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e present a model for forecast evolution that captures two notions related to forecasts:

(1) forecasts are not exact; (2) forecasts over longer horizons are less certain than those
over shorter horizons. We model the forecast of discrete demand as a band defined by the
lower and upper bounds on demand, such that future forecasts lie within the current band.
We develop a capacitated production planning model for a single product with terminal
demand. We develop four heuristics for the problem and characterize their performance. In
particular, two of the heuristics are optimal for the no holding-cost case. In our computa-
tional study, we analyze the performance of our heuristics and compare them to the optimal
solution and to a simple heuristic that simulates common industrial practice using point
forecasts. We find that two of our heuristics are very close to the optimal solution (less than
0.5% away from optimal on average under the conditions studied). Further, we consider
forecast update patterns with primarily early, intermediate, and late information updates
and provide insights on the effect of information update patterns on optimal costs.
(Forecast Evolution; Production Planning; Discrete Demand; Capacity; Heuristics; Information Up-

dates)

1. Introduction

In the past few years, there has been increasing em-
phasis placed on improving the quality of forecasts
within a supply chain (Lee et al. 1997). It is becoming
more important to develop models and techniques
that enable firms to make effective use of these fore-
casts in production planning. Any approach should
account for the following two facts about forecasts,
often stated colloquially as follows (for example, Sim-
chi-Levi et al. 2000): (1) the forecast is always wrong;
(2) the longer the forecast horizon is, the more wrong
the forecast is. Traditionally, a “forecast”” consists of
a single number, or point estimate, that is revised
over time. Our recent conversations with the manu-
facturing manager of a major electronics company
have highlighted this fact. The manager pointed out
to us that although the forecasts are continuously re-
vised, the firm has found that the second to last es-
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timate is often the most accurate! Their forecasts often
show swings from period to period (this is particu-
larly true for high-tech products) due to changes in
market conditions, developments in technology, and
changes in competitors pricing policies, among other
reasons. As firms realize that Point (1) (above) is true,
many of them are moving toward a concept similar
to a forecast band, with optimistic and pessimistic
forecasts or, perhaps, a 3-point distribution with op-
timistic, pessimistic, and most likely values. These
forecast bands are updated each period as new infor-
mation arrives. The changing bands provide manu-
facturing with more information than in the past; it
is up to the manufacturer to make efficient and effec-
tive production decisions using this information.

In this paper, we present a model that focuses on
capturing Point (2) (above), that as forecast horizons
become longer, forecasts become more uncertain. In
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a capacitated environment, there is a trade-off be-
tween capacity and good forecast information, as
there may not be time to wait for the forecast to get
“good enough.” In particular we consider a forecast
evolution model that is defined by a band and a
width that captures the uncertainty in forecast. As
time moves forward, subsequent forecasts have small-
er widths (representing a better forecast) and are con-
tained within the band defined by earlier forecasts.
This models a forecasting process that gets refined
over time as new information arrives. The manufac-
turing firm utilizing this forecast has a fixed capacity
in each period and needs to decide in which periods
it should produce, taking into account expected pro-
duction, holding, salvage, and stock-out costs. In this
paper, we model products for which demand occurs
at the end of the horizon and updated forecast infor-
mation is obtained each period. We prove the exis-
tence of inventory threshold levels in each period, be-
low which the firm should produce and above which
it should not. We provide four simple heuristics and
show their relationship to the optimal production de-
cision. In particular, two of the heuristics are equiv-
alent and optimal in the zero-holding cost case. In our
computational study, we compare the performance of
a practical heuristic that considers only a point fore-
cast estimate with heuristics that consider the addi-
tional information in the bands under different con-
ditions related to costs, time horizon, timing of
forecast updates, and capacity restrictions. Further,
we compare the performance of our heuristics with
the optimal solution (obtained by a dynamic pro-
gramming recursion). Finally, we develop an algo-
rithm for the multiunit capacity case with zero-hold-
ing cost and demonstrate its optimality.

The paper is organized as follows: In §2 we present
related literature. In §3 we present the basic model,
results, and heuristics. In §4, we present our com-
putational results and insights. In §5, we consider the
multiple capacity case and extend our results. We
conclude in §6.

2. Related Literature

Forecast evolution models have been studied by sev-
eral researchers in the past. Hausman (1969) studies
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the problem in which improved forecasts are avail-
able before each decision stage, and he models the
evolution of forecasts as a quasi-Markovian or Mar-
kovian system. He suggests modeling a series of ra-
tios of successive forecasts as independent lognormal
variates and presents a dynamic programming for-
mulation. Hausman and Peterson (1972) consider a
capacity constrained multiproduct system with ter-
minal demand with the forecasts for total sales fol-
lowing a lognormal model. They formulate the prob-
lem as a dynamic program and provide heuristics for
solving the problem. Heath and Jackson (1994) intro-
duce a martingale model for forecast evolution
(MMFE) and present simulation results. Gullu (1996)
considers a special case of the MMFE model and
shows that in a capacitated environment the system
performs better when one-period demand forecast is
utilized than when it is not. More recently, Toktay
and Wein (1999) consider an MMFE model and char-
acterize effective policies under heavy traffic assump-
tions for a capacitated single server.

Bayesian models for forecast updates in a inventory
setting were first studied by Scarf (1959). Azoury
(1985) extends some of Scarf’s results. Bitran et al.
(1986) study a terminal demand model for style
goods under capacity restrictions and Bayesian fore-
cast updates, where each of the product families is
produced one period before the realization of de-
mand. They present a stochastic mixed integer pro-
gramming formulation and provide a decomposition
scheme and bounds on the optimal solution. Fisher
and Raman (1996) consider a two-period problem
from the fashion goods industry where the manufac-
turer needs to determine production quantities in two
periods, with lower production costs in the first pe-
riod but with improved forecast information available
in the second. Agarwal et al. (1999) consider a similar
problem but analyze capacity outsourcing issues.
Nurani et al. (1994), Lee and Whang (1998), and Gur-
nani and Tang (1999) have investigated uncapacitated
inventory problems with forecast updates. In addi-
tion, capacitated nonstationary inventory problems
have been studied by several authors, including the
Federgruen and Zipkin (1986), Morton and Pentico
(1995), Aviv and Federgruen (1997), Kapuscinski and
Tayur (1998), and Gavirneni et al. (1999).
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In this paper, we introduce a forecast evolution
process based on bands, in which the range of pos-
sible demand is completely contained within a
forecast band. This band, defined by upper and lower
bounds, captures some of the important elements of
real-world forecast revisions and, in particular, the
concept of improved information over time (Buckley
et al. 1995). It is to be noted that earlier papers such
as Bitran et al. (1986) and Hausman and Peterson
(1972) consider forecast evolutions that get updated
and refined over time. The former captures forecast
evolution through standard deviation from the actual
demand, while the latter captures the evolution
through the relative uncertainty in the forecast. Our
model differs in that we restrict the future demand
forecasts using a hard limit on the lower and upper
bounds that allows us to simplify the capacitated pro-
duction planning problem. In a multiproduct envi-
ronment, Bitran et al. (1986) consider set up and hold-
ing costs, whereas Hausman and Peterson (1972)
consider only the production costs. Both papers focus
on developing effective heuristics for the problem. In
contrast to these papers, we consider a single product
environment and provide an optimal solution to the
no holding-cost problem without the explicit neces-
sity for a dynamic program. We also develop effective
heuristics based on that for the case with holding
costs.

3. Basic Model

3.1. Forecast Evolution

In this section we present the forecast evolution mod-
el with discrete demand. We number time periods in
reverse order, so that when we say time {, we mean
t periods remain. Our notation is summarized below:

* a,;: lower bound on the demand forecast with ¢
periods to go (a, represents realized demand);

* w,: width of the forecast with t periods to go (w,
equal to zero);

s F/(a,): probability distribution of 4, ; in the inter-
val [a,, a, + w, — w,_4];

* o, known reduction in width of forecast with ¢
periods to go;

* x; on-hand inventory with ¢ periods to go;
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 m: per unit penalty cost for demand not met;

* ¢: per unit cost of production;

* h: per unit holding cost incurred on inventory
held at the end of any period;

* 5(< ¢): per unit salvage cost for each unit remain-
ing after demand is met;

* Vi(x,, a, w,): expected optimal cost incurred with
t periods to go.

In the forecast evolution, we seek to capture two
important characteristics: (1) the forecast gets tighter
as one gets closer to demand; (2) the future forecasts
are contained in the current range. We assume that
given that we are at time ¢, the final demand can only
take on discrete values in the interval [a, a4, + w,].
Each period the range of possible demand gets small-
er ast — 0. That is, w,_; = w, — «,, where each a;, =
0, V t are such that w; = 0. Note that we assume that
the progression of w, is known, whereas the progres-
sion of a, is probabilistic. This models a situation in
which the firm has a good understanding of when
additional information will be obtained (for example,
a trade show) but doesn’t know a priori what that in-
formation will be. Thus, given the range of possible
demands at time f, the range of possible demands at
time t — 1 is w, — «, wide and is contained within
the range [a,, a, + w,]. o, provides an ability to model
the different points of time at which major or minor
updates in forecast may be obtained. For example, a
firm that obtains all the forecast updates very close
to the selling season will have «, = 0 for higher values
of t, and a high value for «, for lower values of t. The
final demand g, is defined on the discrete interval [a,,
a; + w,] with a probability distribution F,(a,). F/(a,),
known a priori, provide us with an ability to model
changes in distribution over time.

3.2. Production Model

In our model we assume that demand occurs at the
end of the horizon, but periodic forecast updates are
obtained about the forecast in each period. This sit-
uation is very common in several industries in which
the product selling season has a short time frame. To
simplify our analysis, we assume that the manufac-
turer has a unit production capacity each period and
that the final demand is in multiples of this capacity.
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We extend this model to the case where the firm has
multiple units of capacity in §5. Note that if there
were no capacity restriction, one would wait until the
final period and then produce the single period news-
boy amount. The total cost at time ¢+ = 0, when a
demand g, is realized, is given by V(x,, ay, 0) = s(x,
— ag)*t + w(a, — x,)". To simplify the notation, we do
not explicitly represent the distribution F,(a,) in our
value function. In our subsequent computational
analysis, we assume F(a,) to be uniformly distributed
for all t.

Vix,, a,, w,)

c+ h(x, +1)
=miny + E, {Vi.4(x, + 1, 4,4, w, — o)}
h(x) + E, AVia(xy, a4, wp — o)}

ap—1

Let V(xo, a;, w;) represent the single period cost, giv-
en that the demand is distributed between a, and 4,
+ w,, p, is the probability that demand is equal to i,
and the on-hand inventory is x,. The single period
cost is given by

VO(xO/ a()/ wl) = an{VO(XOI 110, O)}

= Y Pals(o — a0 + w(ay — %)),
The following results characterize the structure of the
optimal policy for this model.!

Lemma 3.1. E, {Vy(x + 1, ay, 0) — V(x, a,, 0)} is mono-
tone increasing in x, i.e, E,{Vy(x + 2, a5, 0) — Vy(x +
]-/ aOI 0)} = EaO{VO(x + 1/ aOI 0) - Vo(x/ aO/ 0)} Vx.

Note that Lemma 3.1 is analogous to the cost function
being convex for the continuous case.

Tueorem 3.2. For every period t there exists a threshold
level y}(a,, w,), such that it is optimal to produce in period
tif x, <yi(a, w,) and to not produce if x, = y;(a, w,).

We have shown that the optimal production policy
has a threshold form in that it is optimal to produce
in a period if x, < y§ and not to produce if x;, = y7.
As with any dynamic program, computing the opti-

The proofs of this and many of the subsequent lemmas, properties,
and theorems are located in the appendix.
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mal policy can be quite time and memory intensive.
In particular, for the dynamic program to solve
quickly it is necessary to store O(n?a,) values. (Fur-
thermore, the multiple capacity case considered in §5
will be even more memory intensive.) This motivated
the development of several heuristics for the problem
that we present in the following subsection.

3.3. Heuristics

3.3.1. Heuristics HUB and HLB. In this section, we
present two simple and easily implementable heuris-
tics for deciding on the production rule for any pe-
riod. These heuristics, rather than considering all fu-
ture time periods, base the threshold level for the
current period on the probability distribution of the
forecast in period 1 given the probability distribution
in the current period #, i.e.,, the decision to produce
only depends on a, (and w, 0 = t = n) and not on
intermediate values. This makes these heuristics
much faster computationally than a dynamic pro-
gram. Somewhat surprisingly, this heuristic is very
effective, particularly in the case when holding cost
equals zero.

Step 1. For a, € {a,,a, +1,...,(a, + w, — wy)}.

Step la. Calculate x*, taking current inventory of

x,, into account. Holding cost is accounted for as if

the quantity desired is made as late as possible.

Specifically,

x* = argmin {Vo(y, a, wy) + c(y — x,)*

ay=y=ai+wy

+h

(y —x)"(y — x, + 1)*
2 7

where V,(x, a,, w,) is the single period remaining
cost if inventory is x, and demand can take on the
discrete values between 4, and a4, + w, with a prob-
ability distribution given by F,(a,).

Step 1b. The following three cases are consid-
ered:

Step 1b.1. If x,, = x*, then

N, =c+nh+ Vyx, +1,a, w,)

ay

- VO(xn/ al/ wl)‘

Step 1b.2. If x,, + n = x*, then
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N, =c+ nh+ Vy(x, + n,a,, w;)

ay
- Volx, + n — 1, a,, wy).

Step 1b.3. If x, < x* < x,, + 1, one of the follow-
ing two penalties is charged:
(i) HLB:

NENCEE RS CEE )

_ {(x* - x,)(x* — x, + 1)h

2

+m—utm»—Mf—m4,
(ii) HUB:
M:rf—mw—n+nh

2

+ (n— (x* — x,))(x* — x,,)h}
B ((x* - x,)(x* — x, + 1)h).

2

Step 2. Let p,,, be the conditional probabilities of
each a4, given the current a,. Let X\,
= XU p e\, be the weighted average value of
Aoy

Step 3. If N, = 0, then don’t produce in this period,
otherwise produce.

The algorithms first compute the probability (de-
noted by p,,|,) for the lower bound in the last period
a; given the current bound a, using the F, for all ¢
from 7 to 1 and the values of 2, and w,(t = n) in Step
1. Computationally, the probability values are easy to
calculate because all values are discrete. Step la in
the heuristic corresponds to determining the optimal
inventory on hand in the final period for a given a,
and accounting for holding cost in previous periods.
In Step 1b an approximate marginal value for pro-
ducing an extra unit in the current period is com-
puted for three cases. For Case 1b.1, knowing that for
the given a,, this additional unit is not going to be
useful, the difference presents a penalty of ¢ + nh +
Volx, + 1, ay, wy) — Vo(x,, a;, wy) for producing that
unit. For Case 1b.2, because if one unit is produced
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every period for the next n periods, the final inven-
tory will still be less than optimal, the heuristic as-
signs a penalty of ¢ + nh + Vy(x, + n) — Vy(x, + n
— 1). For Case 1b.3, the calculation of this marginal
value is not trivial because the costs depend on which
subset of periods the actual production took place. As
a result, we develop two values: a lower bound in
which production occurs as late as possible and an
upper bound in which production occurs as early as
possible. If Step 1b.3.i is selected, we call the heuristic
HLB, and if Step 1b.3.ii is selected, we call the heu-
ristic HUB. Roughly speaking, Step 1b.3.i has two
components. The first component

(x* — x, — D(x* — x,)

o+
" 2

h,

represents an estimate of the cost associated with
making one item now and the remaining x* — x, —
1 items as late as possible. The second component
(x* = x)(x* — x, + 1)h
2

+ (l’l - (X* - xn) - 1)(x>(- - xn)hr

represents an approximation of the cost associated
with making all x* — x, items starting one period
from now, in period n — 1. Similarly, Step 1b.3.ii has
two components. The first component

(x*—x,)(x*—x,+1)
2

h+(n = (x" = x,))(x* = x,)h,

represents an approximation of the cost of making all
x* — x, items as soon as possible. The second com-
ponent,

(x* — x)(x* —x, + 1)
2

h,

represents an approximate cost for making all x* —
x, items as late as possible. In Step 2 the expected
value of the marginal difference is computed, and a
decision to produce is made based on that. For future
reference, let \, be represented by X, if 1b.3.ii is uti-
lized and by A, if 1b.3.i is selected. Note that if the
holding cost is zero, HLB and HUB are the same. For
this zero-holding cost case, we prove the following:
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Treorem 3.3. This heuristic is optimal when the holding
cost equals zero.

To prove this theorem, we need the following series
of results.

Prorerty 3.4. When the holding cost equals zero, (i) A,
= Eallan{c + Vo(xn + 1/ al/ wl) - Vo(xnz ﬂl, wl)}; (11) )\n
= E,lc + Vyx, + n,a, w) = Vo(x, + n — 1, a,,
w,)}.

Prorerty 3.5. When the holding cost equals zero, (i) If
E, yalc + Voulx + k a,, w,_ ) = V,llx + k — 1,
Ay W)} = 0, then E, o ic + V,ja(x + k — 1,
Aygertr Wygs1) = Vigt(X Tk = 2,8, 40, W, p0)} =
0; (ii) l:fEa,, k|u,,{C + Ve + 1, a,, w,.p) — V,ilx,
Ay W)} =0, then E, | e+ V, pn(x +1,a, .,

wnfk+1) - Vn7k+1(x/ Ay k+1s wnkarl)} = 0

Repeated application of Property 3.5 leads to the fol-
lowing lemma, which relates the expected marginal
ost of producing an extra unit in the current period
conditioned on a,, the final value of a, with the same
cost conditioned on the value of a in the next period,
a, ;.

Lemma 3.6. When holding cost equals zero, (i) if E, |, {c
+ Vox + n,a, wy) — Vo(x + n — 1, a, w)} =0, then
E, jafc + V,ax + 11%71/ W,—1) — anl(x: A1, W)}
= 0; (i) if E, ), lc + Vio(x + 1, ay, wy) — Vi(x, a,, wy)}
=0, then E, |, {c+ V,(x+1,4a,,w,,) — V,
Ayq, W,_1)} = 0.

Combining Lemma 3.6 and Property 3.4 concludes
the proof of Theorem 3.3. O

The following result partially characterizes the ef-
fectiveness of the heuristic in the more general case
with nonzero holding costs:

Tueorem 3.7. If E, . {c + nh + Vy(x, + 1, a;, w;) —
Vo(x,, ai, wy)} = 0, then HUB is guaranteed to provide
an optimal decision, and if E, , {c + nh + Vy(x, + n, a,,
w,) — Volx, + n — 1, a, w)} =0, then HLB is guar-
anteed to provide an optimal decision.

To prove this theorem, we use the following series of
results.

Prorerty 3.8. (i) If x,, represents the inventory with n
periods to go, then \, = E, |, {c + nh + Vy(x, + 1, a,,
w,) — Vo(x,, ay, wy)); (i) if x, represents the inventory
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with n periods to go, then N, = E, |, {c + nh + Volx, +

n, a,, wy) — Vo(xn +n—1,a, w)}

Property 3.9. ) IfE, | {c +kh +V, (x + 1,4,
Wy ) = Vi, 4y w, )} =0, then E, . {c + (k —
Dh+ V, ax + 1,8, 01, Wypi1) = Vg (X, @1,
W, )t = 0; () if E, . fc + kh +V, (x + k a,
W, ) — Vi lx + k — 1, a,., w, )} = 0, then
Ea,,,k+1|an{c + (k= Dh + V,4ulx + k=1, a, 1,
Wyje1) = Vig(x + k= 2,8, 4y, w,_ 1)} = 0.

Lemma 3.10. (1) If E, |, {c + nh + Volx + 1, a,, w)) —
Vo(x, a, w)} = 0, then E, |, {c + h + V,4(x +1) -
V() = 0; (i) if E, |, {c + nh + Vy(x + n, a, wy) —
Vox +n —1,a, w)} =0, then E c+h+V, (x
+1) -V, =0.

An—-1 |11n{

Clearly, Lemma 3.10 results from repeatedly apply-
ing Property 3.9. Combining Lemma 3.10 and Prop-
erty 3.8 proves Theorem 3.7. O

3.4. Heuristics HCU and HCL

The preceding analysis suggests another set of heu-
ristics. Recall that by Lemma 3.10, if E, |, {c + nh +
Vox + 1, a,, w)) — Vy(x, a, wy)} = 0, then it is optimal
to not produce, and if E, |, {c + nh + Vy(x + n, a,, w,)
— Volx + n — 1, a, w))} = 0, then it is optimal to
produce. This suggests the following set of heuristics:

Step 1: Determine E, , {c + nh + Vy(x + 1, a,, w;)
— Volx, @y, fvl)}
c+ nh + Vyx + n,a, wy)
- Vox + n — 1, ay, wy)}.

Step 3: If E, |, fc + nh + Vy(x + 1, a;, w;) — Vi(x,
a,, w;)} = 0, then don’t produce. Or, if E, |, {c + nh +
Vox + n,ay, w) — Vox + n — 1, a, wy)} =0, then
produce. Or, either:

Step 3. HCU: Produce.
Step 3. HCL: Don’t produce.

If Step 3 HCU is selected, we call this heuristic
HCU. If Step 3 HCL is selected, we call this heuristic
HCL. Note that if Step 3 HCU/HCL is not reached,
this heuristic makes the optimal decision by Lemma
3.10. If they are reached, HCU will (obviously) tend
to overproduce, while HCL will tend to under pro-
duce.

flllan{

“1|an{

all”n{

Step 2: Determine E

ﬂllﬂn{
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4. Computational Study

In this section, we test our heuristics under different
settings and explore the benefits of improving fore-
casts earlier in the time horizon. We use the following
parameters for our computational study.

Time Horizon. We set the number of time periods
T equal to 4 for SHORT horizons, 8 for MEDIUM ho-
rizons, and 12 for LONG horizons. We also used lon-
ger horizons up to T = 20 in experiments for analyz-
ing the value of receiving earlier information updates.

Cost Parameters. We use production cost ¢ = 50,
penalty m = 75, 150, 250, salvage s = 0, 10, 25, 45,
and holding cost 1 = 0, 2, 4, 8, 12 in the initial study
(similar to Morton and Pentico 1995).

Information Update. We model the information
updates in the forecast process by changing the width
of the forecast band from period to period. We con-
sider EARLY INFORMATION, INTERMEDIATE IN-
FORMATION, and LATE INFORMATION models. In
the EARLY (INTERMEDIATE, LATE) INFORMA-
TION case, the band width reduces more per period
in the first few (middle, last few) periods, respective-
ly. For example, with MEDIUM horizon problems (8
periods and initial width of 11), the EARLY INFOR-
MATION is represented by 2211100, which means
that in the first 2 periods there is a reduction of 2
(that is the width decreases by 2 between each pair
of time periods), and then in the next 3 periods there
is a reduction of 1 each, and in the final 2 periods no
additional information is obtained. On the other
hand, INTERMEDIATE INFORMATION and LATE
INFORMATION are represented by 0122110 and
0011122, respectively. We chose the width reductions
so that the total reduction is constant across the 3
cases (in this example equal to 7); the starting con-
ditional distribution of final demand is identical for
the 3 cases, and final period width is same in all 3
cases. Presumably the firm has to invest in better
forecasting systems to obtain the refined updates ear-
lier in the horizon. We do not consider such costs in
our analysis but only focus on the benefits.

Capacity Restrictions. We vary the capacity restric-
tions by changing the initial lower bound a, for the
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demand forecast. Higher values of a, reflect tighter
capacity restrictions. In the initial study, we consider
a, = 0,a, =2,and a, = 4. We also considered a, =
3,a, = 6, and a, = 9 while performing the tests on
longer time horizons.

Mean Heuristic. Mean Heuristic (MH), which uti-
lizes the mean forecast information, is intended to
model the updated point forecasts of average demand
that are often used in industry. In this case, in each
period the manufacturer produces a unit if the mean
of the forecasted demand cannot be reached by pro-
duction in future periods. Thus, production takes
place with n periods to go if the on-hand inventory

x<a,+w,/2] - n

In all our experiments we assume that the distri-
bution of future forecast bands is given by a uniform
distribution. This implies that if the current forecast
is given by a, = 2, w, = 4, and w, ; = 2, then it is
equally likely that the next forecast band would be
a,, =2, w,,=2o0ra, =3, w,,=2o0ra, , =4,
W, = 2.

4.1. Heuristics Performance

In this section, we describe how the heuristics HLB,
HUB, HCU, HCL, and MH perform compared to the
optimal solution. The average error for HLB, HUB,
HCU, HCL, and MH were 8.89%, 0.23%, 3.18%,
0.43%, and 12.13%, respectively, with standard devi-
ations of 17.27%, 0.46%, 6.7%, 1.0%, and 15.81%, re-
spectively, based on the 1,980 samples in our initial
study. We computed the optimal expected costs using
dynamic programming. Note that HUB and HCL
perform much better in our set of experiments be-
cause both these heuristics tend to avoid overproduc-
tion. It is to be noted that overproduction in the first
few periods could be quite expensive. Further, the
performance of MH is poor compared to HUB, HLB,
HCU, and HCL because it does not utilize any infor-
mation about forecast evolution while planning pro-
duction. In addition, it uses a point forecast (which
is computed as a mean of the distribution in our im-
plementation) and tries to produce to meet that de-
mand in n periods. Our results show that cost differ-
ences from the optimal could be as large as 12% on
average and even more under certain conditions.
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Table 1 Average Error in Cost for HLB, HUB, HCU, HCL, and MH Under Table 3 Average Error in Cost for HLB, HUB, HCU, HCL, and MH Under
Different Capacity Conditions Different Penalty Costs
a, Avg. HLB  Avg. HUB  Avg. HCU Avg. HCL  Avg. MH Penalty
cost Avg. HLB  Avg. HUB  Avg. HCU Avg. HCL  Avg. MH
=0 14.08% 0.30% 6.72% 0.8% 18.23%
=2 8.50% 0.26% 2.29% 0.4% 10.97% =15 17.16% 0.02% 1.18% 0.23% 9.19%
a=4 4.10% 0.12% 0.52% 0.1% 7.20% w =150 6.38% 0.25% 470% 0.43% 7.56%

Table 2 Average Error in Cost for HLB, HUB, HCU, HCL, and MH Under
Different Holding Costs
Holding
cost Avg. HLB  Avg. HUB  Avg. HCU  Avg. HCL  Avg. MH
h=10 0.0% 0.0% 0.31% 1.2% 19.69%
h= 2.00% 0.28% 2.45% 0.54% 12.38%
h=4 7.30% 0.31% 2.98% 0.23% 8.45%

h=18 13.34% 0.32% 5.09% 0.11% 8.55%
h=12 21.84% 0.23% 5.09% 0.03% 11.60%

Capacity Parameter. (1) We observe that the per-
formance of both HUB and HLB improves with in-
crease in a,, (see Table 1); this effect is more prominent
for HLB. A higher value of a, increases production
requirements, and as a result HLB (which tends to
produce more) performs better. Also when a,, is high-
er, there is a smaller chance that the algorithm will
execute Step 1b.3, and this also contributes to better
performance for both HUB and HLB. (2) The perfor-
mance of both HCL and HCU improves under tighter
capacity. HCU should be better because when capac-
ity is tighter it is optimal to produce in more periods.
HCL also performs better under tighter capacity be-
cause there is a smaller chance that the algorithm will
execute Step 3. HCL. (3) The performance of MH im-
proves with increasing a,, which suggests that this
heuristic is more effective when capacity is tight.

Cost Parameters. (1) The performance of HUB and
HLB changes in different ways with increases in pen-
alty and holding costs (see Tables 2 and 3). As pen-
alty costs increase, the performance of HUB im-
proves, while that of HLB gets worse (see Table 3).
Underproduction hurts more when penalty costs are
higher, which hurts HUB performance, while the ex-
pected additional costs for carrying inventory are
lower, which helps HLB. (2) Increases in holding
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w = 250 3.16% 0.39% 3.66% 0.63% 19.63%

Table 4 Average Error in Cost for HLB, HUB, HCU, HCL, and MH for
Different Time Horizons

Time

Horizon Avg. HLB  Avg. HUB Avg. HCU  Avg. HCL  Avg. MH

n==4 4.45% 0.02% 0.32% 0.04% 7.44%

n=23 6.09% 0.24% 2.50% 0.43% 2.64%

n=12 18.04% 0.37% 6.01% 0.73% 15.14%

costs reduce the effectiveness of HLB as expected but
do not affect the performance of HUB in a significant
manner (see Table 2). Note that when holding costs
are zero both the heuristics are optimal. (3) The per-
formance of HCU becomes worse while that of HCL
improves with increases in holding cost, as one
would expect. Similarly, the performance of HCU im-
proves and that of HCL worsens with increasing pen-
alty cost. (4) We find that the performance of MH first
improves and then deteriorates with increases in
holding and penalty costs. One explanation for this
effect is that when penalty (holding) cost is very high
(low), the optimal production quantity will be signif-
icantly larger than the mean. Similarly, when penalty
(holding) cost is very low (high), then the optimal
production may be lower than and away from the
mean.

Time Horizon. We find that the performance of the
three heuristics deteriorates with increase in time ho-
rizon. This is probably because there are likely to be
more errors in the production decisions under longer
time horizons. The cost increases in HLB, HCU, and
MH are significant, whereas those in HCL and HUB
are not as large (see Table 4). In all, the heuristics that
produce less (HCL and HUB) are very close to opti-
mal (less than 0.5%, on average) and perform much
better than the heuristics that produce more (HCU
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Tahle 5 Average Cost Difference Between EARLY, INTERMEDIATE, and Tahle 6 Average Cost Difference Between EARLY, INTERMEDIATE, and
LATE Information Updates Under Different Capacity Conditions LATE Information Updates Under Different Holding Costs
a, Avg. (I — ) Avg. (L — ) Avg. (L — F) Holding cost  Avg. (/ — B Avg. (L — ) Avg. (L — )
a=3 439 13.72 18.11 h=10 0.1 12.59 12.70
=6 4.15 8.04 1219 h=2 8.89 1278 21.67
a=19 1.97 378 5.76 h=18 4.03 6.10 10.13
h=12 0.99 2.58 3.58
and HLB). Further, the performance of HCL and
HUB is orders of magnitude better than MH, which Table 7 Average Cost Difference Between EARLY, INTERMEDIATE, and
. . ! LATE Information Updates Under Different Penalty Costs
utilizes only point forecasts.
Penalty Cost Avg. (I — B Avg. (L — ) Avg. (L — B
4.2. Timing of Information Updates
To test the effect of the timing of additional infor- ™ =179 059 343 402
= 150 6.41 13.60 20.02

mation availability during forecast updates, we con-
ducted another study with 1,080 problems. The time
horizon of 8, 12, 16, 18, and 20 were considered; hold-
ing cost was set to 0, 2, 8, and 12; salvage cost was
chosen to be 0, 25, and 45; penalty costs of 75 and
150 were considered; and the capacity available was
varied with a, equal to 3, 6, and 9. For each of these
parameter settings 3 different information update
scenarios were considered: EARLY, INTERMEDIATE,
and LATE (described at the beginning of §4). Their
optimal costs are represented by E, I, and L, respec-
tively.

The average values of the differences I — E, L — I,
and L — E were 3.50, 8.51, and 12.02, respectively. We
find that the availability of more refined forecasts ear-
ly on reduces the optimal total cost. This is intuitive
because having the updates early reduces the de-
mand uncertainty. Although I — E as well as L — |
are not very large (on average), we find that L — I is
greater than I — E. From a managerial standpoint,
this indicates that if it is not economically viable to
obtain early information updates, the firm should not
lose hope but strive to achieve that information dur-
ing the horizon.

Capacity Parameter. As the capacity becomes
tighter, the benefits due to early information reduce
(see Table 5). This result is intuitive in that under
tighter capacity it is likely to be optimal to produce
in a greater number of periods irrespective of infor-
mation availability.

Cost Parameters. (1) As the holding cost increases

76

we observe that the differences I — E and L — I first
increase and then decrease (see Table 6). This implies
that earlier updates are more beneficial when holding
costs are neither too high nor too low. Because the
holding cost plays a crucial role in the production
decision of each period (particularly in early periods),
it is expected that very low or very high values bias
the production decision more than the demand un-
certainty. As a result, in those cases benefits of more
refined forecasts are lower. A managerial implication
is that for products with variable demand and high
holding costs (such as high tech) the benefits of ob-
taining early updates may not be substantial because
even if the information is available early, it may be
optimal to produce only later in the horizon. (2) We
also find that when holding costs are lower, L — I is
significantly higher than I — E. An explanation for
this effect is that at lower holding costs the wrong
production decisions, due to the absence of informa-
tion earlier on, have a limited effect because future
periods are available for adjustment after the major
updates are received. However, L — [ remains high
because there may not be enough time remaining to
adjust production. (3) As expected, we find that with
increases in penalty costs, the benefit of obtaining
early refinements in forecasts increases (see Table 7).

Time Horizon. (1) We find that the benefits of ob-
taining earlier updates are greater when the time ho-
rizons are longer (see Table 8). In our experiments, a
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Table 8 Average Cost Difference Between EARLY, INTERMEDIATE, and
LATE Information Updates for Different Time Horizons
Time Horizon ~ Avg. (I — ) Avg. (L — ) Avg. (L — )
n=3 1.70 1.90 361
n=12 331 5.8 9.17
n=16 401 11.28 15.29
n=18 4,03 .77 15.81
n=20 4.45 .77 16.23

longer horizon means a greater level of demand un-
certainty in the beginning periods. As a result, the
value of additional information is higher. (2) We also
notice that the marginal benefit due to earlier updates
decreases with the number of periods in the horizon.
This can be explained by the fact that longer horizons
allow more time for adjustment when there are later
updates; as a result, the marginal benefit of early in-
formation is not as substantial.

5. Multiple Unit Capacity: No
Holding-Cost Case

In this section we consider the multiple capacity case
where the firm has the flexibility to produce up to C
units in each period of time, and focus on the no
holding-cost case. We extend our algorithm HUB/
HLB for the no holding-cost case (recall that they are
equivalent in this case) and prove that the algorithm
is optimal in this case. These algorithms can be ex-
tended in an equivalent way for the holding-cost case.
First, all the possible values of 2, and their proba-
bilities are generated using the F, for all ¢ from 7 to
1 and the values of 4, and w,. Computationally, the
probability values are easy to calculate because all
values are discrete. The heuristic continues as follows:
Step 1. For a, € {a,, a, +1,..., @, + w, — wy)},
Step la. Calculate x* taking current inventory of
x,, into account. Specifically,
x* = argmin {Vy(y, a;, wy) + c(y — x,)*},
ay=y=a;+wy
where V(x, a;, w,) is the single period cost to go if
inventory is x, and demand can take on the discrete
values between a; and a4, + w, with a probability
distribution given by F,(a).
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Step 1b. For!=1,2,..., C, the following 3 cases
are considered:

Step 1b.1. If~x,1 + [ = x*, then )\‘]11 =c+ Vyx,
+ L a, w) — Vylx, +1—1,a, w).

Step }b.2. Ifx,+1+Cn—-1) = x*,~then )\f,l
=c+ Vyx, +1+Cn—1),a, w)— Vylx, +1
-1+ Cn —1),ay, wy).

Step 1b.3. If x, + [ <x*<x,+ Cn — 1) + ]
)\‘]11 = 0.

Step 2. Let p,,,, be the conditional probabilities of
each a4, given the current a4, Let N, =
ST p e AL, be the weighted average value of A} .

Step 3. 1f there are one or more negative \.s, pro-
duce g such that Nj = max N\, < 0; if all N, = 0,
don’t produce.

TueoreM 5.1. This heuristic is optimal when the holding
cost equals zero.

6. Conclusions

We present a model that captures forecast evolution
information while making production decisions in a
capacitated environment. We consider a forecast evo-
lution model that is defined by a band (with upper
and lower bounds) that captures the uncertainty in
the forecast. As time moves forward, we assume the
next forecast has a smaller width (representing a bet-
ter forecast), and that the new band can lie anywhere
inside the old band. This models a forecasting process
that gets refined over time as new information arri-
ves. We consider a manufacturing firm utilizing this
forecast that has a fixed capacity in each period and
needs to decide in which periods it should produce,
taking into account expected production, holding,
salvage, and stock-out costs. Demand occurs in the
final period, modeling a seasonal product with ter-
minal demand. We prove the existence of inventory
threshold levels in each period below which the firm
should produce and above which it should not. We
provide several simple heuristics for the holding-cost
case, demonstrate that two of them are optimal in the
zero-holding-cost case, and characterize their rela-
tionship to the optimal production policy. Our com-
putational study shows that utilizing the additional
information in the bands provides better solutions
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than a heuristic that utilizes a point forecast. Further,
we find that two of the heuristics are very close to
optimal on average (less than 0.5% away).

We empirically observe that early information up-
dates in the forecasting process lead to decreased
costs. On average, we find that majority of the bene-
fits can be realized if the information updates are re-
ceived by the middle of the planning horizon. Little
additional benefit is obtained by improving forecasts
early in the process. Further, we find that information
updates are most useful when holding costs are nei-
ther too high nor too low and when the capacity is
not too tight. Finally, we find that although the ben-
efits of early information are greater in periods with
longer horizons, the increases in benefits diminish as
horizons get very long.

This paper presents a model for capturing forecast
updates and integrating it with production planning
for a product with terminal demand. There are cer-
tain limitations in this model. First, we assume that
forecasts get better or at least are as good in future
periods. Although this assumption is reasonable un-
der most conditions, there may be situations where
this condition may be violated. Second, we present a
model where only one product is being produced in
a capacitated setting. A multiproduct system would
be more appropriate in a general setting; however, it
will be more complex to handle. Finally, the general
case where demand can occur in any period is more
complicated and is a topic for future research.
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Appendix

Proor oF Lemma 3.1. Let V1(§) = s{(x +2 — §* — (x + 1 — §*}
+m{E-x-2) —(E-—x—-1'tand V2(§) = s{(x + 1 - §" — (x
-+ 7wlE —x — 1" — (£ — x)*}). Clearly, if £ = x + 2, then
V1(g) = V2(§) = —m; if £ = x, then V1(§) = V2(§) = s; and if £ =
x + 1, then V1(§) = s, and V2(§) = —m. Thus, in all cases V1(§) =
V2(£). This implies that X, p,V1(§) = 3, p,V2(§) for any set of values
for & Therefore, 2710 p, V1(ap) = 251000

olal Pa,V2(ay). So, we conclude
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that E, (Vo(x + 2, ap, 0) — Vilx + 1, a5, 0)} = B {Vi(x + 1, a5 0) —
Vo(x, ap, 0)}. B
Proor oF Traeorem 3.2. The optimal recursion function is given by

Vi (X1, piq, W)

c+ h(xyy + 1)+ EVi(xy +1,a, w)
= min
hx.q + Ea.Vt(xt+1r a,, w,).

For the remainder of this proof, we suppress the subscripts on the
expectations. To prove the theorem, it is sufficient to show that ¢ +
h + EV(x + 1, a, w;) — EV,(x, a,, w,) is monotone increasing in x.
The proof proceeds through induction on the number of periods to
go.

From Lemma 3.1, we know the result holds for t = 0. Now, as-
sume that the result holds for 1, 2, ..., t — 1, and consider the
following cases at time t.

Case 1. Vi(x + 1,a, w,) =c + h(x +2) + EV,_(x + 2,a,_,, w,_,)
and Vi(x, a, w;) = ¢ + h(x + 1) + EV,_,(x + 1, a,_,, w,_,). This
means that

Vilx + 1, a,, w) — Vi(x, a, w,)
=h+EV_(x+2a,,w,) - V.x+1a.,, w0,

so by the induction hypothesis, monotonicity of the differences
holds.

Case 2. V(x +1,a,, w;) = h(x + 1) + EV,_y(x + 1, a,_;, w,_;) and
Vix, a, w,) =c+ h(x +1) + EV,_y(x + 1, a,_,, w,_,). This means
that Vi(x + 1, a,, w,) — V(x, a,, w,) = —¢, so the difference is constant
and, thus, monotonicity trivially holds.

Case 3. Vi(x + 1,a,, w)) = h(x + 1) + EV,_y(x + 1, a,_,, w,_,) and
Vix, a, w) = h(x) + EV,_,(x, a,_,, w,_,). This means that

Vix +1,a, w) — Vi(x, a, wy)
=h+ EV_(x+1a.,w,) — V®a,, vy,

so by the induction argument, monotonicity of the differences holds.
Case 4. Vi(x + 1,a, w,) =c + h(x +2) + EV,_(x + 2,a,_,, w,_,)
and V(x, a, w,) = h(x) + EV,_,(x, a,_,, w,_,). In this case,

Vix +1,a, w,) = Vi(x, a, w,)

c+2h + E{V,y(x + 2,84, w, 1) = Via(x, a4, wp 1)}
=c+2h+ EV (x + 2,0, w.,) = Vialx + 1,8, w.,)
+ Via(x + 1, a0, wey) = Vialx, ., w,q))

Once again, monotonicity follows from the induction hypothe-
sis. O

Proor ofF Prorerty 3.4. To see this, consider the three conditions
for each value of a4, in the algorithm.

1. For the first case where x, = x*, the bound is met at equality
for (i). For (ii) we use the convexity of the value function, noting
that Vy(x, + 1, a, w,) — Vo(x,, a, wy) = Vo(x, + n, a, w)) — Vi(x,
+n—1,a, w).

2. For the second case where x, + 1 = x*, we use the convexity
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of the value function to show V,(x, + n, a, w)) — Vy(x, + n — 1,
a, w) = Vy(x, + 1, a, w,) — Vy(x,, a,, w,) for (i). For (ii) the bound
is met at equality.

3. For the final case, we note that V(x, + 1, a,, w,) + ¢ < Vy(x,,
a;, wy) because x* = argmin, _,, ., Voly, 4, wy) + c(y — x,) and
N, = 0, so (i) must be true. Similarly, because x, + n = x* and value
function is convex, (ii) must be true. O

Proor oF ProperTy 3.5. Note that this is a special case of property
(iii) in the proof of theorem 5.1 where C = 1 and 1 = 1. So, proof
follows directly from that. A detailed proof is available from the
authors. O

Proor or Property 3.8. Consider the three conditions for each val-
ue of 4, in the heuristic.

1. For the first case x,, = x*, the result holds at equality for (i).
For (ii) from Lemma 3.1, we know that Vy(x, + 1, a,, w;) — V(x,,
ay, wy) = Volx, + 1, ay, wy) — Volx, + 1 — 1, a5, wy).

2. For the second case x, + n = x*, for (i) Vy(x, + n, a;, w,) —
Volx, + 1 — 1, a, w)) = Vy(x, + 1, a, w;) — V(x,, a,, w,) based on
Lemma 3.1. Thus, ¢ + nh + Vy(x, + 1, a, w,) — Vo(x, + n — 1, a,,
w) =c + nh + Vyx, + 1, a, w,) — Vy(x,, a,, w,). For (ii) this holds
at equality.

3. For the final case, for (i) we note that Vy(x, + 1, a,, w;) + ¢ +
h = Vy(x,, a;, w;) because of the definition of x*. Because 1b.3.ii
simplifies to (n — (x* — x,))(x* — x,)h, which is greater than (n —
1)h since 0 < (x* — x,) < 1, we know that A\, = (1 — 1)k in this
case, so (i) must be true. For (ii), we note that V(x, + n — 1, a,, w,)
= c + nh + Vy(x, + n, a,, w,). Because 1b.3.i simplifies to (n — 1)k
—(n— (x* = x,))(x* — x,)hand 0 < (x* — x,) < n, we have that \,,
= 0, so (ii) must be true. O

Proor oF Prorerty 3.9. Consider (i) of the property. By definition
we have,

E e+ k=Dh+ Vypu(x + 1,8, 1, Wy ge1)

ay—r1lan

= Ve (X @y gir, Wygein)}

=E {c + (k — 1)h + min(A, B) — min(C, D)},
where A, B, C, and D are defined as follows:

A=E, o, afc+ (x+ Db+ V, ((x + 2,8, w, )},

ap—k+1lan

B=E, o Ax+ D+ V, i (x+ 1,4, w,4)},
C=Eponlc T (x D+ Vy(x + 1, 0,4, w4},
D = Eu”,k|a,7,k,|{xh + Vn—k(x/ anfkr wnfk)}'

We consider the following cases.
Case 1. A = B, C = D. This means that

E {c + (k - 1)h + Vn—k+1(x +1,a, 1, wnfkﬂ)

ap—k+1lan
- Vﬂ*k‘*l(x/ Ayk+1s wn7k+1)}

- E c+ (k—1Dh

ﬂnfk+1|ﬂn{

+E {(x + 2h + V, o (x + 2, a,y, w, 1)}

Apkln—k+1

- E {(x + 1)h + ank(x + 1/ ks wnfk)}}

an—klan—k+1
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=E, joic+kh +V, (x+2a,,,w,,)
- Vn—k(x + 1/ Ayt wn—k)}

=E, golc +kh +V, i (x + 1,0, w,) = V, (X, 0,4, w, 1)},

where the last step is due to the monotonicity of V, (x + 1, a, ,
w, ) — V,.x, a,, w, ;) with respect to x.
Case 2. A = B, D = C. This means that

E fc+t k=Dh+ V,palx + 1,8, 41, Wy 1)

ay—ks1lan
= V(X @y iir, Wy_pin)}
=E, ,fc+ (k—1h
+E, qaafc+ (20 + V, (x + 2,8, w,))
= Eop st ifxh + V,i(x, a,, w, )}
=E, i+ (k= Dh
+ Ey oy infc + (x 20+ V, ((x + 2,0, w,,)}
= Eup oy odc + (x + Dh =V, (x + 1, 8,4, w, )}

=c+kh+E, oAV, i(x+2, a0, w, )

an-klan
= Voxlx +1,a,,, w, )}

=ZE, goic tkh +V, (x + 1,8, w,) — V, (%, a,_, 0, )}

Case 3. B = A, C = D. This means that

E fct+r k=Dh+ V,palx + 1,8, 11, Wy 1)

ay-ke1lan

= Vi1 (X, @y g1, W)}

=c+ (k—1h
+ E, adEay ay oo d(x + D+ Vo (x + 1, a, 4, w,4)}
—c—E, o X+ D+ V, (x + 1,8, w, )}
= (k — 1)h.

Case 4. B = A, D = C. This means that

E fct+r k=Dh+ V,palx + 1,8, 1, Wy 1)

ayk+1lan

= Viokr (X, @y o1, Wy g1)}

c+ (k- 1h

+ E”n*k*rl|”r1{E”ufk|“nfk+l{(x + 1)h + Vn*k(x +1,a, wnfk)}

- E {xh + V, (%, a4, w,-)}}

apklan-ki1

c+kh+E Vialx + 1, a4, w,) = Vi®, 4y 0, )b

an-klan

This proves (i). The second part of the property (ii) can be proved
with a similar approach, hence, the proof has been omitted. O

Proor or Taeorem 5.1. To prove this result, we need several prop-
erties (i)—(iv).

() Ny = Epp o + Volx, + Ly, wy) = Vilx, + 1 = 1, a, w)}; (i) N,
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= Eufc + Volx, + 1+ Cn = 1), 3, wy) — Vo(x,, + 1 = 1+ C(n —

1)/ ay, wl)}

Proof:
(i) To see this, consider the three conditions for each value of / and
a, in the algorithm.

1. For the first case, the bound is met at equality.

2. For the second case, we use the monotonicity of the differences
in the value function.

3. For the final case, we note that Vy(x, + 1, a,, w;) + ¢ < Vy(x,
+ 1 — 1, a;, wy) because x* = argmin, _,,, .« (Vo(y, ay, wy) + c(y —
x,}. Because N}, = 0, the result follows.

(ii) To see this, consider the three conditions considered for each
value of | and 4, in the algorithm.

1. For the first case, we use the convexity of the value function.

2. For the second case, the bound is met at equality.

3. For the final case, we note that V(x, + [ + C(n — 1), a,, w,)
+ ¢ > Vyx, +1 — 1+ Cn — 1), a,, w,) because x* =
argmin, _,—, .o, {(Vo(y) + c(y — x,)}. Because \, = 0, the result fol-
lows.

Next we prove the following properties (iii) and (iv).

(iii) If E,, o lc + Vo lx + 1+ Clk — 1), a, 4, w, ) = V,(lx + 1 —
1+ Ctk—-1),a,,w, )} =0,thenE, , .ic+ V, .(x+1+Clk
= 2), 4y ki1, Wygi1) = Vgl + 1 =1+ C(k = 2), Ay ki1 Wi}
=0; (iv)ifE, g, lc+ V. x+La, ,w,)—V, (x+1-1,a,,
w, )} =0,thenE, . {c+ V, plx +1a, i, W, pi1) = Vipa(x
1 =18, k1, Wy )} = 0.

Proof:
(iii)
E”n k»ll/ln{c + Vn k\l(x +1+ C(k - 2)/ Aykr1s Wy k»l)

—Viagn(x + 1 =1+ Clk = 2), 4,11, Wype1)}

0=i=C 0=j=C

= Eu”“m{c + min A; — min B/},

where A; and B; are defined as follows:

A =

i

E i+ V, (x+1+i+ Clk—2),a, w,}

ﬂn—k\ﬂn—kﬂ{

B, =E

; anidandCl T Vg (x + 1 =1+ ]+ Clk — 2), 4,4, w,_4}.
Let i* be the minimizing i value, and consider the following cases:
» i* < C. In this case, we can set j = i + 1 and conclude that:

min B, < E e+ D)+ V, 4 (x+1+i+Ck—2),a,w, )

0=j=C

ap-klan-k+1

and, hence,

min A; — min B] = — g

0=i=C 0=j=C
SO
E, iia,dc + min A; — min B;l = 0.
n—k+1lan N N 7
0=i=C 0=j=C
80

» i* = C. In this case, we can substitute C for both i and j, and we
conclude that

0=i=C 0=j=C

E,,”Mh,”{c + min A; — min B,}

0=j=C

= Ea,,mﬂ,,{c + Ac — min B;}

=E,, . alc + Ac — Bc}

c+E

(E cC+V, (x+1+Gk—1C a,_, w, )

ay—k+1lan ﬂn—k|ﬂn—k—1{

- E cC+V,  (x+1-1

S
+ (k — 1)C, a, , w, )}
=E, qolc + Vy(x + 1+ Clk — 1), a,, w,)
=V, x+1-1+Clk—1),a, w, )
(iv)

E tade T Vi (x + L 6,1, Wy 1)

V(X + 1= 1,8, 00, Wy 1)}

0=i=C 0=j=C

= En“mm{c + min A; — min B/},

where A; and B; are defined as follows:

A =

i

E ci + ank(x +1+ ir Ayr wnfk)}

“n*klanflwl{

B, =E

g anddanitC T Vg(x + 1 =1 4 j, 4,4, w, )}
Let j* be the minimizing j value, and consider the following cases:
* j* > 0. In this case, we can set i = j — 1 and conclude that

min A; = E, . . AcG—1) +V,(x+1—-1+ja,,w, )
0=i=C

and, hence,

min A; — min Bj = —¢,
0=i=C 0=j=C

SO

0=i=C 0=j=C

Eanmm{c + min A; — min B/} =0.

+ j* = 0. In this case, we can substitute 0 for both i and j, and we
conclude that

0=i=C 0=j=C

E,,”Mh,”{c + min A; — min B,}

0=i=C

= E,,”Mm”{c + min A; — BO}

= Eﬂn—kulﬂn{c + AU - BO}

c+ E E Viax + 1, 0,0}

ﬂn—knlﬂn{ Akl —k+1

- E Viax + 1 =1, a,, w,_)}}

ap—klan—+1
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=E, g lct V. (x+La, ,w, )=V, (x+1—-1a,,w, )}

Repeated applications of (iii) and (iv) result in (v) and (vi), respec-
tively: (v). If E, |, {c + Vox + 1+ Cn — 1), a,, w,) — Vo(x +1 — 1
+ Cn —1),a, w))} =0, thenE, . {c+ V,(x+1a,,w,,) —
Voax +1-1,a,4 w,,)} =0; (Vi) if E, ), {c + Vo(x + 1, ay, wy) —
Vox +1—1,a, w)} =0, then E e+ V, x+1La,,w,)—
Veoix+1-1,a,, w,,)} =0.

Combining (v) and (vi) with (i) and (ii) proves that the heuristic is
optimal. O

a,-1lay
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