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On-demand delivery has become increasingly popular around the world. Motivated by a large grocery chain

store who offers fast on-demand delivery services, we model and solve a stochastic dynamic driver dispatching

and routing problem for last-mile delivery systems where on-time performance is the main target. The system

operator needs to dispatch a set of drivers and specify their delivery routes facing random demand that

arrives over a fixed number of periods. The resulting stochastic dynamic program is challenging to solve due

to the curse of dimensionality. We propose a novel structured approximation framework to approximate the

value function via a parametrized dispatching and routing policy. We analyze the structural properties of

the approximation framework and establish its performance guarantee under large-demand scenarios. We

then develop efficient exact algorithms for the approximation problem based on Benders decomposition and

column generation, which deliver verifiably optimal solutions within minutes. The evaluation results on a

real-world data set show that our framework outperforms the current policy of the company by 36.53% on

average in terms of delivery time. We also perform several policy experiments to understand the value of

dynamic dispatching and routing with varying fleet sizes and dispatch frequencies.

Key words : on-time delivery, stochastic dynamic programming, optimization, Benders decomposition

1. Introduction

E-commerce has evolved rapidly and continued pushing the boundaries of digital platforms. Cus-

tomers place orders online not only for household goods and electronics, but also for more perishable

and time-sensitive goods such as grocery and food. The global online grocery market accounted

for $154.96 billion in 2018 and is expected to reach $975.16 billion by 2027 (Stratistics Market

Research Consulting 2020). As a front runner in this market, Amazon has been providing free

two-hour grocery delivery to its prime members since 2019 (CNBC 2019). In the meanwhile, meal

delivery has been growing at a similar speed. The global online meal delivery market is expected

to grow from $91.41 billion in 2018 to $182.33 billion by 2024 (Statista 2020).

While platforms such as Instacart and Grubhub enable small business owners to reach a broader

customer base, grocery stores and restaurants try to build their own delivery capacity to main-

tain a reliable delivery service. McDonald’s operates its own delivery service called McDelivery
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in China and provides a 30-minute delivery guarantee to customers, which accounts for one-fifth

of McDonald’s revenue in mainland China (South China Morning Post 2019, McDelivery 2020).

Grocery retailer chains such as Whole Foods Market, Co-op Food, Hema of Alibaba, 7Fresh Mar-

ket of JD.com provide customers on-demand delivery services from their own stores within a few

hours (CNBC 2018, 2019). Most recently, the COVID-19 pandemic has pushed more companies

to expand their own delivery capacity and compete with platforms. According to a food deliv-

ery platform called Spread, one half of the restaurants on the platform make their own deliveries

(Rana and Haddon 2021). Domino’s Pizza, which is acclaimed for its delivery services, has delivered

considerable sales growth with its own delivery capacity during the pandemic (CNBC 2020).

For on-demand delivery, achieving a high-quality delivery service in terms of both speed and

reliability is critical. According to a 2019 national survey (US Foods 2019), cold food and delivery

delays are the top two customer complaints for meal delivery services. Chain stores like Whole

Foods and McDonald’s are competing to deliver orders within the time-frame of hours or minutes.

Satisfying such stringent on-time performance targets while maintaining a reasonable operational

cost poses a big obstacle to the management of these delivery systems.

Our study is motivated by a large grocery chain store in China. The store offers on-demand

delivery services for grocery and prepared food (meal boxes). Each store serves a prespecified

service region and delivers orders to customers using a dedicated fleet of drivers. The store operates

the system with multiple dispatch waves (decision epochs): the planning horizon is divided into

multiple time slots of equal lengths (15 minutes), so the orders placed in the same slot are bundled

together and assigned to drivers who will be dispatched at a decision epoch. Each driver will be

dispatched multiple times and perform multiple trips in the planning horizon. Given a limited fleet

size, the company’s goal is to optimize the overall on-time performance of delivery orders.

Providing reliable on-time performance in last-mile delivery hinges on effective dispatching and

routing of drivers. The studied delivery system features a highly dynamic and stochastic demand

process, in which random customer orders arrive sequentially over a planning horizon. Customer

locations and order quantities are both uncertain, and the operator (e.g., the store) can hardly

preload orders or prespecify routes for the drivers in practice. As such, the operator needs to

dispatch and route drivers dynamically in response to the realized customer orders. Specifically,

due to a limited capacity, the system operator has to trade off the on-time performance of realized

orders versus future orders.

1.1. Our Contributions

How to dispatch and route a fleet of vehicles to fulfill random on-demand delivery orders quickly?

Motivated by a large grocery chain store, we address this question by presenting a finite-horizon
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stochastic dynamic program for on-time delivery operations management. Our model captures

the spatiotemporal heterogeneity and uncertainty of on-demand orders. Notably, because delivery

drivers have to perform multiple trips within the planning horizon, we consider the interactions

between dispatching and routing decisions explicitly.

Our key methodological contribution is a structured approximation framework that yields high-

quality dispatching and routing decisions efficiently. Specifically, our framework estimates the cost-

to-go function with a decomposed dispatching and routing policy. The estimation is then embedded

into the dynamic program that outputs solutions in a rollout fashion. To this end, we integrate

offline estimation and online rollout effectively. Our framework extends the existing approximate

dynamic programming approaches in the vehicle routing literature to the multi-vehicle routing

problem across multiple periods in a stochastic and dynamic setting. More importantly, we analyze

the structural properties of our approximation framework and derive an approximation bound

under large-demand scenarios.

On the algorithmic side, we leverage the structure of the approximation model to develop compu-

tationally efficient algorithms by combining Benders decomposition and column generation, which

allows an exact search of rollout policies. While a direct implementation with CPLEX fails to

deliver solutions within an hour, the proposed decomposition algorithm finds optimal solutions in

minutes. As a side product, our algorithm also leads to substantial improvement in solution times

for an important class of vehicle routing problems against relevant state-of-the-art benchmarks.

We demonstrate the performance of our method on a real-world data set from our industry

partner. Compared to the current solution policy of the company, our method yields 16%-50%

improvement in delivery time. The improvement is further validated on a set of synthetic instances.

From the empirical study, we quantify the value of dynamic dispatching and routing with different

fleet sizes. We find that dynamic routing is more beneficial when the fleet size is not so large. We

also discuss the value of increasing dispatch frequency, performing flexible order postponement,

and varying the sample size under our framework, which leads to multiple prescriptions for further

improving the on-time performance.

1.2. Literature Review

Our paper contributes to two streams of related literature: on-demand delivery operations and the

vehicle routing literature focusing on dynamic problems.

On-Demand Delivery Operations. Recently, on-demand delivery, particularly grocery and

meal delivery, has received growing attention from transportation and operations management

researchers. Yildiz and Savelsbergh (2019) solve the meal-delivery routing problem exactly with

a simultaneous column- and row- generation, assuming perfect future information. They have
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performed extensive numerical experiments based on real-world data from Grubhub to validate the

efficacy of their solutions. They highlight the importance of order bundling, driver shift scheduling,

and demand management from the numerical study. In a relevant paper, Reyes et al. (2018) propose

optimization based algorithms and heuristics to solve the real-time assignment/dispatching problem

in meal delivery. In contrast to our model, they do not capture the future order information in the

assignment decisions. Nevertheless, we adopt similar metrics to measure the on-time performance

of the delivery service. Based on a stylized queueing model, Chen and Hu (2020) analyze the

optimal structure of the dispatching policy considering customers’ patience level. They show that

delivering multiple orders per trip is beneficial when the service area is large. In a general meal

delivery context, Ulmer et al. (2021) propose heuristic order assignment policies by introducing

a time buffer cost as well as a postponement strategy. While they assume simplified assignment

heuristics (not fully forward looking), our work aims to find assignment decisions that account

for future order arrival uncertainties explicitly. Liu et al. (2021) study a meal delivery problem

for a centralized kitchen and propose several ways to account for drivers’ routing behaviors by

integrating machine learning and optimization. They mainly focus on the single-period model, and

only provide simple heuristics for the multiperiod setting. Other aspects of on-demand delivery

problems have also been studied, including the workforce scheduling (Ulmer and Savelsbergh 2020),

supply management (Lei et al. 2020) and demand management (Yildiz and Savelsbergh 2020), and

platform operations (Bahrami et al. 2021).

Vehicle routing. The vehicle routing problem (VRP) has been a focal research topic of trans-

portation and logistics since it was first proposed by Dantzig and Ramser (1959). According to

the availability of information, the VRP can be classified into three basic variants, namely the

static VRP, the stochastic VRP and the dynamic VRP. The static VRP has all input information

available and all parameters in the problem are known and fixed. The stochastic VRP extends the

static VRP by incorporating uncertain model parameters, including demands (Bertsimas 1992),

travel time (Laporte et al. 1992, Adulyasak and Jaillet 2016), service times (Lei et al. 2012). The

dynamic VRP, similar to the stochastic VRP, also has partial known input information when the

routing plan is made, but the information is gradually revealed during the plan execution. The

dynamism in most of the dynamic VRP originates from the online arrival of customer requests

during the plan execution (Pillac et al. 2013). The driver dispatching and routing problem studied

in this paper is a multiperiod problem, deciding routing plan to fulfill orders in the current period

with an eye on the uncertain future orders. In terms of the single-period version of our problem, the

most relevant static VRP is the multiple traveling repairman problem (MTRP) (Luo et al. 2014)

whose objective to minimize the total arrival time at the customers. The MTRP has been tackled

by various solution approaches, including mixed integer programming (MIP) (Nucamendi-Guillén
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et al. 2016, Onder et al. 2017), branch-and-price (Luo et al. 2014), and branch-and-cut (Muritiba

et al. 2021).

Among the dynamic VRP literature, the papers that are closest to our setting are Azi et al.

(2010, 2012), where the authors study the VRP with multiple delivery routes in a deterministic

and stochastic context, respectively. In the stochastic setting, Azi et al. (2012) develop a simulation

based sample-scenario method combined with insertion and neighborhood search heuristics. In

their paper, the main goal is to maximize the expected profits with the order acceptance decision,

which is suitable for the same-day delivery environment. Our paper is focused on improving the

on-time performance as highlighted by the emerging meal and grocery delivery services, where

individual order rejection is not encouraged. In terms of methodologies, our paper is based on

lookahead approximations in which the cost-to-go function is approximated by simple dispatching

and routing policies (also called rollout policies, see Powell 2019 for a detailed introduction). In

contrast to existing lookahead methods that rely on heuristics to search for rollout policies in a

restricted decision space (Cortés et al. 2009, Goodson et al. 2013, 2016), our approach integrates

the rollout policy search and the decision making for the current state in one mixed integer linear

program (MILP) and exploits its structure to enable exact rollout policy search efficiently.

When dispatching decisions are made at fixed intervals, Klapp et al. (2018a,b) study a dynamic

dispatch waves problem where a single vehicle is dispatched to serve orders on a network and on a

one-dimensional line, respectively. They propose the a priori policy and several dynamic heuristic

policies to solve the problem and show that dynamic policies can boost the system performance

significantly. As their results only hold for the single-vehicle case, we demonstrate in this paper

a framework to handle the general mutli-vehicle dispatching and routing problems with demand

uncertainty. Our framework preserves preferable structural properties of the original problem, yield-

ing a worst-case performance guarantee. On a high level, our proposed algorithms operationalize

the batching policy proposed in Bertsimas and Van Ryzin (1993).

Voccia et al. (2019) propose the same-day delivery problem (SDDP) that shares a similar struc-

ture to ours. While their objective is to maximize the expected number of fulfilled orders, we aim to

minimize the expected delivery time, as motivated by our application in on-time delivery. Because

a complicated team orienteering problem has to be solved for every possible scenario, Voccia et al.

(2019) apply neighborhood search heuristics as a solution subroutine, of which the optimality can

be hardly guaranteed. In contrast, our decomposition-based algorithm integrates offline estimation

and online rollout in a tractable manner. Note that our use of offline estimation is different from

the offline-online approximate dynamic programming approach (ADP) proposed by Ulmer et al.

(2019a). Specifically, we do not require policy iterations to estimate and evaluate approximate poli-

cies for value function approximations. Notably, we extend their work on single-vehicle dynamic
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routing to the multi-vehicle setting with random demand, where a driver can take multiple trips in

the planning horizon, and the need for coordination between vehicles across periods is prominent.

Extensions to allow preemptive returns of vehicles and dynamic pricing of delivery deadline options

are explored in Ulmer et al. (2019b) and Ulmer (2020), respectively. We do not consider preemptive

returns due to its implementation difficulties in the on-time delivery setting. We refer interested

readers to Ulmer et al. (2020) for an excellent review of relevant dynamic VRP papers. Ulmer et al.

(2020) advocate the use of route-based models to bridge the gap between real-world applications

and solution methodologies. Following a similar paradigm, our model has designed the route plan

for realized orders in each epoch and specified the dispatching plan for future orders.

2. Problem Background and Description

The studied on-time delivery problem is motivated by a large grocery chain store in China. The

grocery chain operates in multiple cities across the country and adopts an omnichannel business

model. In addition to serving in-store customers, each store offers on-demand delivery services to

customers who place orders in a prespecified service region centered around the store. The delivery

services cover a variety of products, from grocery goods to prepared meal boxes. Due to the high

volume of demand, the company operates a separate channel for meal box delivery. Targeting

stringent and reliable on-time performance, the company has hired a dedicated fleet of drivers to

fulfill on-demand delivery tasks.1

The delivery system operator of the company has specified a sequence of cutoff times to bundle

customer orders together, corresponding to a set of dispatch waves. During the lunch peak hours,

the cutoff times are [10 am, 10:15 am, 10:30 am, . . . , 11:45 am], making up seven 15-minute time

slots (periods). As shown in Figure 1, order density is spatially and temporally heterogeneous,

and there is a single demand peak in period 4. The operator processes orders in a batch process:

the orders placed in the same time slot form a batch, sharing the same delivery time target. For

instance, the orders placed between 10:00 am and 10:15 am are promised to be delivered by 11:30

am. Once a batch of orders is collected, the store starts preparing the orders, and the operator

will assign the batch of orders to available drivers and specify their routes (a visualization of this

process is presented in Appendix B). After the orders have been prepared (order preparation takes

around 20 minutes), dispatched drivers will pick up orders at the store and perform deliveries.

Typically, a driver can deliver multiple orders per trip (in many cases, more than five), which

can take between 20 and 50 minutes.2 Drivers will return to the store after finishing the assigned

1 The use of dedicated drivers (in-house drivers) is not uncommon even for delivery platforms. Based on our commu-
nications with a leading meal delivery platform, a fleet of dedicated drivers can be deployed to serve high-demand
restaurants.

2 Delivery boxes installed on the vehicles can maintain the freshness of orders during delivery.
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deliveries and become available for next dispatch.3 Because customers highly value delivery speed

and promise reliability, the company desires a good dispatching and routing policy to minimize the

delivery time while controlling their delivery fleet size and labor cost.4
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3. Driver Dispatching and Routing Model for On-Time Delivery

In this section, we present the finite-horizon driver dispatching and routing model with multiple

dispatch waves. A table that summarizes the notations used throughout the paper is included in

Appendix A. The delivery service system is operated for N periods, with ∆ denoting the length

of each period, i.e., the time interval between two consecutive decision epochs. Our modeling

framework does not require ∆ to be stationary, but we assume the decision epochs are prespecified.

We focus on the intraday operations with known shift schedule of drivers, i.e., the number of

available drivers in period n∈ {1, . . . ,N}, K̄n, is known and fixed. Each driver has a constant travel

speed v and can deliver at most Q items per trip. For ease of discussion, we assume K̄n = K̄ for

n= 1, . . . ,N .

Denote the set of potential customer locations by I = {1, . . . , I}. At the beginning of time period

n (decision epoch tn), we observe the number of orders realized between [tn−1, tn), where t0 denotes

the start time of the service. These orders are to be assigned at tn and are characterized by their

locations In ⊆I and quantities (number of ordered items) qn = (qn1 , . . . , q
n
I )∈NI (qni = 0 if i /∈ In).

The order quantities are integral with finite support (qni ≤Q without loss of generality). We assume

3 The company does not allow preemptive returns of drivers for two reasons: (a) the online app allows customers to
track the delivery process in detail, so having preemptive returns may cause customer confusion and complaints; (b)
making preemptive returns may also give rise to fairness and equity concerns from customers.

4 Because driver wage is paid based on the work duration (base payment) and the number of delivered orders (bonus
payment), we do not consider driver travel cost directly. Nevertheless, our model can integrate travel cost into the
objective function.
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a constant time tp for preparing and packaging the orders, and all the orders placed in period n−1

will be ready for delivery on tn + tp. Because the parameter tp can be estimated from data, it is

assumed to be known to the operator. We hereafter assume tp = 0 for ease of exposition, and the

incorporation of a positive tp is straightforward.

At decision epoch tn, the operator has perfect information about which drivers are available for

dispatch so they can pick up the orders at tn. This is often the case for today’s delivery system

because drivers’ smart phones are sending their real-time location information to the operator. We

denote the driver status vector by ζζζn = (ζn1 , . . . , ζ
n
N). Specifically, ζnn′ ∈N is the number of en route

drivers in period n′ due to the dispatching decisions made prior to period n. Note that only the

ζnn′ ’s with n′ ≥ n are meaningful, and we maintain the whole ζζζn for ease of reference. Summing the

above information up, the state of the system at epoch tn is represented by (In,qn,ζζζn).

The decision at the beginning of period n is twofold: (1) we need to decide how many drivers to

dispatch for the realized orders, which is denoted by variable Kn; (2) in the meanwhile, we also

make the assignment of realized orders to the Kn drivers and plan their routes. The dispatching

decision echoes the scheduling decision, while the routing decision provides detailed execution

plans. The dispatched drivers will return to the depot and become available again after finishing

the assigned tasks. Following the company’s practice, we assume all the orders in In are assigned to

available drivers at tn, i.e., orders placed between [tn−1, tn) will not be assigned later than tn. Such

practice is preferable to reduce the wait time of orders at the store. Although allowing flexible order

postponement can be beneficial, the additional gain may not be significant when the driver shift

schedule and dispatching decisions are well optimized, as we numerically demonstrate in Section

6.5.5.

We proceed to present the dynamic programming formulation. Let location 0 be the depot where

drivers are initially deployed and Qn be the joint distribution of the customer locations and order

quantities in period n (for oders placed between tn−1 and tn). The system operator makes the joint

dispatching and routing decision Y n = {ynijk ∈ {0,1} : i, j ∈ In ∪ {0}, k = 1, . . . , K̄}, where ynijk = 1

if driver k is routed from i to j in period n and 0 otherwise (note that the trip from i to j is not

necessarily completed in period n). yn00k = 1 indicates driver k is not dispatched and stays at the

depot. The on-time performance measure for customer i is denoted by ui(Y
n), which indicates the

duration from the time the order is ready for dispatch until it is delivered following decision Y n.

Additionally, there is a hard delivery time target Lmax for every order. The set of feasible decisions

D(In,qn,ζζζn) must satisfy

ynijk = 0, ∀i, j ∈ In, k= 1, . . . , ζnn , (1)∑
i∈In∪{0}

yn0ik =
∑

i∈In∪{0}

yni0k = 1, ∀k= ζnn + 1, . . . , K̄, (2)
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j∈In∪{0}

ynijk =
∑

j∈In∪{0}

ynjik, ∀i∈ In, k= ζnn + 1, . . . , K̄, (3)∑
i∈S

∑
j∈S

ynijk ≤ |S|− 1, ∀S ⊆ In, k= ζnn + 1, . . . , K̄, (4)∑
i∈In

∑
j∈In∪{0}

qni y
n
ijk ≤Q, ∀k= ζnn + 1, . . . , K̄, (5)

ui(Y
n)≤Lmax, ∀i∈ In, (6)

where constraints (1) impose the driver availability condition, i.e., the drivers who are occupied

in period n due to the assigned delivery tasks can not be dispatched in period n. Constraints (2)

ensure that each driver trip must start from and end at the depot. Constraints (3) and (4) are the

flow conservation constraints and the subtour elimination constraints, respectively. Constraints (5)

ensure driver capacity is not violated and constraints (6) respect the hard delivery time target (for

brevity we move the detailed representation of ui(Y
n) to Appendix C).

The objective is to minimize the total expected delivery time of orders in the planning horizon.

Let lnk (Y n) denote the route duration (including both travel time and service time) of driver k

dispatched in period n. The finite-horizon stochastic dynamic program for on-time delivery can be

formulated with the value (cost-to-go) functions Hn(In,qn,ζζζn) as

Hn(In,qn,ζζζn) = min
Y n∈D(In,qn,ζζζn)

{∑
i∈In

ui(Y
n) +EQn+1

[
Hn+1(In+1,qn+1,ζζζn+1)

]}
, (7)

HN(IN ,qN ,ζζζN) = min
Y N∈D(IN ,qN ,ζζζN )

∑
i∈IN

ui(Y
N)

 , (8)

with the transition constraints for driver availability:

ζn+1
n′ = ζnn′ +

K̄∑
k=1

1(lnk (Y n)> tn′ − tn), ∀n′ = n+ 1, . . . ,N, n= 1, . . . ,N, (9)

where 1(lnk (Y n) > tn′ − tn) is an indicator variable that equals 1 if driver k can not return to

the depot before period n′ given decision Y n. Note that the choice of the on-time performance

measure is flexible, and our model can incorporate other metrics such as ready-to-door time and

click-to-door time overage. We refer to the above dynamic program as JDR.

Due to the capacity and delivery time constraints, the dynamic program may not always be

feasible when the number of available drivers (K̄) is small. As we will discuss later, even when

there is an adequate driver schedule, a smart dispatching policy is necessary to yield a feasible

solution for every period. In practice, we can introduce simple recourse rules to tackle infeasible

scenarios, such as calling additional drivers from third-party platforms. We will discuss this option

in Section 6.
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4. A Structured Approximation Approach

Because both the state space and the action space are high dimensional, JDR can not be solved

exactly. Even when the demand is deterministic, the resulting multiperiod dispatching and routing

problem is NP-hard and potentially time consuming to solve (Klapp et al. 2018a). The combi-

natorial nature of the problem and the complicated dependence on the random demand stresses

the difficulty of analysis and optimization. Therefore, it is not uncommon to see companies use

simple myopic policies to dispatch and route drivers in delivery planning: the dispatching and

routing decisions are obtained to optimize the on-time performance of the current batch of orders

without accounting for future order arrivals. However, in the considered planning horizon, a driver

must perform multiple trips and, thus, travel back and forth between the store and customers (all

the orders must be first picked up at the store). The dispatching and routing decision made for

the current batch will decide the driver availability in the future periods (as shown in Equation

(9)). Ignoring this interaction can severely exacerbate the long-run system performance, e.g., when

drivers are sent out blindly to serve realized orders, and none of them are available for the next

dispatch wave. A forward-looking dispatching and routing policy is desired to properly trade off

the delivery time of realized orders versus future orders.

To yield high-quality solutions in real time, we develop a tractable approximation framework for

the studied stochastic dynamic program. At a high level, our framework estimates the cost-to-go

function through a parameterized dispatching and routing policy that combines myopic routing

with anticipatory dispatching. The estimated cost-to-go function will then help identify the best

dispatching and routing decision for the current state. In contrast to existing value approximation

methods, we show that our approximation framework preserves structural properties of the true

cost-to-go function, which helps bound the approximation ratio.

The key to establishing the approximate cost-to-go function is modeling the impact of the decision

(or post-decision state) on future costs. The dispatching and routing decision affects the future

delivery costs through restricting the number of available drivers in the remaining planning horizon.

Specifically, when more drivers are dispatched for the current period, fewer drivers will be available

for delivery in the following periods. Similarly, when drivers are assigned longer routes, future

delivery capacity will be affected because it takes a longer time for the dispatched drivers to return

to the depot. The timing of dispatch waves should be respected so that the drivers’ availability

information can be accounted for properly. To capture this delicate relationship between future

driver supply and delivery cost, we approximate the cost-to-go function by the sum of single-period

value functions under myopic routing policies. Specifically, let Hs(Kn,In,qn) denote the single-

period optimal delivery cost with Kn dispatched drivers when the realized customer locations and

order quantities are In and qn, respectively. Denote ωn
′

m (Km) by the number of en route drivers
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in period n′ out of the Km drivers dispatched in period m. Then the expected cost-to-go function

EQn [Hn(In,qn,ζζζn)] is approximated by

APTn(ζζζn): min
Kn
′∈N

N∑
n′=n

EQn′

[
Hs(Kn′ ,In

′
,qn

′
)
]

s.t.
n′∑
m=n

ωn
′

m (Km)≤ K̄ − ζnn′ , ∀n′ = n, . . . ,N, (10)

where EQn [Hs(Kn,In,qn)] is the expected single-period optimal delivery cost, summing over all

possible realizations of In and qn.We can estimate it by offline simulations based on historical data

or a fitted probability distribution: EQn [Hs(Kn,In,qn)] =
∑H

h=1Hs(Kn,Inh ,qnh)/H for H samples

of customer locations and orders (although the possible scenarios can be many, a finite sample of

historical data can capture the general spatiotemporal pattern of demand). Constraints (10) ensure

the number of dispatched and en route drivers does not exceed K̄ in every period. Note that a

dispatched driver’s en route time is at least one period (i.e., a driver can not be dispatched again

within a period), so ωn
′

n′ (K
n′) =Kn′ for n′ = n, . . . ,N . However, for n′ >m, ωn

′
m (Km) is uncertain

due to the stochastic nature of demand, and we treat it as a parameter that can be calibrated or

tuned from offline simulations.

The above approximation scheme estimates the expected cost-to-go function by a decomposed

dispatching and (myopic) routing heuristic. It can be viewed as a stochastic lookahead approach

based on rollout policies in approximate dynamic programming (the readers may find a detailed

introduction to lookahead methods in Powell 2011). Under this lookahead approach, the routing of

future orders is assumed to be myopic when evaluatingHs(Kn,In,qn). Albeit myopic in routing for

each period, it strives to capture the relationship between driver supply and delivery cost through

detailed modeling of dispatching with respect to dispatch waves. Note that the heuristic myopic

policies (rollout policies) will not be implemented but only to facilitate the decision selection in the

current decision epoch (so we do not need to foresee all possible future scenarios). Specifically, the

approximation APTn+1(ζζζn+1) is used in dynamic program (7) to find the dispatching and routing

decision at decision epoch n and state (In,qn,ζζζn):

min
Y n∈D(In,qn,ζζζn)

{∑
i∈In

ui(Y
n) + min

Kn
′∈N

N∑
n′=n+1

EQn′

[
Hs(Kn′ ,In

′
,qn

′
)
]}

s.t.
n′∑

m=n+1

ωn
′

m (Km)≤ K̄ − ζn+1
n′ , ∀n′ = n+ 1, . . . ,N.

Introducing binary variables xn
′
k to indicate if k drivers are dispatched in period n′ (xn

′
k = 1), and

leveraging the state transition equation (9), the above program can be rewritten as

min
Y n∈D(In,qn,ζζζn)

xn
′
k ∈{0,1}

∑
i∈In

ui(Y
n) +

N∑
n′=n+1

K̄∑
k=0

xn
′

k EQn′

[
Hs(k,In

′
,qn

′
)
]
, (11)
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s.t.
n′∑

m=n+1

K̄∑
k=0

ωn
′

m (k)xmk ≤ K̄ − ζnn′ −
K̄∑
k=1

1(lnk (Y n)> tn′ − tn), ∀n′ = n+ 1, . . . ,N, (12)

K̄∑
k=0

xn
′

k = 1, ∀n′ = n+ 1, . . . ,N, (13)

where constraints (13) ensure the number of dispatched drivers in every period can only take

an integral value between 0 and K̄. We refer to the resulting approximate joint dispatching and

routing policy as AJRP. We illustrate how AJRP is solved by combining offline estimation and

online rollout in Figure 2. The rollout policy is parameterized by the single-period cost functions

{EQn [Hs(k,In,qn)]}∀(n,k) and the driver state functions {ωn′m (k)}∀(m,n′,k). In order to enumerate all

possible dispatching decisions, we evaluate the single-period cost functions for all feasible integer

values of k in [0, K̄].

Figure 2 An Illustration of AJRP

We now describe structural properties of our approximate cost-to-go function and provide a

bound on the approximation ratio. First, we show that the optimal objective value of APTn(ζζζn),

denoted by V n
APT (ζζζn), is increasing in ζζζn for any choices of ωn

′
m (Km)≥ 0, which is consistent with

Hn(In,qn,ζζζn).

Lemma 1. (i) Hn(In,qn,ζζζn1 ) ≥ Hn(In,qn,ζζζn2 ) for ζζζn1 ≥ ζζζn2 ; (ii) Given a set of nonnegative

{ωn′m (Km)}∀(m,n′), V n
APT (ζζζn1 )≥ V n

APT (ζζζn2 ) for ζζζn1 ≥ ζζζn2 .

Therefore, our approximation scheme maintains the monotonicity property of the true value func-

tion. Next, as shown in the following theorem, the proposed approximation is exact for the last

period and can provide lower and upper bounds of the expected cost-to-go function with appropri-

ate values of ωn
′

m (Km). Before stating the theorem, we introduce the class of static myopic policies

{πsm}, wherein the number of dispatched drivers in each period is state independent, and the

routing decision is myopic, i.e., we route drivers in a way that only minimizes the single-period

cost. Let JDRn(ζζζn) denote the joint dispatching and routing problem starting in period n with

driver status ζζζn, after compressing the demand information.
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Theorem 1. Under the assumption that there exists a feasible static myopic policy to

JDRn(ζζζn), the approximation APTn(ζζζn) can serve as lower and upper bounding problems of

EQn [Hn(In,qn,ζζζn)] with appropriate choices of {ωn′m (Km)}∀(m,n′). Furthermore, this approximation

is exact for the last period.

The assumption of Theorem 1 will be satisfied when the fleet size is not too small relative to

ζζζn, otherwise any static myopic policy is infeasible, and a feasible policy must be fully adaptive to

the realization of (In,qn,ζζζn). Nevertheless, the nonexistence of a feasible static myopic policy does

not exclude the feasibility of problem APTn(ζζζn), which can still be solved to obtain a reasonable

approximation to the value function. Theorem 1 implies that AJRP is optimal for N = 2.

Corollary 1. AJRP is optimal for JDR when N = 2.

As indicated by Theorem 1, the choice of {ωn′m (Km)}∀(m,n′) steers the relationship between

APTn(ζζζn) and the true cost-to-go function. Recall that ωn
′

m (Km) reflects the number of en route

drivers in period n′ out of the Km drivers who are dispatched in period m. Hence, we can eval-

uate ωn
′

m (Km) by offline simulation using myopic routing policies. As such, the evaluation of

{EQn [Hs(k,In,qn)]}∀(n,k) and {ωn′m (Km)}∀(m,n′) can be performed simultaneously. Let ω̄n
′

m (Km)

denote the estimated average value of ωn
′

m (Km) from simulation and V̄ n
APT (ζζζn) denote the opti-

mal objective value of APTn(ζζζn) with the choice of {ω̄n′m (Km)}∀(m,n′). The following proposition

establishes the relationship between V̄ n
APT (ζζζn) and EQn [Hn(In,qn,ζζζn)].

Proposition 1. Under the assumption that there exists a feasible static myopic policy to

JDRn(ζζζn), V̄ n
APT (ζζζn) is finite, and there exists an instance specific ϑ> 0 such that

1/ϑ≤ V̄ n
APT (ζζζn)

EQn [Hn(In,qn,ζζζn)]
≤ ϑ.

Furthermore, there exists a positive constant M such that V̄ n
APT (ζζζn) = EQn [Hn(In,qn,ζζζn)] when

K̄ ≥M .

Proposition 1 shows that the ratio of the approximation value V̄ n
APT (ζζζn) and the true value

EQn [Hn(In,qn,ζζζn)] can be bounded, which implies that AJRP has a bounded approximation ratio.

As the driver pool becomes sufficiently large, the proposed approximation policy using V̄ n
APT (ζζζn) is

optimal. Although the approximation ratio is instance-dependent, we leverage the above structural

results to prove a worst-case performance guarantee under large-demand scenarios. Without loss of

generality, we assume demand locations are uniformly distributed in a bounded Euclidean service

region of area A. Let r̄ denote the average travel distance from the depot to a customer in the

service region and s denote the on-site service time of each order.
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Theorem 2. Assuming there are at least I∗ realized customer locations in each period, and each

customer orders exactly one item, the approximation ratio ϑ satisfies that for large I∗,

ϑ/
r̄/v+ (Q+ 1)s/2 +β(Q− 1)

√
A/(2v

√
I∗)

r̄/v+ s
,

where β is a constant.

The above result bounds the approximation ratio of AJRP for systems with large demand, where

we utilize the asymptotic analysis of the TSP tour length (Beardwood et al. 1959, Steele 1981).

Based on Applegate et al. (2010), the constant satisfies 0.6250≤ β ≤ 0.9204. The derived bound

depends on the geometry of the service region through r̄ and A. Intuitively, the problem facing a

smaller capacity Q will result in a tighter bound because there is less room for dispatching and

routing optimization. For a practical case where r̄/v = 15 minutes, s = 2 minutes, and Q = 10,

the computed upper bound is approximately 1.53 when I∗ is large. The assumption of a uniform

demand distribution is not critical, and the analysis can be extended to general demand distribution

functions.

In the dispatching and routing literature, the commonly used heuristics and value function

approximation methods do not enjoy performance guarantees. Theorem 2 gives a characterization

of the approximation ratio of AJRP under certain circumstances and bounds the performance

gap. Moreover, our approximation enables a computationally efficient solution framework. The

single-period cost functions {EQn [Hs(k,In,qn)]}∀(n,k) can be evaluated offline, which is facilitated

by a specialized single-period optimization algorithm detailed in Section 5.3. In particular, the

decomposable structure of AJRP gives rise to a Benders decomposition solution approach that

admits verifiably optimal solutions quickly.

5. A Logic Benders Decomposition Based Solution Framework

Although the AJRP formulation can be tackled by off-the-shelf solvers such as CPLEX and Gurobi,

the solution time is often a bottleneck to practical real-time implementation. According to our pre-

liminary computational experiments, a direct implementation of the AJRP formulation in CPLEX

can not deliver optimal solutions in one hour, even for the smallest instances. In this section, we

develop an efficient solution framework to obtain verifiably optimal solutions by exploiting the

structure induced by AJRP. Specifically, the driver dispatching and routing decisions under AJRP

can be organized in a two-stage manner, i.e., the number of dispatched drivers in the first stage

and the detailed routing plan for each driver in the second stage. Based on this observation, we

propose a logic Benders decomposition method to solve AJRP. Figure 3 provides an overview of

our solution framework – the proposed algorithm iteratively solves a master problem and a sub-

problem until the optimality gap is small enough. In each iteration, the master problem is solved
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to obtain a lower bound, and the LP relaxation of the sub-problem is solved by column generation.

If the optimal LP cost of the sub-problem plus the cost of the master problem’s solution is large

enough to cut off the master problem’s solution, a Benders cut is added to the master problem.

Otherwise, the sub-problem is solved exactly to achieve an optimal integer solution and update the

upper bound. Meanwhile, a logic Bender cut is added to the master problem to cut off the master

problem’s solution. In this section, we first introduce the Benders decomposition formulation and

then describe the proposed column generation and route enumeration algorithms for solving the

subproblems efficiently.

𝑙𝑏 < 𝑢𝑏 − 𝜖

Solve a master problem to 
achieve a lower bound 𝑙𝑏

Solve a LP-relaxed subproblem by 
Column Generation

Generate Benders cuts to 
tighten the master problem

Solve the subproblem by a 
Route Enumeration Algorithm 
to achieve an upper bound 𝑢𝑏

and generate a logic cut

Condition on 
subproblem result

Figure 3 The Proposed Solution Framework Based on Benders Decomposition

5.1. Logic Benders Decomposition

We start by transforming arc based formulation (11) – (13) to a route based formulation of AJRP,

because the LP relaxation of the route based formulation provides a much better lower bound than

the arc based formulation. Let Rn be the set of feasible routes for the orders in period n= 1, . . . ,N ,

cr be the cost of route r ∈ Rn, αi,r ∈ {0,1} indicate if location i ∈ In is served in route r ∈ Rn,

and βn′,r ∈ {0,1} indicate if route r ∈ Rn is running in period n′ = n+ 1, . . . ,N . Further, we use

binary variables θr to indicate whether route r ∈Rn is assigned to a driver, and binary variables

zn
′

k to indicate whether there exist k= 0, . . . , K̄ drivers who are dispatched in period n but are still

occupied in period n′ = n+ 1, . . . ,N . The resulting route-based formulation is

F1: min
∑
r∈Rn

θrcr +
N∑

n′=n+1

K̄∑
k=0

xn
′

k EQn′

[
Hs(k,In

′
,qn

′
)
]
, (14)

s.t.
n′∑

m=n+1

K̄∑
k=0

xmk ω
n′

m (k)≤ K̄ − ζn
′

n −
K̄∑
k=0

kzn
′

k , ∀n′ = n+ 1, . . . ,N, (15)
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K̄∑
k=0

xn
′

k = 1, ∀n′ = n+ 1, . . . ,N, (16)

K̄∑
k=0

zn
′

k = 1, ∀n′ = n+ 1, . . . ,N, (17)

∑
r∈Rn

βn′,rθr ≤
K̄∑
k=0

kzn
′

k , ∀n′ = n+ 1, . . . ,N, (18)∑
r∈Rn

θr ≤ K̄ − ζnn , (19)∑
r∈Rn

αi,rθr = 1, ∀i∈ In, (20)

xn
′

k , z
n′

k ∈ {0,1}, ∀k= 0, . . . , K̄, n′ = n+ 1, . . . ,N, (21)

θr ∈ {0,1}, ∀r ∈Rn. (22)

The objective function (14) includes the cost of the current period and the approximate expected

future cost. Constraints (15) and (19) ensure the number of occupied drivers in the future peri-

ods and the current period do not exceed the capacity (maximum number of available drivers),

respectively. Constraints (16) and (17) enforce the convexity of variables x and z, respectively.

Constraints (18) are the linking constraints between variables θθθ and z. Constraints (20) guarantee

that each order of the current period is assigned to a driver.

Problem F1 can be decomposed into a master problem that only involves dispatching decisions,

and a subproblem consisting of the routing variables. Specifically, the master problem includes

(x,z) and the subproblem decides on θθθ. The master problem is formulated as

MF1: min
N∑

n′=n+1

K̄∑
k=0

xn
′

k EQn′

[
Hs(k,In

′
,qn

′
)
]
, (23)

s.t. (15), (16), (17), (21).

Given a feasible solution (x̄,z̄) of master problem MF1, the subproblem is a single-period routing

problem as follows:

SF1: min
∑
r∈Rn

θrcr, (24)

s.t.
∑
r∈Rn

βn′,rθr ≤
K̄∑
k=0

kz̄n
′

k , ∀n′ = n+ 1, . . . ,N, (25)

(19), (20), (22).

Because the subproblem SF1 is an integer program, we relax it as a linear program to derive

the Benders cuts. The relaxed formulation RF1 is

RF1: min (24)
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s.t. (19), (25)∑
r∈Rn

αi,rθr ≥ 1, ∀i∈ In, (26)

θr ≥ 0, ∀r ∈Rn. (27)

Let µn′ (n′ = n+ 1, . . . ,N), µn and νi (i ∈ In) be the dual variables of constraints (25), (19) and

(26), respectively, and ΘΘΘ and ΛΛΛ be the set of extreme points and extreme rays of problem RF1’s

dual problem, respectively. We derive a relaxation of problem F1 as

F2: min
N∑

n′=n+1

K̄∑
k=0

xn
′
k EQn′

[
Hs(k,In

′
,qn

′
)
]

+ η, (28)

s.t.
N∑

n′=n+1

K̄∑
k=0

µn′kz
n′

k +µn(K̄ − ζnn ) +
∑
i∈In

νi ≤ η, ∀(µµµ,ννν)∈ΘΘΘ (29)

N∑
n′=n+1

K̄∑
k=0

µn′kz
n′

k +µn(K̄ − ζnn ) +
∑
i∈In

νi ≤ 0, ∀(µµµ,ννν)∈ΛΛΛ (30)

(15), (16), (17), (21),

where constraints (29) and (30) are the optimality Benders cuts and the infeasibility Benders cuts,

respectively.

Note that the sizes of ΘΘΘ and ΛΛΛ are exponential, so Benders cuts (29) and (30) cannot be enumer-

ated beforehand. Instead, they are generated dynamically by solving problem RF1. Meanwhile,

because problem F2 involves only dispatching related decision variables, problem SF1 has to be

exactly solved to get the detailed routing plan. Therefore, the Benders decomposition solves the

relaxed master problem F2 and subproblems SF1 and RF1 successively. The implementation

details of the Benders decomposition are presented in Appendix E. Because the optimality cuts

(29) and the infeasibility cuts (30) are derived from the LP relaxation of subproblem SF1, problem

F2 is a relaxation of problem F1. As a result, the dispatching decision obtained from the solution

of problem F2 may be infeasible or non-optimal for problem F1. Specifically, if subproblem SF1 is

infeasible, then the optimal solution of problem F2 is also infeasible for problem F1. If the cost of

problem F2’s optimal solution plus the cost of subproblem SF1’s solution is larger than the cost of

the current best solution of problem F1, then the optimal solution of problem F2 is non-optimal

with respect to problem F1. Suppose (x̄̄x̄x, z̄̄z̄z) is such a solution, the following logic Benders cut is

added to problem F2 to cut it off:

N∑
n′=n+1

K̄∑
k=0

{
1(x̄n

′

k = 0)xn
′

k +1(x̄n
′

k = 1)(1−xn
′

k )
}

+
N∑

n′=n+1

K̄∑
k=0

{
1(z̄n

′
k = 0)zn

′
k +1(z̄n

′
k = 1)(1− zn

′

k )
}
≥ 1,

(31)

where 1(x) is an indicator function that equals 1 if x is true and 0 otherwise.
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5.2. Column Generation

Problem RF1 has an exponential number of variables, so it can be computationally prohibitive

to enumerate all of them for reasonable-size instances. Therefore, we propose a column generation

to solve it iteratively. First, problem RF1 is initialized with a small subset of variables, called

restricted master problem (RMP). Then, the RMP is solved by the simplex method, whereas a

pricing problem is solved to generate new variables with negative reduced cost. These new variables

are added to the RMP, and after that, the RMP is resolved. This process repeats until no variables

with negative reduced cost are generated. The pricing problem with respect to problem RF1 is as

follows:

min
r∈Rn

cr−
∑
i∈In

αi,rνi−
N∑

n′=n+1

βn′,rµn′ −µn. (32)

The pricing problem belongs to the elementary shortest path problems with resource constraints

(ESPPRCs) (Feillet et al. 2004, Irnich and Desaulniers 2005), which are commonly solved by label-

setting algorithms (Righini and Salani 2008). The label-setting algorithms are a class of dynamic

programming approaches that solve the ESPPRCs by state prorogation. In our case, states (or

labels) represent partial routes from the depot to certain locations. By probably defining the states,

the label-setting algorithms can enumerate all feasible routes, and hence guarantee to find an

optimal route. Meanwhile, the algorithms can be speeded up by using special dominance rules to

identify and discard redundant states. In summary, label-setting algorithms consist of three basic

components: state definition, extension functions and dominance rules. Beside these three basic

components, we also design and incorporate several important techniques to accelerate the label-

setting algorithms, including the bounded bidirectional search (Righini and Salani 2006), ng-route

relaxation (Martinelli et al. 2014), and label pruning techniques. The details of the label-setting

algorithm for solving the pricing problem (32) are presented in Appendix F.

5.3. Route Enumeration Algorithm

An intuitive method for solving problem SF1 is a branch-and-price algorithm based on the column

generation in Section 5.2. However, branch-and-price algorithms may converge slowly if branching

decisions do not have strong impacts on the model. Therefore, we propose an iterative route

enumeration algorithm to exactly solve problem SF1. The idea of this algorithm is similar to

column generation. It first iteratively enumerates all feasible routes that possibly constitute optimal

solutions of problem SF1, and then solves problem SF1 with the enumerated routes directly by

an MIP solver. The target routes for enumeration are given by Lemma 2:
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Lemma 2. Given an upper bound ub of problem SF1, the optimal cost φ(RF1) of problem RF1,

a dual optimal solution (µµµ,ννν) of problem RF1 and a route r ∈ Rn, r cannot be in any optimal

solutions if it satisfies:

cr−
∑
i∈In

αi,rνi−
N∑

n′=n+1

βn′,rµn′ −µn >ub−φ(RF1). (33)

Lemma 2 states that if problem RF1 is solved, a route with reduced cost larger than the gap

ub−φ(RF1) can not be in any optimal solution of problem SF1. Notably, our route enumeration

algorithm does not require an upper bound as input, but iteratively generates good upper bounds.

Let ub be the best bound found by the algorithm, and δ be the gap used for route enumeration. At

first, ub is initialized by positive infinity, and δ is initialized by a control parameter StepSize. If δ

is too small and the enumerated routes cannot constitute a feasible solution or a better solution

than ub, δ is increased by StepSize. Otherwise, the optimal solution obtained by solving problem

SF1 is used to update ub. Once δ is greater than or equal to ub− φ(RF1), an optimal solution

to problem SF1 is found. Note that the route enumeration algorithm is also used to solve for the

optimal single-period delivery cost in the offline estimation stage of AJRP, in which a large number

of single-period problem instances have to be solved. We present the pseudocode and the detailed

description of the algorithm in the Appendix G.

6. Computational Results and Discussion

In this section, we evaluate the performance of AJRP on both real-world and synthetic data sets.

We first introduce the data set, simulation setup, and benchmark policies. Then we analyze the

computational and on-time performance of AJRP and discuss managerial implications to the on-

time delivery operations management.

6.1. Data Sets

The main data set is collected from our industry partner, whereas the synthetic instances are

simulated to serve as additional test examples.

6.1.1. Partner’s Data The grocery chain store shared its order data set for on-demand meal

boxes. The data set contains the following information of each placed delivery order: 1) order time:

the time when the order is placed; 2) order quantity: the number of items (meal boxes) in the

order; 3) time window: the delivery time target; 4) longitude and latitude: the customer location;

5) cutoff time: the provider has set a sequence of evenly distributed cutoff times {t1, t2, . . .} with

∆ = tn+1−tn = 15 minutes, and all orders placed within [tn, tn+1) are batched together and share the

same delivery time window. We also acquired the travel distance data between customer locations

(including the depot) from the Baidu Map API. Because the majority of orders were collected
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during the lunch peak hours, we focus on the time period from 10:00 am to 11:30 am, covering

seven decision epochs (cut-off times). We use two consecutive weeks of the order data as training

set, and the orders in the following week make up the test set. To reflect different supply scenarios

with varying fleet sizes, we consider the number of drivers as small (35 drivers in total), medium

(40 drivers in total), and large (45 drivers in total) relative to demand.

6.1.2. Synthetic Data To examine the scalability and generalizability of our algorithms, we

perform additional computational studies on a set of synthetic instances. The instances are gener-

ated by varying the number of decision epochs (N) and demand generating process. Specifically,

the potential customer locations are uniformly distributed on a plane of 10 km × 10 km, where the

depot is located at the center. The distance between customer locations is calculated with Euclidean

distance. The number of items ordered at each location follows a Poisson distribution with rate

λ= 2, and as a result, not all potential customers will place orders. We consider N = {10,20} and

nonstationary demand arrival processes by setting the number of potential customer locations In

as a function of n. Specifically, when N = 10, In = 25 + 5n for n = 1, . . . ,5 and In = 80− 5n for

n = 6, . . . ,10. They are designed to mimic the practical scenario when demand peaks within the

planning horizon (i.e., as in the partner’s data). For N = 20, the demand pattern of N = 10 is

repeated twice. Consequently, instances with N = 20 replicate scenarios with two demand peaks

(e.g., lunch and dinner hours) in the planning horizon. Figures that illustrate the temporal pat-

tern of synthetic data are included in Appendix H. 100 random instances are generated for each

configuration.

The delivery speed is assumed to be 20 km/hour and the on-site service time s is set to be 5

minutes. The driver capacity is assumed to be Q= 20 (items) and the delivery duration limit is

set to be Lmax = 40 minutes, as suggested by the partner. On the synthetic instances, the total

number of drivers varies between small (54), medium (59), and large (64).

6.2. Policy Implementation and Benchmarks

During the offline estimation stage of AJRP, we generated 100 samples for each period in the eval-

uation of the single-period cost function EQn [Hs(Kn,In,qn)]. We solve the single-period problems

at different values of Kn ∈ [Kn, In], where Kn is the minimum required number of drivers in period

n (i.e., according to the capacity and delivery duration constraint). After the single-period prob-

lem solutions are collected across all samples, the single-period cost function is estimated using

the simple sample average. Specifically, let Sn (|Sn|= 100) be the set of samples in period n, Ys,k

be the optimal single-period solution of sample s ∈ Sn with k drivers, and u(Ys,k) be the cost of

solution Ys,k. If there exists no feasible solution for sample s ∈ Sn given k drivers, set Ys,k = ∅.

Let S̄n,k = {s ∈ Sn | Ys,k 6= ∅}. To account for the infeasible scenarios properly, EQn [Hs(k,In,qn)]
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(n= 1, . . . ,N,k = 1, . . . ,K) is computed as
∑

s∈S̄n,k
u(Ys,k)/|S̄n,k| if |S̄n,k| ≥ %|Sn| and +∞ other-

wise. The parameter % can be interpreted as a pruning parameter that controls the conservativeness

of estimation. We set it to be 1/3 in the experiments. The values of ωn
′

m (k) are computed in a

similar way.

We compare our approach to two main benchmark dispatching and routing policies. The first

benchmark policy replicates the current myopic policy used by the practitioner, and the second

benchmark policy is adapted from a heuristic policy proposed in the literature:

1. Simple myopic policy (current practice). As described in Section 2, the company is using a

simple myopic policy that disregards future order information in delivery planning. This policy

dispatches and routes drivers in a way that only optimizes for the current batch of orders, i.e.,

by minimizing
∑

i∈In ui(Y
n). Because this policy may not always be feasible when the fleet size

is small (e.g., due to the capacity constraint), we follow a standard practice to introduce a set

of third-party drivers of unlimited size and with extra labor cost. The labor cost of a third-party

driver is proportional to his/her work time (total delivery time). Let Y n = (Y n,f ,Y n,p), where Y n,f

and Y n,p correspond to the routing decision of the full-time drivers and the third-party drivers,

respectively. Let w(Y n,p) be the total work time of third-party drivers following Y n,p. Then the

simple myopic policy is derived by solving the following program:

min
∑
i∈In

ui(Y
n,f ,Y n,p) + ρw(Y n,p), (34)

s.t. (Y n,f ,Y n,p)∈D(In,qn,ζζζn), (35)

where ρ is a weight parameter that reflects the additional labor cost. Without loss of generality,

we set it to 10 so the operator has strong incentives to dispatch its own drivers and avoid calling

third-party drivers.

2. Adaptive myopic policy. The second benchmark policy is adapted from Liu et al. (2021),

where future order information is considered, but the driver dispatching and routing decisions are

decoupled completely. Specifically, in each period, we first determine the number of dispatched

drivers by solving a scheduling problem (after taking out the routing decision from (11) - (13)):

min
xn
k
∈{0,1}

K̄n∑
k=0

Hs (k,In,qn)xnk +
N∑

n′=n+1

K̄n
′∑

k=0

EQn′

[
Hs(k,In

′
,qn

′
)
]
xn
′

k (36)

s.t.
n′∑
m=n

K̄m∑
k=1

xmk ω
n′

m (k)≤ K̄n′ − ζnn′ , ∀n′ = n, · · · ,N (37)

K̄n
′∑

k=1

xn
′

k = 1, ∀n′ = n, · · · ,N. (38)
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Then the single-period routing model is solved subject to the dispatching schedule constraint

respecting the derived dispatching decision. Similar to AJRP, the adaptive myopic policy solves the

dispatching problem in every period after collecting the new order information, i.e., the dispatching

decision is updated in a rolling-horizon fashion. However, this policy is myopic in the routing

part because it ignores the interactions between routing and future order arrivals, and the routing

solution is derived independently from the dispatching decision. It can be viewed as a combination

of adaptive dispatching and myopic routing, which improves on the simple myopic policy to adjust

the dispatching schedule according to future order arrivals.

We also test another relevant heuristic policy that minimizes driver travel time to better balance

driver capacity across different periods, of which the result is presented in Appendix I. The algo-

rithms were implemented in Java using callbacks of ILOG CPLEX 12.5.1. All of the experiments

were conducted on a Dell personal computer with an Intel E5-1607 3.10 GHz CPU, 32 GB RAM,

and Windows 7 operating system. To ensure all the policies are solved to optimality, the time limit

is set to one hour per decision epoch. Note, however, this time limit is redundant for AJRP, as we

show below that the solution time to AJRP is mostly within a few minutes.

6.3. Computational Performance

We report the solution time of the developed algorithms for the offline estimation and online

optimization stages of AJRP. In the offline estimation stage, the single-period cost function

Hs(k,In,qn) has to be evaluated for a potentially large number of instances. On the synthetic

instances, the average solution time for the single-period problem is 0.86 seconds (with a maximum

of 188.27 seconds), which illustrates the promising computational performance of the proposed

route enumeration algorithm. Furthermore, because the multiple traveling repairman problem

(MTRP) can be treated a special case of Hs(k,In,qn), we also evaluate the computational per-

formance of our algorithm on three sets of public MTRP instances from the literature. Table 1

reports the number of instances tested, optimally solved, and the average solution time on each

class of instances, compared with two state-of-the-art methods. The time limit of the route enu-

meration algorithm is set to one hour, while the time limits of the other two approaches are set to

2 hours. The results demonstrate that the proposed algorithm outperforms the existing methods

in both solution time and quality, which bodes well for other on-time delivery problems built on

MTRP. The detailed comparisons of these three approaches on the MTRP instances are presented

in Tables 5, 6 and 7 of Appendix J.

Besides, we evaluate the solution efficiency of the proposed Benders decomposition framework

for AJRP on the tested instances, and the results are summarized in Table 2. The average solution

time per decision epoch of our framework is under 1 minute across different configurations (the
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Table 1 Computational Results of the MTRP Instances

Class Total
Instances

Route Enumeration Algorithm Nucamendi-Guillén et al. (2016) Muritiba et al. (2021)

Instances Average Time Instances Average Time Instances Average Time

Tested/Solved (In seconds) Tested/Solved (In seconds) Tested/Solved (In seconds)

LQL 180 180/180 1.32 180/180 30.46 180/180 31.58

E 12 12/12 127.10 9/9 507.86 12/8 624.98

P 23 23/21 8.45 19/17 266.93 23/17 1008.23

maximum instance-specific solution time is 3 minutes), which marks a considerable improvement

over the direct MILP formulation with CPLEX (the CPLEX solution time is well above 1 hour).

Therefore, AJRP is practically feasible because optimal solutions can be returned during order

preparation, which often takes more than 10 minutes. In general, instances with larger fleet sizes

can be solved more efficiently because the corresponding delivery routes are shorter, and the pricing

problems are easier to solve.

Table 2 Average (Minimum and Maximum) Solution Time of AJRP per Decision Epoch (Seconds)

Fleet Size Partners’ Data Synthetic Data

Small 33.68 (18.47, 45.50) 3.36 (0.41, 72.61)
Medium 24.01 (15.76, 32.04) 21.65 (1.87, 184.36)

Large 15.03 (10.11, 28.31) 5.72 (2.26, 54.12)

6.4. Delivery Performance Improvement

We compare the on-time delivery performance of AJRP with the benchmark policies on real-world

and synthetic instances. The delivery performance (cost) is measured by the sum of the delivery

time of customer orders and the potential travel time of third-party drivers. For the chosen fleet

sizes, the use of third-party drivers is very minimal, so the delivery performance mainly captures

the order delivery time. We evaluate the relative performance improvement of AJRP over the

simple myopic policy and the adaptive myopic policy by (CMyopic−CAJRP)/CMyopic, where CMyopic

and CAJRP are the delivery cost of the myopic policy (static or adaptive) and AJRP, respectively.

Figure 4 summarizes performance evaluation results of AJRP versus the two benchmark policies

on partner’s data. Compared to the current policy used by the company (simple myopic policy),

AJRP provides an improvement of 36.53% in delivery cost on average, which can translate to

a substantial enhancement in delivery speed and promise reliability of on-demand orders. The

average improvement of AJRP over the adaptive myopic policy is 32.29%, which stresses the value

of coordinating dispatching and routing decisions dynamically. Notably, these improvements are

robust across different supply scenarios. Even when the driver supply is abundant, AJRP still

significantly improves delivery performance.



24 Liu and Luo: Dynamic Dispatching and Routing with Random Demand

Small Medium Large
Fleet Size

0%

10%

20%

30%

40%

50%

R
el

at
iv

e 
Im

pr
ov

em
en

t

AJRP over Simple Myopic
AJRP over Adaptive Myopic

Figure 4 Relative Improvement of AJRP over Myopic Policies on Partner’s Data

Similar observations hold on the synthetic instances, of which the evaluation results are summa-

rized in Figure 5. Across different configurations, AJRP outperforms the two benchmark policies

consistently. On average, AJRP outperforms the simple myopic policy by 24.82% and the adaptive

static policy by 8.63% on the synthetic data. The improvement of AJRP tends to be greater for

instances with medium fleet sizes than instances with small and large fleet sizes, in which dynamic

optimization is more critical to matching supply and demand over time.
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Figure 5 Relative Improvement of AJRP over Myopic Policies on the Synthetic Data

6.5. Discussion and Policy Implications

In this section, we perform several policy experiments and provide managerial insights for improving

delivery performance based on partner’s data.

6.5.1. The Value of Dynamic Dispatching and Routing. Recall that the simple myopic

policy follows both myopic dispatching and routing rules, whereas the adaptive myopic policy
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combines a dynamic dispatching rule with myopic routing. The improvement of the adaptive

myopic policy over the simple myopic policy can be attributed to dynamic dispatching, and the

improvement of AJRP over the adaptive myopic policy indicates the importance of dynamic rout-

ing. Therefore, we measure the relative value of dynamic dispatching and routing by the fol-

lowing two ratios: (CSimple Myopic −CAdaptive Myopic)/(CSimple Myopic −CAJRP) and (CAdaptive Myopic −

CAJRP)/(CSimple Myopic−CAJRP), respectively. The higher the first ratio, the greater value dynamic

dispatching generates (and the two ratios sum up to one). The average estimated values of these

two ratios on the partner’s data are presented in Table 3. The main finding is that dynamic routing

brings more benefits than dynamic dispatching for the company, and dynamic dispatching alone

may not be sufficiently effective. However, as the fleet size gets larger, a higher contribution from

dynamic dispatching can be observed, which implies dynamic dispatching is more valuable for

large-fleet scenarios.

Table 3 The Estimated Relative Value of Dynamic Dispatching and Routing

Fleet Size Value of Dynamic Dispatching Value of Dynamic Routing

Small 5.09% 94.91%
Medium 23.70% 76.30%

Large 40.02% 59.98%

6.5.2. Comparing Dispatching and Routing Decisions. We first investigate the differ-

ence in the dispatching decision generated by the three policies. Figure 6 presents the average

number of dispatched drivers on the test set when the fleet size is 45 (large). We observe that the

adaptive myopic policy behaves similarly to the simple myopic policy used by the company. This

stresses that dynamic dispatching alone may not considerably impact the system performance. In

contrast, AJRP dispatches drivers differently than the myopic policies: AJRP dispatches signifi-

cantly fewer drivers in periods 1 and 5 but more drivers in periods 2 and 4. In particular, AJRP

avoids sending out too many drivers in period 1 to better accommodate orders arriving in period 2.

Although dispatching more drivers with shorter trips benefits on-time performance for the current

batch of orders, blindly dispatching too many drivers poses risks of delaying future orders. This

tradeoff is captured by AJRP more precisely than the myopic policies.

The interplay between dispatching decisions and future delivery performance lies in the planned

delivery routes, of which the duration plays a major role in shaping future driver availability. In

the considered setting, dispatched drivers whose routes are shorter than 15 minutes (30 minutes)

can be dispatched again after one period (two periods). Figure 7 depicts the empirical cumulative

distribution function (CDF) of route duration under AJRP and the adaptive myopic policy for
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Figure 7 Empirical Cumulative Distribution Function of Route Duration in Periods 1 and 3

periods 1 and 3 (the simple myopic policy is omitted because it shares the same routing logic with

the adaptive myopic policy). Note that AJRP dispatches fewer drivers in period 1, so we may

expect longer routes from AJRP, and the dispatched drivers are less likely to return within the

next two periods. However, due to careful routing optimization, the route duration of AJRP shares

a similar distribution to that of the adaptive myopic policy. In particular, the percentage of routes

that are shorter than 15 minutes and 30 minutes is almost the same under the two policies. We

also compare the route duration in period 3, where the three policies dispatch a similar number of

drivers. As shown in Figure 7b, AJRP plans more short routes (routes shorter than 15 minutes)

than the adaptive myopic policy. Consequently, more drivers can be dispatched again in period

4 under AJRP, which boosts the overall on-time performance. These observations underline the

value of routing optimization with multiple dispatch waves.

6.5.3. Delivery Speed Versus the Fleet Size. As the on-demand delivery market becomes

more competitive, the system operator can pursue faster deliveries with a larger fleet size. Figure
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8 presents the evolution of average delivery time as a function of the number of drivers. If the

company sets a 15-minute delivery time target (it corresponds to a customer waiting time of 30-35

minutes after accounting for order preparation and packaging), the fleet size should be at least 40.

Further, our results imply diminishing returns on increasing the fleet size. As the fleet size grows

from 30 to 35, the average delivery time can be reduced by 2 minutes. But when the fleet size is

already large (e.g., 50), the incremental reduction of average delivery time is only half a minute.

In theory, there is a physical limit to the average delivery time pertaining to the delivery region,

travel speed, and service times. Approaching the lower limit can be economically unviable for many

operators because of the resulting high labor cost.
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Figure 8 Average Delivery Time with Varying Fleet Sizes

6.5.4. Setting the Right Frequency of Dispatch Waves. The company currently adopts

7 dispatch waves during peak hours. It is of high interest to the system operator to understand

whether having more frequent dispatch waves (decision epochs) would benefit the on-time perfor-

mance. On the one hand, increasing the frequency of dispatch waves reduces the potential idle

time of drivers and results in higher utilization of delivery capacity. On the other hand, making

more frequent dispatches limits the potential of bundling orders (e.g., the opportunity that an

order is bundled with a future order coming from a nearby location) and may compromise the

route efficiency. To find the right frequency of dispatch waves, we increase the number of decision

epochs to 14, 21, and 35, which implies a shorter time between consecutive epochs than the current

practice. Figure 9 depicts the average delivery time as a result of the increased dispatch frequency.

The main observation is that using 14 dispatch waves obtains the best on-time performance: given

a fleet of 45 drivers, the average delivery time can be reduced by 0.25 minutes when shifting from 7

dispatch waves to 14 dispatch waves. However, having too frequent dispatch waves may slow down
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the delivery process, as longer delivery time is observed for 21 and 35 dispatch waves. Additionally,

when the fleet size grows larger, the relative benefit from more frequent dispatches becomes more

pronounced. This is because additional supply can be better utilized when the fleet is dispatched

more frequently.
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Figure 9 The Impact of Dispatch Frequency

6.5.5. The Value of Flexible Order Postponement. The considered dispatch policy, as

motivated by the partner, does not allow flexible order postponement. Instead, an order is “partially

postponed” to be assigned at the next decision epoch and will not be postponed to later decision

epochs. In theory, order postponement is beneficial when the postponed order can be effectively

bundled with future orders and lead to more efficient delivery routes. The downside is that the

postponed order has to wait for a longer time at the depot, which can negatively impact the

on-time performance. Finding the optimal postponement strategy in a stochastic environment is

challenging, so we examine the value of flexible order postponement in a clairvoyant manner.

Assuming perfect future order information from the next period, we solve for the optimal order

postponement decision along with driver dispatching and routing. Then we compare the average

delivery time with and without order postponement (the dispatching decision follows AJRP when

no order postponement is permitted). On the real instances with a medium number of drivers, the

improvement in the average delivery time due to flexible order postponement varies from 1.41% to

4.20%, with an average of 2.56%.5 This suggests modest benefits from flexible order assignment to

on-time performance, given that dispatching and routing decisions are well optimized. Nevertheless,

jointly optimizing dispatching, routing, and postponement dynamically can be important for other

metrics or applications, and we leave it as a future research direction.

5 Based on our clairvoyant evaluation method, the estimated improvement from flexible order postponement is opti-
mistic, and the actual improvement can be less than the reported value.
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6.5.6. The Impact of Sample Size. The single-period cost function and the number of

en route drivers are estimated from a simple sample average approximation. To understand how

the sample size impacts the performance of AJRP, we vary the sample size |Sn|= 10,20,100,200.

We observe that the average delivery time does not vary significantly as the sample size changes.

In particular, the average delivery time increases by up to 0.1 minutes when the sample size

decreases from 100 to 10, with the largest increase observed for instances with medium fleet sizes.

Interestingly, as the sample size grows from 100 to 200, the average delivery time does not improve,

which can be attributed to overfitting the training sample.

7. Concluding Remarks

Fulfilling on-demand delivery orders rapidly in a dynamic and stochastic environment is a chal-

lenging task for many grocery and food retailers. The logistics system operator must dynamically

optimize the dispatching and routing of drivers in response to new order arrivals and in anticipation

of future orders. Computational difficulties are prominent due to the combinatorial nature of the

problem and uncertain sequential arrivals of customer orders. Motivated by a large grocery chain

store, we model and solve a stochastic dynamic dispatching and routing problem for on-time deliv-

ery of on-demand orders. We develop a structured approximation framework and computationally

efficient algorithms that yield implementable solutions in real time. The proposed policy, AJRP,

combines offline estimation and stochastic lookahead effectively. We show that AJRP enjoys a

bounded approximation ratio and worst-case performance guarantee. Our extensive computational

experiments confirm the superior performance of AJRP on real-world and synthetic data sets.

Compared to the current myopic policy used by the company, AJRP reduces the average delivery

time by up to 49.61%. Our results suggest dynamic routing is more beneficial than dynamic dis-

patching, especially when the fleet size is not so large. Due to the multi-trip and multi-dispatch

features of our problem, a careful planning of routes plays an essential role in matching delivery

capacity with demand. We also examine the impact of increasing dispatch frequency and the value

of flexible order postponement.

Our work has several limitations and can be extended in the following directions. First, because

our modeling framework is focused on a single-depot setting where delivery orders originate from

the central store, it would be interesting to consider a multi-depot scenario that allows order

bundling across different stores. While our partner is not allowing such bundling policies because

their stores are not in the vicinity of each other, some convenience stores may be able to explore

the associated bundling flexibility. Second, it is possible to consider driver supply uncertainty

in our model, which may be prominent when the company hinges on crowd-sourcing drivers to

fulfill delivery orders. One may adjust the estimation procedure in our approximation framework
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accordingly – the estimation of ω̄n
′

m (Km) can be tuned to reflect the case where crowd-sourcing

drivers may not always return to the depot for future dispatch waves. Moreover, one can update the

estimation of ω̄n
′

m (Km) by applying and evaluating the approximate dispatching policy iteratively

to improve the framework. Lastly, integrating other decisions such as pricing and staffing with our

model is interesting and may drive further methodological development.
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Online Appendix

In this appendix, we present the key notations, technical proofs, additional algorithmic details, and

more supporting evaluation results.

Appendix A: Key Notations

Table 4 Notations.

Name Description

Driver Dispatching and Routing Model

N Number of planning periods (decision epochs)

∆ Length of each planning period

tn Start time of period n (t0 refers to the start time of services)

tp Preparation time of orders (in a batch)

K̄n Number of available drivers in period n

K̄ Total number of available drivers

v Travel speed of drivers

Q Vehicle capacity (maximum number of items loaded to a vehicle)

I Set of potential customer locations

In Set of customer locations realized between [tn−1, tn)

qn Order quantity vector corresponding to In

ζζζn
Driver status vector: ζζζn = (ζn1 , . . . , ζ

n
N), where ζnn′ is the number of en route drivers in period n′

due to the dispatching decisions made prior to period n

Qn Joint distribution of the customer locations and order quantities in period n

Y n Joint dispatching and routing decision vector in period n

D(In,qn,ζζζn) Feasible region of Y n

ui(·) On-time performance measure for customer location i

Lmax Hard delivery time target

lnk (Y n) Route duration of driver k dispatched in period n

Hn(In,qn,ζζζn) Cost-to-go function of period n in the dynamic program

Approximation Approach

Hs(Kn,In,qn)
Single-period cost function with Kn dispatched drivers when the realized customer locations and order

quantities are In and qn, respectively

ωn
′

m (Km) Number of en route drivers in period n′ out of the Km drivers dispatched in period m

APTn(ζζζn) Approximation of EQn [Hn(In,qn,ζζζn)]

xnk Binary decision variable that equals 1 if k drivers are dispatched in period n and 0 otherwise

ω̄n
′

m (Km) Estimated value of ωn
′

m (Km)

V̄ n
APT (ζζζn) Optimal objective value of APTn(ζζζn) with the choice of {ω̄n′m (Km)}∀(m,n′)

Benders Decomposition

Rn Set of feasible routes to serve orders in period n

cr Cost of route r

αi,r Constant parameter that equals 1 if location i is served in route r

βn′,r Constant parameter that equals 1 if route r is running in period n′

θr Binary decision variable that equals 1 if route r is assigned to a driver and 0 otherwise

zn
′

k

Binary decision variable that equals 1 if there exist k drivers who are dispatched in period n

but are still occupied in period n′

µn′ Dual variables of constraints (25)

µn Dual variables of constraints (19)

νi Dual variables of constraints (26)

ΘΘΘ Set of extreme points of problem SF1’s dual problem

ΛΛΛ Set of extreme rays of problem SF1’s dual problem

φ(RF1) Optimal cost of problem RF1
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Appendix B: Visualization of the Studied On-Demand Delivery Process

Figure 10 illustrates a batch of orders and the corresponding delivery process in the studied on-demand

delivery problem.

An Example Delivery Route Plan for One Period

Figure 10 The Order Delivery Process: Triangle Represents the Store and Points Indicate Customer Locations

Appendix C: Constraints for ui(Y
n)

Let tnij be the travel time from location i ∈ In to location j ∈ In, s be the on-site service time, and anik

be a non-negative variable that records the delivery time of order i ∈ In by vehicle k = ζnn + 1, . . . , K̄. The

following constraints are added for ui(Y
n) (the dependence on Y n is dropped below):

anjk ≥ anik + s+ tnij + (ynijk− 1)M, ∀i, j ∈ In, k= ζnn + 1, . . . , K̄, (39)

anik ≤ ui ≤Lmax, ∀i∈ In, k= ζnn + 1, . . . , K̄, (40)

where M is a sufficiently large number. Constraints (39) ensure that if vehicle k delivers order j immediately

after order i, the delivery time of order j should not be no earlier than the delivery time of order i plus the

travel time and the service time of order i. Constraints (40) guarantee the delivery time of any order is no

later than the target.

Appendix D: Main Proofs

Proof of Lemma 1 (i) We prove the first part by induction. For the last period (n=N),HN(IN ,qN ,ζζζN) is

nondecreasing in ζζζN because D(IN ,qN ,ζζζN1 )⊆D(IN ,qN ,ζζζN2 ) for ζζζN1 ≥ ζζζN2 . Now assume Hn+1(In+1,qn,ζζζn+1)

is nondecreasing in ζζζn+1 for n≤N − 1. Then for any given Yn ∈D(In,qn,ζζζn), ζζζn+1 is nondecreasing in ζζζn,

and so Hn+1(In+1,qn+1,ζζζn+1) is nondecreasing in ζζζn by induction. It follows that the objective function

of (7) is nondecreasing in ζζζn (the expectation preserves the monotonicity). Therefore, Hn(In,qn,ζζζn) is

nondecreasing in ζζζn by the property of D(In,qn,ζζζn), finishing the inductive proof.

(ii) The second part follows from the fact that the feasible region of APTn(ζζζn) is nonincreasing in ζζζn.

�

Proof of Theorem 1 (1) Lower bound. We can set ωn
′

n′ (K
n′) =Kn′ for n′ = n, . . . ,N and ωn

′

m (Km) = 0

for m<n′. This implies that drivers will be able to return to the depot within one period of their dispatch.

Therefore, under this set of ωn
′

m (Km), we have a system wherein all the drivers are available at the beginning of
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every period, which is clearly a lower bounding system. More specifically, the optimal solution to APTn(ζζζn)

would satisfy Kn′ = K̄ − ζnn′ , of which the objective value
∑N

n′=nEQn′
[
Hs(K̄ − ζnn′ ,In

′
,qn

′
)
]

will be less or

equal to EQn [Hn(In,qn,ζζζn)] by the definition of Hs(·, ·, ·).
(2) Upper bound. By the existence assumption, we can find a feasible myopic policy πsm that dispatches

Kn′,sm drivers in period n′ regardless of the realization of (In′ ,qn′ ,ζζζn′). Then we can choose the values of

ωn
′

m (Km) such that the optimal solution to APTn(ζζζn) is {Kn′,sm}n′=n,...,N , and the optimal objective value

is the same as the expected cost of πsm (one such choice is to set ωn
′

m (Km,sm) = 0 and ωn
′

m (K) = K̄+1 for K 6=
Km,sm). Because πsm is a feasible policy and its expected cost will be an upper bound of EQn [Hn(In,qn,ζζζn)].

Lastly, when n=N , we have

EQn [Hn(In,qn,ζζζn)] = EQN

[
HN(In,qN ,ζζζN)

]
= min
KN∈N

EQN

[
Hs(KN ,In,qN)

]
s.t. KN ≤ K̄ − ζNN ,

which is the same as problem APTn(ζζζn) because ωNN (KN) =KN . �

Proof of Corollary 1 Due to Theorem 1, the approximation used in AJRP is exact for the last period.

Therefore, AJRP is optimal for the two-period JDR. �

Proof of Proposition 1 When there exists a static myopic policy, APTn(ζζζn) is feasible with ωn
′

m (Km) =

ω̄n
′

m (Km) so V̄ n
APT (ζζζn) is finite. Let define

V̄ n
APT (ζζζn, ε) := min

Kn′∈N

N∑
n′=n

EQn′

[
Hs(Kn′ ,In′ ,qn′)

]
s.t.

n′∑
m=n

ω̄n
′

m (Km)≤ K̄ − ζnn′ + ε(n′), ∀n′ = n, . . . ,N. (41)

We now prove that there exist ε1, ε2 ∈RN−n+1 satisfying ε1 ≥ 0 and ε2 ≤ 0, such that

V̄ n
APT (ζζζn, ε1)≤EQn [Hn(In,qn,ζζζn)]≤ V̄ n

APT (ζζζn, ε2).

1. V̄ n
APT (ζζζn, ε1) ≤ EQn [Hn(In,qn,ζζζn)]: we can choose a large enough ε1 ≥ 0 such that it is possible to

dispatch I drivers in every period (recall I is the maximum number of customer locations), which yields the

best possible on-time performance and thus is less than EQn [Hn(In,qn,ζζζn)].

2. EQn [Hn(In,qn,ζζζn)] ≤ V̄ n
APT (ζζζn, ε2): for period n′ = n, . . . ,N , there exists a lower bound Kn′ such

that EQn′
[
Hs(Kn′ ,In′ ,qn′)

]
is only finite when Kn′ ≥ Kn′ . Now we construct ε2 by setting ε2(n′) =∑n′

m=n ω̄
n′

m (Km) − (K̄ − ζnn′), ∀n′ = n, . . . ,N . By doing so the only feasible solution to problem (41) is

{Kn′}n′=n,...,N (from the property that ω̄n
′

n′ (·) is a non-decreasing function). As a result, V̄ n
APT (ζζζn, ε2) =∑N

n′=nEQn′

[
Hs(Kn′ ,In′ ,qn′)

]
, which is greater than the cost of any feasible static myopic policy πsm because

Kn′,sm ≥Kn′ . Consequently, V̄ n
APT (ζζζn, ε2)≥EQn [Hn(In,qn,ζζζn)].

Next, let ϑ= V̄ n
APT (ζζζn, ε2)/V̄ n

APT (ζζζn, ε1), then we have

1

ϑ
≤ V̄ n

APT (ζζζn)

EQn [Hn(In,qn,ζζζn)]
≤ ϑ

because V̄ n
APT (ζζζn, ε1)≤ V̄ n

APT (ζζζn)≤ V̄ n
APT (ζζζn, ε2). Lastly, when K̄ is large enough for n′ = n, . . . ,N , the opti-

mal dispatching and routing policy would be setting Kn′ = I in every state, i.e., each driver will serve

at most one customer location, which corresponds to the best achievable static myopic policy. As such

V̄ n
APT (ζζζn) = EQn [Hn(In,qn,ζζζn)]. �
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Proof of Theorem 2 We first focus on a single period with I∗ customer locations. As done in the proof

of Proposition 1, the shortest expected delivery time is achieved when we can dispatch I∗ drivers so each

driver only serves one customer. As such, the expected delivery time is r̄/v+ s per order. This is the lower

bound of the single-period expected delivery time for I∗ customer orders, and we denote it by Vlb(I
∗).

Due to the capacity constraint (and the possible delivery deadline), the number of dispatched drivers is at

least l= dI∗/Qe. Now we provide an upper bound for the expected delivery time when dispatching l drivers.

The routing policy follows the well known tour partitioning scheme proposed by Haimovich and Rinnooy Kan

(1985). Under this scheme, we first construct the optimal tour (TSP tour, T SP(I∗)) through all the customer

locations. Then we split the tour into l segments and create l feasible driver tours by connecting the depot

with the endpoints of the segments.

Conditioning on the locations of the I∗ customers, there are I∗ ways to partition the optimal tour, each

corresponding to a different starting location. Among the I∗ different partitions, a customer location will

be connected to the depot (as the first visit location) l times. When location i is selected as the first visit

location, the radial travel time will contribute at most Q · ri/v to the delivery time of orders on the tour

starting at i (recall that a driver tour contains Q orders). Summing over the I∗ possible partitions, the total

contribution from radial travel time is l ·Q
∑I∗

i=1 ri/v. Next we compute the contribution from the TSP travel

time. For a given arc on the tour, (i, i+1), its contribution to the total delivery time depends on the delivery

sequence of i on the driver tour. When i is the kth visited customer on the tour, arc (i, i+ 1) will contribute

(Q− k)r(i, i+ 1)/v to the total delivery time (the customers following i all include r(i, i+ 1)/v as part of

their delivery time). Because k can take values from 1 to Q (Q indicates (i, i+ 1) is not on any driver tours,

i.e., i and i+ 1 are connecting to the depot), the total contribution from the TSP travel time over all the

possible partitions is

l
∑

(i,i+1)∈T SP(I∗)

Q∑
k=1

(Q− k)r(i, i+ 1) =
l ·Q(Q− 1)

2v
L(T SP(I∗)),

where L(T SP(I∗)) is the TSP tour length through the I∗ locations. Following a similar argument, the total

contribution from on-site service time is l ·Q(Q+ 1)s/2 for each partition. Therefore, the total delivery time

of customer orders summing over the I∗ different partitions is

l ·Q
∑I∗

i=1 ri
v

+
l ·Q(Q− 1)

2v
L(T SP(I∗)) +

I∗ · l ·Q(Q+ 1)s

2
.

With a randomly selected partitioning, the expected delivery time would be∑I∗

i=1 ri
v

+
(Q− 1)

2v
L(T SP(I∗)) +

I∗(Q+ 1)s

2
,

where we utilize the relationship l ·Q≈ I∗. Then we take expectation with respect to the random locations

of customers and derive the expected delivery time as

I∗r̄

v
+

(Q− 1)

2v
E(L(T SP(I∗))) +

I∗(Q+ 1)s

2
.
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Because the above tour partitioning policy does not necessarily minimize the expected delivery time and

only obtains a feasible solution, it provides an upper bound of the expected delivery time for a period with

I∗ customer locations, Vub(I
∗). Then we have

Vub(I
∗)

Vlb(I∗)
=
I∗r̄/v+ (Q− 1)E(L(T SP(I∗))/2v+ I∗(Q+ 1)s/2

(r̄/v+ s)I∗
.

The Beardwood-Halton-Hammersley (BHH) theorem implies that for large I∗

E(L(T SP(I∗))
I∗

≈ β
√
A√
I∗
,

where β is the TSP constant (Beardwood et al. 1959). Hence, we can obtain an approximation for

Vub(I
∗)/Vlb(I

∗) as

Vub(I
∗)

Vlb(I∗)
≈ r̄/v+β(Q− 1)

√
A/(2v

√
I∗) + (Q+ 1)s/2

r̄/v+ s
.

Now we consider the original expression of ϑ, which follows

ϑ=
V̄ n
APT (ζζζn, ε2)

V̄ n
APT (ζζζn, ε1)

=

∑N

n′=nE
(
Hs(Kn′ , In

′
)
)

∑N

n′=nE(Vlb(In
′))

≤
∑N

n′=nE(Vub(I
n′))∑N

n′=nE(Vlb(In
′))

,

where the expectation is taken with respect to the number of customer locations. Because we assume each

customer orders exactly one item, the order quantity information is redundant and removed from the single-

period optimal delivery time function. Moreover, observing that Vub(I)/Vlb(I) is decreasing in I, we have

E(Vub(I
n′))

E(Vlb(In
′))
≤ Vub(I

∗)

Vlb(I∗)
∀n′ = n, . . . ,N

due to the assumption that In
′ ≥ I∗ for any n′. It follows that

ϑ≤
∑N

n′=nE(Vub(I
n′))∑N

n′=nE(Vlb(In
′))
≤ Vub(I

∗)

Vlb(I∗)
≈ r̄/v+β(Q− 1)

√
A/(2v

√
I∗) + (Q+ 1)s/2

r̄/v+ s
,

which holds for large I∗. �

Appendix E: Logic Benders Decomposition

The pseudocode of the logic Benders decomposition is presented in Algorithm 1. In this algorithm, ε is the

tolerance of the optimality gap, and lb (ub) is the best lower bound (upper bound) found by the algorithm.

Let φ(SF1SF1SF1), φ(DF1DF1DF1) and φ(F2F2F2) be the optimal costs of problems SF1, DF1 and F2, respectively. In each

iteration, the algorithm first solves problem F2 and then solves problem RF1. Depending on the results,

different types of Benders cuts are added to problem F2 to cut off the incumbent solution. If RF1 is

infeasible, it indicates that the feasibility cut (30) is able to cut off the incumbent solution. If φ(RF1RF1RF1)− η̄

is greater than or equal to ub− lb, it indicates that the optimality cut (29) is able to cut off the incumbent

solution. Otherwise, the logic Benders cut (31) is used, and problem SF1 is solved exactly to update the

best upper bound. The algorithm continues until the optimality gap is smaller than or equal to the given

threshold.
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Algorithm 1 Benders Decomposition

1: ΘΘΘ←∅,ΛΛΛ←∅, lb← 0, ub←∞;

2: while ub− lb > ε do

3: Solve problem F2 and obtain the optimal solution (x̄xx, z̄zz, η̄) ;

4: lb← φ(F2F2F2);

5: Construct problem RF1 according to (x̄xx, z̄zz);

6: Solve problem RF1 by column generation and obtain the dual optimal solution (µµµ,ννν);

7: if problem RF1 is infeasible then

8: Add the feasibility cut (30) with respect to (µµµ,ννν) to problem F2;

9: else if φ(RF1RF1RF1)− η̄≥ ub− lb then

10: Add the optimality cut (29) with respect to (µµµ,ννν) to problem F2;

11: else

12: Add the logic Benders cut (31) with respect to (x̄xx, z̄zz) to problem F2:

13: Construct problem SF1 according to (x̄xx, z̄zz);

14: Solve problem SF1 by a route enumeration based algorithm;

15: ub←min{ub,φ(F2F2F2)− η̄+φ(SF1SF1SF1)};

16: end if

17: end while

Appendix F: Label-Setting Algorithm

F.1. Basic Components

Because the reduced cost of a route is influenced by the time periods it goes through, the routes can be

divided into different classes according to the period when a route returns back to the depot. Each class

of routes correspond to a pricing problem. Now consider the pricing problem with respect to routes which

must return back to the depot no later than period n′. Let Tmax = tn′ − tn be the maximum duration of the

routes. Each pair of locations i and j (i, j ∈ In ∪{0}, i 6= j) is associated with a cost c̄nij as follows:

c̄nij =


− νi

2
− νj

2
, if i, j 6= 0

−
∑n′

k=n µk

2
− νj

2
, if i= 0, j 6= 0

− νi
2
−

∑n′
k=n µk

2
, if i 6= 0, j = 0.

(42)

Label Definition. Let Li = (c̄(Li), e(Li), d(Li),V(Li)) be a label representing a partial path from depot to

location i∈ In ∪{0} where

• c̄(Li) is the reduced cost of the path;

• e(Li) is the earliest arrival time at location i;

• d(Li) is the total demand of the visited locations;

• V(Li) is the set of locations that the path can extend to.

Extension functions. The extension starts with an initial label L0 = {0,0,0,In∪{0}}. For a pair of locations

i and j and a label Li associated with location i, label Li can be extended to location j to create a new label
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Lj by the following extension functions:

e(Lj) = e(Li) + sni + tnij , (43)

c̄(Lj) =

{
c̄(Li) + e(Lj) + c̄nij , if j 6= 0

c̄(Li) + c̄nij , if j = 0
(44)

d(Lj) = d(Li) + qnj , (45)

V(Lj) =
{
k ∈ V(Li)\{j} | d(Lj) + qnk ≤Q,e(Lj) + snj + tnjk ≤min{Lmax, Tmax− snk − tnk0}

}
, (46)

where qnj is the demand of order j and Q is the vehicle capacity.

Dominance rules. Let L1
i and L2

i be two labels associated with location i. Then L1
i dominates L2

i if they

satisfy the following conditions:

c̄(L1
i )≤ c̄(L2

i ), (47)

e(L1
i )≤ e(L2

i ), (48)

d(L1
i )≤ d(L2

i ), (49)

V(L1
i )⊇V(L2

i ). (50)

The dominated labels can be safely discarded during the label extension to speed up the algorithm.

F.2. Bounded Bidirectional Search

Bounded bidirectional search partitions the extension of the label-setting algorithm into the forward extension

and the backward extension according to the consumption of a chosen critical resource. In the forward

extension, labels are extended in the same way as the original algorithm, while in the backward extension,

labels are extended in the reverse direction. After both the forward extension and the backward extension

finish, the resulted forward labels and the backward labels join together to generate the complete feasible

routes, from which an optimal route can be extracted. Because the number of labels generated usually

increases exponentially with the consumption of the critical resource, bounded bidirectional search has the

potential to reduce the number of labels generated so as to speed up the algorithm.

Label Definition. Let Lbi = (c̄(Lbi), l(L
b
i), n(Lbi), d(Lbi),V(Lbi)) be a backward label associated with location

i∈ In ∪{0} which represents a partial path from location i to the depot, where

• c̄(Lbi) is the reduced cost of the path;

• l(Lbi) is the latest arrival time at locations i;

• n(Lbi) is the number of locations visited in the path;

• d(Lbi) is the total demand of the visited locations;

• V(Lbi) is the set of locations that the path can extend to.

Extension functions. The backward extension starts with an initial label Lb0 = {0, Tmax,0,0,In ∪{0}}. For

a pair locations i and j and a label Lbi associated with location i, label Lbi can be extended to location j to

create a new label Lbj by the following extension functions:

l(Lbj) = min{Lmax, l(L
b
i)− snj − tnji}, (51)

n(Lbj) = n(Lbi) + 1, (52)
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c̄(Lbj) = c̄(Lbi) +n(Lbi)(s
n
j + tnji) + c̄nji, (53)

d(Lbj) = d(Lbi) + qnj , (54)

V(Lbj) =
{
k ∈ V(Lbi)\{j} | d(Lbj) + qnk ≤Q, tn0k + snk + tnkj ≤ l(Lbj)

}
. (55)

Dominance rules. Let L1b
i and L2b

i be two labels associated with location i. Then L1b
i dominates L2b

i if

they satisfy the following conditions:

c̄(L1b
i )≤ c̄(L2b

i ), (56)

l(L1b
i )≥ l(L2b

i ), (57)

n(L1b
i )≤ n(L2b

i ), (58)

d(L1b
i )≤ d(L2b

i ), (59)

V(L1b
i )⊇V(L2b

i ). (60)

Label Combination. For a forward label Lfi and a backward label Lbi associated with location i, they can

be joined together to generate a feasible route if

V(Lfi )∩V(Lbi) = {i}, (61)

q(Lfi ) + q(Lbi)≤Q+ qni , (62)

e(Lfi )≤ l(Lbi), (63)

where V(Lfi ) and V(Lbi) be the set of locations visited by labels Lfi and Lbi , respectively. Conditions (61), (62)

and (63) guarantee the satisfaction of the elementary constraint, the capacity constraint and the duration

constraint, respectively. The reduced cost of the resulted route is equal to c̄(Lfi ) + c̄(Lbi) + e(Lfi )n(Lbi).

Critical resource. The duration Tmax is chosen as the critical resource. The break point of the forward

extension and the backward extension is determined dynamically as follow. Let T f and T b be the upper limits

of the critical resource consumption for the forward extension and the backward extension, respectively.

That is, for a forward label Lf , if e(Lf )>T f , it will not be extended anymore. Similarly, a backward label

Lb will not be extended if l(Lb)< T b. Let ∆ = Tmax/16. Initially, T f = ∆ and T b = Tmax −∆. The forward

extension and the backward extension are executed. If the number of forward labels is greater than that of

the backward extension, T f remains unchanged and T b is updated to T b−∆. Otherwise, T f is updated to

T f + ∆ and T b remains unchanged. This process repeats until T f >T b.

F.3. Ng-route Relaxation

The ng-routes are non-elementary routes first introduced by Baldacci et al. (2011). To each location i∈ In,

we associate a set of locations Îni (i ∈ Îni ) called ng-set, e.g. including the closest locations to location i.

Consider a path p = (v1, v2, . . . , vm), if v1 = vm and vm ∈
⋂
k=1,...,m−1 Învk , the path p is referred to as an

ng-cycle. A route is an ng-route if it does not contain any ng-cycles. The complexity of the pricing problem

based on the ng-route relaxation and the quality of the obtained primal lower bounds depend on the size

of the ng-sets. The larger the size of the ng-sets, the better are the lower bounds, but the more difficult

it is to solve the pricing problem. Note that if Îni = In ∀ i ∈ În, the pricing problem is equivalent to the
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ESPPRC, and if Îni = {i}, the pricing problem is equivalent to the non-elementary SPPRC. Martinelli et al.

(2014) propose an iterative approach to speed up label-setting algorithms based on the ng-route relaxation.

First, the elementary constraint is relaxed, and each location is initialized with a small ng-set. Then the

label-setting algorithm is called to determine the optimal ng-route. If the optimal ng-route does not contain

any ng-cycles, it is elementary and optimal for the original pricing problem. Otherwise the ng-sets of the

nodes in the ng-cycles are enlarged to forbid the ng-cycles, and the label-setting algorithm is called again.

This process is repeated until an elementary optimal route is found. To handle the ng-route relaxation, the

extension functions (46) and (55) are modified as follows:

V(Lfj ) = (V(Lfi )∪ Ĩnj )∩
{
k ∈ In\{j} | d(Lfj ) + qnk ≤Q,e(Lj) + snj + tnjk ≤min{Lmax, Tmax− snk − tnk0}

}
, (64)

V(Lbj) = (V(Lbi)∪ Ĩnj )∩
{
k ∈ In\{j} | d(Lbj) + qnk ≤Q, tn0k + snk + tnkj ≤ l(Lbj)

}
, (65)

where Ĩnj = In\Înj .

F.4. Label Pruning

Label pruning is conducted during the extension phase in attempt to identify and drop the labels which

cannot be extended to complete routes with negative reduced costs. Let ĉf (i, t) be the minimum reduced

cost of the partial routes from the depot to location i ∈ In with arrival time no later than t. Then ĉf (i, t)

can be computed by the following dynamic programming:

ĉf (i, t) =

{
0, if i= 0,0≤ t≤ Tmax

minj∈In∪{0}\{i},w+sn
j

+tn
ji
≤t ĉ

f (j,w) + t+ c̄nji, if i 6= 0,0≤ t≤ Tmax.
(66)

Let ĉb(i,m) be the minimum reduced cost of the partial routes from location i ∈ In to the depot with

the number of the visited locations equal to m. Then ĉb(i,m) can be computed by the following dynamic

programming:

ĉb(i,m) =


0, if i= 0,m= 0

∞, if i= 0,m= 1, . . . , |In|
minj∈In∪{0}\{i} ĉ

b(j,m− 1) + (m− 1)tnji + c̄nji, if i 6= 0,m= 1, . . . , |In|.
(67)

The label pruning is done based on ĉf (i, t) and ĉb(i,m). A forward Lfi label can be pruned if

c̄(Lfi ) + min
m+n(Lf

i
)≤|In|

{
ĉb(i,m) + e(Lfi )m

}
> 0, (68)

where n(Lfi ) is the number of locations visited by Lfi . Similarly, a backward label Lbi can be pruned if

c̄(Lbi) + min
t≤l(Lb

i
)

{
ĉf (i, t) +n(Lbi)t

}
> 0. (69)

F.5. Label-Setting Algorithm for the Part-Time Drivers

The label-setting algorithm for the full-time drivers can be applied to the part-time drivers with following

slight modifications.

• The trip duration Tmax is set to Lmax + maxi∈In s
n
i + tni0.

• The cost c̄nij of locations pair i and j is set as follows:

c̄nij =


− νi

2
− νj

2
, if i, j 6= 0

− νj

2
, if i= 0, j 6= 0

− νi
2
, if i 6= 0, j = 0.

(70)
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• Extension function (44) is replaced by the following function:

c̄(Lj) =

{
c̄(Li) + e(Lj) + c̄nij , if j 6= 0

c̄(Li) + ρe(Lj) + c̄nij , if j = 0.
(71)

• Initial backward extension label Lb0 is initialized as {0, Tmax, ρ,0,In ∪{0}}.

• Dynamic programming (67) is modified as follows:

ĉb(i,m) =


0, if i= 0,m= ρ

∞, if i= 0,m= {0, . . . , |In|+ ρ}\{ρ}
minj∈In∪{0}\{i} ĉ

b(j,m− 1) + (m− 1)tnji + c̄nji, if i 6= 0,m= 1, . . . , |In|+ ρ.

. (72)

• Condition (68) is modified as follows:

c̄(Lfi ) + min
m+n(Lf

i
)≤|In|+ρ

{
ĉb(i,m) + e(Lfi )m

}
> 0. (73)

Appendix G: Route Enumeration Algorithm

Proof of Lemma 2 For a route r ∈Rn, let SF1r denote problem SF1 where the constraints and the set of

feasible routes are restricted to the nodes in {i∈ In | αi,r = 0}, and φ(SF1r) be the optimal cost of problem

SF1r. Given an upper bound ub of problem SF1 and a route r ∈Rn, r can not be in any optimal solutions

of problem SF1 if it satisfies the following condition:

cr +φ(SF1r)>ub. (74)

It is costly to check condition (74) because a VRP has to be solved for each route. Therefore, we use a lower

bound of problem SF1r instead. Let Inr = {i∈ In | αi,r = 0} and Rnr ⊆Rn be the set of feasible routes which

cover locations only in Inr . A valid lower bound is the LP relaxation of problem SF1r defined as:

RF1r : min
∑
r′∈Rn

r

cr′θr′ (75)

s.t.
∑
r′∈Rn

r

βn′,r′θr′ ≤
K̄∑
k=0

kzn
′

k −βn′,r, ∀n′ = n+ 1, . . . ,N, (76)

∑
r′∈Rn

r

θr′ ≤ K̄ − ζnn − 1, (77)

∑
r′∈Rn

r

αi,r′θr′ = 1, ∀i∈ Inr , (78)

θr′ ≥ 0, ∀r′ ∈Rnr (79)

Let (µ̄̄µ̄µ, ν̄̄ν̄ν) be an dual optimal solution of problem RF1. Then (µ̄̄µ̄µ,{ν̄i}i∈Inr ) is a dual feasible solution of

problem RF1r, and hence
∑N

n′=n+1

∑K̄

k=0 µ̄n′kz̄
n′

k −
∑N

n′=n+1 βn′,rµ̄n′ + µ̄n(K̄ − ζnn − 1) +
∑

i∈Inr
ν̄i is valid

lower bound of φ(SF1r). If we replace this lower bound in condition (74), we have

cr +

N∑
n′=n+1

K̄∑
k=0

µ̄n′kz̄
n′

k −
N∑

n′=n+1

βn′,rµ̄n′ + µ̄n(K̄ − ζnn − 1) +
∑
i∈Inr

ν̄i >ub (80)

⇔ cr −
∑
i∈In

αi,rν̄i−
N∑

n′=n+1

βn′,rµ̄n′ − µ̄n >ub−φ(RF1). (81)

�
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The label-setting algorithm introduced in Section F is used to enumerate the target routes by replacing

the dominance rules (50) and (60) by the following dominance rules:

V(L1
i ) = V(L2

i ), (82)

V(L1b
i ) = V(L2b

i ). (83)

The intuition of dominance rules (82) and (83) are that two labels cannot dominate each other if the

corresponding paths of the labels do not visit the same locations. This ensures all feasible routes can be

enumerated. Meanwhile, the ng-route relaxation is not used to speed up the label-setting algorithm. The

detailed pseudocode of the route enumeration algorithm is summarized in Algorithm 2.

Algorithm 2 Route Enumeration

1: ub←∞, δ← StepSize;

2: Solve problem RF1 and obtain the optimal primal and dual solutions θ̄̄θ̄θ and (µ̄̄µ̄µ, ν̄̄ν̄ν);

3: while Time limit has not reached TimeLimit do

4: δ←min{δ,ub−φ(RF1)};

5: Enumerate the feasible routes with reduced costs no larger than δ for dual variables (µ̄̄µ̄µ, ν̄̄ν̄ν);

6: Initialize problem SF1 by the enumerated routes and solve it by an MIP Solver;

7: if there exists an optimal solution of SF1, i.e., θ̂̂θ̂θ and φ(SF1)<ub then

8: ub← φ(SF1);

9: if δ≥ ub−φ(RF1) then

10: Break;

11: end if

12: else

13: δ← δ+StepSize;

14: end if

15: end while

Appendix H: Temporal Demand Distribution for Synthetic Instances

The following figures present the number of potential customer locations In as a function of period n =

1, . . . ,N for N = 10 and N = 20, which controls the temporal variability in generating the synthetic instances.

Appendix I: Additional Numerical Results for AJRP

We compare AJRP to two additional heuristic policies based on driver travel time minimization: (i)

MinTravel 1: the dispatching and routing decisions are obtained by minimizing the total driver time (includ-

ing return trip to the depot) while satisfying the hard deadline constraints for each epoch; (ii): MinTravel 2:

this is similar to MinTravel 2 except that the return trip time is excluded in the objective function. These

two heuristics, although myopic, tend to reserve vehicles for future deliveries. Figure 12 presents the per-

formance comparison results of AJRP versus these two heuristics on the real data set. We observe AJRP

outperforms MinTravel 1 and MinTravel 2 consistently by a large margin. This performance gap shows that
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Figure 11 Average Number of Potential Customer Locations in Different Periods

minimizing driver time is not fully aligned with the system objective: to achieve faster deliveries for realized

orders while maintaining a sufficient capacity for future deliveries. Specifically, these two heuristics dispatch

too few drivers even when the capacity is not severely constrained.
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Figure 12 Performance Evaluation of AJRP, MinTravel 1, and MinTravel 2

Appendix J: Detailed Computational Results on the MTRP Instances

This section presents the detailed computational results of our route enumeration algorithm on public MTRP

instances against the state-of-the-art benchmarks. We observe that the proposed algorithm reduces the

solution time substantially, yielding more than 60% improvement over the benchmarks in many cases. In

addition, we implement a branch-and-price algorithm to solve problem SF1. The branch-and-price algorithm

uses two types of branching rules in a hierarchy. First, if the number of routes in the optimal solution is

fractional, the algorithm branches on the number of routes. Otherwise, the algorithm selects the arc with

the most fractional value and branches on the selected arc.
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Table 5 Computational Results on the LQL Instances.

Name Number of Customers
Route Enumeration Algorithm Nucamendi-Guillén et al. (2016) Muritiba et al. (2021)

Cost Time Route Number Time Time

brd14051 30 85729.72 0.88 746 4.66 9.41

d15112 30 229130.8 0.86 682 9.58 3.67

d18512 30 84818.95 0.77 584 6.85 2.64

fnl4461 30 48287.5 0.43 760 2.83 3.65

nrw1379 30 29994.97 0.80 795 5.83 9.9

pr1002 30 164763.9 0.62 1017 8.09 4.76

brd14051 40 106145.5 1.16 1130 30.37 43.49

d15112 40 290748.6 1.78 1025 24.96 4.88

d18512 40 107813.4 0.89 1322 11.74 8.21

fnl4461 40 62672.49 0.76 967 17.21 21.92

nrw1379 40 36379.77 1.04 1775 20.66 12.54

pr1002 40 217071.6 1.15 1615 52.12 41.26

brd14051 50 127480.6 1.85 1660 51.54 73.29

d15112 50 356433.9 3.29 2715 53.75 33.37

d18512 50 132115.4 1.65 1466 75.64 49.13

fnl4461 50 76642.75 1.28 1216 32.11 20.14

nrw1379 50 45169.23 1.89 5563 79.66 189.44

pr1002 50 268605.3 2.61 1651 60.7 36.73

Table 6 Computational Results on the E Instances.

Name
Route Enumeration Algorithm Nucamendi-Guillén et al. (2016) Muritiba et al. (2021)

Cost Time Route Number Time Time

E-n22-k4 819.39 1.42 106 4.90 4.32

E-n23-k3 1555.87 3.01 1695 9.23 1.37

E-n30-k3 1871.08 26.63 6621 119.11 1100.84

E-n30-k4 1643.30 2.80 1023 22.95 301.07

E-n33-k4 2819.43 5.43 1890 24.29 414.74

E-n51-k5 2209.64 29.39 6127 2347.51 t. lim.

E-n76-k7 2945.25 1075.67 545451 - t. lim.

E-n76-k8 2677.39 152.05 81838 - t. lim.

E-n76-k10 2310.09 38.19 5964 1700.64 2797.17

E-n76-k14 2005.40 19.59 5816 236.64 271.04

E-n76-k15 1962.47 18.40 5573 105.43 109.30

E-n101-k14 2922.82 152.63 36952 - t. lim.

- means the corresponding instance was not tested.
t. lim. means the computational time reached the time limit.

Table 8 compares the computational performance between the route enumeration algorithm and the

branch-and-price algorithm. We observe that the route enumeration algorithm outperforms the branch-and-

price algorithm consistently. The main reason is that the branch-and-price algorithm has to explore a number

of nodes to finally achieve the optimal solution.
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Table 7 Computational Results on the P Instances.

Name
Route Enumeration Algorithm Nucamendi-Guillén et al. (2016) Muritiba et al. (2021)

Cost Time Route Number Time Time

P-n16-k8 382.90 0.46 803 1.90 0.36

P-n19-k2 812.15 2.20 1711 9.13 1.27

P-n20-k2 905.19 2.29 1759 11.60 2.07

P-n21-k2 937.10 4.23 1663 11.07 6.36

P-n22-k2 993.10 3.69 2067 11.00 1.87

P-n22-k8 623.40 0.72 1147 3.08 0.29

P-n23-k8 561.33 0.78 1328 2.68 0.29

P-n40-k5 1537.79 9.30 1183 213.28 196.62

P-n45-k5 1912.31 18.12 2109 495.82 3179.19

P-n50-k7 1547.89 10.45 1766 117.48 211.15

P-n50-k8 1448.92 8.62 1534 185.76 958.75

P-n50-k10 1296.48 5.86 1724 112.32 13.57

P-n51-k10 1419.43 6.32 2062 84.17 82.91

P-n55-k7 1766.56 16.60 2068 790.31 3033.76

P-n55-k8 1614.61 13.99 8909 170.89 136.19

P-n55-k10 1438.60 7.86 5961 117.69 15.53

P-n55-k15 1280.92 5.83 1678 48.01 4.23

P-n60-k10 1676.35 12.45 2723 620.81 674.62

P-n60-k15 1462.50 7.35 2247 - 13.14

P-n65-k10 1928.46 17.91 2566 915.83 6762.68

P-n70-k10 2097.17 22.35 3942 1415.78 5877.93

P-n76-k4 - t. lim. 297700 t. lim. t. lim.

P-n76-k5 - t. lim. 129279 t. lim. t. lim.

- means the corresponding instance was not tested.
t. lim. means the computational time reached the time limit.

Table 8 Computational Comparison of the Route Enumeration and Branch-and-Price Algorithms on the MTRP

Instances

Class Total
Instances

Route Enumeration Algorithm Branch-and-Price

Instances Average Time Instances Average Time Number of

Tested/Solved (In seconds) Tested/Solved (In seconds) nodes

LQL 180 180/180 1.32 180/180 22.86 17.6

E 12 12/12 127.10 12/9 496.43 24.11

P 23 23/21 8.45 23/21 276.08 20.80


