WRi,k) � Ch(WRi,k −ΔQi,k)+ +
Cb(ΔQi,k −WRi,k)+ yields the simulated reserve losses,
with and without learning, respectively. To evaluate
the learning benefit, we define Ωi � (∑m+n

k�1 π̃i,k(WR∗
i,k) −∑m+n

k�1 π̃i,k(ŴRi,k))=∑m+n
k�1 π̃i,k(WR∗

i,k) to represent the per-
centage of total reserve loss reduction resulting from
demand learning, for each run i.

In this simulation experiment, we propose to exam-
ine the algorithm performance with respect to two
critical factors—the location of sales peak (t∗) and the
shape of failure rate function (βtβ−1=ηβ). We consider
three types of sales peak, that is, early (t∗ < L=2), mid-
dle (t∗ ≈ L=2), and late (t∗ > L=2), as well as three
shapes of failure rate function, that is, constant (β � 1),
concave increasing (1 < β < 2), and convex increasing
(β > 2). To this end, we fix the values of κ, q, and η at
κ � 200,000, q � 0.5, and η � 5, respectively, and alter
the values of p and β to satisfy the aforementioned set-
tings. More specifically, we consider p � 0.238 (t∗ ≈ 1),
p � 0.109 (t∗ ≈ 2:5), and p � 0.054 (t∗ ≈ 4) for the three
types of sales peak, and β � 1:0, β � 1:5, and β � 3:5
for the three shapes of failure rate function, respec-
tively (see Figure 5 for illustrations). Thus, we have
nine (� 3 × 3) different yet comprehensive scenarios
in total. Other parameters are set as W � 2 years, L �
5 years, Δ � 1=4 year, Ch � $0:02, Cb � $0:05, and
CW � $100.

To illustrate the performance of demand learning,
we arbitrarily simulate one sample for each of the
nine scenarios. Figure 6 shows the corresponding

simulated warranty costs and planned reserve levels
(with and without learning) over the warranty life
cycle. It is clear that the curves of simulated warranty
costs are generally right-skewed (respectively, left-
skewed) when the sales peak occurs early (respec-
tively, late), whereas they are relatively symmetric
when the sales peak locates at the middle of the sales
period. More interestingly, we can see that the simu-
lated cost curves in panels (b) and (c) are more sym-
metric than that in panel (a). This phenomenon is
driven by the influence of failure rate function: When
the shape parameter β is greater than one, the failure
rate function increases faster over time (Figure 5),
implying that more warranty claims tend to occur
later. With a similar logic, although the simulated cost
curves in the second row of Figure 6 are relatively
symmetric, those in panels (e) and (f) tend to be left-
skewed due to the impact of increasing failure rates.
Furthermore, all the simulated cost curves in the third
row are left-skewed, whereas the skewness of the
curve in panel (g) is the smallest.

We note that the curves of mean AWC increments
in Equation (3) are symmetric with respect to the mid-
point of the warranty life cycle (Figures 3 and 6). As a
result, when simulated cost curves are more symmet-
ric, the proposed simple model (with simplified sales
and failure processes) performs better for curve fit-
ting. When the curves of simulated warranty costs are
either left- or right-skewed, the distributionally robust
optimal reserve levels deviate from simulated costs
significantly. Nevertheless, the reserve levels adjusted
by the learning algorithm are quite close to the simu-
lated costs in all scenarios. In addition, Figure 7 illus-
trates the evolution of optimal learning parameters
over the warranty life cycle for the nine scenarios in
Figure 6. One can observe that in general sales and
failure settings, the optimal learning parameters tend
to converge as well. Moreover, the rate of convergence

Figure 5. (Color online) Sales Rates (a) and Failure Rates (b) Under Various Parameter Settings
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is fairly fast: when k is greater than 10, φ∗
k is close

enough to φ∗ in most scenarios. This implies that the
exponential smoothing-type mechanism is capable to
learn warranty reserve demands for products with
both long and short life cycles.

We further examine the cost performance of
demand learning through a large number of simula-
tion runs. Figure 8 shows the box plots of Ωi over
1,000 simulation runs for the nine scenarios. It is clear
from this figure that demand learning can lead to a

significant reduction in total reserve losses. The value
of Ωi can be as high as 83.4% (the maximum value in
scenario 9). An interesting observation is that the
smaller (respectively, larger) the discrepancy between
analytical model and simulated curve, the smaller
(respectively, larger) the learning benefit Ωi. As dis-
cussed previously, the discrepancies between analyti-
cal model and simulated curve in scenarios 3, 4, and 7
(corresponding to panels (c), (d), and (g) in Figure 6)
are comparatively small in their respective subgroups.

Figure 6. (Color online) SimulatedWarranty Costs and Planned Reserve Levels (Without and with Learning) for Nine
Scenarios

Figure 7. (Color online) Convergence of Optimal Learning
Parameters φ∗

k in the CorrespondingNine Scenarios in Figure 6

Figure 8. (Color online) Box Plots ofΩi in the Nine Scenarios
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As a result, the benefits of demand learning in these
scenarios are relatively small. More specifically, the
learning benefit in scenario 3 (respectively, 4 and 7) is
the smallest among the first (respectively, middle and
last) three scenarios. This observation indicates that
the proposed demand learning algorithm performs
better when the AWC forecasting model fails to fully
capture the dynamics of actual warranty costs.

Another interesting phenomenon is regarding the
dispersion—reflected by the interquartile range of
each box—of learning benefits Ωi over the 1,000 simu-
lation runs. One can observe that scenarios 4, 5, and 6
(corresponding to middle sales peak) have a larger
dispersion, relative to those for early and late sales
peaks. The reason is that under this case, the analytical
model matches the simulated curve better, for which
the learning benefits are subject to a higher degree of
randomness. In addition, when β � 3:5 (corresponding
to scenarios 3, 6, and 9), the associated dispersion is
relatively larger as well. This is because when β � 3:5,
the failure rate function over the warranty period (i.e.,
0 ≤ t ≤ 2 years) is lower (Figure 5). Thus, the expected
number of warranty claims per unit sold would be
fewer. As a result, the AWC variability would enlarge,
which in turn translates into a larger dispersion ofΩi.

5. Reserve Loss Reduction via
Funds Pooling

In practice, a manufacturing firm usually produces
and sells multiple products at the same time, and the
firm is thus responsible to maintain enough reserves
to fulfill warranty obligations for these products.
Because warranty expenditures are random and both
over reserving and under reserving risks are involved
in warranty reserve planning, it is reasonable to
expect, just like with physical inventories, that pooling
warranty reserves for multiple products could reduce
reserve levels and reserve losses. In particular, given
the nature of reserves—cash that can be freely used
for any product sold by the firm and easily added to
or withdrawn from a fund—pooling is especially sim-
ple and attractive. However, it is surprising that a con-
siderable number of firms have not yet pooled their
warranty reserves.8 In this section, we aim to investi-
gate the warranty reserve pooling scheme to quantify
the corresponding (time-varying) pooling benefits,
which is able to reveal the value of funds pooling.

5.1. Funds Pooling Scheme
We consider a manufacturing firm that manages the
warranties for M (M > 1) different products. The fol-
lowing assumption is then introduced.

Assumption 4. The M products are released onto the mar-
ket at the same time and share the same warranty period W
and sales period L.

Although this assumption is adopted mainly for the
sake of simplicity and tractability, it is not uncommon
in reality. For example, Apple often releases products
(e.g., iPhone, iPod, iPad, Mac) of different generations
simultaneously. The warranty periods of these prod-
ucts are typically one year, and their sales periods are
roughly the same.

Hereafter, we use the following notation to facilitate
our presentation. Subscript j is attached to each
parameter to indicate the jth product ( j ∈ {1,2, : : : ,M}).
For instance, we use λj, θj, and CWj to denote the sales
rate, failure rate, and replacement cost of the jth prod-
uct, respectively. In this way, the optimal warranty
reserve level and the corresponding expected reserve
loss, for the jth product in the kth planning period,
become WR∗

j,k � μj,k + 1
2Aσj,k and π̂∗

j,k(WR∗
j,k) � 1

2Bσj,k,
respectively (according to Equations (9) and (10)).
Hence, without pooling, the total amount of warranty
reserves planned for the M products in the kth period
can be summed up as

TWR∗
k �

∑M
j�1

WR∗
j,k �

∑M
j�1

μj,k +
A
2

∑M
j�1

σj,k: (14)

Conversely, the firm can run a combined fund for
the M products to reduce reserve levels and pool
risks. In the pooled case, the distributionally robust
optimal warranty reserve level PWR∗

k in the kth period
can be determined by minimizing

πc
k(PWRk) � E Ch PWRk −

∑M
j�1

WCj,k

( )+[

+Cb
∑M
j�1

WCj,k −PWRk

( )+]

� ChPWRk −Ch
∑M
j�1

μj,k

+(Ch +Cb)E
∑M
j�1

WCj,k −PWRk

[ ]+
: (15)

Based on the result in Lemma 2, we can obtain the fol-
lowing proposition.

Proposition 5. The distributionally robust optimal level of
combined warranty reserves for the kth planning period is
given by

PWR∗
k �

∑M
j�1

μj,k +
A
2

���������∑M
j�1

σ2j,k

√√
: (16)

The corresponding expected total reserve losses for
the pooled case can be obtained as

π̂c∗
k (PWR∗

k) �
B
2

���������∑M
j�1

σ2j,k

√√
: (17)
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5.2. Benefits of Funds Pooling
We investigate the benefits of funds pooling via four
efficiency measures. In particular, we are interested in
the time-varying properties of pooling benefits over
the entire warranty life cycle. The first two measures
are related to the levels of warranty reserves, that is,
absolute benefit Υ∗

k and relative benefit Ψ∗
k (k ∈ {1,

2, : : : ,n+m}), which can be expressed as

Υ∗
k � TWR∗

k −PWR∗
k �

A
2

∑M
j�1

σj,k −
���������∑M
j�1

σ2j,k

√√⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠, (18)

and

Ψ∗
k �

TWR∗
k −PWR∗

k

TWR∗
k

�
A
2

∑M
j�1σj,k −

�����������∑M
j�1σ

2
j,k

√( )
∑M

j�1μj,k + A
2

∑M
j�1σj,k

: (19)

We also examine the absolute benefit Υo
k and relative

benefitΨo
k in terms of expected total reserve losses:

Υo
k �

∑M
j�1

π̂∗
j,k(WR∗

j,k) − π̂c∗
k (PWR∗

k)

� B
2

∑M
j�1

σj,k −
���������∑M
j�1

σ2j,k

√√⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠, (20)

and

Ψo
k �

∑M
j�1π̂

∗
j,k(WR∗

j,k) − π̂c∗
k (PWR∗

k)∑M
j�1π̂

∗
j,k(WR∗

j,k)

� 1−
����������∑M

j�1σ2j,k
√
∑M

j�1σj,k
: (21)

It is obvious that all the four efficiency measures are
positive, even though the products are released at dif-
ferent dates (i.e., Assumption 4 does not hold). This
implies that funds pooling is indeed beneficial. In
terms of time-varying behaviors, it is straightforward
to verify that absolute benefits Υ∗

k and Υo
k exhibit an

upside-down bathtub shape (refer to Section EC.2.1 in
the online supplement for details). In practice, the rel-
ative benefits are of more interest to manufacturing
firms. In what follows, we focus only on the time-
varying properties of relative benefitsΨ∗

k andΨo
k .

Define σmax,k �maxj�1,: : : ,M{σj,k} and σmin,k � minj�1,: : : ,M
{σj,k}. The following lemma examines the monotonicity of
relative benefit Ψ∗

k with respect to the mean and standard
deviation of the AWC increment.

Lemma 3. The relative benefit Ψ∗
k decreases as μj,k

increases and as σmin,k decreases.

Lemma 3 presents an interesting finding that some-
what explains the relationship between the pooling
benefit Ψ∗

k and the range of standard deviations of dif-
ferent products. If we decrease the value of σmin,k while

keeping other standard deviations unchanged—that
is, the left end-point of interval [σmin,k,σmax,k] becomes
smaller (the range is partially enlarged)—then the rela-
tive benefit Ψ∗

k becomes smaller. It is difficult to obtain
the general monotonicity of Ψ∗

k with respect to k,
because of its complex formulation. Nevertheless,
when the AWC increments of all products share the
same variance, we have the following result.

Corollary 1. If the AWC increments of the M products
share the same variance, then Ψ∗

k would follow the same
time-varying monotonicity of CVj,k (j ∈ {1, 2, : : : ,M}) over
the warranty life cycle.

Corollary 1 implies that Ψ∗
k would present a bathtub

shape that is consistent with the pattern of coefficients of
variation (Figures 9(a) and 10(a)). This supports the use
of coefficient of variation to describe AWC variability, as
discussed earlier. It is worth pointing out that when the
variances of AWC increments for different products are
identical, their means are not necessarily the same.9

Next, we investigate the time-varying property of rela-
tive benefitΨo

k in terms of reserve losses. Define δmax,k :�
σmax,k=σmin,k as the “relative range” of the standard devi-
ations. Then, we have the following key result.

Proposition 6. The relative benefit Ψo
k decreases as the

ratio δmax,k increases.

Proposition 6 shows that when all other standard
deviations (i.e., σj,k ≠ σmin,k, σmax,k) are fixed, enlarging
the relative range of AWC standard deviations will
weaken the pooling benefit. This phenomenon can be
explained by the so-called resonance effect. That is, when
the magnitudes of AWC variabilities of different prod-
ucts become larger, the manufacturer must allocate more
reserves to those with higher variabilities, which clearly
reduces the relative benefit of funds pooling. This result
shows that the relative range δmax,k plays a critical role in
comparing relative benefits Ψo

k in different planning

periods. By defining Γ
(j,l)
k :� σj,k=σl,k, ∀j≠ l, the follow-

ing lemma is useful for investigating the time-varying
behavior of the pooling benefit.

Lemma 4. If Γ(j,l)1 > 1 and θj > θl hold in the first planning
period, then (1) Γ(j,l)k > 1 holds for k ∈ {2, 3, : : : ,n+m}, and
(2) Γ(j,l)k is a nondecreasing function of k.

Combining Proposition 6 and Lemma 4 (notice that
δmax,k � Γ(max,min)

k ), the time-varying characteristic of
Ψo

k can be captured by the following corollary.

Corollary 2. Define θmax and θmin as the failure rates
associated with σmax,1 and σmin,1, respectively. For M � 2,
if θmax > θmin, then Ψo

k is a nonincreasing function of
k ∈ {1, 2, : : : ,n+m}.

This finding is quite insightful. Although the rela-
tive benefit Ψo

k is also varying over time, its tendency
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differs from that of Ψ∗
k. Figure 9 shows the relative

benefits Ψo
k when pooling any two of the three prod-

ucts, with the parameter settings in Figures 3 and 4. It
can be observed that Ψo

k shows an opposite tendency
to δmax,k. Moreover, in a specific period k, a larger
(respectively, smaller) δmax,k corresponds to a smaller
(respectively, larger) Ψo

k . For example, the relative
benefit Ψ∗

k of pooling warranty reserves of products
1 and 2 (black circle in Figure 9) is the largest one among
the three cases, because the associated ratio δmax,k is
the smallest. These observations are consistent with the
analytical results in Proposition 6 and Corollary 2.

It is important to note that Corollary 2 strictly holds
only for M � 2; that is, there are only two products.
This is because only when M � 2, Ψo

k decreases exclu-
sively with δmax,k, can the chain rule be applied to

obtain Corollary 2. For M > 2, it is difficult, if not
impossible, to obtain the analytical relationship
between Ψo

k and k. Nevertheless, Figure 10 illustrates
relative benefitsΨ∗

k andΨo
k when the warranty reserves

of all three products are pooled. It shows that Ψ∗
k has a

bathtub shape and Ψo
k exhibits a nonincreasing pattern

over the entire warranty life cycle. Moreover, it is note-
worthy that when pooling three products, both Ψ∗

k and
Ψo

k are higher than those in the case of pooling any two
products. This demonstrates that pooling benefits
would be more significant when the warranty reserves
of more products are pooled.

Another interesting observation from Figures 9
and 10 is that the relative benefit Ψo

k varies within a
small range. In particular, Ψo

k is almost constant in
some cases. This is because when sales rate λ and

Figure 9. (Color online) Relative BenefitsΨ∗
k andΨo

k with Respect to kWhen Pooling Two of the Three Products

Figure 10. Relative BenefitsΨ∗
k andΨo

k with Respect to kWhen Pooling the Three Products
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replacement cost CW are large and failure rate θ is small
(which is quite common for electronics), we know from
Equation (4) that the ratio Γ

(j,l)
k � σj,k=σl,k between any

two products j and l would be almost constant over
time, which in turn leads to an almost constantΨo

k .
The previous discussions of time-varying pooling

benefits rely heavily on the simultaneous release
assumption (i.e., Assumption 4). In practice, however,
manufacturing firms often introduce their products in
a one-by-one or batch-by-batch manner. We thus
extend our discussion to the case of periodic release
(which is common for consumer electronics); please
refer to Section EC.2.2 in the online supplement. In
addition, we provide a brief discussion in Section
EC.2.3 of the online supplement on optimal release
scheduling from a reserve management perspective.

6. Case Study with Field Data
In this section, we demonstrate the performance of the
proposed reserve planning model and the reserve-
loss-reduction strategies through a real warranty data
set provided by the aforementioned electronics manu-
facturer. The firm manufactures various kinds of elec-
tronic products and components. We select the sales
data and associated warranty claims data of three
products as examples (data are scaled for confidential-
ity). The warranty periods of the three products are
identical (W � 12 months), whereas their release dates
and sales periods are different (Table 1). Monthly
sales data are plotted in Figure 11(a), which shows
that the sales volumes fluctuate over time but do not
exhibit obvious patterns. We apply the Augmented
Dickey-Fuller test10 to examine the sales data and find
that we are at least 70% confident that the data are sta-
tionary. Thus, it is “safe” to adopt the HPP sales
assumption in our problem. In particular, the monthly
sales rates are estimated as 61,316, 48,187, and 59,103,
respectively. Moreover, the associated monthly war-
ranty claims are shown in Figure 1. In the case study,
warranty period W and sales period L are directly
obtained from the firm and sales rate λ is fitted from
the sales data, whereas failure rate θ is the only parame-
ter that must be estimated from the claims data. For this
purpose, we adopt the following least squares method:

θ̂ � arg min
∑n+m
k�1

(μk − ΔQk)2,

where μk is given by Equation (3) and ΔQk is observed
warranty expenses over month k. By solving this opti-
mization problem, the estimated monthly failure rates
are summarized in Table 1. Figure 11(b) further plots
actual and estimated monthly warranty expenses.
One can observe that, although the stylized AWC
model can roughly capture real warranty claim pat-
terns, the curve-fitting performance presents certain
deficiency; that is, a systematic error exists. More spe-
cifically, the fitted curves tend to overestimate the
actual data at early and late stages while underesti-
mating the actual data at the middle stage.

Based on the product sales, reliability, and cost
information in Table 1, the mean μj,k and variance σ2j,k
of the AWC increment for each product j in each plan-
ning month k can be computed by Equations (3) and
(4), respectively. Then, the distributionally robust
optimal reserve level WR∗

j,k is determined by Equation
(9). Finally, the corresponding actual warranty reserve
loss can be calculated through πj,k(WR∗

j,k) � Ch(WR∗
j,k−

ΔQj,k)+ +Cb(ΔQj,k −WR∗
j,k)+. Figure 12 shows actual

warranty costs and planned reserve levels for the
three products. It can be observed that for each prod-
uct, the planned reserves are excessive at first, insuffi-
cient in the middle, and over-stocked again at the last,
which results from the aforementioned systematic
error in curve fitting.

The unsatisfactory performance of the model-
driven reserving policy necessitates demand learning.
In this scenario, the adjusted warranty reserve levels
ŴRj,k for the three products are dynamically updated
by Equation (11), which are depicted in Figure 12. We
can observe that the reserve levels with learning are
much closer to actual warranty costs than those with-
out learning. Moreover, funds pooling is also applied
to improve warranty reserve planning performance.
By pooling warranty reserves of the three products
(with different release dates and sales periods), the
combined reserve levels and corresponding reserve
losses are evaluated by Equations (16) and (17),
respectively (see Figure 12(d) for pooled reserve lev-
els). Not surprisingly, the planned reserve level in the
pooled case is closer to actual combined warranty
expenses due to the risk pooling effect. One thing
noteworthy is that it is feasible to apply demand
learning to the pooled case, but the funds adjusted by
learning cannot be used to evaluate pooling benefits.

Table 1. Product Information Used in the Case Study

Product Sales period W L λ̂ θ̂ CW Ch Cb

1 September 2009 to August 2011 12 24 61,316 0.00126 $100 $0.01 $0.025
2 September 2010 to February 2012 12 18 48,187 0.00794 $60 $0.01 $0.025
3 May 2010 to April 2011 12 12 59,103 0.00541 $45 $0.01 $0.025
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To compare the scenarios with and without learn-
ing, Table 2 presents total warranty reserve levels and
total reserve losses for each product over its entire
warranty life cycle. Compared with the no-learning
scenario, the total reserve levels and total reserve
losses in the learning scenario are indeed lower. In
particular, the reductions in total reserve losses are
significant in terms of percentage (27.64%–62.76%).
This shows that adopting the demand learning mech-
anism in warranty reserve planning can save a large
proportion of money for the firm, either in the pooled
or nonpooled case. Moreover, when examining the
pooling benefit in the learning scenario, we find that
the pooled scheme results in even a slightly higher
reserve level (increased by $48,979, 0.55%) than the
nonpooled case. However, the corresponding total
reserve losses are reduced significantly (decreased by
$8496, 47.25%). Nevertheless, a higher total reserve
level in the pooled case is not surprising. This is
because, in the nonpooled cases, the reserve levels in

some periods are insufficient, which results in large
shortage expenses. In contrast, the pooled case puts
more reserves in these periods to mitigate the stock-
out effect. This further demonstrates the effectiveness
of demand learning and funds pooling. Furthermore,
the magnitudes of reductions in total reserve losses
due to learning and pooling are generally higher than
those of total reserve levels, which implies that the
two reserve-loss-reduction approaches have more sig-
nificant impacts on reserve losses than reserve levels.

7. Conclusions and Implications
The goal of this paper is to investigate a warranty
reserve planning problem during the entire warranty
life cycle from a manufacturing firm’s perspective. For
this purpose, we first develop an adaptive AWC
model by fully characterizing the mechanism that gov-
erns the generation of warranty claims, which allows
the firm to plan for warranty reserves periodically.

Figure 11. (Color online) Monthly Sales Volumes (a) and AggregateWarranty Costs (b) of the Three Products

Figure 12. (Color online) Actual MonthlyWarranty Costs and Planned Reserve Levels (Without and with Learning) for the
Three Products and the Pooled Case
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Because the exact distribution of AWC increments is
generally unknown, the optimal warranty reserve level
in each planning period is determined via a distribu-
tionally robust approach. On this basis, two reserve-
loss-reduction strategies—demand learning and funds
pooling—are further discussed. The demand learning
algorithm can dynamically update the reserving plan
by combining real warranty data, whereas the funds
pooling scheme combines reserve funds of multiple
products into a single fund to mitigate risks. Analytical
results and simulation experiments show that demand
learning and funds pooling are indeed beneficial for the
firm in terms of reducing total reserve losses.

The main conclusions and implications of this work
are summarized as follows:

(i). For the exponential-smoothing-type demand
learning algorithm, an important finding is that when
the sales period is long enough, the learning parameter
will converge to a constant in probability, with a conver-
gence rate of 1=

��
k

√
. This not only guarantees a stable out-

put of the algorithm, but also simplifies the algorithm
implementation. In addition, simulation experiments show
that by incorporating the objective function in the learning
process, the algorithm can significantly reduce total reserve
losses under general sales and failure patterns, for which
the proposed AWCmodel fails to capture the dynamics of
warranty costs. We believe that this simple yet effective
“predict-then-optimize” approachwould be also useful for
other operationsmanagement applications.

(ii). For the funds pooling scheme, we find that the
pooling benefits change over different stages of the
warranty life cycle, due to the dynamics of warranty
expenses. More importantly, because reserve loss reduc-
tion is the primary objective of funds pooling, we prove
an important result that the relative pooling benefit in
terms of reserve losses exhibits a nonincreasing pattern
(note that this result analytically holds only when there
are two products). Another compelling insight is that
the relative pooling benefit in terms of reserve losses

decreases as the relative range of demand standard
deviations enlarges, meaning that it is more attractive to
pool warranty reserves for products whose AWC uncer-
tainties are of similar magnitudes. This insight is quite
general in the sense that it is applicable to traditional
risk pooling problems in operations management.

(iii). Finally, our simulation experiments provide
guidelines on the implementation of the proposed
methodologies. Specifically, when the product sales and
failure processes governing warranty claims generation
obey those described in Assumptions 1 and 2, then imple-
menting the distributionally robust reservingmodel, com-
bined with funds pooling, can deliver a fairly good
reserving plan; if this is not the case, then the demand
learning mechanism can be further used to compensate
themodel’s inefficiency by leveraging real claims data.

However, this paper presents several limitations
that deserve future research efforts. First, because of
the simplified assumptions on product sales and fail-
ure processes, the proposed AWC model is somewhat
stylized, although it is still capable to roughly capture
any inverted bathtub–like warranty claim patterns.
Because deriving the mean and variance of warranty
expenses in general settings is highly intractable, a promis-
ing future research topic is to develop an approximate,
closed-form expression of the mean and variance to facili-
tate warranty reserve planning, without inducing much
computational burden. Moreover, an implicit assumption
adopted here is that the sales of different products are not
correlated. In reality, however, products could be substi-
tutes or complements. It is interesting to investigate the
impact of such correlations on warranty reserve planning.
One possible way is to apply diffusion-choice demand
models (Li 2020) that integrate the Bass diffusion model
and discrete choice models. Furthermore, only a specific
form of warranty policy, that is, free replacement war-
ranty, is considered in this work. Future research could
incorporate more warranty policies, for example, pro rata
and combination warranties, into the reserve planning
framework.

Table 2. Reserve Levels and Reserve Losses over the Warranty Life Cycle in Learning and No-Learning Scenarios

Total reserve levels ($) Pooled vs. nonpooled

Product 1 Product 2 Product 3 Pooled case Reduction
Percentage
of reduction

No-learning case 2,265,826 5,003,016 2,093,834 9,327,879 34,779 0.37%
Learning case 2,097,786 4,787,992 2,029,187 8,963,944 −48,979 −0.55%
Reduction 168,039 215,024 64,647 363,952
Percentage of reduction 7.42% 4.30% 3.09% 3.90%

Total reserve losses ($) Pooled vs. nonpooled

Product 1 Product 2 Product 3 Pooled case Reduction
Percentage
of reduction

No-learning case 12,506 19,569 5,258 14,629 22,704 60.82%
Learning case 4,657 9,520 3,805 9,485 8,496 47.25%
Reduction 7,849 10,049 1,453 5,144
Percentage of reduction 62.76% 51.35% 27.64% 35.16%
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Endnotes
1 Apple’s warranties and service contracts: http://www.warrantyweek.
com/archive/ww20171109.html.
2 Warranty reserves: http://www.warrantyweek.com/archive/
ww20060509.html.
3 Warranty adjustments: http://www.warrantyweek.com/archive/
ww20151105.html.
4 One should distinguish product life cycle from warranty life cycle.
The former starts from the time a product is first introduced to the
market and extends the instant it is discontinued from the market,
while the latter is the period from the beginning of a warranty pro-
gram to the end of the program (when the warranties for final sales
expire). In general, let L denote product life cycle and W denote
warranty period; then the warranty life cycle should be L +W.
5 Once all units of a product are sold to end consumers, the installed
base (i.e., the total number of sold units that are currently in use)
will remain almost constant for a relatively long period of time. As
a result, the demand of parts (resulting from repair/replacement)
gradually turns to be stationary, as the units have statistically iden-
tical quality and reliability.
6 Our simulation studies reveal that the approximation accuracy is
relatively insensitive to λ but exhibits an obvious increasing trend
as θ decreases. When failure rate θ is small enough (say, θ < 0:1),
the approximation error vanishes.
7 Suppose that the warranty reserve fund accrues interest at a con-
stant rate ζ0, the opportunistic investment return rate is ζ1, and the
interest rate for obtaining emergency funds is ζ2 (in general,
ζ0 < ζ1 < ζ2). Then, Ch and Cb can be roughly estimated by Ch �
ζ1 − ζ0 and Cb � ζ2 − ζ0, respectively. Nevertheless, what matters to
warranty reserve planning, as can be seen from Equation (9), is not
the absolute values of Ch and Cb, but their relative value Cb=Ch or
Ch=Cb.
8 Based on our consultation with some firms, including a leading
engine manufacturer, an electronics manufacturer, and a credit card
company, all of them do not implement warranty reserve pooling
for their products.
9 For example, based on Equations (3) and (4), given two products j
and l, combining the conditions θj � θl, C2

Wjλj � C2
Wlλl, and CWjλj ≠

CWlλl can guarantee that σj,k � σl,k and μj,k ≠ μl,k for any k ∈ {1, 2, : : : ,
n+m}. The following parameter setting satisfies the previous three
conditions: θj � θl � 0:05, CWj � 30, CWl �

�����
150

√
, λj � 500, and λl �

3,000.
10 The augmented Dickey-Fuller test is a popular method that
assesses the presence of a unit root in an autoregressive model
yt � ρyt−1 +∑p

j�1υjΔyt−j + εt, where Δyt � yt − yt−1, p is the lag order,
and εt is a white noise. In this model, testing for a unit root is equiv-
alent to testing ρ � 1, which implies that the time series yt is nonsta-

tionary. The test statistic is (ρ̂ − 1)=Ŝtd(ρ̂), where ρ̂ is the ordinary

least squares estimator of ρ and Ŝtd(ρ̂) represents an estimator of
the standard deviation of ρ̂. If the null hypothesis H0 : ρ � 1 is
rejected at the significance level α, then we are 100(1−α)% confi-
dent that the time series sample is stationary. For more details,
please refer to Fuller (1996, chapter 10).
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