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aggregated to zones and “good” tariffs have to be found in the existing zone system. Closed form solutions for the fare
problem are presented for three objective functions. The second problem, the zone problem includes the design of the
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1. Tariff Systems in Public Transportation
In this paper, we deal with the design of tariff systems
in public transportation. This complex real-world problem
was brought to our attention by a regional public trans-
portation company several years ago. While working on the
design of a fair tariff system we developed a mathemati-
cal theory and a visualization tool to evaluate the effects
of tariff changes. We present our studies and report on our
practical experience when designing zone tariff systems.
When using a bus or a train a passenger usually pays

for a trip. There are several possibilities for defining ticket
prices in public transportation.
• In a distance tariff system, the trip price is depen-

dent on its length. The longer the trip, the higher the fare.
This system is generally considered to be fair. To determine
the ticket prices one needs the distance between a pair of
stations. This makes a distance tariff inconvenient for the
public transportation company and for the customers.
• The simplest tariff system is the unit tariff. In this case

all trips cost the same, independent of their length. A unit
tariff is very easy to handle, but the public often does not
accept that a short trip between two neighboring stations
costs the same as a long trip through the whole system.
• A model between these two tariff systems is a zone

tariff system. To establish a zone tariff, the area is divided
into subregions (the tariff zones). The price for a trip in a
zone tariff system is dependent only on the trip’s starting
and ending zones. If the price can be chosen arbitrarily for
each pair of zones, we call the tariff system a zone tariff with
arbitrary prices. An example of such a tariff system can, for

instance, be found north of San Francisco (Figure 1). The
prices are given in form of a matrix (Table 1).
The most popular variant of a zone tariff system is the

counting zone tariff system. To know his fare in this system
a customer counts how many zones his trip will pass and
reads off the price assigned to the number of crossed zones.
The prices in this system are dependent on the starting and
the ending zones of the trip, but trips passing the same
number of zones must have the same price. Figure 2 shows
a counting zone tariff system south of San Francisco; the
corresponding price for a single one-way trip is in Table 2.
Because of their simplicity, zone tariff systems are very

popular. In Germany, nearly all tariff associations already
have or are introducing zone tariff systems. When a public
transportation company wants to change its tariff system to
a zone tariff system, it has to design the zones and establish
new fares, such that the resulting tariff system is accepted
by the customers and does not decrease the income of the
company. The goal often is to design the zones in such
a way that the new and old prices for most of the trips
are as close as possible. This means that neither the public
transportation company nor the customers will have major
disadvantages when changing the current tariff system to a
zone tariff system.
Another goal can be to design fair zones. In this case

we do not consider the deviation from old prices, but the
deviation from a reference price, that is, one that is consid-
ered to be fair such as the distance tariff. In this approach,
the public transportation company needs to estimate its new
income.
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Figure 1. Zone tariff system with arbitrary prices.

Source. http://www.transitinfo.org.

In spite of the importance of this zone design problem
there has been limited literature on corresponding oper-
ations research (OR) models. The only literature we are
aware of deals with the zone design problem with arbitrary
prices (Hamacher and Schöbel 1995; Schöbel 1994a, 1996;
Babel and Kellerer 2001). For the zone design problem in
which we count the number of zones, to the best of our

Table 1. Fares (in U.S. dollars) for a one-way trip.

Zone 1 2 3 4 5 6 7 8 9 10

1 2.15
2 2.35 1.50
3 2.95 1.50 1.50
4 3.55 1.50 1.50 1.50
5 5.05 3.55 2.95 2.35 2.15
6 5.70 4.10 3.55 2.95 2.15 2.15
7 4.10 3.00 3.00 3.00 5.05 5.70 1.50
8 4.75 3.00 3.00 3.00 4.45 5.85 3.00 1.50
9 2.95 1.50 1.50 1.50 4.45 5.05 3.00 3.00 1.50
10 4.75 2.95 2.35 2.95 4.45 5.05 4.75 4.10 3.55 1.45

Figure 2. Counting zone tariff system.

Source. http://www.transitinfo.org.

knowledge, there is no literature dealing with suitable OR
models.
In this paper, we present an optimization model for the

latter problem. The remainder of this paper is organized
as follows. In the next section, we present our model for
the zone design problem with counting zones. In §3, we
consider the fare problem and show how the fares for each
number of passed zones can be calculated easily by closed-
term formulas for three different objectives. In §4, we take
one of these objectives to study the zone problem. We dis-
cuss complexity issues, develop bounds, and propose three
solution algorithms for designing good zones. We discuss
their numerical behavior in a real-world example in §5.
Finally, we draw some conclusions in §6.

2. A Model for the Counting Zone Tariff
Let the station graph G= �V �E� of the public transporta-
tion company be given, where V refers to the set of stops
and E ⊆ V × V represents the available direct connections
without intermediate stops. Furthermore, let dij be a refer-
ence price for traveling from station i ∈ V to station j ∈ V .
dij can be the current ticket price of the public transporta-
tion company, or it can be a fair price such as a distance
tariff.
If L denotes the number of planned zones, the zone

(planning) problem identifies a partition

P = �V1� V2�    � VL�
of V (i.e., Vi ⊆ V � i = 1�2�    �L, pairwise disjoint and⋃L
i=1 Vi = V ). In the fare (planning) problem ticket prices

c�p�� p= 0�1�2�    �
are determined that are only dependent on the number of
zones p in the journey. Here, c�p� is the price for crossing
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Table 2. Fares by number of zones in journey for one-way trips.

Number of zones 1 2 3 4 5 6 7 8 9

Fare in U.S. dollars 1.25 2.00 2.75 3.25 4.00 4.75 5.25 6.00 6.75

p zone borders. In particular, c�0� gives the fare for trav-
eling within any zone, c�1� is the price for crossing one
zone border, i.e., for going from one zone to an adjacent
one, and so on.
To evaluate some partition P with a price vector c, we

define for each pair of stations i� j ∈ V , nij as the num-
ber of crossed zone borders, when traveling from station i
to station j . (Adding to the confusion most public trans-
portation companies count the number n′ij of passed zones
on the trip from station i to station j , including both the
starting and the ending zones, i.e., n′ij = nij + 1. We prefer
our denotation for simplicity of our model.) The new ticket
price for traveling from i to j is then given by

zij =
{
c�nij� if i 	= j�
0 if i= j

Given the reference prices dij for a trip between stations i
and j , the absolute deviation in ticket price is calculated by

�dij − zij � = �dij − c�nij�� for all i� j ∈ V 
Let wij be the number of customers traveling from sta-

tion i to station j and let W =∑
i� j∈V wij be the sum of all

customers of the public transportation company. The min-
imization of the following three objective functions is of
interest:
• Maximum absolute deviation:

bmax =max
i� j∈V

wij �dij − zij �
• Average absolute deviation:

b1 = �1/W�
∑
i� j∈V

wij �dij − zij �

• Average squared deviation:
b2 = �1/W�

∑
i� j∈V

wij�dij − zij �2

All three objectives are considered to be good mod-
els by practitioners. The first objective function, bmax with
identical weights, models the fact that the greatest devi-
ation of ticket prices in the two different tariffs should
be as small as possible. It gives a bound for the largest
change in the ticket price for any customer. In the weighted
case, bmax minimizes the maximum deviation in the rev-
enue of the company over all possible trips. b1 gives the
average of all absolute deviations, and b2 gives the aver-
age of all squared deviations in ticket prices. The objec-
tive function b2 leads to a smaller percentage of strongly
affected customers than b1. Nevertheless, from our expe-
rience, b1 is slightly better accepted by the practitioners
than is b2. It also should be mentioned that deviations in

price increases and decreases are treated equally, such that
the model reflects both the interests of customers and of
transportation companies.
We denote two zones Vk�Vl as adjacent if there exist

stops i ∈ Vk, j ∈ Vl, such that �i� j� ∈ E, i.e., with a
direct connection in the station graph G. To obtain the
numbers nij a shortest path algorithm (e.g., Floyd 1962,
Warshall 1962) can be used according to one of the follow-
ing models.

Station Graph Model. We use the station graph
G= �V �E�, but introduce new weights uij for all �i� j� ∈E,
defined by

uij =
{
0 if i and j are in the same zone�

1 if i and j are in adjacent zones.

The length of a shortest path between two stops equals the
minimum number of crossed zone borders. This approach
will be needed later to update the zone distances in the
greedy heuristic in §4.

Zone Graph Model. To reduce the size of the network
we define the zone graph G′ = �P�E ′� whose node set P
is given by the zones and �Vk�Vl� ∈ E ′ if Vk and Vl are
adjacent. All edges have weight 1. For i ∈ Vk and j ∈ Vl we
get the minimum number of crossed zone borders nij on a
trip from i to j as the length of a shortest path from Vk to
Vl in G

′.
The following example demonstrates the calculation of

bmax, b1, and b2. Let a station graph G with a partition into
three zones V1 = �1�2�, V2 = �3�4�, and V3 = �5� be given
(see Figure 3).
Suppose that wij = 1 for all i� j ∈ V � i 	= j , i.e., W = 20.

If we assume that the distance between any adjacent pair
of nodes is 1, the matrix dij according to the distance tariff
system can be

D=



0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0


 

Figure 3. A station network with five stations and three
zones.

1 11 1
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Figure 4. Zone graph with three zones.

V1 V2 V3

The corresponding zone graph G′ consists of three nodes
(see Figure 4). The number of crossed zone borders be-
tween stations i and j is then given by

N =



0 0 1 1 2
0 0 1 1 2
1 1 0 0 1
1 1 0 0 1
2 2 1 1 0


 

Suppose the new fares for crossing p = 0�1� or 2 zone
borders are given by

c�0�= 05� c�1�= 1� c�2�= 15

The new ticket prices can be calculated as

Z=



0 05 1 1 15
05 0 1 1 15
1 1 0 05 1
1 1 05 0 1
15 15 1 1 0


 

The deviations between the reference prices dij and the new
ticket prices zij are

D−Z=



0 05 1 2 25
05 0 0 1 15
1 0 0 05 1
2 1 05 0 0
25 15 1 0 0




and the objective values can be calculated as

bmax = 25� b1 = 20
20 = 1� b2 = 32

20 = 16

3. Solution of the Fare Problem with
Fixed Zones

In this section, we solve the fare problem with respect to
a given zone partition. Our first result shows that a closed-
form solution is possible for each of the three objectives
bmax� b1, and b2 introduced in §2.

Theorem 1. Let P = �V1� V2�    � VL� be a given zone par-
tition and let dij be given reference prices. To minimize
bmax, b1, and b2 we choose for all p= 0�1�    �L,

c∗max�p� �= max
i� j∈V : i 	=j�
nij=p

dij −
z∗p
wij
� (1)

where z∗p is defined as

z∗p = max
i1� j1� i2� j2∈V :
ni1j1=ni2j2=p

wi1j1wi2j2
wi1j1 +wi2j2

�di1j1 −di2j2�

c∗1�p� �=median�dij �    � dij︸ ︷︷ ︸
wij times

� i� j ∈ V � i 	= j� nij = p� (2)

c∗2�p� �=
1
W

∑
i� j∈V :nij=p

wijdij  (3)

Proof. Given the zone partition P we have to find fares
c�p� ∈� for all p= 0�1�    , minimizing bmax, b1, and b2,
respectively. Define

Mp =
{
�i� j�� i� j ∈ V and nij = p

}
and Wp =

∑
m∈Mp wm as the sum of all weights belonging

to pairs of stations in the set Mp. First, we note that each
of the three objective functions can be separated into at
most L+1 independent subproblems, Kmax�p�, K1�p�, and
K2�p�, respectively (for p= 0�1�    �L).
bmax =max

i� j∈V
wij �dij − zij �

= max
p=0�1� �L

max
m∈Mp

wm�dm− c�p�� =� max
p=0�1� �L

Kmax�p��

Wb1 =
∑
i� j∈V

wij �dij − zij �

=
L∑
p=0

∑
m∈Mp

wm�dm− c�p�� =�
L∑
p=0
K1�p��

Wb2 =
∑
i� j∈V

wij�dij − zij �2

=
L∑
p=0

∑
m∈Mp

wm�dm− c�p��2 =�
L∑
p=0
K2�p�

Consequently, to minimize bmax, b1, and b2 we determine
the optimal fare c�p� for p= 0�1�    �L separately, in each
of the three objective functions.
• For bmax: For all p= 0�1�    �L, the problem of min-

imizing

Kmax�p�= max
m∈Mp

wm�dm− c�p��

is well-known from location theory when locating a point
on a line such that the maximum distance to a given set of
existing facilities on the same line is minimized. The proof
for (1) can therefore be found in the location literature;
see e.g., Love et al. (1988), Hamacher (1995). Note that
Kmax�p�= z∗p.• For b1: Because
K1�p�=min

∑
m∈Mp

wm�dm− c�p��
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is a one-dimensional, piecewise linear and convex func-
tion, its minimization is known in statistics (see e.g., Hays
1981) and in location theory as the one-dimensional median
problem (see, e.g., Hamacher 1995, Plastria 1995). It is
shown that the above problem is solved by the so-called
weighted median of the set �dm� m ∈Mp�, i.e., by any real
number c= c∗1�p� which satisfies
∑

m:dm<c

wm �
Wp

2
and

∑
m:dm>c

wm �
Wp

2


• For b2: Here we have to minimize K2�p�, i.e.,

min
∑
m∈Mp

wm�dm− c�p��2

Using the theorem of Steiner (see e.g., Sarkadi and Vincze
1974) of statistics, we note that the weighted mean of the
values in �dm� m ∈Mp� is the unique optimal solution for
c�p�. Q.E.D.

To demonstrate the result of Theorem 1 we continue the
example of §2. The optimal values for the zone prices and
the resulting values for the objective functions bmax, b1, and
b2 are listed in Table 3.
Calculating the objective function by using (1), (2),

and (3) according to Theorem 1 yields the following
corollary.

Corollary 1. Given a zone partition P = �V1� V2�    � VL�
and reference prices dij , the optimal values of the objective
functions are given as follows:

b∗max =max
p
z∗p�

b∗1=
∑
p

( ∑
�i�j�∈V+

p

wij�dij−c∗1�p��+
∑

�i�j�∈V−
p

wij�c
∗
1�p�−dij�

)
�

where V +
p �= ��i� j�� nij = p�dij > c∗1�p�� and V −

p �=
��i� j�� nij = p�dij < c∗1�p��,

b∗2 =
∑
p

Var�dij � i� j ∈ V �nij = p��

where Var denotes the variance of the set.

Table 3.

Zones cmax c1 c2 Example

0 1 1 1 0.5
1 2 2 11/6 1
2 3.5 3 3.5 1.5

bmax 1 1 1.167 2.5
b1 8 8 8.667 1
b2 7 8 6.722 1.6

In practice, restrictions are often given on the new fares;
sometimes there are even politically desired fares that have
to be realized for the number of zones in the journey.
With the help of Corollary 1, one can easily calculate the
increase of the objective functions when using such given
fares instead of the optimal ones. In particular, Corollary 1
shows that for the objective function bmax the optimal fares
c∗max�p� are not needed to calculate the optimal objec-
tive value for a given zone partition. This will be needed
in the next section when we optimize the zone partition
with respect to bmax. If, additionally, bmax is used in the
unweighted case, i.e., with wij = 1 for all i� j ∈ V , we can
further simplify Theorem 1 and Corollary 1.

Corollary 2. In the case of equal weights, the optimal
fares c∗max�p� and the corresponding objective value bmax
are given by

c∗max�p�= 1
2

(
max

i� j∈V :nij=p
dij + min

i� j∈V :nij=p
dij

)
� (4)

Kmax�p�= 1
2

(
max

i� j∈V :nij=p
dij − min

i� j∈V :nij=p
dij

)
� (5)

b∗max = 1
2 max
p=1� �L

(
max

i� j∈V :nij=p
dij − min

i� j∈V :nij=p
dij

)
 (6)

Proof. We calculate z∗p as

z∗p = max
m1�m2∈Mp

wm1wm2
wm1 +wm2

�dm1 −dm2�

= 1
2

(
max
m∈Mp

dm− min
m∈Mp

dm

)
�

and consequently,

c∗p = max
m∈Mp

(
dm−

z∗p
wm

)

= max
m∈Mp

(
dm− 1

2 maxm̃∈Mp
dm̃+ 1

2 minm̃∈Mp
dm̃

)
= 1

2

(
max
m∈Mp

dm+ min
m∈Mp

dm

)


Using Corollary 1 and z∗p = Kmax�p�, the remaining parts
follow immediately. Q.E.D.

We remark that similar results can be derived for the
zone design problem with arbitrary prices (see Hamacher
and Schöbel 1995, Schöbel 1994b).

4. Finding Zone Partitions for the
Maximum Deviation Problem

The consequence of the results of §3 is that we can concen-
trate on finding the zones, because the zone pricing follows
easily from the choice of the objective function. We now
focus our attention on the maximum deviation problem.
Unfortunately, this problem is NP-hard and therefore diffi-
cult to solve.
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Figure 5. A station network where the objective value
for L = 4 is better than the objective value
for L= 5.
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A first observation deals with the monotonicity of the
objective function dependent on the number of planned
zones L. Whereas it is easy to see that for the zone design
problem with arbitrary prices all three objectives are mono-
tone in L, this is not true for the zone design problem
with counting zones, as Figure 5 shows. The station net-
work consists of eight nodes, and we assume that wij = 1
for all pairs of nodes i� j . The reference prices are given
as weights between any two adjacent nodes, as shown in
the figure. Between any other pair of nodes the reference
prices are given as the sum of the weights along a shortest
path connecting the nodes. For the (unweighted) max abso-
lute deviation problem, Corollary 2 shows that any solution
with L= 5 zones leads to a strictly higher objective value
than the graphed solution with L= 4 and bmax = 1. We will
therefore fix L in the following.

Theorem 2. The zone design problem with counting zones
and objective function bmax is NP-hard for all fixed L� 3.

The proof of Theorem 2 is given in the appendix. Note
also that the zone design problem with arbitrary prices is
NP-hard (Babel and Kellerer 2001).
To motivate the heuristics of this section, we first present

the following two observations for getting upper and lower
bounds on the objective value bmax.

Lemma 1.

bmax �
1
2

(
max
i� j∈V

dij − min
i� j∈V

dij

)


Proof. For any zone partition P and any integer p, we
have by (5) that

Kmax�p�= 1
2

(
max

i� j∈V �nij=p
dij − min

i� j∈V �nij=p
dij

)
�

1
2

(
max
i� j∈V

dij − min
i� j∈V

dij

)


Hence, bmax = maxp=1� �L Kmax�p� also satisfies this in-
equality. Q.E.D.

Lemma 2. Given a zone partition P , let INT ⊆ E be the
set of edges with both end nodes within the same zone and
BET=E\INT. Then, we have

�1� bmax �
1
2

(
max

�i� j�∈INT
dij − min

�i� j�∈INT
dij

)
�

�2� bmax �
1
2

(
max

�i� j�∈BET
dij − min

�i� j�∈BET
dij

)


Proof.
(1) Because

min
i� j∈V �nij=0

dij � min
�i� j�∈INT

dij and

max
i� j∈V �nij=0

dij � max
�i� j�∈INT

dij �

we get

bmax �Kmax�0�

�
1
2

(
max

i� j∈V �nij=0
dij − min

i� j∈V �nij=0
dij

)
�

1
2

(
max

�i� j�∈INT
dij − min

�i� j�∈INT
dij

)


(2) Analogously, BET ⊆ �i� j ∈ V �nij = 1�, hence we
get the result by using bmax �Kmax�1�. Q.E.D.

Lemma 2 suggests a zone design in which edges with
high weights are collected in BET and edges with small
weights in INT, or vice versa. To be more specific, let
Diam be the maximal diameter over all zones. Assuming
that edge weights along a path are additive, we get, again
using (5),

Kmax�p�= 1
2

(
max

i�j∈V �nij=p
dij− min

i�j∈V �nij=p
dij

)
�

1
2

(
�p+1�Diam+p

(
max

�i�j�∈BET
dij− min

�i�j�∈BET
dij

))
�

yielding that the maximal diameter Diam should be small,
and consequently edges with large weights should be in
BET while edges with small weights should be in INT.
Following these considerations, we present three heuris-

tics for solving the zone design problem with counting
zones. As input data we need—for any of the following
algorithms—a set of n stations with reference prices dij and
a number L of planned zones. The output is then given by
a zone partition with L zones.

Algorithms Based on Clustering Theory

The first algorithm is based on ideas from clustering theory,
and in particular on the sequential agglomerative hierarchi-
cal nonoverlapping (SAHN) algorithms (see, e.g., Duran
and Odell 1974). The idea is to start with n zones, each
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of which contains a one single station, and to combine in
each step the two closest zones to a new one. Depending on
the particular definition of the distance between two zones,
different algorithms can be obtained. Two of them have
been applied to the zone design problem: single linkage
and complete linkage.

Algorithm 1 (Zone Design Using SAHN Algorithms).
Step 1. Start with a partition P consisting of n zones,

each of which contains a single station. Let d�Vi�Vj� �= dij
for all zones Vi�Vj ∈ P .

Step 2. Determine two zones Vi 	= Vj ∈ P with minimum
distance d�Vi�Vj�.

Step 3. Join Vi and Vj to a new zone Vk and get a new
partition P .

Step 4. Calculate the new distances for all V ∈ P :
d�Vk�V � �= 1

2 �d�Vi� V � + d�Vj�V � + c�d�Vi�V � −
d�Vj�V ���

Step 5. If the number of planned zones is attained, then
Stop, Output P , else go to Step 2.

The parameter c in Step 4 determines the formula for
calculating the distance between two zones. In the context
of the zone design problem, we have used
• c=−1 for the single linkage algorithm, and
• c= 1 for the complete linkage algorithm.
The interpretation for single linkage is the following: The

distance between two zones is defined as the smallest dis-
tance between elements of the zones; consequently in each
step we join along a shortest edge. Note that in complete
linkage the distance between two zones is defined as the
maximum distance between their elements, and in each step
complete linkage tries to minimize the maximum diameter
of the zones.

Greedy Approach

This approach is a variant of the SAHN algorithms dis-
cussed above, but with more emphasis on the specific
structure of the zone design problem. Using the basics of
Algorithm 1, we calculate for all edges �i� j� the objec-
tive value bijmax when contracting �i� j� of the current zone
graph. Finally, we contract the edge with the smallest
increase in the objective function. This is rather time con-
suming, but, as we will show in the next section, leads to
very good results in practice. The formulation of the greedy
approach is the following:

Algorithm 2 (Zone Design by Greedy Approach).
Step 1. For all edges �i� j� ∈ E with nij = 1: Contract i

and j temporarily and calculate bijmax.
Step 2. Contract the edge �i0� j0� permanently, where

bi
0�j0

max =min{�i� j�� bijmax}�
and let ni0j0 = 0. If the graph has L nodes, Stop.

Step 3. For all i� j ∈ V , recalculate nij as shortest dis-
tance, and goto Step 1.

Spanning Tree Approach

The idea of the following heuristic is to determine a
set of edges BET that contains mostly edges with high
weights.

Algorithm 3 (Zonev Design by Spanning Tree Ap-
proach).

Step 1. Find a maximum spanning tree T in the complete
graph with edge weights dij .

Step 2. Omit the L − 1 largest edges of T and get a
forest with L components.

Step 3. Output: Zones are the connected components.

Note that in trees, the spanning tree approach is equiv-
alent to the single linkage algorithm of clustering theory.
In general graphs, it is always possible to find a spanning
tree such that omitting its L− 1 largest edges leads to the
same result as single linkage. However, if we start with a
spanning tree with maximal weight (which performed best
in practice), the spanning tree approach differs significantly
from single linkage.

5. Practical Experiences in Saarland,
Germany

As an example for the practical value of our approach,
we consider the situation in the state of Saarland, Ger-
many. Currently, there are six public transportation com-
panies operating in the Saarland, each with its own tariff
system.
• Four public transportation companies already use a

counting zone tariff system, but their fares for crossing p
zones and the structure of their zones are completely dif-
ferent, although they are partly operating in the same geo-
graphical region.
• The Deutsche Bahn (German Rail) still applies its dis-

tance tariff.
• There is also a public transportation company (serving

the city of Saarland’s capital, Saarbrücken) that uses a zone
tariff with variable prices.
The traffic association of the Saarland is considering

the introduction of one common counting zone tariff sys-
tem that would be applied by all the public transportation
companies. The public transportation network in Saarland
consists of roughly 4,000 stations, where a preclustering
into 600 minizones is given. The goal is to design about
100 zones and install a counting zone tariff system in such
a way that the differences between the current and the new
fares are as small as possible. It is also important that the
new income of each of the public transportation companies
not differ too much from its current income. Consequently,
the reference prices in this application are the current prices
for traveling. While the current fare structure is known and
therefore relatively easy to get, it is usually hard to get
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Figure 6. Comparison of the heuristics: bmax graphed for any number L of planned zones.
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Figure 7. Political suggestion; bmax = 515 DM.
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Figure 8. Solution of the single linkage algorithm; bmax = 500 DM.
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Figure 9. Solution of the greedy algorithm; bmax = 375 DM.
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realistic data about the customers’ behavior. In our project
in the Saarland this was solved by using the income data
of each of the transportation companies and dividing the
income with the help of available statistics over the origin-
destination pairs used by the customers.
We tested our algorithms on the data described above.

The results of Algorithms 1, 2, and 3 are shown in Figure 6.
This figure shows the objective value bmax for any num-
ber of possible zones from 1 to 600. All objective values
refer to a single-trip ticket for an adult, given in German
Marks (DM). On the one hand, it turns out that in this
practical application the greedy heuristic (Algorithm 2) is
the clear winner in terms of the objective value: It gen-
erated the best results for any number of desired zones.
On the other hand, the running time for Algorithm 2 for
all possible numbers of zones, i.e., from L = 1�    �600,
was nearly two weeks altogether in our first implementation
(on an AixJ90). The spanning tree approach (Algorithm 3)
and the single linkage algorithm (Algorithm 1) both needed

Figure 10. Zone planning with the software WabPlan in the state of Sachsen-Anhalt.

Source. The lines show the (fictional) customers who will have a change of more than 5% in their ticket prices.

only a few hours, but the results are much less convinc-
ing regarding the objective value bmax, again. For a small
number L of desired zones, single linkage did better than
the spanning tree approach, whereas for a higher number
of planned zones it was the other way around. This is due
to the fact that the spanning tree approach starts with only
one zone, while single linkage starts with 600 zones.
On a subset consisting of only 400 stations (or 54 mini-

zones) the heuristics have also been tested. In this smaller
setting the running times of Algorithms 1 and 3 were within
seconds, and Algorithm 2 needed only two minutes to
obtain again the clearly best results. The results for nine
zones are shown graphically in Figures 7, 8, and 9. Figure 7
shows a suggestion for a zone partition that is due to the
political districts in this area of the Saarland. The objective
value for this zone partition is bmax = 515 DM, i.e., there
exists a customer who will have a difference of 515 DM
between his current fare and the new one. The result of
the single linkage algorithm for nine zones is shown in
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Figure 8. Single linkage tends to form one large zone with
several smaller zones surrounding it (see, e.g., Duran and
Odell 1974). This behavior is also shown in Figure 8.
The objective value of the graphed zone partition is
500 DM. The objective value in the spanning tree approach
also was 500 DM for nine zones, but without these big dif-
ferences in the zone sizes. The best results, however, were
obtained by the greedy approach with an objective value of
only 375 DM. The corresponding zone partition is shown
in Figure 9.
For evaluating tariff zones in more detail, we use the

software package WabPlan (Schöbel and Schöbel 1999).
A graphical front-end provides a detailed analysis of all
trips for which the fare will increase or decrease dramati-
cally (see Figure 10). Furthermore, the expected income for
each of the transportation companies in each ticket category
is compared with its current income.
For practical purposes, many special rules for using fare

zones are common. Several of these rules have also been
implemented in our algorithms and tested on the Saarland
data.

Empty Zones. First, in most zone tariff systems empty
zones are used to increase the fare on some special trips
without affecting all other relations. This seems to make
sense in practice and can easily be incorporated in the algo-
rithms presented in §4. In this way, given reference prices
can be approximated arbitrarily close if the number L of
zones is large enough. In our model this means that the
optimal objective value goes to zero for bmax� b1, and b2 in
this case.

Border Stations. To avoid injustice, stations can be
located on zone borders, meaning that they belong to more
than one zone, and the cheapest choice for determining
the fare applies. Because the zone tariff system should be
clear and understandable, we tried to avoid this in the Saar-
land. In most cases it turned out that border stations can be
avoided without losing anything in the objective values by
changing only the zone design.

Special Rules for Large Zones. Also, some zones
might be so large that they have to be counted twice when
crossing them, in which case a special fare structure would
have to be implemented.
In the Saarland, the tariff system proposed by using our

methods is now in the implementation process.

6. Conclusion
In this paper, we have presented OR models for the count-
ing zone tariff problem. For fixed zones we have shown
that closed-form solutions can be provided. In contrast, the
zone problem, i.e., the design of zones, is NP-hard. Three
heuristics have been proposed and compared with respect
to their numerical behavior. The practical usefulness of the
approach is shown by its actual implementation in the state
of Saarland, Germany. Other German states are currently

using our system to evaluate their tariff structures. Due to
the importance of this problem, we hope that this contribu-
tion motivates further research.

Appendix
Proof of Theorem 2. We use a reduction to the problem
partition into cliques for L= 3 cliques, which is NP-hard
(see problem GT15 in Garey and Johnson 1979). Let a
graph G = �V �E� be given. We want to find out if there
exists a partition of V into three node sets V1� V2, and V3
such that the induced subgraphs G1�G2, and G3 are com-
plete. To reduce this problem to a zone design problem, we
consider the complete graph �= �� ���, defined by
� = V ∪ {

a1� a2� a3� b1� b2� b3
}

and

�= �e= �k� l�� k� l ∈� �� k 	= l
Furthermore, let wij = 1 for all i� j ∈ � and define the
reference prices as the following edge weights:

dkl =




1 if �k� l� ∈E�
1 if k ∈ V � l 	∈ V �
1
2 if there exists i= 1�2�3

such that �k� l�= �ai� bi��
2 if k� l ∈ V � �k� l� 	∈E�
2 if k� l 	∈ V � �k� l� 	= �ai� bi�

for all i= 1�2�3
Now we show that G can be partitioned into three cliques

if and only if the zone design problem in G has a solution
with three zones and with bmax < 3/4.

=⇒: Let V = V1 ∪ V2 ∪ V3 be the partition of G into
cliques. Define Ci = Vi ∪ �ai� bi� for i = 1�2�3. Using (5)
we calculate

Kmax�0�= 1
2

(
1− 1

2

)= 1
4 �

Kmax�1�= 1
2 �2− 1�= 1

2 �

such that we get bmax < 3/4.
⇐=: Let C1�C2�C3 be a partition of � with bmax < 3/4.

Define Vi = Ci ∩ V for i = 1�2�3. First, we note that by
renaming Ci we can assume that ai� bi ∈ Ci for i= 1�2�3.
This can be proved by a simple case analysis (see Penner
1997) that verifies the following.

1. If ai and bi do not belong to the same zone, this
yields bmax � 3/4.

2. If ai� bi and another aj or bj , j 	= i, belong to a
single common zone, then bmax � 3/4.
Now let k� l ∈ Vi. We have to show that the edge

�k� l� ∈E. Assume the contrary, i.e., dkl = 2. According to
(5), this yields

Kmax�0��
1
2

(
2− 1

2

)= 3
4 �

a contradiction. For more than three zones, the proof can be
done analogously with a reduction to partition into L > 3
cliques. Q.E.D.
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