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1. Tariff Systems in Public Transportation

In this paper, we deal with the design of tariff systems
in public transportation. This complex real-world problem
was brought to our attention by a regional public trans-
portation company several years ago. While working on the
design of a fair tariff system we developed a mathemati-
cal theory and a visualization tool to evaluate the effects
of tariff changes. We present our studies and report on our
practical experience when designing zone tariff systems.

When using a bus or a train a passenger usually pays
for a trip. There are several possibilities for defining ticket
prices in public transportation.

e In a distance tariff system, the trip price is depen-
dent on its length. The longer the trip, the higher the fare.
This system is generally considered to be fair. To determine
the ticket prices one needs the distance between a pair of
stations. This makes a distance tariff inconvenient for the
public transportation company and for the customers.

e The simplest tariff system is the unit tariff. In this case
all trips cost the same, independent of their length. A unit
tariff is very easy to handle, but the public often does not
accept that a short trip between two neighboring stations
costs the same as a long trip through the whole system.

e A model between these two tariff systems is a zone
tariff system. To establish a zone tariff, the area is divided
into subregions (the tariff zones). The price for a trip in a
zone tariff system is dependent only on the trip’s starting
and ending zones. If the price can be chosen arbitrarily for
each pair of zones, we call the tariff system a zone tariff with
arbitrary prices. An example of such a tariff system can, for

897

instance, be found north of San Francisco (Figure 1). The
prices are given in form of a matrix (Table 1).

The most popular variant of a zone tariff system is the
counting zone tariff system. To know his fare in this system
a customer counts how many zones his trip will pass and
reads off the price assigned to the number of crossed zones.
The prices in this system are dependent on the starting and
the ending zones of the trip, but trips passing the same
number of zones must have the same price. Figure 2 shows
a counting zone tariff system south of San Francisco; the
corresponding price for a single one-way trip is in Table 2.

Because of their simplicity, zone tariff systems are very
popular. In Germany, nearly all tariff associations already
have or are introducing zone tariff systems. When a public
transportation company wants to change its tariff system to
a zone tariff system, it has to design the zones and establish
new fares, such that the resulting tariff system is accepted
by the customers and does not decrease the income of the
company. The goal often is to design the zones in such
a way that the new and old prices for most of the trips
are as close as possible. This means that neither the public
transportation company nor the customers will have major
disadvantages when changing the current tariff system to a
zone tariff system.

Another goal can be to design fair zones. In this case
we do not consider the deviation from old prices, but the
deviation from a reference price, that is, one that is consid-
ered to be fair such as the distance tariff. In this approach,
the public transportation company needs to estimate its new
income.
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Figure 1. Zone tariff system with arbitrary prices. Figure 2. Counting zone tariff system.
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In spite of the importance of this zone design problem
there has been limited literature on corresponding oper-
ations research (OR) models. The only literature we are
aware of deals with the zone design problem with arbitrary
prices (Hamacher and Schobel 1995; Schobel 1994a, 1996;
Babel and Kellerer 2001). For the zone design problem in
which we count the number of zones, to the best of our

Table 1.
Zone 1 2 3 4 5 6 7 8 9 10

Fares (in U.S. dollars) for a one-way trip.

2.15

235 1.50

295 1.50 1.50

355 1.50 1.50 1.50

5.05 3.55 295 235 2.15

5770 4.10 3.55 295 2.15 2.15

4.10 3.00 3.00 3.00 5.05 5.70 1.50

475 3.00 3.00 3.00 4.45 5.85 3.00 1.50

295 150 1.50 1.50 4.45 5.05 3.00 3.00 1.50
475 295 235 295 4.45 5.05 475 4.10 3.55 145

SOOI N AW —

—

solution algorithms for designing good zones. We discuss
their numerical behavior in a real-world example in §5.
Finally, we draw some conclusions in §6.

2. A Model for the Counting Zone Tariff

Let the station graph G = (V, E) of the public transporta-
tion company be given, where V refers to the set of stops
and E C V x V represents the available direct connections
without intermediate stops. Furthermore, let dl-j be a refer-
ence price for traveling from station i € V to station je V.
d,; can be the current ticket price of the public transporta-
tion company, or it can be a fair price such as a distance
tariff.

If L denotes the number of planned zones, the zone
(planning) problem identifies a partition

P={V,V,,....V,}

of V (ie, V,CV,i=1,2,..., L, pairwise disjoint and
U,-L:| V. =V). In the fare (planning) problem ticket prices
clp), p=0,1,2,...,

are determined that are only dependent on the number of
zones p in the journey. Here, ¢(p) is the price for crossing
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Table 2.

Fares by number of zones in journey for one-way trips.

Number of zones 1 2 3

4 5 6 7 8 9

Fare in U.S. dollars 1.25 2.00 2.75

3.25 400 475 5.25 6.00 6.75

p zone borders. In particular, c(0) gives the fare for trav-
eling within any zone, c(1) is the price for crossing one
zone border, i.e., for going from one zone to an adjacent
one, and so on.

To evaluate some partition P with a price vector ¢, we
define for each pair of stations i, j € V, n;; as the num-
ber of crossed zone borders, when traveling from station i
to station j. (Adding to the confusion most public trans-
portation companies count the number 7;; of passed zones
on the trip from station i to station j, including both the
starting and the ending zones, i.e., n;j =n;+ 1. We prefer
our denotation for simplicity of our model.) The new ticket
price for traveling from i to j is then given by

7= c(ny) ifi#],
o ifi=j.

Given the reference prices d;; for a trip between stations i
and j, the absolute deviation in ticket price is calculated by

|d;; —z;;| = |d;; — c(ny)| foralli,jeV.

ij lj|

Let w;; be the number of customers traveling from sta-
tion i to station j and let W =3, .., w;; be the sum of all
customers of the public transportation company. The min-
imization of the following three objective functions is of
interest:

e Maximum absolute deviation:

b Mmax wyldi; — 2.

max = .
i, je

e Average absolute deviation:

by = (1/W) Z wij|dij - Zij|'
i, jev
e Average squared deviation:
b, = (1/W) Z wij(dij - Zij)2~
i, jev
All three objectives are considered to be good mod-
els by practitioners. The first objective function, b, with
identical weights, models the fact that the greatest devi-
ation of ticket prices in the two different tariffs should
be as small as possible. It gives a bound for the largest
change in the ticket price for any customer. In the weighted
case, b,,,, minimizes the maximum deviation in the rev-
enue of the company over all possible trips. b, gives the
average of all absolute deviations, and b, gives the aver-
age of all squared deviations in ticket prices. The objec-
tive function b, leads to a smaller percentage of strongly
affected customers than b,. Nevertheless, from our expe-
rience, b, is slightly better accepted by the practitioners
than is b,. It also should be mentioned that deviations in

price increases and decreases are treated equally, such that
the model reflects both the interests of customers and of
transportation companies.

We denote two zones Vi, V, as adjacent if there exist
stops i € V,, j €V, such that (i,j) € E, ie., with a
direct connection in the station graph G. To obtain the
numbers n;; a shortest path algorithm (e.g., Floyd 1962,
Warshall 1962) can be used according to one of the follow-
ing models.

Station Graph Model. We use the station graph
G = (V, E), but introduce new weights u;; for all (i, j) € E,
defined by

0
W= 1

The length of a shortest path between two stops equals the
minimum number of crossed zone borders. This approach
will be needed later to update the zone distances in the
greedy heuristic in §4.

if i and j are in the same zone,

if i and j are in adjacent zones.

Zone Graph Model. To reduce the size of the network
we define the zone graph G’ = (P, E’) whose node set P
is given by the zones and (V,,V,) € E’ if V, and V, are
adjacent. All edges have weight 1. Fori € V; and j € V, we
get the minimum number of crossed zone borders n;; on a
trip from i to j as the length of a shortest path from V, to
V,in G'.

The following example demonstrates the calculation of
b...x» b1, and b,. Let a station graph G with a partition into
three zones V, = {1, 2}, V, = {3, 4}, and V; = {5} be given
(see Figure 3).

Suppose that w; = 1foralli,jeV,i#],ie., W=20.
If we assume that the distance between any adjacent pair
of nodes is 1, the matrix d;; according to the distance tariff
system can be

01 2 3 4
1 01 2 3
D=]2 1 0 1 2
32101
4 3 210
Figure 3. A station network with five stations and three

Zones.
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The corresponding zone graph G’ consists of three nodes
(see Figure 4). The number of crossed zone borders be-
tween stations i and j is then given by

Zone graph with three zones.

=

Il
N = — oo
N - — oo
S SN

1 1
11
0 0
0 0
11

Suppose the new fares for crossing p =0, 1, or 2 zone
borders are given by
¢(0)=0.5,

c()=1, ¢(2)=15.

The new ticket prices can be calculated as

0 05 1 1 15
05 0 1 I 15
zZ=1 1 1 0 05

15 15 1 1 0

The deviations between the reference prices d;; and the new
ticket prices z;; are

25 15 1 0 o0

and the objective values can be calculated as

b, =2 =1.6.

20
b=2=1 ,=2=1

1=—2 — >

3. Solution of the Fare Problem with
Fixed Zones

In this section, we solve the fare problem with respect to
a given zone partition. Our first result shows that a closed-
form solution is possible for each of the three objectives
byax» b1» and b, introduced in §2.

max >

THEOREM 1. Let P={V,, V,, ..., V,} be a given zone par-
tition and let d;; be given reference prices. To minimize

b, by, and b, we choose for all p=0,1,...,L,
Z*
* — _lr
Cmax (P) ._i,jg%/%?;éj, dy w.. M)

ni=p y

where z;, is defined as

* Wi, j; Wiy j,
Zf = max (d; ; —d, ).
p i\ i, €V 1 L
i, heVE Wy W
iy =My =p M1 2

ci(p):=median{d,;, ..., d;:i,jeV:i#j,n;=p}. (2)
—_———
w; times

e (p) = % Z wyd;;. (3)

i,jeViny=p

PrOOF. Given the zone partition P we have to find fares
c¢(p) eR for all p=0,1,..., minimizing b,,,,, b, and b,,
respectively. Define

MPZ {(l’]) i,je V and nijzp}

and W, = ZmeMp w,, as the sum of all weights belonging
to pairs of stations in the set Mp. First, we note that each
of the three objective functions can be separated into at
most L+ 1 independent subproblems, K,...(p), K,(p), and
K,(p), respectively (for p=0,1,...,L).

b =maxw;|d.. —z.
max i, jev l_/| ij l]|

=, nax | max wyld, —c(p)l=: max K, (p),
Wb, = Z wij|dij _Zij|
i, jev
L L
p=0meM, p=0
Wb, = Z wij(dij - Zij)2
i, jev
L L
= > w,(d,—c(p)’=:) K(p).
p=0meM, p=0

Consequently, to minimize b,,,, b,, and b, we determine
the optimal fare ¢(p) for p=0, 1, ..., L separately, in each
of the three objective functions.

e For b, Forall p=0,1,..., L, the problem of min-
imizing

Kmax(p) = max wm|dm - C(p)|
meM,

is well-known from location theory when locating a point
on a line such that the maximum distance to a given set of
existing facilities on the same line is minimized. The proof
for (1) can therefore be found in the location literature;
see e.g., Love et al. (1988), Hamacher (1995). Note that
Ko (P) = 25,

e For b,: Because

K (p)=min ) w,l|d, —c(p)|

meM,
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is a one-dimensional, piecewise linear and convex func-
tion, its minimization is known in statistics (see e.g., Hays
1981) and in location theory as the one-dimensional median
problem (see, e.g., Hamacher 1995, Plastria 1995). It is
shown that the above problem is solved by the so-called
weighted median of the set {d,: m € M,}, i.e., by any real
number ¢ = ¢ (p) which satisfies

Y w, <

m:d,, >c

W, W,
> w,<—=L and —r
2 2

m:d,, <c

e For b,: Here we have to minimize K,(p), i.e.,

min Y w,,(

meM,

d, —c(p))’.

Using the theorem of Steiner (see e.g., Sarkadi and Vincze
1974) of statistics, we note that the weighted mean of the
values in {d,,: m € M,} is the unique optimal solution for

c(p). Q.E.D.

To demonstrate the result of Theorem 1 we continue the
example of §2. The optimal values for the zone prices and
the resulting values for the objective functions b,,,, b,, and
b, are listed in Table 3.

Calculating the objective function by using (1), (2),
and (3) according to Theorem 1 yields the following
corollary.

max?

COROLLARY 1. Given a zone partition P=1{V,,V,,..., V,}
and reference prices d;, the optimal values of the objective
functions are given as follows:

* *
bmax - I’Ilan Zp ’

b;:z< Y wdy—ci(p)+ X

PN pevy (i,))ev,

wy(€i(p)=d,)),
wi%er'e vi={@GJj): n; = p,d; > ci(p)} and V; :=
{(G, )): n;=p, dij <ci(p)}

=) Var{d;: i,jeV,n;=p},

p

where Var denotes the variance of the set.

Table 3.

Zones Crnax ¢ C Example
0 1 1 1 0.5

1 2 2 11/6 1

2 35 3 35 1.5
Dpnax 1 1 1.167 2.5

b, 8 8 8.667 1

b, 7 8 6.722 1.6

In practice, restrictions are often given on the new fares;
sometimes there are even politically desired fares that have
to be realized for the number of zones in the journey.
With the help of Corollary 1, one can easily calculate the
increase of the objective functions when using such given
fares instead of the optimal ones. In particular, Corollary 1
shows that for the objective function b,,, the optimal fares

ct..(p) are not needed to calculate the optimal objec-
tive value for a given zone partition. This will be needed
in the next section when we optimize the zone partition
with respect to b,,,. If, additionally, b, is used in the
unweighted case, i.e., with w; = 1 for all i, j € V, we can
further simplify Theorem 1 and Corollary 1.

COROLLARY 2. In the case of equal weights, the optimal
fares ¢ (p) and the corresponding objective value b,
are given by

* 1
cmax(p) = E( _max d + min dij)’ (4)
i,jeViny=p i,jeViny=p
— 1 H
Kuu(P)=4(, max_d,— min_d,), 5)
i, jeVin;=p i,jeVin;=p
b* =5 max ( max d;— min d) 6
max zp:l,m,L ijeVing=p Y i jeViny=p " ©)

ProoF. We calculate Z, as

w
m m
= max ——2(d,, —d,,)
p my my
mi,ma€M, W, + W,

2(rnaxd — min d )

meM, meM,

and consequently,

Z*

— )4
c = max (d ——)

meM w

m

_max(d ——maxd .+ 5 mmd)

meM, 2 jneM, » 2 jneM

=3 (max d,, + min d )

meM, meM,

Using Corollary 1 and z}, =
follow immediately. Q.E.D.

K ax (P), the remaining parts

We remark that similar results can be derived for the
zone design problem with arbitrary prices (see Hamacher
and Schobel 1995, Schobel 1994b).

4. Finding Zone Partitions for the
Maximum Deviation Problem

The consequence of the results of §3 is that we can concen-
trate on finding the zones, because the zone pricing follows
easily from the choice of the objective function. We now
focus our attention on the maximum deviation problem.
Unfortunately, this problem is NP-hard and therefore diffi-
cult to solve.
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Figure 5. A station network where the objective value Hence, by, = max,_; K., (p) also satisfies this in-
for L =4 is better than the objective value equality. Q.E.D.

for L =5.

A first observation deals with the monotonicity of the
objective function dependent on the number of planned
zones L. Whereas it is easy to see that for the zone design
problem with arbitrary prices all three objectives are mono-
tone in L, this is not true for the zone design problem
with counting zones, as Figure 5 shows. The station net-
work consists of eight nodes, and we assume that wy; = 1
for all pairs of nodes i, j. The reference prices are given
as weights between any two adjacent nodes, as shown in
the figure. Between any other pair of nodes the reference
prices are given as the sum of the weights along a shortest
path connecting the nodes. For the (unweighted) max abso-
lute deviation problem, Corollary 2 shows that any solution
with L =35 zones leads to a strictly higher objective value
than the graphed solution with L =4 and b,,, = 1. We will
therefore fix L in the following.

max

THEOREM 2. The zone design problem with counting zones
and objective function b, is NP-hard for all fixed L > 3.

max

The proof of Theorem 2 is given in the appendix. Note
also that the zone design problem with arbitrary prices is
NP-hard (Babel and Kellerer 2001).

To motivate the heuristics of this section, we first present
the following two observations for getting upper and lower
bounds on the objective value b,,,.

LEMMA 1.

bk < 5 (max d; —mind, )

i,jeVv i i, jeVv

ProoF. For any zone partition P and any integer p, we
have by (5) that

Kmax(l))=%< max d;— min dij)

i,jeV,n/-/:p i,jeV,n,/-:p

< %(maxd, —mind,; )
i, jeVv J i, jeVv J

LEMMA 2. Given a zone partition P, let INT C E be the
set of edges with both end nodes within the same zone and
BET = E\INT. Then, we have

(1) by = %( max d; — min d,j)

i

(i, j)€INT (i, j)€INT
2) b l( max d;;— min d)
@) by Z 2\ jeser U (i j)eBET ¥

PrOOF.
(1) Because

min d,; and
(i, j))€INT

min d
i, jeV, nj=0

N

ij

> max d
(i, ))EINT

max d;
i, jeV, =0

we get

bmax 2 Kmax (0)

2%( max d-j— min d,-j)
i,jeV,n;=0 i, jeV,n;=0
2%( max_d; — min dj)

(i, J)EINT (i, J)EINT

(2) Analogously, BET C {i,j € V,n;; = 1}, hence we
get the result by using b,,,, = K,,,(1). Q.E.D.

max

Lemma 2 suggests a zone design in which edges with
high weights are collected in BET and edges with small
weights in INT, or vice versa. To be more specific, let
Diam be the maximal diameter over all zones. Assuming
that edge weights along a path are additive, we get, again
using (5),

Kmax(p)=%< max d;— min d)

i,jJ€V.,n;;=p i,jJ€V.,n;=p

<a((+pianm+p( max dy= min d;)).
yielding that the maximal diameter Diam should be small,
and consequently edges with large weights should be in
BET while edges with small weights should be in INT.

Following these considerations, we present three heuris-
tics for solving the zone design problem with counting
zones. As input data we need—for any of the following
algorithms—a set of n stations with reference prices d;; and
a number L of planned zones. The output is then given by
a zone partition with L zones.

Algorithms Based on Clustering Theory

The first algorithm is based on ideas from clustering theory,
and in particular on the sequential agglomerative hierarchi-
cal nonoverlapping (SAHN) algorithms (see, e.g., Duran
and Odell 1974). The idea is to start with n zones, each
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of which contains a one single station, and to combine in
each step the two closest zones to a new one. Depending on
the particular definition of the distance between two zones,
different algorithms can be obtained. Two of them have
been applied to the zone design problem: single linkage
and complete linkage.

ALGORITHM | (ZONE DESIGN USING SAHN ALGORITHMS).

Step 1. Start with a partition P consisting of n zones,
each of which contains a single station. Let d(V,, V;) :=d;;
for all zones V,, Vj eP.

Step 2. Determine two zones V; # V; € P with minimum
distance d(V;, V,).

Step 3. Join V; and V; to a new zone V, and get a new
partition P.

Step 4. Calculate the new distances for all V € P:
d\v,,V) = %(d(V,-, V) + d(V,V) + cld(V,V) —
d(V,, V))).

Step 5. If the number of planned zones is attained, then
Stop, Output P, else go to Step 2.

The parameter ¢ in Step 4 determines the formula for
calculating the distance between two zones. In the context
of the zone design problem, we have used

e c = —1 for the single linkage algorithm, and

e c =1 for the complete linkage algorithm.

The interpretation for single linkage is the following: The
distance between two zones is defined as the smallest dis-
tance between elements of the zones; consequently in each
step we join along a shortest edge. Note that in complete
linkage the distance between two zones is defined as the
maximum distance between their elements, and in each step
complete linkage tries to minimize the maximum diameter
of the zones.

Greedy Approach

This approach is a variant of the SAHN algorithms dis-
cussed above, but with more emphasis on the specific
structure of the zone design problem. Using the basics of
Algorithm 1, we calculate for all edges (i, j) the objec-
tive value b” when contracting (i, j) of the current zone
graph. Finally, we contract the edge with the smallest
increase in the objective function. This is rather time con-
suming, but, as we will show in the next section, leads to
very good results in practice. The formulation of the greedy
approach is the following:

ALGORITHM 2 (ZONE DESIGN BY GREEDY APPROACH).
Step 1. For all edges (i, j) € E with n;; = 1: Contract i
and j temporarily and calculate b7 .

Step 2. Contract the edge (i°, j°) permanently, where

b =min{(i, j): b7},

max max

and let n,0,0 = 0. If the graph has L nodes, Stop.

Step 3. For all i, j € V, recalculate n; as shortest dis-
tance, and goto Step 1.

Spanning Tree Approach

The idea of the following heuristic is to determine a
set of edges BET that contains mostly edges with high
weights.

ALGORITHM 3 (ZONEV DESIGN BY SPANNING TREE AP-
PROACH).

Step 1. Find a maximum spanning tree 7 in the complete
graph with edge weights d;;.

Step 2. Omit the L — 1 largest edges of 7 and get a
forest with L components.

Step 3. Output: Zones are the connected components.

Note that in trees, the spanning tree approach is equiv-
alent to the single linkage algorithm of clustering theory.
In general graphs, it is always possible to find a spanning
tree such that omitting its L — 1 largest edges leads to the
same result as single linkage. However, if we start with a
spanning tree with maximal weight (which performed best
in practice), the spanning tree approach differs significantly
from single linkage.

5. Practical Experiences in Saarland,
Germany

As an example for the practical value of our approach,
we consider the situation in the state of Saarland, Ger-
many. Currently, there are six public transportation com-
panies operating in the Saarland, each with its own tariff
system.

e Four public transportation companies already use a
counting zone tariff system, but their fares for crossing p
zones and the structure of their zones are completely dif-
ferent, although they are partly operating in the same geo-
graphical region.

e The Deutsche Bahn (German Rail) still applies its dis-
tance tariff.

e There is also a public transportation company (serving
the city of Saarland’s capital, Saarbriicken) that uses a zone
tariff with variable prices.

The traffic association of the Saarland is considering
the introduction of one common counting zone tariff sys-
tem that would be applied by all the public transportation
companies. The public transportation network in Saarland
consists of roughly 4,000 stations, where a preclustering
into 600 minizones is given. The goal is to design about
100 zones and install a counting zone tariff system in such
a way that the differences between the current and the new
fares are as small as possible. It is also important that the
new income of each of the public transportation companies
not differ too much from its current income. Consequently,
the reference prices in this application are the current prices
for traveling. While the current fare structure is known and
therefore relatively easy to get, it is usually hard to get



Hamacher and Schébel: Design of Zone Tariff Systems in Public Transportation
904 Operations Research 52(6), pp. 897-908, © 2004 INFORMS

Figure 6. Comparison of the heuristics: b, graphed for any number L of planned zones.
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Figure 7. Political suggestion; b,,, =5.15 DM.
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Figure 8. Solution of the single linkage algorithm; b,,, =5.00 DM.
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realistic data about the customers’ behavior. In our project
in the Saarland this was solved by using the income data
of each of the transportation companies and dividing the
income with the help of available statistics over the origin-
destination pairs used by the customers.

We tested our algorithms on the data described above.
The results of Algorithms 1, 2, and 3 are shown in Figure 6.
This figure shows the objective value b,,, for any num-
ber of possible zones from 1 to 600. All objective values
refer to a single-trip ticket for an adult, given in German
Marks (DM). On the one hand, it turns out that in this
practical application the greedy heuristic (Algorithm 2) is
the clear winner in terms of the objective value: It gen-
erated the best results for any number of desired zones.
On the other hand, the running time for Algorithm 2 for
all possible numbers of zones, i.e., from L =1, ..., 600,
was nearly two weeks altogether in our first implementation
(on an AixJ90). The spanning tree approach (Algorithm 3)
and the single linkage algorithm (Algorithm 1) both needed

Figure 10.

only a few hours, but the results are much less convinc-
ing regarding the objective value b,,,, again. For a small
number L of desired zones, single linkage did better than
the spanning tree approach, whereas for a higher number
of planned zones it was the other way around. This is due
to the fact that the spanning tree approach starts with only
one zone, while single linkage starts with 600 zones.

On a subset consisting of only 400 stations (or 54 mini-
zones) the heuristics have also been tested. In this smaller
setting the running times of Algorithms 1 and 3 were within
seconds, and Algorithm 2 needed only two minutes to
obtain again the clearly best results. The results for nine
zones are shown graphically in Figures 7, 8, and 9. Figure 7
shows a suggestion for a zone partition that is due to the
political districts in this area of the Saarland. The objective
value for this zone partition is b,,, =5.15 DM, i.e., there
exists a customer who will have a difference of 5.15 DM
between his current fare and the new one. The result of
the single linkage algorithm for nine zones is shown in

Zone planning with the software WabPlan in the state of Sachsen-Anhalt.

Datei Linien Grafik Be Preis

F datenfplan/zone3c ElFlrl

15153009 Edlau
15153010 Gerbitz
15153011 Gerlebogk
15153012 Golbitz
15153013 Grina
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15153015 liberstedt
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15153017 Latdorf
15153018 Lebendorf
15153019 Heugattersleben
15153020 Hienburg
15153021 PeiBen
15153022 Plitzkau
15153023 Pobzig
15153024 Foley
15153025 PreuBlitz
15153026 Schackstedt
15133027 Strenznaundorf
15153028 Trebnitz
15153029 Wedlitz
15153030 Wiendorf
15153031 Wohlsdorf
15153032 Ackeritz
15154001 Altje Bnitz
15154002 Bitterfeld
15154003 Bobbau
15154004 Brehna
15154005 Burgkemnitz
15154006 Friedersdorf
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15154008 Gottnitz
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15154012 GroBziberitz
15154013 Heideloh
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Source. The lines show the (fictional) customers who will have a change of more than 5% in their ticket prices.



Hamacher and Schobel: Design of Zone Tariff Systems in Public Transportation

Operations Research 52(6), pp. 897-908, © 2004 INFORMS

907

Figure 8. Single linkage tends to form one large zone with
several smaller zones surrounding it (see, e.g., Duran and
Odell 1974). This behavior is also shown in Figure 8.
The objective value of the graphed zone partition is
5.00 DM. The objective value in the spanning tree approach
also was 5.00 DM for nine zones, but without these big dif-
ferences in the zone sizes. The best results, however, were
obtained by the greedy approach with an objective value of
only 3.75 DM. The corresponding zone partition is shown
in Figure 9.

For evaluating tariff zones in more detail, we use the
software package WabPlan (Schobel and Schobel 1999).
A graphical front-end provides a detailed analysis of all
trips for which the fare will increase or decrease dramati-
cally (see Figure 10). Furthermore, the expected income for
each of the transportation companies in each ticket category
is compared with its current income.

For practical purposes, many special rules for using fare
zones are common. Several of these rules have also been
implemented in our algorithms and tested on the Saarland
data.

Empty Zones. First, in most zone tariff systems empty
zones are used to increase the fare on some special trips
without affecting all other relations. This seems to make
sense in practice and can easily be incorporated in the algo-
rithms presented in §4. In this way, given reference prices
can be approximated arbitrarily close if the number L of
zones is large enough. In our model this means that the
optimal objective value goes to zero for b,,,, b;, and b, in
this case.

max?

Border Stations. To avoid injustice, stations can be
located on zone borders, meaning that they belong to more
than one zone, and the cheapest choice for determining
the fare applies. Because the zone tariff system should be
clear and understandable, we tried to avoid this in the Saar-
land. In most cases it turned out that border stations can be
avoided without losing anything in the objective values by
changing only the zone design.

Special Rules for Large Zones. Also, some zones
might be so large that they have to be counted twice when
crossing them, in which case a special fare structure would
have to be implemented.

In the Saarland, the tariff system proposed by using our
methods is now in the implementation process.

6. Conclusion

In this paper, we have presented OR models for the count-
ing zone tariff problem. For fixed zones we have shown
that closed-form solutions can be provided. In contrast, the
zone problem, i.e., the design of zones, is NP-hard. Three
heuristics have been proposed and compared with respect
to their numerical behavior. The practical usefulness of the
approach is shown by its actual implementation in the state
of Saarland, Germany. Other German states are currently

using our system to evaluate their tariff structures. Due to
the importance of this problem, we hope that this contribu-
tion motivates further research.

Appendix

PrOOF OF THEOREM 2. We use a reduction to the problem
partition into cliques for L =3 cliques, which is NP-hard
(see problem GTI15 in Garey and Johnson 1979). Let a
graph G = (V, E) be given. We want to find out if there
exists a partition of V into three node sets V|, V,, and V,
such that the induced subgraphs G,, G,, and G5 are com-
plete. To reduce this problem to a zone design problem, we
consider the complete graph G = (', €), defined by

(J\[/:VU{a],az,a:;’bl’bZ’b:;} and
E={e=(k,]): k, 1€V}, k#IL

Furthermore, let wy; = 1 for all i,j € U and define the
reference prices as the following edge weights:

if (k,l)€E,

ifkeV,lgV,

if there exists i=1, 2,3

dy = such that (k, /) = (a;, b;),

iftk,leV,(k,1)¢E,

itk,1gV,(k,1)+# (a; b;)
foralli=1,2,3.

N = —

NSRS

Now we show that G can be partitioned into three cliques
if and only if the zone design problem in G has a solution
with three zones and with b, < 3/4.

=: Let V=V, UV, UV; be the partition of G into
cliques. Define C; =V, U {a;, b;} for i = 1,2, 3. Using (5)
we calculate

K (0 =5(1-3) =1,
Kmax(l) = %(2 - 1) = %,
such that we get b, < 3/4.

<=: Let C,, C,, C; be a partition of 7" with b, <3/4.
Define V, = C, NV for i =1, 2, 3. First, we note that by

renaming C; we can assume that a;, b, € C; fori=1,2, 3.
This can be proved by a simple case analysis (see Penner
1997) that verifies the following.

1. If a; and b; do not belong to the same zone, this
yields b, > 3/4.

2. If a;,b; and another a; or bj, Jj # 1, belong to a
single common zone, then b, > 3/4.

Now let k,l € V.. We have to show that the edge

(k, 1) € E. Assume the contrary, i.e., d;; = 2. According to

(5), this yields
Ko (0)23(2-3) =1,

a contradiction. For more than three zones, the proof can be
done analogously with a reduction to partition into L > 3
cliques. Q.E.D.
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