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This paper reviews the literature on strategic capacity management concerned with deter-
mining the sizes, types, and timing of capacity investments and adjustments under uncer-

tainty. Specific attention is given to recent developments to incorporate multiple decision
makers, multiple capacity types, hedging, and risk aversion. Capacity is a measure of pro-
cessing abilities and limitations and is represented as a vector of stocks of various processing
resources, while investment is the change of capacity and includes expansion and contrac-
tion. After discussing general issues in capacity investment problems, the paper reviews
models of capacity investment under uncertainty in three settings:
The first reviews optimal capacity investment by single and multiple risk-neutral decision

makers in a stationary environment where capacity remains constant. Allowing for multiple
capacity types, the associated optimal capacity portfolio specifies the amounts and locations
of safety capacity in a processing network. Its key feature is that it is unbalanced; i.e., regard-
less of how uncertainties are realized, one typically will never fully utilize all capacities.
The second setting reviews the adjustment of capacity over time and the structure of opti-
mal investment dynamics. The paper ends by reviewing how to incorporate risk aversion in
capacity investment and contrasts hedging strategies involving financial versus operational
means.
(Capacity; Investment; Expansion; Planning; Real Options; Hedging; Risk; Mean-Variance)

1. Introduction
This paper reviews the literature on strategic capac-
ity management concerned with determining the
sizes, types, and timing of capacity adjustments
under uncertainty. Specific attention is given to
recent developments to incorporate multiple deci-
sion makers, multiple capacity types, hedging, and
risk aversion. Given the diverse interpretations and

application domains of capacity,1 any review must be
selective. Capacity typically describes abilities and lim-
itations. In operations management, it is natural to

1 There are more than 15,000 peer-reviewed articles in the ProQuest
Business Databases with “capacity” in the title or key words, 2,632
of them published during 1999–2002 alone. Restricting the search
by adding “planning,” “expansion,” or “investment” to “capacity”
retained more than 5,000 articles.
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consider a network of various processing resources,
also called a processing network. The types and
amounts of these resources, which are the prime eco-
nomic factors of production, are important determi-
nants of the network’s production abilities and limi-
tations. Deciding on the types of resources relates to
processing-network design in operations research, or
characterizing the production and operating-profit
functions in economics. Deciding on the amounts
involves optimization of a given network or
operating-profit function. While many other factors,
such as inventory supply and energy shortages, qual-
ity and yield losses, scheduling, lead times, and relia-
bility, may also limit production, this paper will turn
up the brightness on the direct effects of resource
scarcity and uncertainty, and turn it down on other
factors. In this paper then, capacity is a measure of
processing abilities and limitations that stem from the
scarcity of various processing resources and is rep-
resented as a vector of stocks of various processing
resources. The operational consequence is that capac-
ities in this paper almost always can be interpreted
as some upper bounds on processing quantities, but
a more general, higher-level economics interpretation
that links capacity directly to operating profits will
also be discussed.
While capacity refers to stocks of various resources,

investment refers to the change of that stock over time.
Investment2 thus involves the monetary flow stem-
ming from capacity expansion and contraction in the
expectation of future rewards. According to Dixit and
Pindyck (1994), most investment decisions share three
important characteristics in varying degrees. First, the
investment is partially or completely irreversible in
that one cannot recover its full cost should one have
a change of mind. Second, there is uncertainty over
the future rewards from the investment. Third, there
is some leeway about the timing or dynamics of the
investment. In addition to these three, this paper adds
a fourth characteristic: multidimensionality. Typically,
a firm invests in multiple types of resources that have
different financial and operational properties. Deci-
sions about the types and levels of investment are

2 Originally, investment was “the act of putting clothes or vestments
on.” (Shakespeare 1597, 2 Hendrick IV, iv. i. 45)

interdependent and the firm’s productive capabilities
depend on the complete vector of capacity levels,
which we will call its capacity portfolio.3

Our outline and objectives are as follows. Section 2
reviews various literatures that deal with capacity
investment. Section 3 reviews important issues in the
formulation of any capacity problem. The remain-
der of the paper reviews optimal capacity investment
under uncertainty that is partially irreversible.
Section 4 reviews optimal capacity investment by

risk-neutral decision maker(s) in a stationary envi-
ronment where capacity remains constant over time.
The emphasis of this section is on determining the
optimal levels of various types of capacities and the
trade-offs among them. The optimal portfolio speci-
fies the amounts and locations of safety capacity in
the network. Section 4.1 reviews canonical capacity
models that adopt queuing or newsvendor network
formulations, an example of which is studied in §4.2.
Section 4.3 reviews game-theoretic capacity invest-
ment by multiple agents who each control a subset of
the processing network.
Section 5 reviews dynamic capacity investment

models whose emphasis is on characterizing the tim-
ing of capacity adjustments. Often, optimal invest-
ment dynamics follow a so-called “ISD policy,” which
is characterized by a continuation region: When the
capacity vector falls in this region, it is optimal
not to adjust capacity; otherwise, capacity should
be adjusted to an appropriate point on the region’s
boundary. Managerially, this implies that capacity is
not adjusted continuously because of several “fric-
tions,” such as irreversibility, nonconvex costs, or
lumpiness, that will be discussed in §5.3. In addition,
the optimal investment sequence defines an endoge-
nous relative flexibility of resource capacity, meaning
that some resource capacities will be more frequently
adjusted than others.
Section 6 incorporates risk aversion in capacity

investment and reviews hedging strategies involv-

3 For the remainder, the term “capacity portfolio” is assumed to
imply interdependent resource capacity decisions. Interdependence
may stem from, for example, some resource sharing among prod-
ucts or dynamic routing in the processing network. Otherwise, the
processing network may be separable and the portfolio problem
may decompose into independent, lower-dimensional problems.
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Figure 1 An Example of a Capacity Portfolio Investment Problem
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ing financial versus operational means. For managers,
uncertainty, quite naturally, leads to considerations
of notions of risk and methods to manage and miti-
gate that risk. Section 6.1 reviews the economic the-
ory whether firms should care about risk, and if
so, how to incorporate it in capacity decisions. We
review expected utility formulations and the condi-
tions under which they lead to mean-variance for-
mulations. Section 6.2 reviews financial hedging and
discusses how capacity investment is similar to sell-
ing a call option. Hedging means “to protect oneself
from losing or failing by a counterbalancing action”
or “to protect oneself financially as: (a) To buy or sell
commodity futures as a protection against loss due to
price fluctuation; (b) to minimize the risk of a bet”
(Merriam-Webster’s Collegiate Dictionary 1998). We refer
to hedging that uses counterbalancing positions in
futures and financial derivative instruments as finan-
cial hedging. Section 6.3 reviews operational hedging, by
which we mean mitigating risk by counterbalancing
actions in the processing network that do not involve
financial instruments. Operational hedging, thus, may
include various types of processing flexibility, such
as dual-sourcing, component commonality, having the
option to run overtime, dynamic substitution, routing,
transshipping, or shifting processing among different
types of capital, locations, or subcontractors, holding
safety stocks, having warranty guarantees, etc. Some
of these actions (e.g., multisourcing, component com-
monality, product-flexible resources, and having alter-
nate uses of resources) aim to pool the safety capacity
of multiple resources. “Counterbalancing their capac-
ities” to mitigate risk is exactly the form of opera-
tional hedging that is studied in this paper. Finally, §7
concludes.
To motivate the study of stochastic capacity port-

folio investment and hedging, consider the following
example.

Example. Consider a stylized representation of the
capacity-planning problem that disk-drive manufac-
turers routinely face, as described by Van Mieghem
(1998b) and illustrated in Figure 1. To support their
growth and frequent new product and technol-
ogy introductions, such companies repeatedly make
investments in property and equipment.4 Assume two
high-end disk-drive product families are scheduled
to go into volume production in the first calendar
quarter of next year. Product 1 boasts faster seek
time and higher data-throughput rate, while Prod-
uct 2 is more energy-efficient and reliable. Given
their different product designs, each family’s “head-
disk assembly” (HDA) and printed-circuit board final
assembly requires its own product-specific equipment.
Both families, however, can be tested in a single,
shared facility. Disk-drive testing involves connecting
the drive to intelligent drive testers (IDTs), fast com-
puters that perform a set of read-write tests. IDTs can
quickly switch over between testing different prod-
ucts. Product life cycles of disk drives are short. The
two new products are planned to be in volume pro-
duction for only four quarters. There are significant
fixed costs associated with commissioning and start-
ing up the three new facilities. In addition to the fixed
costs, the facility costs are also driven by the volume
capacity, reflecting higher labor, space requirements,
and tooling costs.
Capital investments at such a disk drive com-

pany are typically the result of a capacity require-
ments planning (CRP) process, which links with
the production-planning and materials requirements
planning (MRP) process. The monthly “demand-
planning” cycle begins with individual marketing and

4 For example, Seagate Technologies invested $920 million in fis-
cal 1997. This amount included $301 million for manufacturing
facilities and equipment related to subassembly and disc-drive
final assembly and test (FA&T) facilities.
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sales managers using their knowledge of planned pro-
motions and local markets to estimate sales poten-
tial for the following 12, or even 24 months. These
estimates capture both planned purchases by major
OEMs, as well as possible orders by distributors,
resellers, dealers, and retailers. Obviously, some of
these estimates are more reliable than others and
the accuracy of these forecasts degrades sharply
beyond the immediate quarter so that significant
uncertainty in total demand remains. The demand
forecast represents the combined estimates of the
monthly, worldwide demand for each individual
product. Given that the two products are imper-
fect substitutes, their aggregate demand is much
better known than the specific mix. Indeed, there is
significant uncertainty regarding the adoption of a
particular product. Conceptually, the demand fore-
cast captures demand uncertainty by a probability
distribution. The capacity-investment problem is to
decide on the size and timing of changes in the capac-
ity of three resources (FA1, FA2, and Test) given a
joint probability distribution of quarterly demand for
the two product families. The capacity portfolio is
denoted by the vector K, where K1 is the capacity of
FA1, K2 of FA2, and K3 of Test. �

In practice, dealing with uncertainty in a consistent
manner throughout a global corporation is a nontriv-
ial task. Managers know the academic dictum that
“point forecasts” in the form of a single number are
typically wrong. Yet, aggregating demand forecasts
that feature not only means but, at a minimum, also
variances and some measure of covariances is not
easy. Incorporating such uncertainty into the com-
plex procedure of capacity planning is even harder.
In addition, demand is not completely exogenous:
Sales-force incentives and compensation are typically
set to enhance the likelihood of “meeting the num-
bers.” (Section 4.3 will elaborate on the endogeneity of
demand uncertainty.) Therefore, it is not uncommon
for current commercial capacity-planning software to
consider only a single scenario in the forecast. This
is sometimes called the “sales plan” and is, typically,
the input to aggregate planning, MRP, and CRP sys-
tems. While such approach, which we will call deter-
ministic or sales-plan driven capacity planning, virtually

ignores uncertainty, it “works,” even under decen-
tralized decision making. In other words, it is easily
explained and understood, and provides a first-order
estimate of capacity requirements. We shall see that
it typically leads to a balanced capacity configura-
tion, which is attractive from a cost-perspective, as it
allows for the possibility to fully utilize all resources
simultaneously, resulting in nice accounting efficiency
metrics. Another capacity plan that may show up in
practice is a plan that minimizes lost sales. In some
settings, marketing managers may state that “a cus-
tomer lost once is lost forever” and advocate ample
capacity to prevent that. We refer to such a plan that
is attractive from a revenue-perspective as a “total
coverage” capacity plan.
Incorporating uncertainty, however, typically

changes the capacity investment and can improve
performance and mitigate incentive conflicts, which
is what this paper aims to illustrate. For example,
as observed in Harrison and Van Mieghem (1999),
the optimal investment strategy in a stochastic model
typically involves some degree of capacity imbalance,
which can never be optimal in the deterministic
version of the model. Also, it suggests an expected-
profit-maximizing compromise between the two
conflicting incentives of cost-efficiency of production
and revenue maximization of sales. Finally, a stochas-
tic capacity model can capture the risk aversion of
decision makers and can show how capacity can
be used to mitigate risk and improve performance.
These conceptual distinctions between deterministic
and stochastic capacity investment, as well as their
ramifications for capacity planning practice, will be
discussed in detail in the context of the example in
§§4.2 and 6.3.
Finally, a caveat: The models in this paper are

intended to assist decision making, but seasoned
researchers know that practice is more complex.
Before a firm can consider capacity decisions, it must
articulate its business strategy, decide on its compet-
itive positioning, and on which markets to enter or
exit, etc. Here, we restrict attention to mathemati-
cal models that provide insights into the nature and
financial value of smart investments and that comple-
ment other political and strategic considerations that
influence capacity decisions.
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2. Capacity Research and
Related Literatures

This section surveys several major fields that study
capacity and explains their commonalities and dif-
ferences in emphasis. Specific references will be
discussed throughout this paper.
The capacity expansion literature in operations

research is concerned with determining the size,
timing, and location of buying additional capacity,
according to Luss (1982), which is the latest com-
prehensive survey to our knowledge. In the begin-
ning, the field’s basic concern was how to meet the
growing demand in growing economies. The semi-
nal paper by Manne (1961) studies the fundamental
trade-off between the economies-of-scale savings of
large expansion sizes versus the opportunity cost of
installing capacity before it is needed. Often, this lit-
erature is deterministic and focuses on minimizing
the (discounted) cost of all expansions. Some authors
allow for uncertainty: Examples of “post-Luss (1982),”
which is the focus of this paper, include Davis et al.
(1987), Paraskevopoulos et al. (1991), and Bean et al.
(1992). This stream of research is very much related to
our topic, but is typically restricted to the expansion
of capacity of one resource and cost minimization.
While the capacity-expansion literature assumes

that capacity is infinitely durable and is never
replaced (let alone, reduced), the equipment replace-
ment literature focuses on replacement, while typi-
cally ignoring demand changes or scale economies.
Rajagopalan (1998) gives a recent review of that lit-
erature and presents a unified approach to capacity
expansion and equipment replacement in a determin-
istic setting.
It appears that over the course of the last twenty

years, the study of plant location has focused on
transportation issues and somewhat divorced itself
from the study of type, size, and timing of capacity
investment.
The technology management, new product development,

and operations strategy literature deals with decid-
ing on the choice of technology, among many other
things. For example, should we invest in flexible or
specialized technology? When to switch to a new
technology? When should new product designs share
common components? How to allocate investment

among a set of new product projects? When technol-
ogy is defined in terms of the capabilities of a net-
work of different resources, then such questions can
be addressed with stochastic capacity portfolio invest-
ment models. Indeed, a multiresource framework can
be used to select the technology (defined by resources
with optimal positive capacity levels), along with its
capacity plan. For example, capacity papers that study
investment in flexible technology include Fine and
Freund (1990), He and Pindyck (1992), Jordan and
Graves (1995), Van Mieghem (1998a), Netessine et al.
(2002), and Bish and Wang (2002). Capacity papers
that study timing of new technology adoption include
Li and Tirupati (1994) and Rajagopalan et al. (1998).
Component commonality is studied with a capacity
portfolio investment model in Van Mieghem (2003a).
The production or aggregate planning literature stud-

ies the problem of the “acquisition and allocation
of limited resources to production activities so as to
satisfy customer demand over a specified time hori-
zon” (Graves 2002, p. 726). The answer typically is
derived via an optimization problem, often a lin-
ear programming model, and yields a mixed strat-
egy of “chase demand” by having excess capacity
or time flexibility, and “level production” by hav-
ing inventories. Clearly, aggregate planning is con-
cerned with the determination of the level of process-
ing resources over time, but there are two significant
differences with stochastic capacity investment. First,
the resources under consideration are often restricted
to workforce size, inventory planning, subcontracting,
and overtime scheduling. Second, virtually all aggre-
gate planning considers a deterministic future, very
similar to the deterministic planning described in the
Introduction.
While nothing precludes the inclusion of capital

equipment adjustments in aggregate planning mod-
els, the planning horizon typically is short-to-medium
term, such that capital equipment is fixed, but its
utilization and allocation to products over time is
variable. As such, aggregate planning takes a first-
order approach to endogenizing the fundamental
trade-offs in production planning among capacity
utilization (regular time, overtime, subcontracted),
inventory, and service and responsiveness (e.g., back-
logging or lost sales). Exceptions that consider capac-
ity expansion and inventory management jointly in
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an aggregate planning model include Bradley and
Arntzen (1999), Atamtürk and Hochbaum (2001),
and Rajagopalan and Swaminathan (2001). Bradley
and Arntzen (1999) present a mixed-integer pro-
gram to maximize return on assets and apply it to
two firms to illustrate the capacity-inventory trade-
off. Atamtürk and Hochbaum (2001) investigate the
trade-offs between acquiring capacity, subcontracting,
production, and holding inventory to satisfy non-
stationary deterministic demand for a single period
over a finite horizon. Rajagopalan and Swaminathan
(2001) consider a multiproduct environment where
demand for items is known and growing gradually
while capacity additions are discrete. Therefore, peri-
ods immediately following a capacity increase are
characterized by excess capacity. Their model stud-
ies the following trade-off: Should excess capacity be
used to do more equipment changeovers, and thus,
reduce inventories, or should more inventory be built
in order to delay future capacity expansions?
The input to aggregate planning includes a deter-

ministic demand forecast for each period in the plan-
ning horizon. To consider the impact of uncertainty,
aggregate planning typically makes two suggestions:
Perform sensitivity analysis on the inputs of the
aggregate plan and use safety inventory or safety
capacity to satisfy demand higher than forecasted.
While such approaches may work well in some envi-
ronments, it may be desirable to incorporate the
effects of uncertainty directly in the model to ascertain
how the optimal capacity plan is affected. Stochastic
capacity investment turns up the brightness on the
direct effect of uncertainty and turns it down on some
tactical activities. As such, it will automatically and
optimally (as opposed to manually and heuristically)
incorporate sensitivity analysis of input uncertainty
and endogenously define safety factors.
From a hierarchical5 perspective, aggregate plan-

ning operates at a lower level, and with shorter
planning horizons, than resource planning, which is
closely related to stochastic capacity-portfolio invest-
ment. Resource planning often neglects changes in
inventory and overtime scheduling. Such a view is

5 Cf. Sethi et al. (2002), for a survey on hierarchical control, includ-
ing applications on capacity expansion and equipment replacement
problems.

similar to the view in economics that “current out-
put flow depends on installed capital stock, and per-
haps on flows of instantaneously variable inputs like
labor and raw materials, through a production func-
tion � � � � We can regard profit flow as the outcome of
an instantaneous optimization problem where vari-
able inputs such as labor or raw materials are cho-
sen holding the level of capital fixed” (Dixit and
Pindyck 1994, pp. 357–359). CRP often shows up in
the context of production planning and planning soft-
ware like MRP and MRPII (Hopp and Spearman 1996,
Nahmias 1993). Despite its name, however, CRP typi-
cally verifies whether the MRP-generated production
plans are feasible given the capacity in place; that is,
it checks feasibility of resource allocation rather than
plan resource investment or adjustments.
The inventory and supply chain management litera-

ture is concerned with the flow of material through
a multiechelon inventory system. In contrast to the
aggregate-planning literature, this field often explicitly
considers uncertainty, but rarely capacity. (In single-
period models, however, there is no essential differ-
ence between capacity or inventory, as shall be illus-
trated in §4.) Kapuscinski and Tayur (1998) provide a
recent review of articles that consider capacitated sup-
ply chains. Most of those deal with given, fixed capac-
ities. Capacity, here, is the upper bound on produc-
tion quantities, which is typically deterministic. An
exception is Hu et al. (2002), who consider stochastic
upper-bounds, i.e., capacity uncertainty, in addition to
demand uncertainty. Inventory papers that also con-
sider capacity investment decisions include Angelus
and Porteus (2002), Bradley and Glynn (2002), Van
Mieghem and Rudi (2002), and will be discussed in the
remaining sections. Networks where multiple agents
control their own productive capacity require game-
theoretic models as §4.3 will discuss.
Investment in capital and labor has been at the core

of the economics literature since its inception. Invest-
ment contributes to future output, economic growth,
current demand, and employment. Given that invest-
ment empirically is lumpy (versus continuous over
time), linear theories had to be expanded. When it
is costly to reverse investment in capital or labor,
a firm’s investment decisions exhibit the empirically
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observed dynamics. This occurs, for example, when a
firm faces labor firing costs or when it cannot recoup
the acquisition price of capital when it is resold.
While the possibility that investment may be costly to
reverse has been recognized in the literature at least
as far back as Arrow (1968), irreversible investment
started receiving more attention in the late 1980s and
early 1990s in a stochastic framework. It exploits an
analogy with the theory of options in financial mar-
kets and, therefore, came to be known as the “real
options approach to investment,” according to pio-
neers Dixit and Pindyck (1994). The resources that
we consider are real assets and our discussion may
very well be labeled as “a real options approach.”
Section 5 will review why capacity is typically not
adjusted continuously over time.
The specialization of economics called corporate

finance considers methods to value and finance invest-
ments in projects and property, plant, and equipment.
The traditional valuation methods for projects include
net present value, payback years, and various types
of hurdles on financial ratios. A central question in
this field is: What is the objective of the firm, and how
do we value uncertain future cash flows? Clearly, this
relates to risk sensitivity, which will be summarized in
§6.1. Corporate finance also focuses on the means of
financing the investment and the impact of debt ver-
sus equity on the capital structure of the firm, which
is beyond the scope of this paper. As we shall discuss
later, stochastic capacity models assume (often implic-
itly) either perfect capital markets, so that frictionless
borrowing is possible, or that the investment size is
relatively small, so that it can be internally financed
without material impact on the overall valuation of
the firm.

3. General Issues in Capacity
Investment Problems

This section discusses important issues in typical
capacity investment problems. In the course of that
discussion, some definitions and notations will be
introduced. Consider a firm that has n different
“means of processing,” which we will call resources.
Its capacity portfolio at time t is denoted by the nonneg-
ative capacity vector Kt ∈ �n

+ whose ith component

represents the level of resource i that is available for
processing at time t. The capacity problem is to char-
acterize the desired capacity portfolio over time.

3.1. Capacity Constraint Formulation
General higher-level models, often used in economics,
capture the impact of capacity by a direct functional
dependence of operating profits on the capacity stock.
The operating-profit functions �t�Kt�	
 denote the
operating profit (excluding capacity investment costs)
as a function of time t, the capacity vector Kt available
at that time, and uncertainty represented by 	, which
refers to “state of the world,” or in more general mod-
els, a sample path. (Incorporating 	 emphasizes that
the entity is random.) The typical assumption is that
operating profits are concave in the capacity vector
K, which captures decreasing marginal returns from
investment. This higher-level formulation is remark-
ably general and flexible. No further specific assump-
tions on exactly how capacity constrains processing
quantities are needed to characterize general capac-
ity dynamics, as will be reviewed in §5. In gen-
eral, K need not even be interpretable in terms of
maximal product quantities. Stochastic dependence
captures broad capacity formulations, including “ran-
dom capacity,” where profit is a stochastic function of
capacity.
In operations management, one often extends and

details the formulation so that the operating-profit
function �t�Kt�	
 becomes endogenous to the model.
Typically, the model explicitly specifies the input-
output relationship and its dependence on capacity,
process structure, and management. The operating-
profit functions �t�Kt�	
 then become the outcome
of tactical optimization problems that depend on
the state of the process and its capacity vector. For
example, this formulation could capture a compli-
cated setting with product-sequence-dependent setup
times. The outputs and operating profit during a
period, then, depend not only on the available capac-
ity vector K, but also on the ex-post optimal produc-
tion schedule, which can be a function of the actual
output demand and input supply during that period.
This captures a setting where maximal output quanti-
ties of various products are state-dependent and non-
separable among products.
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A simpler and fairly typical capacity constraint
formulation is via a “recourse” linear-programming
problem, as illustrated by the following example: A
firm sells m products in a competitive market where
prices are uncertain. Let pt represent the unit price
vector for period t, which is observed at the begin-
ning of the period before Kt is chosen. According to
the philosophy of continuous improvement, the firm
is improving its manufacturing technologies, but not
in a deterministic fashion. The firm’s capacity con-
sumption matrix At and marginal processing costs ct
for period t are also observed at the beginning of the
period, before Kt is chosen. Assuming that the firm’s
processing quantities, xt , during that period are lin-
early constrained, the firm will set period t process-
ing according to the linear program, to maximize the
operating profit:

�t�Kt�	
=max
xt∈�m+

�pt�	
− ct�	

′xt (1)

s.t. At�	
xt ≤Kt� (2)

where ′ denotes transpose and vector inequalities
should be interpreted componentwise. The resulting
operating-profit function �t�·�	
 is concave for each
	 and t.
The operational consequence is that capacities in

operations-management models (and in this paper)
can almost always be interpreted as some upper
bounds on processing rates. Often, the capacity vec-
tor is the right-hand side of a linear constraint on
processing quantities during a period (i.e., process-
ing rates) similar to (2). Clearly, appropriately defin-
ing or adding a “period” corresponds to determin-
ing or increasing the total number of hours (or shifts)
worked, which can modify the total capacity over a
given horizon. Newsvendor networks, which will be
discussed in the next section, fall into this formula-
tion where the impact of capacity is modeled explic-
itly via “hard,” linear constraints. Another typical
capacity constraint formulation is via queuing model,
which highlights the uncertainty of processing and
the impact of tactical scheduling and resource starva-
tion on realized capacity, as will be discussed in §4.1.
In reality, capacity constraints may be “soft,” in

the sense that the output of resource i is not rigidly
bounded, but can be increased, albeit at an increas-

ing cost. The increasing marginal costs may reflect
extraordinary charges including expediting, overtime,
etc. Such capacity constraints can be captured implic-
itly by a concave operating-profit function, or explic-
itly by processing costs that are piecewise linear or
convex increasing when quantity exceeds a critical
number, say Ki.

3.2. Capacity Adjustment Costs
Capacity adjustment cost are the investment costs
incurred when changing capacity. When adjusting
capacity vector Kt−1 to Kt at time t, the associated
cost is, in general, a bivariate function of �Kt−1�Kt
.
In addition, when evaluated at an earlier time, it may
be uncertain. Typically, however, the adjustment cost
at time t is assumed to only depend on the capacity
change and is denoted by Ct�Kt−Kt−1
. In addition, Ct

is assumed to be convex to guarantee a well-behaved
concave capacity investment optimization problem.
Let x+ and x− denote the vectors with components
max�0�xi
 and max�0�−xi
, respectively. The typical
economic assumption is that Ct is a kinked piecewise
linear convex function Ct :

Ct�x
= c′K� tx
+− r ′K� tx

−� (3)

where the marginal investment costs cK� t and dis-
investment revenues rK� t are usually, but not neces-
sarily, positive. Very seldom can capital investment
be reversed at no cost; that unique setting where
cK� t = rK� t is called reversible or frictionless investment.
Typically, the focus is on resources that are costly to
reverse,6 meaning that cK� t > rK� t , so that only a frac-
tion of the investment cost is recovered when selling
real assets. If rK� t = 0, nothing is recovered, which is
called irreversible investment.
The nature of the adjustment cost function depends

on the type of adjustment that is considered and,
hence, the convexity assumption of adjustment costs
is not always appropriate. It may be appropri-
ate when capacity is divisible or when considering

6 Optimal capacities of costlessly reversible resources are found
by optimizing the (extended) operating-profit function. Those
resources are assumed to have been “maximized out” and, there-
fore, don’t appear in the operating-profit function.
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investment at the macro-economic level.7 Also, ongo-
ing or gradual adjustments, such as maintenance,
training, etc., might be labeled “frictionless” invest-
ments, and hence, modeled by a linear adjustment
cost. In contrast, however, infrequent and major
capacity adjustments typically stem from some fric-
tion or nonlinearity in the adjustment costs and often
enjoy economies of scale, implying that Ct�·
 is con-
cave. For example, at the firm level, there is often a
fixed cost associated with making any capacity adjust-
ment, creating a discontinuity in Ct at 0� Ct�0
 = 0,
while lim�Kt−Kt−1�→0Ct�Kt−Kt−1
> 0. Luss (1982) gives
two often-used adjustment cost functions that exhibit
economies of scale. The first one, called the “fixed
charge” cost function, is the affine version of (3), but
with a discontinuity at 0. Its single-resource version
for capacity additions is C�x
= c0+c1x for x > 0 with
C�0
 = 0. Such affine capacity adjustment costs can
be handled fairly well as discussed in Van Mieghem
and Rudi (2002); a pure fixed cost only affects the
boundary invest-or-not decisions, while the size of the
adjustment remains given by interior optimality con-
ditions that are independent of the fixed cost compo-
nent. The second often-used adjustment cost function
with economies of scale is the “power” cost function,
which is strictly concave. Its single resource version is:
C�x
= kx�, where k > 0 and 0< �< 1. Frictions from
irreversibility and/or economies of scale in adjust-
ment cost lead to a firm’s optimal capacity dynam-
ics involving occasional large changes, as will be
discussed in §5.

3.3. Capacity Investment Objective, Including
Planning Horizon, Discounting, and Decision
Makers

Traditionally, the objective is to maximize expected
net present value of the firm. (Section 6 will dis-
cuss more recent work that moves beyond maximiz-
ing expected present values and incorporates risk
aversion.) Net present value calculations require a
planning horizon T and discounting, which typi-
cally assumes a constant per-period discount factor

7 In a macro-economic equilibrium setting, the marginal cost of
investment should eventually increase, because the shadow price
of investment should eventually rise as resources are diverted from
other uses, which tends to convexify the cost of investing.

� > 0. Obviously, the values of the planning horizon
T and discount factor � influence dynamic capacity
decisions. Capacity models typically use longer plan-
ning horizons (several years and sometimes decades)
than aggregate planning models (several months
and sometimes years). This longer planning hori-
zon reduces forecasting accuracy (see below) and
increases uncertainty, making stochastic models more
desirable. On the other hand, higher discount factors
mitigate the impact of longer horizons. (The appro-
priate choice of � is a central problem in finance that
goes beyond the scope of this paper.) Discounting also
puts restrictions on the adjustment cost functions. For
example, one typically assumes that the present value
of a unit of used capacity cannot be higher than a
new unit, i.e., cK� t ≥ ��−trK� � for � > t, to exclude unre-
alistic capacity dynamics. In addition, finite horizon
models (T <�) require an additional element in their
formulation: A salvage function f �K�	
, which is the
final (salvage) value for capacity portfolio K given
that state 	 obtains.
The traditional objective of capacity-investment

problems is either processing-network optimization or
network design by a single decision maker. Deciding
on the amounts of capacity involves optimization of
a given processing network or operating-profit func-
tion. By necessity, all single-resource capacity models
fall into this class. By considering a portfolio of differ-
ent types of resources, however, the capacity problem
can amount to network design, or selecting the most
appropriate mix of types of resources and their config-
uration (cf. the discussion on technology management
in §2). Often, however, capacity decisions are strategic
and may depend on multiple decision makers, includ-
ing other firm’s decisions, as §4.3 will review.

3.4. Continuous Versus Discrete Capacity
Many models assume that the capacity vector is a
nonnegative real variable, so that capacity is divis-
ible and, thus, its investment can be continuous or
“incremental.” While this is a valid assumption in set-
tings where the number of possible capacity sizes is
large, more detailed and precise capacity-investment
models may treat capacity as a discrete variable. Such
“lumpy” investment is appropriate when capacity
is indivisible and can only be installed in a small
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number of possible sizes. Integer restrictions typically
make these models less amenable to analysis.

3.5. Leadtimes
Leadtimes refer to the time between the purchase and
availability of new capacity. With growing stochas-
tic demand, capacity leadtimes increase the risk of
capacity shortage caused by demand uncertainty. The
basic approaches to protect against such risk are to
either expand capacity earlier or to adopt larger capac-
ity increments. Only a handful of papers, reviewed
in Ryan (2002), consider leadtimes in a stochastic set-
ting. Erlenkotter et al. (1989) consider one capacity
expansion of a single resource where expansion com-
pletion timing is held constant but the leadtime is
a decision variable. They show that the presence of
uncertainty has the effect of reducing the optimal lead-
time compared to its optimal value in a deterministic
model. When demand follows a geometric Brownian
motion, Ryan (2002) shows that leadtimes influence
timing, cost parameters determine expansion size, and
demand characteristics affect both timing and size.

3.6. Physical Depreciation and Degradation
Physical depreciation and degradation of capacity
refers to the diminishing financial and operating
value of a resource over time. Depreciation is typi-
cally modeled by a financial loss to the firm’s value.
(The depreciation on the marginal capacity unit of
resource i is proportional to its marginal value and
is typically captured by increasing the discount rate.)
Similarly, physical degradation can be modeled by a
decrease in the capacity vector, typically proportional
to the installed capacity K, or as in equipment replace-
ment models as reviewed by Rajagopalan (1998).

3.7. Tactical Activities, Starvation, and Inventory
General capacity-investment models take operating-
profit functions �t�K�	
 as primitives. While the
observed dynamics of inventories and other tactical
flows could be incorporated in state- or sample-path
	, many capacity models simply ignore tactical flows,
as discussed in §2.
Clearly, modeling must strike a balance between

complexity and realism: The appropriateness of ignor-
ing tactical flows may depend on the time-scale and

planning horizon under study. For example, in some
settings, capacity adjustments are only allowed infre-
quently. When adjustments of tactical flows occur
on a much smaller time-scale than capacity adjust-
ments, tactical flows can be optimized, given the cap-
ital stock that only varies on a larger time-scale and
thus can be taken as fixed for the tactical flow opti-
mization. Such “time-scale separation” would make
inventory changes, scheduling, and other tactical deci-
sions “invisible” at the higher level of capacity plan-
ning. The justification in Eppen et al. (1989) for ignor-
ing inventory-carryover between periods can be inter-
preted as a time-scale separation argument: “[ignor-
ing inventory-carryover is] consistent with the fact
that each time period is of sufficient length (one year)
so that production levels can be altered within the
time period in order to satisfy as closely as possible
the demand that is actually experienced.” In many
settings, however, actual realized output quantities
often depend on tactical activities and flows, such as
product-sequence-dependent setups and scheduling
that determines availability of raw material and work-
in-progress or resource starvation. For example, in sea-
sonal environments, it is not unusual to set capacity
for constant processing and buffer seasonalities with
inventory build-up and depletion. To capture these
detailed operational effects and trade-offs, it is often
necessary to incorporate tactical activities and inven-
tory carryover, especially in capacity portfolio models.
When activities or products are not divisible, schedul-
ing conflicts may lead to resource blocking and starv-
ing, which may reduce actual process capacity below
individual bottleneck resource capacities. (See §4.1.)
Interactivity inventory buffers those problems.
Mathematically, capacity investment is similar to

inventory management in that it deals with stochas-
tic optimization of very similar functions. In single-
period models, there is no essential difference
between inventory and capacity. There are some dif-
ferences in multiperiod (i.e., dynamic) models. First,
capacity is “utilized,” but not “consumed:” Unlike
inventory, the capacity vector is not depleted by
demand. It may, however, degrade faster with higher
usages, requiring faster depreciation. In inventory
models, different periods are linked via inventory-
carryover, which is often neglected in capacity mod-
els. On the other hand, inventory models mostly
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focus on “moving the goods” from stage to stage,
whereas capacity portfolio models focus more on
processing and the resulting interproduct couplings.
Second, inventory models typically assume that
unused inventory and all capacity are not perish-
able and that they are available for use in the
next period. Third, capacity models typically have
longer time horizons than inventory models so that
discounting and forecasting gain in importance in
capacity models. Last, and least, stationary capac-
ity models typically collapse to an essentially static
capacity problem: Given that no new information
is ever gained, the optimal capacity investment pol-
icy typically makes only one initial investment ever
(see next section). Stationary inventory models, on
the other hand, retain dynamic reordering, while the
ordering policy itself also is described by one or two
critical numbers which also can be found in an essen-
tially static problem. Dynamic capacity models, where
timing becomes nontrivial, require a more sophisti-
cated stochastic formulation: Typically the problem is
nonstationary, or capacity degrades over time.

3.8. Unsatisfied Demand and Capacity Shortages
When demand is uncertain, capacity is costly, or
capacity adjustments are not instantaneous, there will
be instances of insufficient capacity to meet demand.
Depending on the view one takes, these are called
capacity shortages or excess demand. In practice, firms
employ tactical countermeasures, such as allocation
schemes, increased pricing, backlogging, or advance
inventory build-up, to manage shortages. When such
tactical countermeasures are not incorporated in the
model, assumptions must be made on what happens
with excess demand. There is a strand in the capacity
literature that “assumes that available capacity must
meet or exceed demand” (Bean et al. 1992, p. S210),
which is also called the “no backlogs in demand”
assumption by Manne (1961). Obviously, with uncer-
tain demand, a no-capacity-shortage assumption must
be accompanied by a zero-capacity-leadtime assump-
tion. The alternative is to allow for excess demand,
which either is backlogged, or lost, or some combina-
tion of both. In either case, a demand-shortage penalty
is typically included, which may represent the loss
of goodwill that will manifest itself in a reduction of
future demand and is very hard to quantify, or the

cost to fill the demand through an alternate process,
as discussed in Manne (1961). The lost-sales case is rel-
atively easily incorporated in single-stage processes,
while backlogging requires one to incorporate nega-
tive inventory carry-over. In a capacity-expansion set-
ting where no contraction is allowed, backlogging can
easily be incorporated, as shown in Manne (1961), for
a single resource and growing demand, and in Van
Mieghem and Rudi (2002) for a capacity portfolio and
stationary demand. The “no backlogging” assump-
tion is typically easier to analyze because it corre-
sponds to the limiting case where the shortage penalty
becomes infinite and the peak process, sup�≤tD� , con-
tains all relevant information. In multiproduct sys-
tems, as studied in capacity-portfolio problems, an
alternative option to backlogging or lost sales is that
unsatisfied demand for one product “spills over” to
another product. In other words, ex-post substitution
provides another mechanism for matching capacity
with demand. Substitution has started to be explored
in an inventory context, and its effects are likely to
be similar in capacity problems. An important issue
is whether the substitution is executed by the firm or
by customers, as discussed in Bassok et al. (1999) and
Netessine and Rudi (2003).

3.9. Uncertainty, Information Structure, Learning,
and Forecasting

Arguably, the most important factor in a dynamic
capacity-investment model is the description of uncer-
tainty and its resolution over time. For the theorist,
the tractability of the model is directly related to the
mathematical properties of the stochastic process that
represents uncertainty and information resolution, as
will be illustrated in §5. In theory, that stochastic pro-
cess should depend on the employed forecasting pro-
cedures. While forecasting is extremely relevant to the
practitioner, however, it is rarely discussed in capacity-
investment research, Ryan (2003) being a notable
exception. (Chand et al. 2002, review the literature
on forecast and rolling horizons.) Paraskevopoulos
et al. (1991) distinguish three sources of uncertainty:
The uncertainty (“forecast error”) in econometrically
estimated demand equations and exogenous assump-
tions, uncertainty in structural shifts in demand over
time, and uncertainty in system parameters, such as
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the rate of learning. (See Hiller and Shapiro 1986, for a
capacity-investment model that incorporates learning
effects.) Often one can “learn” and update the demand
forecast as information is revealed and observed over
time. In such setting, Burnetas and Gilbert (2001) ana-
lyze the trade-off between better demand information
by waiting to procure capacity versus the increased
capacity cost when capacity acquisition cost increases
over time.
General capacity models assume an operating-

profit function and a stochastic environment that
does not specify the origin of uncertainty. They can
capture uncertainty in supply, internal processing,
demand, costs, prices, and environmental factors. In
operations-management models, demand is often the
generator of uncertainty and typically is assumed
to be exogenous. The other extreme would be to
assume that demand is endogenous, reflecting prac-
tices where marketing and sales would agree on a
sales plan and then each function would be respon-
sible for making it happen. Manufacturing produces
according to the plan and marketing and sales do
whatever is necessary to realize sales according to the
plan. With an endogeneity assumption, deterministic
or sales-plan driven capacity planning, as described
in the Introduction, may be appropriate to assess how
to deploy capacity to meet the sales plan, as well as
the cost of doing so. In that case, however, the capac-
ity problem has just been translated into the problem
of determining the best sales plan. Of course, reality is
somewhere in between: Demand is neither completely
exogenous nor completely endogenous; a property
that has not received much attention in the opera-
tions literature. A notable exception is Cachon and
Lariviere (1999) where demand is influenced by the
scarcity of capacity via capacity allocation schemes.
Then, demand can be decreasing in capacity if the
firm’s customers become convinced that their require-
ments will surely be met.

4. Optimal Capacity Investment:
Types and Amounts

This section reviews optimal capacity levels for vari-
ous types under risk-neutral investment. (Timing and
risk aversion will be discussed in §§5 and 6, respec-

tively.) Here, we consider a stationary environment
where it is optimal to keep capacity constant over
time. The simplest such environment is an i.i.d. struc-
ture, which Eberly and Van Mieghem (1997) define
as capacity portfolio models with (1) stationary oper-
ating profit and kinked, piecewise linear adjustment
cost functions (i.e., �t = �, rt = r, ct = c), (2) sta-
tionary stochastic structure (i.e., probability measures
for 	t and 	1, where 	 = �t	t� are identical), and
(3) independent periods (i.e., probability measures
for any pair, 	i	j , is equal to the product of their
measures). They show that an i.i.d. setting in infi-
nite horizon8 reduces the general dynamic capacity
problem to a single, initial capacity investment, effec-
tively collapsing the problem to a single-period prob-
lem. While losing dynamics, these essentially static
capacity-investment models are able to capture rich
modeling detail in the processing network and the
nature of uncertainty.
Section 4.1 reviews canonical stochastic capacity

models that adopt either queuing or newsvendor net-
work formulations. Section 4.2 illustrates newsven-
dor network analysis in the context of the example in
the Introduction. Section 4.3 reviews game-theoretic
capacity investment by multiple agents, who each
control a subset of the processing network.

4.1. Canonical Capacity Models in an i.i.d.
Setting with Multivariate Uncertainty:
Queuing Versus Newsvendor Models

Queuing Models. As discussed above, operations-
management models often use detailed formulations
where the operating-profit function ��K�	
 becomes
endogenous. One formulation involves queuing mod-
els, which are typically set in continuous-time and
focus on flow times and responsiveness in the pres-
ence of stochastic processing and stochastic demand.
Multiple resources lead to queuing networks in the
obvious way and product-dependent scheduling, pro-
cessing, and routing leads to multiclass queuing net-
works. Such systems allow for multivariate (often
product-dependent) uncertainty, although different
classes typically are assumed to be independent

8 That property retains in finite horizon settings if the final value
function f is identical to the disinvestment cost: f �K�	
 = r′K.
Otherwise, end-of-horizon investment effects may appear.
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(queuing theory is not very successful in handling
correlated arrivals). Queuing models can study tacti-
cal activities, such as dynamic sequencing and routing
in a given network, but are vastly underutilized in
the study of capacity investment (perhaps because of
their increased complexity and tactical detail).
In queuing models, the “maximal average process-

ing rate” at a node (location) in the processing net-
work represents the capacity of that node. In the
simplest setting, a node contains a single resource, or
“server,” that processes a single product, which may
represent a good, a customer, or both. Traditionally,
the maximal average processing rate at resource i is
denoted by �i, which is the reciprocal of the aver-
age time mi to process the product at that resource.
Capacity then constrains the average processing rate
at resource i, which is typically denoted by �i, as
�i ≤ �i. This is often scaled into an equivalent
capacity utilization constraint, which is traditionally
denoted by �i = mi�i ≤ 1. The latter representation
directly allows extension to a multiproduct setting,
or a multiclass queuing network. Letting mij and
�ij denote the average processing time and rate of
product j at resource i, the capacity constraint for
resource i becomes

∑
j mij�ij ≤ 1.

When comparing this to the linear programming
constraint (2), processing times m and processing
rates � are the obvious counterparts of capacity con-
sumption rates A and activity rates x, but what about
the level Ki of investment of resource i? There are sev-
eral interpretations of capacity investment in queuing.
Capacity investment can refer to increasing the service
rate �i of the server at node i, typically by reducing
the mean processing time of a particular product,
or of all products, served. Capacity investment can
also refer to increasing the number of servers at
node i. While capacity can be changed continuously
by increasing processing speed, it can only assume
discrete values when increasing number of processors
in the latter case. Obviously, both approaches can be
used simultaneously to adjust capacity. Multiserver
nodes quickly become difficult to handle analyti-
cally. In some formulation that adopt, for example,
fluid or Brownian approximations, one can introduce
an additional “capacity-scaling factor” for processing
node i, say �∗

i . The multiproduct constraint,
∑

j mij�ij

≤ 1, then becomes
∑

j mij�ij ≤ �∗
i , which is the coun-

terpart of the linear-programming constraint Ax ≤
K. Queuing models, however, typically offer a more
detailed representation of processing networks than
linear programming models in that they incorporate
the impact of tactical scheduling conflicts on total net-
work capacity. As discussed earlier, when activities or
products are not divisible, processing cannot be inter-
rupted or preempted. Resulting “bang-bang” process-
ing and poor scheduling may then lead to down-
stream resource starving, which may reduce actual
process capacity below individual bottleneck resource
capacities. For example, in multiclass queuing net-
works, naive scheduling rules can induce product-
specific starvation at different servers at different
times. This reduces the aggregate network’s effective
capacity in the sense that the network can become
instable, even though each server is less than 100%
utilized. (Dai and Vande Vate 2000 review the recent
surge in the study of stability conditions for multi-
class queueing networks.)
Queuing models become capacity-investment mod-

els when superposed with optimization and a capac-
ity adjustment cost function. Some examples of
queuing capacity models include Mendelson (1985),
Loch (1991), Lederer and Li (1997), and Cachon and
Harker (2002). The continental divide between inven-
tory and queuing models also applies to the subfield
of capacity investment. Production-inventory models
attempt to bridge the two worlds with representative
examples (Caldentey and Wein 2003, Armony and
Plambeck 2002). (Section 4.3 reviews these multiagent
queuing models.) Boyaci and Ray (2003) study a firm
with two substitutable products that differ only in
their prices and delivery times and are produced by
dedicated capacities. They analyze how capacity costs
impact capacity-investment levels and market posi-
tioning of the two products.

Newsvendor Models. Besides queuing formula-
tions, another, more popular capacity-investment for-
mulation is via a “recourse” linear-programming
problem. The newsvendor network formulation in
Van Mieghem and Rudi (2002) is an example of such
i.i.d. recourse-based models. Newsvendor network
problems are typically set in discrete-time and focus
on the impact of multivariate demand uncertainty,
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while assuming deterministic processing. Often a
sequence of i.i.d. demand vectors �Dt � t ∈ �� is the
generator of uncertainty in these models, although
supply, yields, and other uncertainty also can be cap-
tured. At the beginning of the period (called Stage 1),
the capacity vector K and inventory vector S are cho-
sen. Then demand D is revealed. At the end of the
period (Stage 2), an activity vector x is chosen to max-
imize operating profit by transforming RSx of input
stock into RDx units of output and sales for given
supply and demand routing matrices RS and RD. The
kernel of a newsvendor network generalizes (1)–(2) to
a network structure (but typically assumes determin-
istic processing):

��K�S�D


=max
x∈�m+

p′x− c′x− c′P�D−RDx
− c′H�S−RSx
 (4)

s.t. RSx ≤ S� RDx ≤D� Ax ≤K� (5)

In addition to prices p, processing and trans-
portation costs c, routing matrices RS and RD, and
capacity consumption matrix A, a newsvendor net-
work’s operating-profit function, thus, incorporates
unit demand (output) shortage cost cP, and unit
inventory procurement and holding costs cS and cH.
The objective is to maximize the expected net present
firm value, denoted by ��K�S
, by choosing capac-
ity K and inventory S before demand is known, and
choosing activity x afterwards:

��K�S
= �Ɛ��K�S�D
− c′SS− c′KK� (6)

where Ɛ denotes expectation and � is the per-period,
risk-neutral discount factor. The expected value func-
tion � is jointly concave in K and S so that the opti-
mization problem is well behaved.
The single-period optimality equations can be

expressed in terms of the expected dual prices of
the capacity and inventory constraints. As the exam-
ple in the next section will illustrate, these suf-
ficient first-order conditions can be interpreted as
coupled, generalized critical-fractile conditions, that
specify the optimal trade-off between the marginal
value of capacity, inventory, and their correspond-
ing marginal costs. In other words, newsvendor net-
works construct the optimal capacity portfolio by
trading off the opportunity cost of capacity-underages

with the cost of excess-capacity. With lost sales or
with backlogging for certain networks, Van Mieghem
and Rudi (2002) show that the single-period solu-
tion extends to a dynamic i.i.d. structure: The optimal
capacity strategy collapses to a single initial capacity
investment and all further dynamics involve inven-
tory, but no capacity adjustments. For small networks,
the model can be solved analytically; otherwise, it is
also easily solved using stochastic optimization via
simulation.
By appropriately structuring the three network

matrices, newsvendor networks can feature com-
monality, flexibility, substitution, or transshipment, in
addition to assembly and distribution. Multivariate
uncertainty allows the study of the important impact
of correlation on capacity investment. Van Mieghem
and Rudi (2002) show that, if demand is normally dis-
tributed, the optimal expected firm value is increas-
ing in the mean demand vector and decreasing in any
variance term. In addition, if ��K�S�D
 is submodu-
lar in D, then the expected value is decreasing in any
covariance term (and, thus, pairwise demand correla-
tion). (There is, however, no general theory yet on the
impact of covariances on the optimal capacity portfo-
lio K.) By allowing for alternate or “nonbasic” activ-
ities that can redeploy inputs and resources to best
respond to resolved uncertain events, newsvendor
network analysis can be used for network design. For
example, newsvendor networks that study the choice
between investing in product-flexible or dedicated
capacity include Netessine et al. (2002), Van Mieghem
(1998a), and Bish and Wang (2002), who add ex-post
pricing to the capacity decisions. Kulkarni et al. (2002)
study the choice between product- or process-focused
plant network configuration. Newsvendor networks
analyzing when it is worthwhile to allow for input
commonality or substitution include Van Mieghem
(2003a) and others reviewed in Van Mieghem and
Rudi (2002). Similar network design questions have
been addressed by Graves and coauthors using dif-
ferent, but related models; e.g., Jordan and Graves
(1995) present an original and insightful analysis on
the impact of “chaining” capacities in a network, and
Graves and Willems (2000) study the strategic place-
ment of safety stock in a supply network.
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4.2. Solution, Discussion, and Ramifications of
the Example

Solution of the Example (Risk-Neutral). To sim-
plify the exposition, consider the example from the
introduction in a single-period setting, thereby dis-
pensing with inventory dynamics and discounting
(i.e., � = 1). For concreteness, assume the following
data: Demand (in thousands) for the year is esti-
mated for three scenarios and shows high mix uncer-
tainty: a “pessimistic scenario” D = D1 = �150�350

with probability 1/4, the “expected scenario” D =
D2 = �300�300
 with probability 1/2, and an “opti-
mistic scenario” of D=D3 = �450�250
 with probabil-
ity 1/4. The capacity adjustment cost function C�K
=
cK�0 + c′KK includes the fixed cost cK�0 of $40 mil-
lion and unit-adjustment costs of cK1 = $30 for final-
assembly facility 1 (FA1), whereas the more cost-
efficient FA2 facility requires a modest cK2 = $20. The
testing facility (resource 3), however, is more expen-
sive with cK3 = $80, reflecting the cost of many expen-
sive IDTs. The two high-end drives are estimated to
have unit contribution margins p− c = �$400�$300
,
respectively,9 which will be denoted by net value v.
This is a newsvendor network model with two out-

puts or products, three resources, and four processing
activities: activity 1 �2
= FA of Product 1 (2), 3= test
Product 1, 4 = test Product 2. In the static problem,
we do not consider inventories. The general activity
vector x is a nonnegative four-vector for any state D.
Given the process structure and the assumption that
we do not allow for intraresource buffers, we clearly
have that x1 = x3 and x2 = x4. Thus, a reduced two-
vector, which we also will call x, is a sufficient activ-
ity descriptor. Without loss of generality, we assume
that each product requires approximately the same
amount of tester time. Therefore, the relevant network
matrices in (4)–(5) are demand routing matrix RD and

9 Strategic objectives and “competitive intelligence” fixed margins
in advance so that uncertainty is manifested mainly through quan-
tities demanded. While our example focuses on demand uncer-
tainty, a complete analysis would also consider uncertainty in
margins, or price and variable costs.

Table 1 The Optimal Activity Vector and Marginal Values of Capacities
in Each Demand Domain for the Example

Demand Domain x�K�D� ��K�D�= �K��K�D�

�0�K�=
{
y ∈ �2

+� y1 ≤ K1� y2 ≤ K2� D �0 = �0�0�0�
y1+y2 ≤ K3

}
�1�K�=

{
y ∈ �2

+� y1 < K3−K2� �D1� K2� �1 = �0� v2�0�
K2 < y2

}
�2�K�=

{
y ∈ �2

+� K3−K2 < y1 < K1� �D1� K3−D1� �2 = �0�0� v2�
K3 < y1+y2

}
�3�K�=

{
y ∈ �2

+� K1 < y1� �K1� K3−K1� �3 = �v1− v2�0� v2�
K3−K1 < y2

}
�4�K�=

{
y ∈ �2

+� K1 < y1, �K1� D2� �4 = �v1�0�0�
y2 < K3−K1

}

capacity consumption matrix A:

RD =
[
1 0

0 1

]
and A=



1 0

0 1

1 1


 �

To determine the newsvendor-network solution K∗,
first observe that it is suboptimal to have K3 > K1+K2

or max�K1�K2
 > K3. The solution domain for the
optimal capacity vector K∗, thus, becomes �K ∈ �3

+�
max�K1�K2
 ≤ K3 ≤ K1 +K2�. Given that v1 = $400 >
v2 = $300 and resource consumption rates A31 and
A32 are equal, the optimal contingent activity vector
x�K�D
 is the greedy solution to (4)–(5):

x1�K�D
 = min�D1�K1�K3
�

x2�K�D
 = min�D2�K2�K3−x1


= min�D2�K2�K3−min�D1�K1

�

The demand space can be partitioned into five
domains #i�K
, as defined in Table 1 and displayed
in Figure 2, in which x�K�D
 is linear in K, and
its optimal shadow value or dual price ��K�D


def=
�K��K�D
, thus, constant. The first-stage capacity
decision maximizes expected value (6) with sufficient
condition:10

���K∗

def= �Ɛ��K∗�D
− cK = 0�

For newsvendor networks, gradient and expectation
interchange: �Ɛ��K�D
 = Ɛ�K��K�D
, so that the

10 With a discrete demand distribution, the expected operating
profit is piecewise linear and, hence, not-differentiable at the break-
points. At those points, �� should be interpreted as a subgradient.
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Figure 2 The Optimal Ex-Post Activity Vector x for the Example
Depends on the Capacity K and Demand D

K3

D

x

x= D

Produce

Ω1 Ω2 Ω3

Ω4Ω0

K2

K1 K3 D1

D2

marginal operating-profit is the expected shadow vec-
tor ��K
 of the linear program:

��K

def= Ɛ�K��K�D
= Ɛ��K�D


= ∑
domains i

�iP �#i�K

� (7)

where P is the demand forecast and �i is the con-
stant ��K�D
 for D ∈ #i�K
. Thus, the newsvendor-
network solution solves:

���K∗
= 0� where ���K
=��K
− cK� (8)

Condition (8) for the optimal capacity portfo-
lio is a generalization of the critical-fractile con-
dition in single-dimensional newsvendor models.
The marginal value, ��K
, generalizes the expected
“underage cost,” or the expected opportunity cost of
having insufficient capacity. Incorporating an addi-
tional demand-shortage penalty, cP, increases net
value, v, by R′

DcP, thereby increasing the underage
cost. In a multiresource, multiproduct setting, the
underage cost depends not only on the resource, but
also on the demand-vector scenario. Both resource
sharing (of the test resource) and demand dependence
(both drives are imperfect substitutes) introduce cou-
pling between different resources’ marginal value, an
effect that is absent in the single-dimensional model.
Underage cost is balanced with overage cost, as mea-
sured by the marginal cost of excess capacity.

The newsvendor solution K∗ is now found easily
by a marginal or steepest-ascent argument. Start from
the capacity vector Kb = �300�300�600
, which is the
lowest-cost portfolio that enables meeting the most-
likely demand D2, which equals ƐD. (In other words,
Kb would be optimal if there were no uncertainty.)
Now evaluate the marginal value of an increment
�K > 0, using (8):

���Kb
=




0

300

0


0�25+



400

0

0


0�25−



30

20

80


=



70

55

−80


 �

Thus, increase K1 as long as &K1� > 0, or until
K1 = 350, beyond which P4 (let Pi denote P�#i�K



becomes 0, and P3 = 1/4, and &K1� = 100/4− 30 =
−5< 0. Second, increase K2, as long as &K2� > 0,
or until K2 = 350, beyond which point P1 becomes
0, and &K2� = −20 < 0. Third, increasing K3 beyond
600 is suboptimal, as that would yield P2 = P3 = 0,
and &K3�=−80< 0. Similarly, decreasing K3 below
600 is suboptimal, as that would yield P2 = 1/2, and
&K3� = 400�1/2+P3
− 80 > 0. Thus, we have arrived
at the unique newsvendor-network solution: K∗ =
�350�350�600
.
The corresponding contingent activity vectors are

x�K∗�D1
 = �150�350
, x�K∗� D2
 = �300�300
, and
x�K∗� D3
 = �350�250
. Associated state-dependent
operating profits are ��K∗� D1
= $165�000, ��K∗�D2

= $210�000, and ��K∗�D3
= $215�000. Expected oper-
ating profit is $200,000 while capacity investment
costs are C�K∗
 = $40�000+ $65�500 = $105�500, so
that maximal expected value is ��K∗
= $94�500. It is
easy to verify that ��K� S� D
 is submodular,11 which
gives insight directly into the sensitivity to demand
forecast parameters: The maximal expected value
increases in the mean demand vector, but decreases in
any demand variance or covariance terms (including
any pairwise demand correlation). Thus, if products
are less substitutable, expected value will suffer.

11 For example, to show that the (sub)gradient '�/'D1 = v′'x/'D1

is decreasing in D2, one must consider three scenarios: (1) If D1

is small, then as D2 increases from 0, v′'x/'D1 remains constant
at v1 throughout #0 and #1; (2) if D1 is intermediate, then as D2

increases from 0, v′'x/'D1 remains constant at v1 throughout #0

and decreases to v1 − v2 in #2; (3) finally, if D1 is large, v′'x/'D1

remains constant at 0 throughout #4 and #3.
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Discussion of the Example (Risk-Neutral). This
example highlights an important conceptual distinc-
tion between deterministic and stochastic capacity
planning mentioned in the Introduction: The opti-
mal investment strategy in a stochastic model typ-
ically involves some degree of capacity imbalance
which can never be optimal in a deterministic model.
Capacity balance means that it is possible to fully uti-
lize all resources simultaneously, which means in a
newsvendor network:
Definition 1. A capacity portfolio K in a newsven-

dor network is balanced if there exists an activity
vector x ≥ 0, such that Ax =K.
In the example, the condition for a balanced capac-

ity portfolio simplifies to K1+K2 = K3. In the graphic
representation of Figure 2, a balanced capacity portfo-
lio yields a rectangular feasible region, while capacity
imbalance yields a rectangle with a “cut-off corner.”
Clearly, the capacity vector Kb = �300�300�600
 is bal-
anced, while the newsvendor network solution K∗

exhibits a relative “capacity imbalance” ( = �K1+K2−
K3
/K3 = 1/6 = 13%. Capacity balance is attractive
from a cost perspective, as it allows for the possibil-
ity of simultaneous full utilization of all capacities,
resulting in nice accounting efficiency metrics.
Another capacity plan that may show up in prac-

tice is a plan that minimizes lost sales. In some set-
tings, marketing managers may state that “a customer
lost once is lost forever,” and advocate ample capac-
ity to prevent that. We refer to such a plan that is
attractive from a revenue perspective as a “total cover-
age” capacity plan Kc. In the example, the “best” total
coverage is Kc = �450�350�700
. The newsvendor-
network solution K∗ provides the expected-profit-
maximizing compromise between these two conflicting
incentives.
This feature of compromising two conflicting incen-

tives is just another interpretation of the well-known
property of overage-underage balance in single-
dimensional newsvendor models. The reason for
unbalancing capacities, however, follows from extend-
ing this purely financial argument involving uncer-
tainty to multiple dimensions and, thus, is a fea-
ture unique to capacity portfolios. In the example,
the marginal value of increasing investment in testers

beyond 600 does not outweigh its cost of $80. There-
fore, there is an optimal 25% probability of not being
able to meet all demand, and the optimal aggregate
service level is 75%. In a network, many capacity
configurations can yield the same aggregate service
level. Safety capacity is the excess over the capacity
that would be optimal if there were no uncertainty.
In the example, optimal safety capacity is K∗ −Kb =
�50�50�0
. Hence, another interpretation of the opti-
mal capacity portfolio is that it specifies the optimal
amounts and locations of safety capacity in the net-
work, thereby also specifying optimal product service
levels. Thus, optimally trading off the expected value
of safety capacity at different resources with its cost,
results in a 100% service level for Product 2, while
the higher-margin Product 1 receives a service level
of 75%. Risk-neutral financial optimization, thus, spec-
ifies optimal safety-capacity amounts and locations
that typically result in an unbalanced capacity portfo-
lio because it “hedges” optimally against uncertainty.

Ramifications to Practice (Risk-Neutral). While
the newsvendor-network solution, by definition,
yields the highest expected profit among all capacity
portfolios, it has three properties that may impact the
likelihood of its implementation. First, the manager
recommending a newsvendor investment plan must
explain to top management why they should autho-
rize cash to be invested in a capacity portfolio that is
known in advance to be never fully utilized. The rea-
son is that counterbalancing capacities provides the
best operational hedge: This intentionally unbalanced
portfolio yields a network capacity configuration that
maximizes expected value. Obviously, if the manager
could observe the actual demand and all other uncer-
tainty in advance, she could identify precise capacity
needs and would invest in a balanced capacity port-
folio. Under uncertainty, however, she should “hedge
her bets” and invest in excess or “safety” capacity
in some resources precisely because this yields better
average performance. Thus, one key driver for capac-
ity imbalance is uncertainty (as we shall see in §6.3,
risk aversion is another).
Second, given that the newsvendor solution is typ-

ically not optimal for any ex-ante known demand,
it cannot be the outcome of the ”typical” sales-
plan driven capacity requirement planning described
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in the Introduction. To put this in perspective, the
capacity literature has typically focused on single-
resource investment for which a famous result was
first shown in the seminal paper by Manne (1961)
(which is reviewed in §5.4): Given stochastic demand
forecasts, the optimal capacity can be found by an
“equivalent deterministic problem” that considers the
same capacity-investment problem but with a per-
haps modified, but always deterministic, demand
and with some parameters (typically the discount
rate) modified to incorporate the effect of uncertainty.
This result justifies the practice of sales-plan driven
capacity planning or deterministic planning based
on one scenario. With a single resource, it is clear
that one can always find one modified demand for
which deterministic planning would yield the optimal
newsvendor solution. In contrast, such an equivalent
deterministic problem—and, hence, related justifica-
tion of practice—typically does not exist for a true
multiresource capacity-portfolio problem (e.g., where
some resources are shared among different products).
Indeed, the unbalanced optimal capacity portfolio can
only be obtained by carefully weighing upside versus
downside for each capacity, which are expressed by
intricate and coupled optimality conditions.
Deterministic planning, on the other hand, typically

yields a balanced capacity portfolio. While there is lit-
tle doubt that capacity-planning software capabilities
will advance in the future to incorporate these intri-
cate conditions, just like financial asset pricing soft-
ware has, the fact that the conditions are coupled has
broad implications for capacity-planning methods in
practice. Good capacity-portfolio planning cannot be
performed independently at separate locations with
only a corporate sales plan as input, but must be coor-
dinated throughout the organization.12 Obviously, top
management knows that traditional sales-plan driven
capacity planning misses uncertainty and, therefore,
heuristically incorporates uncertainty by perturbing
its capacity proposals before implementing them.
Adopting optimal stochastic capacity-portfolio plan-

12 While the process could be decentralized using incentives such
as transfer prices, determining the appropriate incentives seems
to require a central planner to first solve the organization-wide
capacity problem.

ning, however, eliminates these heuristic perturba-
tions and automates the incorporation of uncertainty.
It seems logical to conjecture that the financial

and strategic value of adopting stochastic portfolio
planning should be highest for firms in volatile indus-
tries that have some resource-sharing among different
products.13 (The third property that should be consid-
ered when adopting a newsvendor capacity solution
is that it defines the maximal-risk capacity portfolio,
which will be discussed in §6.3.)

4.3. Game-Theoretic Capacity Investment by
Multiple Agents

In many settings, capacity-investment decisions are
not made in a vacuum. At a minimum, those deci-
sions interact with external customer demand and
may depend on external supply markets. These cus-
tomers may have access to other firms, and these sup-
pliers may also supply those other firms. In short,
a firm’s capacity decisions typically depend on, or
interact with, other economic agents’ decisions. Thus,
it seems natural for capacity investment models to
incorporate the strategic behavior of self-interested
agents. A classic textbook example is capacity pre-
emption, where an incumbent overbuilds capacity to
deter entry by signaling to potential competitors that
it has a small marginal cost. Thus, information asym-
metry enters the picture, as well as many other game-
theoretic factors, when a processing network is parti-
tioned such that each subnetwork is controlled by a
different agent.
The capacity-portfolio solution methods discussed

earlier now must be augmented with a fixed-point
condition to solve for Nash equilibrium capacity-
investment strategies. Complexity quickly mounts
and great care must be exerted to specify a tractable
multiperson model. Most game-theoretic capacity
analysis has, therefore, been restricted to a station-
ary setting where a single capacity investment is opti-
mal, emphasizing capacity type and size, rather than
timing decisions.

13 For example, pharmaceutical Eli Lilly employs a full time staff
of sophisticated stochastic capacity-portfolio planners that aid in
the strategic planning of new facilities for new compounds (private
conversations).
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Single-resource, multiagent capacity models consider
networks with essentially one productive resource
capability controlled by one (set of) agent(s) who inter-
act with another set of agents without processing capa-
bilities. The “nonprocessing” agents typically have
another economic asset that is of value to the pro-
ducer. Examples of such assets include market infor-
mation and access, as in the typical manufacturer-
retailers relationship; design and marketing capabili-
ties, as in the more recent setting where OEMs have
outsourced production to contract manufacturers; or
the buying decision, as in the direct relationship of
manufacturer-customers. Cachon and Lariviere (1999)
consider the manufacturer’s capacity investment and
allocation decisions to several downstream retailers
that have private information. Armony and Plambeck
(2002) consider the capacity investment of a manufac-
turer that sells through two distributors. When sup-
ply is scarce, customers may place duplicate orders,
which leads the manufacturer to overestimate both
the demand and cancellation rates. This typically
leads the manufacturer to purchase too much capac-
ity, but estimation errors may lead to underinvest-
ment when the cost of capacity is high. Plambeck
and Taylor (2001) investigate the impact of bargain-
ing and industry structure on capacity investment and
profitability when OEMs outsource manufacturing to
contract manufacturers. Caldentey and Wein (2003)
present contracts that are linear in backorder, inven-
tory, and capacity levels to coordinate a manufacturer-
retailer production-inventory system, including the
capacity decision. While not a true multiagent capac-
ity problem, Carr and Lovejoy (2000) analyze the
manufacturer-customer relationship in a setting where
demand management is relatively less costly than
capacity adjustment, so that a capacitated firm will
“choose a demand distribution” from a set of poten-
tial customer segments that is most profitable. Lovejoy
and Li (2002) study how to best expand hospital oper-
ating room (OR) capacity, which can be had by build-
ing new ORs or extending the working hours in the
current ORs, acknowledging the conflicting priorities
of patients, surgeons and surgical staff, and hospital
administrators.
Porteus and Whang (1991) consider a principal-

agent formulation where capacity and demand are a

function of the private effort of the manufacturing
manager and marketing managers, respectively. They
present an optimal incentive plan that is interpreted
as requiring the firm’s owner to make a futures mar-
ket for capacity, paying the manufacturing manager
the expected marginal value for each unit of capac-
ity provided, receiving the realized marginal value
from the marketing managers, and on average losing
money in the process. That framework was extended
by Kouvelis and Lariviere (2000), who allow prices to
adapt as information evolves. In a newsvendor set-
ting, managers in the first stage receive the expected
shadow price, whereas later agents are charged the
realized shadow price of the resources they utilize.
This linear transfer-pricing system simplifies the non-
linear incentive scheme that coordinates the “global
newsvendor” of Kouvelis and Gutierrez (1997),
where two agents sell an identical product in two
markets.
Multiresource, multiagent capacity models consider

networks where several agents own processing capac-
ity, which implies a capacity portfolio problem. The
relationship can be “vertical,” meaning that agents
control different “stations” in a supply chain, such as
in multiechelon systems, “horizontal,” with parallel
firms supplying a common market, or a mixture of
both. Most articles consider horizontal competition,
typically with univariate uncertainty. For example,
Loch (1991) considers price and capacity decisions for
a duopoly in a competitive queuing model, which is
extended by Lederer and Li (1997) to perfect compe-
tition. Bashyam (1996) considers capacity expansion
in a two-stage setting akin to a static newsvendor
network but with private, Bayesian demand-
information updating. Lippman and McCardle (1997)
show how a newsvendor critical-fractile solution
extends to a competitive setting with multiple
agents supplying a single market with fixed-price
and univariate demand uncertainty. That solution
critically depends on the “splitting rules” that specify
how initial demand is allocated among compet-
ing firms and how any excess demand is allocated
among firms with remaining capacity (or inven-
tory). Van Mieghem and Dada (1999) discuss how
the relative timing of the three major operational
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decisions—capacity, processing (inventory) quantity,
and price—impact the sensitivity and profitability
of those decisions under demand uncertainty for a
monopoly, oligopoly, and perfect competition. The
relative value of postponement seems to increase
as the industry becomes more competitive. (Cf. Van
Mieghem and Dada 1999, for a review of earlier
capacity and pricing models.)
Subcontracting refers to the setting where both

the contractor and supplier have productive capac-
ity. With outsourcing, on the other hand, the contrac-
tor has no productive capacity and relies completely
on the supplier(s). Subcontracting is an example of
combined vertical-horizontal relationships in the sup-
ply chain if the subcontractor also has market access.
Strategic capacity choice, by both subcontractor and
manufacturer, is analyzed by Van Mieghem (1999)
under multivariate demand uncertainty. The coordi-
nation potential of three contract types is investi-
gated, including an incomplete bargaining contract.
The impact of demand volatility and correlation on
the option value is presented, as well as conditions for
when outsourcing—the extreme solution point where
the manufacturer invests in zero capacity—is optimal.
Cachon and Harker (2002) consider a duopoly where
firms face scale economies with univariate uncer-
tainty. Firms compete with two instruments: explicit
prices and delivered operational performance. The
latter includes quality of service, which is directly
driven by the capacity choice of the queue’s pro-
cessor. They also allow each firm to outsource its
processing to a supplier and identify economies of
scale as a strong motivator for outsourcing. Bern-
stein and DeCroix (2002) analyze a newsvendor-like
capacity game in a single-product modular assembly
system. The final assembler moves first by setting a
price-only contract specifying the unit-price she will
pay to subassemblers, who then set the unit-prices
they will pay to their suppliers. In the second stage,
all parties independently choose their capacity level.
Finally, demand is observed and all parties produce
the same number of units. Equilibrium capacities and
prices are characterized and used to guide network
design.

5. Optimal Capacity Adjustment
over Time

This section reviews capacity investment problems
that are dynamic, meaning they do not reduce to a
single initial investment.

5.1. Generic Dynamic Capacity Strategies and
Trade-offs

In addition to the portfolio configuration decisions on
type and amounts reviewed above, dynamic capacity
problems must also decide on the timing of capacity
adjustments. Timing involves some general trade offs.
For example, if one expects demand to increase, when
should one increase capacity and by how much? In
a single-product setting, the generic choice is a com-
bination of the polar extremes of a capacity-leading
strategy, where there are never demand shortages,
and a capacity-lagging strategy, where there is never
underutilized capacity, as shown Figure 3. Capacity
lagging has the advantages of eliminating capacity-
overage risk, being less dependent on accurate fore-
casting, and delaying capital expenditures. On the
downside, however, it incurs lost sales and dissatis-
fied customers, which can invite entry by competi-
tors; it has no ability to exploit the “upside” of a
forecast; and it is very sensitive to any start-up prob-
lems with new capacity additions. Neither of the two
polar extremes employ inventory. A hybrid strategy
uses initial excess capacity to build inventory to sup-

Figure 3 Managing Capacity Over Time Involves Deciding the
Capacity Adjustments’ Timing and Magnitudes
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ply later undercapacitated periods. While that is hard
to do in a service setting (unless part of the service
can be performed in advance of customer demand), it
combines the advantages of high utilization and cap-
turing all demand, at the cost (and risk) of holding
inventory. Clearly, the trade-off is between the capac-
ity investment costs and the inventory holding cost,
and appropriate levels of both are driven by the trade-
off between cost of underage versus overage (cf. the
newsvendor-network discussion above). The appro-
priate strategy may also depend on where products
are in their life cycle: Product-introduction requires
capacity-leading, whereas maturity may move more
towards inventory-smoothing or even lagging.
The magnitude of the capacity adjustment and its

timing are also interdependent. A key question is
whether one should have many small adjustments or
few large adjustments, their polar extremes being con-
tinuous adjustment or a single, discrete adjustment.
Typically, many small adjustments are the result of
continuous improvement activities. Few, large adjust-
ments, and, thus, discrete capacity changes, typically
are caused by “frictions.” As we shall review, the lit-
erature has identified several sources of friction: indi-
visibility (i.e., “lumpy capacity”), irreversibility (i.e.,
a kinked adjustment cost function as (3) with cK� t >
rK� t) and nonconvexity (e.g., due to fixed cost and
economies-of-scale in the adjustment cost function).
Finally, in a multiresource setting, the adjustment

decisions of various resources are coupled and an
important question is whether there exists a simple
description of the coupled dynamics and, perhaps, a
natural ordering of resources, such that capacity i is
always adjusted before capacity j .

5.2. Structural Properties of Optimal Capacity
Portfolio Dynamics

At each possible capacity adjustment time, the firm
will base its investment decision on the information
then available and on its assessment of the uncertain
future. Mathematically, information availability and
uncertainty, which are crucial to any investment strat-
egy, are modeled by a standard probabilistic frame-
work with a probability space �#�� �P
 and filtra-
tion � = ⋃

t �t as primitives. The filtration � shows
how information arrives and uncertainty is resolved

as time passes, with �t representing the information
available at time t. Under the risk-neutral assump-
tion, the firm’s objective is to maximize its expected
net present value, which is the discounted sum of
operating profits �t�Kt�	
 minus adjustment costs
Ct�Kt −Kt−1
.
To solve the dynamic investment problem, the

usual backward induction argument leads to Bellman
optimality equations. Adopting a discrete-time for-
mulation for simplicity, let Vt�Kt−1�	
 denote the opti-
mal value function when starting at the beginning of
period t, with capacity vector Kt−1 given state of the
world 	. With concave operating-profit functions and
convex adjustment costs, the optimal value functions
Vt�·�	
 inherit the concavity of the operating-profit
functions �t (Theorem 1 in Eberly and Van Mieghem
1997).
Concavity makes the control problem well behaved.

Eberly and Van Mieghem (1997) show that concavity
implies that it is optimal to invest according to a cer-
tain kind of control-limit policy that they call an ISD
(Invest/Stay put/Disinvest) policy. Roughly speak-
ing, an ISD policy adjusts each capacity i according
to a control-limit policy defined by two critical num-
bers or “triggers,” KL

t� i ≤ KH
t� i, which are functions of

the critical numbers of other resources. These define
three action zones: Capacity i is increased to KL

t� i if
Kt−1� i < KL

t� i (invest), decreased to KH
t� i if Kt−1� i > KH

t� i

(disinvest), and not adjusted otherwise (stay put). An
ISD policy for the two-resource case (n = 2) has the
structure shown in Figure 4.
How is such an optimal ISD strategy found? For

ease of notation, let gt�Kt�	
 be the firm’s expected
net present value, evaluated at the beginning of
period t and conditioned on the available informa-
tion, given that capacities have been adjusted to Kt

and an optimal (partial) investment strategy is imple-
mented:

gt�Kt�	
= �t�Kt�	
+�Ɛ-Vt+1�Kt
 
 �t.�	
� (9)

Eberly and Van Mieghem (1997) show that if the solu-
tion /t�Kt−1�	
 to the concave optimization problem
supKt∈�n+

�gt�Kt�	
−Ct�Kt −Kt−1
� is unique, then /t

is an ISD policy and is optimal for the general capac-
ity investment problem for t, for every t ∈ �1� � � � � T �
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Figure 4 Structure of a Two-Dimensional ISD Policy Generated by a
Supermodular Concave Function
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and 	 ∈#. (Optimality extends to the infinite-horizon
case under mild additional conditions.)
The concavity of gt yields the following additional

properties of an optimal ISD policy. The optimal ISD
policy for period t is characterized by a connected set
St�	
⊂ �n

+ for each 	 ∈#, where

St�	
= {
K ∈ �n

+� rK� t ≤ �gt�K�	
≤ cK� t
}
� (10)

If Kt−1 ∈ St�	
, no adjustments are made: Kt =
/t�Kt−1�	
 = Kt−1; otherwise, Kt−1 is adjusted to a
point /t�Kt−1�	
 on the boundary of St�	
. Thus, if the
capacity vector Kt−1 is within St�	
, it is optimal “to
stay put” on all dimensions and to continue with the
same capacity portfolio for the next period. Hence, the
set St is also called the “region of inaction” or “contin-
uation region.” Its boundaries are increasing (decreas-
ing) if all operating profit functions, �t�·�	
, and the
salvage function, f �·�	
, are supermodular for each 	.
The capacities are then economic complements (sub-
stitutes) so that a higher optimal investment threshold
in resource k justifies a higher (lower) optimal invest-
ment threshold in resource j , and vice versa.

5.3. Optimal Investment Dynamics and Sources
of Friction

When the time period becomes arbitrarily small, one
can instantaneously adjust capacity. Assuming suffi-
cient regularity, a control problem in continuous time
obtains where the central region St may move contin-
uously over time. Only the initial capacity investment
may represent an “impulse” control to the bound-
ary of S0 if the initial state K0 is outside S0. All sub-
sequent optimal capacity adjustments are “barrier”
or “instantaneous” controls. No control is needed as
long as Kt remains inside St and a period of inac-
tion ensues. When Kt “hits” the boundary of St , the
minimal amount of control is exercised to prevent
Kt from “leaving” St . Thus, the optimal investment
dynamics are similar to the dynamics of a point, Kt ,
floating inside a (typically moving) domain, St , being
reflected on its boundaries. This succession of periods
of inaction followed by bursts of capacity adjustment
coincides with empirically observed patterns.
The width of the continuation region along coor-

dinate i is an increasing function of the amount
of irreversibility cK� t� i − rK� t� i of resource i invest-
ment. The continuation region shrinks to a single
point, representing the optimal capacity vector at t,
if investment is reversible (i.e., rK� t = cK� t). With such
“frictionless” investment, capacity is almost always
adjusted because the adjustment can be “undone” at
no cost in the future. If investment is irreversible (i.e.,
rK� t < cK� t), St represents a hysteresis zone where opti-
mal capacity at time t depends on previous capac-
ity at time t − 1, and capacity is adjusted only if
period t’s operating profit and information outlook
are sufficiently different from the previous period.
Thus, irreversibility introduces “friction” in the opti-
mal capacity-investment policy which exhibits peri-
ods of action (invest or disinvest) interspersed with
periods of inaction.
Indivisibility, such as discreteness in possible capac-

ity adjustment sizes—“lumpy capacity”—are a sec-
ond source of nonlinearities and friction that may
increase the region of inaction and distort the struc-
ture of the optimal policy. Narongwanich et al. (2002)
consider a single-product setting where new product
generations are introduced stochastically over time,
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and study whether one should invest in product-
dedicated capacity, which is only used for one prod-
uct life cycle, or reconfigurable capacity. They show
that the ISD policy remains optimal if all resources
have identical adjustment sizes. With different adjust-
ment sizes, the optimal policy is ISD-like but with
perturbations around its boundary, probably reflect-
ing adjustments from integer restrictions.
Fixed costs in the capacity-adjustment cost function

are a third source of friction and introduce additional
nonlinearities that increase the region of inaction, as
shown in Abel and Eberly (1998). Fixed capacity-
adjustment costs have a similar effect as fixed order-
ing costs in inventory theory; indeed, ISD policies
are related to a multidimensional generalization of
the famous two-critical number �S� s
 control policy.
In general, nonconvex costs or nonconcave operat-
ing profits introduce frictions that will lead a firm’s
optimal policy to exhibit occasional large changes, or
discontinuities, of the kind that arise with impulse
controls. For example, Dixit (1995) considers a convex
adjustment-cost function, but the production func-
tion is convex-concave, exhibiting initially increasing
returns to scale, and then decreasing returns to scale.
This produces similar effects to nonconvex capacity
costs: The optimal capacity “jumps over” the increas-
ing returns portion but is constrained by the eventual
decreasing returns.

5.4. Dynamic Capacity Models:
Univariate Uncertainty

Characterizing the continuation region, St , and its
dynamics is a formidable problem. Only when uncer-
tainty is generated by “nice and amenable” stochas-
tic processes can it be analytically determined. While
capacity-portfolio studies with multivariate uncer-
tainty are typically restricted to an i.i.d. setting,
dynamic studies are typically restricted to univariate
uncertainty. In addition, most models assume a uni-
variate stochastic process X = �Xt�	
� 	 ∈ #� t ≥ 0�
with independent increments. (While scenario-based
or stochastic-programming models can also capture
dynamics, here, attention goes to papers that analyti-
cally describe the investment dynamics.) Often, X is a
Markov process, such as a Markov chain or Brownian
motion, to maintain tractability.

Dynamic single-resource capacity models with stochas-
tic demand seem to have started with the semi-
nal work of Manne (1961), where demand follows a
Brownian motion with positive drift and only capac-
ity expansions are considered. Hence, a regenera-
tive process obtains and it is optimal to always
add capacity in the same increment 4K, which is
an increasing function of variance, whenever the
demand backlog hits a given “trigger” level (the crit-
ical ISD number). The associated expansion times
can be expressed in terms of the “hitting time” of
the Brownian motion. Manne (1961) showed that the
stochastic problem “does little—if anything—to com-
plicate matters” compared to the deterministic prob-
lem with known demand. Specifically, he showed
that the stochastic problem where capacity shortages
are not allowed can be transformed into what has
become known as an “equivalent deterministic prob-
lem” by replacing the discount rate by a decreas-
ing function of the variance rate 52 of the demand
process. Thus, the entire effect of uncertainty is cap-
tured by a single number: The modified or “equiv-
alent” discount rate r∗ = �

√
1+2r52 − 1
/52, where

r is the riskless rate. (Such equivalent determinis-
tic problem, however, does not exist for the multi-
resource capacity-portfolio problem, as discussed in
§4.2.) Equally important to practice, Manne (1961)
showed that the cost function is relatively insensitive
to the capacity increment, 4K, so that errors in para-
meters are rather inconsequential (similar to the EOQ
model).
Various extensions and modifications followed. For

example, Giglio (1970) considered a different non-
stationary, increasing demand structure of the form
D�t
= at+7t , where Ɛ7t = 0. Thus, demand mean and
variance are independent of each other, and the vari-
ance of 7t is either constant or linearly increasing in t.
Freidenfelds (1981) considers a series of models where
demand is Markovian and represented by birth-death
processes. Bean et al. (1992) consider capacity expan-
sion when demand is a semi-Markov process and no
demand shortages are allowed. They define the equiv-
alent deterministic problem and show that it exists
whenever the demand is a transformed Brownian
motion or a regenerative birth-and-death process. The
equivalent deterministic problem, again, uses a lower
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equivalent interest rate, and the equivalent deter-
ministic demand can be found from a regression on
observed demand. Davis et al. (1987) take a differ-
ent and quite unique approach: They suppose that
the decision maker exercises day-to-day control over
a capacity installation project by controlling the rate
of investment. The demand is a Poisson process and
is met by consecutive construction of identical expan-
sion projects of given size. Sophisticated stochastic
control theory ultimately shows that the control is
“bang-bang”: Either carry out construction at maxi-
mal speed or do nothing and wait, similar to an ISD
policy.
Angelus and Porteus (2002) consider expansion fol-

lowed by contraction through a single product’s life
cycle. The driving stochastic process, X, represents
demand, which is first stochastically increasing over
a known interval of time, after which it is stochas-
tically decreasing. They explicitly solve for the two
critical numbers that define the continuation region,
St , at each period. It is shown that it is optimal to
change the service level (i.e., the probability of meet-
ing demand) over time: Provide the lowest service
level during the peak period and the highest during
contraction periods. In addition, they provide initial
insights into the much more complex setting where
inventory is carried between periods.
Dynamic multiresource or capacity portfolio models are

often continuous-time models and assume some spe-
cial structure that simplifies the treatment of the
source of (typically univariate) uncertainty, X. Eberly
and Van Mieghem (1997) provide an example where
X is univariate Markovian. In addition, the gen-
eral operating-profit function is assumed stationary
(�t = � and Ct = C), Markovian (in the sense that
it only depends on the current capacity vector and
current state of nature so that �t = ��Kt�Xt
), super-
modular and linearly homogeneous in X and K, and
increasing in X. Homogeneity of degree 1 is power-
ful in reducing complexity because all dynamics can
be described in a scaled coordinate system Ki/Xt or
ki = log�Ki/Xt
. To appreciate the significance of this
result, they show that the central domain is now fixed
in K/X-space: S�Xt
= �K ∈ �n

+� r≤ �V �K/Xt�1
≤ c�.
In k-space, the investment dynamics reduce to those
of a “particle” moving along the line log�K
− log�Xt


in the interior of S and expanding or contracting
capacities when hitting a boundary of S. The impor-
tant result here is that, because S is fixed, in equi-
librium only a few of the 2n faces of S are ever
hit, and always in the same sequence. Therefore, the
order and frequency of capacity adjustments—or their
“flexibility” in economic terms—is endogenous in the
capacity model: Some resources will be systemati-
cally adjusted more often than other resources and,
thus, are systematically “more flexible” than other
resources. That ordering follows the ordering of the
width of S measured along the coordinate direc-
tions. As discussed above, the width of the region
of inaction is increasing in the difference cK − rK .
If the Markov process, X, is a univariate geometric
Brownian motion and the operating-profit function,
�, is derived from a constant returns-to-scale Cobb-
Douglas production function and a constant elastic-
ity demand function, the dynamics can be solved
in closed form. It then is shown that the fractions
rK� i/cK� i endogenously determine the resource adjust-
ment ordering or “flexibility.”
The fixed flexibility ordering inspired the “bottle-

neck policies” of Çakanyildirim and Roundy (2002).
Like Angelus and Porteus (2002), they consider a sin-
gle product’s life cycle, but assume a multiresource
production process with lumpy capacity in a cost-
minimization context. They show that the sequence
in which resources are expanded in the first up-part
of the cycle is the reverse of that in which they are
contracted in the down part. Clearly, in a single-
product setting with lumpy capacity, the resource
adjustment sequence is easier to determine because
only capacity adjustment of bottleneck resources can
be optimal. However, the timing of those adjustments
is nontrivial because it may be optimal to adjust
several resources simultaneously. Çakanyildirim and
Roundy (2002) provide an algorithm to calculate the
adjustment times and, hence, determine the “clus-
ters” of resources that are adjusted simultaneously.
Hu and Roundy (2002) extend Çakanyildirim and
Roundy (2002) and present an algorithm to calcu-
late the adjustment times in a multiproduct, multire-
source setting with stochastically increasing demand.
In both papers, adjustment times are determined at
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the beginning of the horizon (instead of dynami-
cally over time). Narongwanich et al. (2002), reviewed
above, analyze the choice between lumpy dedicated
or reconfigurable capacity when new generations of a
single product are introduced stochastically over time.
Analyses of specific instances of the general

dynamic capacity-portfolio investment analysis with
multivariate uncertainty, which is necessary to model
correlations between product demands or input sup-
plies, seem virtually nonexistent. A likely reason
is that with multivariate uncertainty, the charac-
terization of the continuation region in continuous
time typically reduces to a partial-differential equa-
tion with nonstandard boundary conditions. Typi-
cally, analytic solutions are not available, so one must
resort to numerical analysis. Discrete time does not
seem much easier, except perhaps, if one considers
only a few periods. Kouvelis and Milner (2002) ana-
lyze the two continuation regions in a two-period
model where a single product is provided through
a multiresource process comprised of either in-house
production or outside sourcing. In addition to prod-
uct demand, the outside supply capacity is also
stochastic.

6. Risk Aversion and Hedging in
Capacity Investment

This section reviews how risk aversion is incorporated
in capacity problems and how financial and opera-
tional hedging can reduce the risk associated with
capacity investments.

6.1. Moving Beyond Maximizing Expected
Present Values

Capacity investment often involves substantial cer-
tain cash outlays in order to receive uncertain future
rewards. It seems natural to consider the variability
in payoffs in addition to the average payoff. From an
economic theory perspective, however, it is not obvi-
ous that firms should care about risk. Indeed, this
question amounts to asking: What is the objective of
the firm? Without attempting to summarize the field
of corporate finance, let us discuss some important
issues. First, the objective depends on the ownership
structure. For a privately owned company, the objec-

tive may be the maximization of the owners’ expected
utility. The appropriateness of that objective, however,
depends on whether the owner is diversified or not.
If a majority of an owner’s assets are tied up in the
firm, the capacity-investment decision may materi-
ally impact the owner’s utility. If, on the other hand,
the owner is well diversified,14 the total variability of
her asset portfolio will impact the owner’s utility. In
that case, the impact of the capacity-investment deci-
sion on expected utility will be driven by the covari-
ance of the returns with those of the market. For a
publicly owned company, the objective is typically
stated as maximizing the market value of cash flows,
where that value is priced in competitive markets.
If the market is “perfect,” the capital-asset pricing
model dictates that the value is linear in the expected
return if the firm’s returns are uncorrelated with the
market returns,15 in which case, risk-hedging does
not enhance value. If the market has imperfections,
however, nonlinearities enter into the objective and
firms do care about risk. Typical market imperfections
arise from the cost of bankruptcy and related finan-
cial distress, cost of raising external capital, taxes, etc.
In addition, agency concerns lead to risk aversion:
To motivate risk-averse managers, the firm’s owners
may give them a stake in the firm. Finally, it is well
documented that “executives (including those who
are risk-seeking) make substantial effort to reduce or
eliminate risk, usually by delaying decisions and by
collecting more information,” according to Pindyck
and Rubinfeld (1989).
Given the significance of the cash outlays, the num-

ber of capacity-investment articles incorporating risk
is surprisingly small. While Caldentey and Haugh
(2003) present a more general model setting, the
majority of the few available risk studies in opera-
tions management are done in an inventory context,
as reviewed by Chen and Federgruen (2000), Ding
and Kouvelis (2001), and Gaur and Seshadri (2002).

14 Actually, diversification eliminates only “diversifiable risk,” and
nondiversifiable or “systematic” risk remains because the capacity
return may depend on the overall economy.
15 If the firm’s returns are correlated with market returns, firm value
can still be constructed to be linear in expected returns, if the expec-
tation is taken using risk-adjusted state probabilities; i.e., under the
equivalent Martingale measure (see later).
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This is, however, an active research area and one can
expect substantial future activity.
When firms care about risk, a fundamental prob-

lem is how to model risk behavior. According to
Kreps (1990), the predominant models for choice
under uncertainty are the von Neumann-Morgenstern
preferences and expected utility theory, where prob-
abilities are objective, and the Savage (or Anscombe-
Aumann) model, where probabilities are subjective.
Here, we adopt the von Neumann-Morgenstern
paradigm that simplifies the choice over outcomes of
terminal wealth to the maximization of the expected
utility of those outcomes. Several new important con-
siderations arise when adopting this paradigm:
First, endowment or wealth enters the model. While

one maximizes the expected utility of terminal wealth,
typically, the model primitive is initial endowment or
wealth W (or a budget constraint). The investment
options and returns link initial wealth to terminal
wealth. In line with real options theory, it is impor-
tant to incorporate all available investment options.
At a minimum, the investor can choose to keep some
of her money in a riskless asset with certain (risk-
free) return r . For simplicity, consider the one-period
investment problem,16 in which case, terminal wealth
equals ��K�	
+ �1+ r
�W −C�K

.
Second, can one invest beyond the initial endow-

ment? Theoretically, this possibility is automatically
incorporated if one assumes a perfect capital mar-
ket in which one can borrow without limitations at
the risk-free interest rate. While we shall assume so
for simplicity, in practice this does not hold, and the
debate then moves to how one finances the invest-
ment. Choosing the “right” mix between new equity
or debt defines the capital structure of the firm, which
is beyond the scope of this paper. Stochastic capac-
ity models assume (often implicitly) either a perfect
capital market or investment costs that are relatively
small compared to the value of the firm, such that
capital structure is unaffected. (Refer to Stenbacka and
Tombak 2002, for an overview of financing compli-

16 Incorporating risk considerations over sample time paths is vastly
more complicated and beyond the scope of this paper. Classic
references include Merton (1971) and Kreps and Porteus (1978).
Schroder and Skiadas (1999) present state-of-the-art formulations
and results.

cations.) Then, a risk-sensitive investor will choose a
capacity vector that maximizes the expected utility
U�K
 of terminal wealth, where

U�K
= Ɛu���K�	
+ �1+ r
�W −C�K


� (11)

and the utility function u�·
 is strictly increasing (such
that the investor prefers “more over less”) and con-
cave (such that the investor is “risk averse,” mean-
ing that the expected value is preferred over the risky
outcome).
Third, what is the form of the utility function u?

Among the myriad forms, u�x
 = −e−zox (zo > 0) is
theoretically and mathematically appealing. It models
a decision maker with constant coefficient of abso-
lute risk aversion z�x
 = −u′′�x
/u′�x
 = zo. One of
its appealing features is that the capacity decision
becomes independent of initial wealth (if one can bor-
row without limitations). Indeed, the expected utility
in (11) simplifies to

U�K> z0
 = −e−zo�1+r
W

·Ɛexp(−zo���K�	
− �1+ r
C�K


)
�

A second appealing simplification happens if the
operating profits ��K�	
 are normally distributed.
Denote its mean and variance by ��K
 and 52�K
.
Invoking the characteristic function of the normal dis-
tribution ?��t
= Ɛexp�i�
= exp�it�−�1/2
52t2
 then
yields:

U�K>z0


=−e−zo�1+r
�W−C�K

?��izo


=−exp(−zo�1+r
�W−C�K

−zo��K
+ 1
25

2�K
z2o
)
�

In summary, under the assumptions of per-
fect capital markets, constant absolute risk aver-
sion, and normally distributed operating profits, the
von Neumann-Morgenstern framework of maximiz-
ing U�K
 is equivalent to maximizing

UMV �K> z
= ��K
−z52�K
� (12)

where z = zo/2 is called the “risk parameter,” and
� and 52 are the mean and variance of firm value
expressed in end-of-period monetary units:

��K
 = Ɛ��K�	
− �1+ r
C�K
=��K
− �1+ r
C�K
�

52�K
 = Ɛ�2�K�	
− �Ɛ��K�	

2�
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(Recall that � = �1 + r
−1, so that these defini-
tions are equivalent to (6), which was expressed
in present-value monetary units.) The objective (12)
mirrors the celebrated mean-variance formulation of
financial-portfolio theory developed and reviewed by
Markowitz (1991).
Mean-variance formulations have two significant

benefits: They are implementable (i.e., only two
moments are required, which can be estimated) and
useful in the sense that they provide “good recom-
mendations,” even when the decision maker does not
know her utility function. The benefit of usefulness
relates to the important concept of the Pareto-optimal,
or efficient, frontier, which can be defined as follows.
For generality’s sake, let ��K
 denote a measure of
risk of the capacity investment K and assume the fam-
ily of “quasi-utility” functions

U��K> z
= ��K
−z��K
� (13)

with risk parameter z≥ 0. Review the traditional def-
initions:
Definition 2. Capacity portfolio K is �-efficient if

and only if there does not exist another portfolio K′

such that either ��K′
 > ��K
 while ��K′
=��K
, or
��K′
 <��K
 while ��K′
= ��K
.
Definition 3. The efficient frontier �� is the set of

risk-return pairs of �-efficient portfolios:

�� = {
���K
���K

� K is �-efficient

}
�

Loosely speaking, under mild regularity condi-
tions, the frontier is the northwest boundary of the
set of all risk-return pairs ����K
���K

� K ∈ ��.
Depending on the risk measure, process structure,
and uncertainty, the frontier may be a concave func-
tion. Then there is a one-to-one correspondence to effi-
cient investments and investments that maximize the
(quasi-)utility U��K> z
, as illustrated in Figure 5. In
that case, we can define K�z
 as the efficient capacity
portfolios that maximize U��K> z
:

K�z
 = argmax
K∈�R

U��K> z
 and

U��z
 = U��K�z
> z
� (14)

If the quasi-utility U��K> z
 is strictly concave in K,
the maximizer, K�z
, is unique. Then, K�·
 is a path

Figure 5 The Risk-Return Frontier �� and Its Correspondence to the
Efficient Capacity Portfolio K�z� and Maximal Value U��z� of
the Quasi-Utility Function U��·� z� for a Fixed Risk
Parameter z

Risk of capacity portfolio value R(K)

Mean capacity portfolio 
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z
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or curve in K-space that summarizes everything one
needs to know to implement the optimal invest-
ment recommendation. Hence, we shall refer to K�z


as the efficient capacity path or the relevant set of
“good recommendations” referred to above, which
are those that are on the efficient frontier. To con-
clude the risk-averse capacity portfolio problem, all
that is needed is a reasonable estimate of the deci-
sion maker’s risk attitude z. Thus, the efficient path
and frontier embody the trade-off between expected
return and risk. In practice, the decision maker can
be presented with (a subset of) the efficient invest-
ment path, starting from the risk-neutral solution K∗

and moving to the lowest risk efficient plan by
tightening the risk parameter z. Moving from von-
Neumann-Morgenstern preferences to mean-variance
preferences, however, cannot be done, in general.
Indeed, the expectation of u��
, typically, cannot be
expressed in terms of the first and second moment
only, except under the special assumptions above or
when the utility function u is concave quadratic. A
debate has been held on the appropriateness of mean-
variance formulations. Markowitz (1991) states:

So, equipped with database, computer algorithms
and methods of estimation, the modern portfolio the-
orist is able to trace the mean-variance frontiers for
large universes of securities. But is this the right thing
to do for the investor? In particular, are mean and
variance proper and sufficient criteria for portfolio
choice?� � �
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We seek a set of rules which investors can fol-
low in fact—at least investors with sufficient com-
putational resources. Thus we prefer an approximate
method which is computationally feasible to a pre-
cise one which cannot be computed. I believe that
this is the point at which Kenneth Arrow’s work on
the economics of uncertainty diverges from mine. He
sought a precise and general solution. I sought as
good an approximation as could be implemented. I
believe both lines of inquiry are valuable.

Thus, while mean-variance preferences are consistent
with utility theory only under very limiting assump-
tions, the crucial question is: How much utility do
we “give up” when maximizing the mean-variance
quasi-utility? Levy and Markowitz (1979), and Kroll
et al. (1984) studied this question in the following
sense: If you know the expected value and variance
of a probability distribution of return on a portfo-
lio, can you guess fairly closely its expected utility?
They found that the correlation between the predicted
expected utilities and the actual expected utilities was
extremely high, usually exceeding 0.99. (This was the
case for a variety of utility functions and nonnor-
mal probabilities.) In other words, there is evidence
that mean-variance formulations suggest “good rec-
ommendations” in the sense that they yield close-to-
maximal utility.
Nevertheless, while widely used and appealing to

practice, mean-variance preferences have serious lim-
itations. Most importantly, they treat positive devia-
tions from the mean (“upside”) symmetrically with
negative deviations (“downside”). Indeed, variances
give equal weight to deviations above or below the
average. This implies that dominating strategies may
not lie on the frontier: There may be investment plans
that yield returns higher, or at least as high, in each
state of nature as an investment plan on the frontier.
That has led to the suggestion of other approaches
to incorporate risk, including asymmetric preferences
such as reviewed in Nawrocki (1999):

�1�K
= Ɛ����K
−��K

+
2

“below-mean semivariance,”

�2�K
= Ɛ��t−��K

+
2

“below-target t semivariance,”

�3�K
= Ɛ�t−��K

+

“expected below-target t risk.”

Eppen et al.’s (1989) argument for their use of
expected downside loss, �3, is based on the fact that
the histogram of profits with actual data show that the
distribution of profits was not nearly normal or even
symmetric and that �3 only adds a simple linear con-
straint (while variance makes the problem nonlinear
and is computationally less tractable). Another related
approach, called robust planning (cf. Paraskevopoulos
et al. 1991, Laguna 1998, Malcolm and Zenios 1994) is
to have the risk measure, say�4, denote an increasing
function in the “uncertainty-sensitivity of the return
��K�	
.” For example, with multivariate uncertainty
(e.g., 	 represents a “noise” vector), one suggestion
for �4�K
 is J ′	CJ	, where J	 = �	��K�	

	=0 and C

is the covariance matrix of 	. A closer view reveals
that robust planning with this sensitivity term is
intimately connected to mean-variance analysis. Its
aim was to provide a practical approach for han-
dling noisy data and uncertainty and it originated
from a stochastic control, as opposed to utility max-
imization, perspective. The ideas of robust planning
have recently been adopted in economics by Hansen
and Sargent (2001) and others, as summarized in the
module on “robustness to uncertainty” (May 2001
issue of American Economic Review), which also gives
arguments against this more heuristic approach to
uncertainty and ambiguity.
Instead of direct maximization of expected utility

or other more heuristic risk objectives, risk sensitivity
can also be incorporated through an option valuation
framework in a financial market equilibrium model if
an arbitrage-free market for trading and short-selling
capacity assets exists. This approach is discussed next.

6.2. Mitigating Capacity-Investment Risk with
Financial Hedging

Risk-averse decision makers may be interested in
mitigating risk in the capacity-investment decision.
Mitigating risk, or hedging, involves taking coun-
terbalancing actions so that, loosely speaking, the
future value varies less over the possible states
of nature. If these counterbalancing actions involve
trading financial instruments, including short-selling,
futures, options, and other financial derivatives, we
call this financial hedging. If, on the other hand, no
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financial instruments are involved in the counterbal-
ancing actions, we speak of operational hedging, which
is the focus of the next section.
The relationship between investment in financial

instruments and capacity-investment is immediate by
recognizing that the effect of capacity is identical
to selling a call option to the firm’s demand above
its capacity. Birge (2000) shows how this analogy is
used to value capacity in the presence of demand
uncertainty, and how it can be integrated in a linear
capacity-investment model. Financial hedging yields
an elegant approach to price present values using
risk-neutral discounting and to incorporate risk with-
out having to resort to utility functions. The basic idea
is to construct a “perfect hedge,” which is a portfo-
lio that provides a constant future value in any state
of nature and, therefore, can be priced using risk-free
discounting.17

The classic example of a perfect hedge is to buy
a risky asset (e.g., � shares in a company’s stock at
share price S0) today, and to sell a ticket that enti-
tles its bearer to buy one share of stock at a terminal
date T , if she wishes, for a specified “strike” price s.
(Thus, the ticket is a European call option with future
value Xc = �ST − s
+, where ST is the stock price at
time T .) For simplicity, consider a two-date economy
with dates indexed t = 0�T and with uncertainty at
time T modeled by two states of nature. Call the two
states “up” and “down,” so that ST is either S0u or
S0d, where u > d are the up and down percentages.
The only interesting case is to specify a strike price s

such that S0d≤ s ≤ S0u. The future value of the portfo-
lio then is either �S0u− �S0u− s
 in the up state when
we pay S0u− s to the owner of the call, or �S0d in the
down state when the call is worthless. Clearly, both
payoffs are equal if � equals �∗ = �S0u−s
/�S0u−S0d
,
which yields a perfect hedge. With the perfect hedge,
the portfolio value is riskless and, in an arbitrage-
free market, its expected value must increase at the
same rate as a risk-free asset with return r . There-
fore, the present value of the portfolio is found using

17 The theoretical justifications come from the fundamental theo-
rems of asset pricing stating that (1) such perfect hedge is possible
if the market is “complete,” and (2) its price is unique if the market
is “arbitrage-free.”

risk-free discounting to be ��∗S0d, where, as before,
� = �1+ r
−1 is the period’s risk-neutral discount fac-
tor. In market equilibrium, there is no “free lunch,”
so that the present value of the portfolio must equal
�∗S0 − pc, the present value of �∗ shares and a sold
call. Thus, this arbitrage condition prices the call at
pc = ��∗S0�1+ r−d
.
The interesting facts here are that: (1) This price

is independent of the particular risk-attitude of the
buyer of the call, and (2) the perfect hedging share
�∗ is independent of uncertainty. Pursuing the lat-
ter fact, one can choose any probability measure over
the future states without affecting the option price.
A most useful choice is to adopt the famous equiva-
lent Martingale measure18 of Harrison and Kreps (1979),
whose expectation operator Ɛ∗ is such that the price
pX of any claim with future value X is pX = �Ɛ∗�X
. In
other words, the equivalent Martingale measure sepa-
rates risk from time valuation by adjusting state prob-
abilities such that its expectation of future value is
risk adjusted while discounting can be risk neutral. In
our example, the equivalent Martingale measure sim-
plifies to the “risk-neutral state probabilities” p∗ and
1− p∗ for the up and down state, respectively. One
easily verifies that there exist a unique p∗, such that
pc = �Ɛ∗�Xc
= �p∗�Su−s
 and S0 = �Ɛ∗�ST 
= ��p∗S0u+
�1−p∗
S0d
. The results from this basic idea extend to
continuous time and continuous state-space, yielding
the celebrated Black-Scholes formula.
To summarize, option pricing of financial hedging

provides a powerful tool to value risky assets via risk-
neutral discounting using the equivalent Martingale
measure. It circumvents the need to specify utility
functions or risk-adjusted discount rates. Such pow-
erful results come at a cost, however. In our setting,
it requires the existence of a market that: (1) trades
options on the firm’s and all its competitors’ capaci-
ties, (2) is perfect (it allows continuous-time trading
without transaction fees and without restrictions on
short selling), (3) is arbitrage-free, and (4) is com-
plete (there exists a self-financing trading strategy

18 The fundamental theorems of asset pricing can be restated in
terms of the equivalent Martingale measure (EMM) as (1) the mar-
ket is arbitrage-free iff there exists an EMM, and (2) in an arbitrage-
free market the EMM is unique iff the market is complete.
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that replicates the firm’s cash flows so that a perfect
hedge can be constructed). (While the option pricing
framework is no longer consistent with utility maxi-
mization when some of the conditions are relaxed, it
still provides practical use. For example, even imper-
fect hedges are valuable and, thus, so is hedging
using financial instruments that are correlated with
the firm’s profits, as shown by Gaur and Seshadri
2002.) With the advent of the Internet, such capac-
ity options markets may become reality, but probably
only for certain specific industries. Financial hedg-
ing requires writing an unambiguous contract that
specifies capacity usages in a form that is divisible,
tradeable, and enforceable. While possible in some
single-commodity settings, such contract specification
is not obvious in an idiosyncratic multiproduct, mul-
tiresource setting where actual capacity depends not
only on investment levels, but also on practically any
aspect of operating that process.

6.3. Mitigating Capacity-Investment Risk with
Operational Hedging

Besides financial hedging, mitigating risk can also be
accomplished by operational hedging, which involves
counterbalancing actions that do not require trad-
ing financial instruments. Operational hedging, some-
times called natural hedging, includes various types of
processing flexibility such as dual-sourcing, compo-
nent commonality, having the option to run overtime,
dynamic substitution, routing, transshipping, or shift-
ing processing among different types of capital, loca-
tions, or subcontractors, holding safety stocks, having
warranty guarantees, etc. An interesting characteris-
tic of operational hedging is that it may allow one
to actually exploit uncertainty. For example, while a
firm may hedge currency risk with forward contracts,
a firm that has production locations in two countries
may be able to ex-post shift production to the pref-
erential country, as analyzed by Huchzermeier and
Cohen (1996). Similar benefits accrue to the “global
newsvendor” of Kouvelis and Gutierrez (1997) with
one production location but an ex-post transship-
ment option between countries. Clearly, such oper-
ational hedging may involve additional costs. For
example, multilocation processing incurs a loss of
scale, requires procurement from a wider supply base,

slows down the learning curve process, and may pro-
duce less-consistent quality.
Obviously, a firm could simultaneously use both

financial and operational hedging. Allayannis et al.
(2001) empirically support the hypothesis that sim-
ply having multicountry production provides addi-
tional value to financial hedging. (Their econometric
model does not incorporate any ex-post operational
decisions.) Ding and Kouvelis (2001) explore the use
of both hedging instruments in a univariate, single
product, two-stage model. A domestic manufacturer
must ex-ante invest in domestic capacity to produce
goods that will be sold in a foreign market. In addi-
tion to a financial currency forward contract, the firm
can ex-post decide its processing level. Chod et al.
(2003) study the interdependence of operational hedg-
ing, using postponement of capacity and pricing, and
financial hedging, using a financial derivative contract
whose payoff is imperfectly correlated with the oper-
ating profit. While intuition may suggest that opera-
tional and financial hedging may be substitutes, they
show that they actually can be complements.
Sometimes, however, complementing operational

hedging with financial hedging may not be possible.
For example, the planning horizon for a production
facility may exceed 10 years. While operational hedg-
ing can be used, it is unlikely that financial hedging
over that time-horizon is available. Financial hedg-
ing of capacity is also problematic if there does not
exists a capacity futures market with the characteris-
tics described above.
In a capacity portfolio setting, capacity imbalance is

a natural form of operational hedging. As discussed
in the Introduction and in §4.2, such imbalance is
worthwhile even in a risk-neutral setting. The impact
of operational hedging through capacity imbalance
in a risk-averse, mean-variance setting is analyzed in
Van Mieghem (2003b) and some new questions are
addressed. For example, of a practical concern, one
wants to know the direction along which one should
adjust the risk-neutral capacity vector, so as to trace
the frontier and achieve a risk-optimal operational
capacity hedge. Related, from a design and perfor-
mance analysis perspective, one wants to know how
effective operational hedging is for a given network,
i.e., how much return must be given up for a decrease
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in risk? An answer to these two questions is formu-
lated mathematically and interpreted in Van Mieghem
(2003b). That paper also gives the first evidence that
optimal relative capacity imbalance increases in risk
aversion, but less significantly so when correlation is
high. Moreover, it shows that increasing risk aversion
sometimes leads to an increase in some optimal capac-
ity levels, which is not optimal in single-resource
models. Finally, its analysis under risk aversion high-
lights the third concern, in addition to the two dis-
cussed above in §4.2, that should be considered when
adopting a risk-neutral newsvendor capacity solution:
The newsvendor solution K∗ defines the maximal-risk
extreme point of the efficient frontier of risk-return
capacity configurations. Consider all possible capacity
plans—that is any nonnegative capacity three-vector
K ∈ �3

+ in the example of the introduction—and plot
its associated expected profit and variance. The result
for the example is shown in Figure 6 using the capac-
ity plans defined above in §4.2. By definition, the risk-
neutral optimizing newsvendor-network capacity K∗

has highest expected profit and, thus, is the right-
end-point of the frontier. Hence, a risk-averse deci-
sion maker may find it attractive to deviate from the
newsvendor solution to trade-off some risk for return.

Figure 6 Risk-Return Scatter Plot and Efficient Frontier for the
Capacity Portfolio Investment Problem of the Example
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As shown, giving up a small percentage in returns
can cut risk by an order of magnitude.

7. Concluding Remarks
What inferences can be made for future stochastic
capacity-portfolio investment? From an application
and organizational perspective, the requirements of
stochastic capacity portfolio optimization on methods
and systems for capacity planning are substantial. It
requires that forecasting expands its point forecast
with either supplemental scenarios, or with a covari-
ance matrix. The coupled nature of the optimality
equations suggest a coordinated, firm-level approach.
It would be interesting to see whether decomposition
approaches are feasible that would allow some decen-
tralized decision making at the plant level.
Related, research is needed to model the fact that

demand is partly endogenous and partly exogenous,
as discussed above. Such models could assess the
“efficiency loss” that results from adopting sales-
plan driven capacity planning. The problem here
would be to determine the “best” deterministic sales
plan assuming an optimal mechanism design for the
sales force and manufacturing incentives. An agency19

problem is embedded: Sales and marketing may agree
on a plan, but it typically does not reflect an unbi-
ased assessment of what will be sold. Kouvelis and
Lariviere (2000) may provide a starting point for such
research. In addition, sales faces a very nonsymmetric
penalty function with harsher punishment for falling
short of the sales plan. Consequently, manufacturing
does need to hedge its capacity portfolio somehow to
respond to deviations from the sales plan. In short,
it appears that the need for operational hedging by
purposely unbalancing the capacity portfolio, as dis-
cussed in this paper, may be robust to this more real-
istic model formulation. Future research is needed to
confirm this conjecture.
From a theoretical perspective, capacity portfolio

research is still in its infancy and many models remain
un- or under-explored, especially queuing formula-
tions. Game-theoretic and risk-averse capacity portfo-
lio analysis seem to rapidly gain in popularity. Much

19 The unbalanced optimal newsvendor capacity portfolio seems to
imply that a first-best deterministic sales plan does not exist.
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remains to be done and many obvious questions are
still unanswered. For example, it is unclear what intu-
ition we can build to answer the obvious questions:
Where should one put safety capacity in the process-
ing network and how does that answer change when
risk aversion increases? An obvious initial step is to
consider these questions in the most simple capacity-
portfolio problems. Eventually, analysis will develop
intuition.
Fortunately and unfortunately, capacity-portfolio

models rapidly become complex. Complexity is
unfortunate because it often makes superior analytical
solutions elusive. Thus, simulation-based optimiza-
tion becomes the natural second-best option and is
expected to increase in popularity. At the same time,
complexity is fortunate as study is worthwhile with a
potential impact on practice. Compared to the impact
of financial portfolio analysis, even a fraction would
be substantial.
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