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This paper concerns a method for digital circuit optimization based on formulating the problem as a geometric program
(GP) or generalized geometric program (GGP), which can be transformed to a convex optimization problem and then very
efficiently solved. We start with a basic gate scaling problem, with delay modeled as a simple resistor-capacitor (RC) time
constant, and then add various layers of complexity and modeling accuracy, such as accounting for differing signal fall and
rise times, and the effects of signal transition times. We then consider more complex formulations such as robust design
over corners, multimode design, statistical design, and problems in which threshold and power supply voltage are also
variables to be chosen. Finally, we look at the detailed design of gates and interconnect wires, again using a formulation

that is compatible with GP or GGP.
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1. Introduction

1.1. Digital Circuit Sizing

The complexity of digital integrated circuits (ICs) has been
increasing exponentially since around 1960, with the num-
ber of components or devices in a single IC more than
doubling every 18 months. Some current ICs contain over
100 million devices and a similar number of wires connect-
ing them. The design of such complex ICs relies heavily
on electronic design automation (EDA) and computer-aided
design (CAD) technologies.

In this paper, we focus on just one step in the design
of a digital circuit: the selection of appropriate sizes for
the devices, gates, and wires. These sizes can correspond
to physical dimensions such as the width of a transistor
channel or wire segment, or to more abstract parameters
like the drive strength of a gate (which is closely related to
the physical size of the gate). We will also consider exten-
sions in which other design variables, such as threshold and
power supply voltage, are also selected. The choice of these
design variables can have a strong influence on the three
primary top level objectives: the total area of the circuit,
the total power it consumes, and the speed at which it can
operate.

Our starting point is a given circuit topology that realizes
the required circuit behavior. The circuit topology consists
of an interconnection of gates, which are small circuits that
carry out basic Boolean functions such as inversion (logical
NOT), conjunction (logical AND), and disjunction (logical
OR), and storage elements or registers, which are small
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circuits that store Boolean values at each clock cycle. The
circuit topology can come directly from a circuit designer
or from a logic synthesis step, in which the circuit topology
is generated automatically from a high level description of
the required behavior. The logic gates, storage elements,
and their interconnections are fixed; what remains is to
choose the size of each gate or, in custom design, each
device in each gate. (There are many other components in
digital integrated circuits that we do not consider, includ-
ing, for example, circuitry for power and clock distribution,
memory, and input/output functions.)

The circuit topology can be partitioned into a set of com-
binational logic blocks, which are subcircuits consisting
of logic gates between registers. Each combinational logic
block computes a particular Boolean function. For exam-
ple, a 32-bit adder has 64 Boolean inputs, consisting of
the Boolean representation of the two 32-bit numbers to
be added, and 32 Boolean outputs, which is the Boolean
representation of the sum (ignoring overflow).

We will focus on the sizing problem for combinational
logic blocks, because a method for sizing individual blocks
can be extended to one for sizing a set of blocks, i.e.,
a larger sequential logic circuit that includes registers. In
the simplest case this can be done by designing each com-
binational logic block separately (for example, to minimize
power or area, subject to some timing requirements); for
more complex problem formulations it can also be done in
a coordinated manner described in §2.5.

For general background on digital circuit design, we
refer the reader to the recent books (Weste and Harris 2004,



Boyd, Kim, Patil, and Horowitz: Digital Circuit Optimization via Geometric Programming

900

Operations Research 53(6), pp. 899-932, © 2005 INFORMS

Rabaey et al. 2002, Hodges et al. 2004) that describe the
sizing problem and its context in detail. The influential
book by Sutherland et al. (1999) is almost entirely devoted
to the sizing problem. Sizing of digital circuits is a well-
researched field, with hundreds of papers on the topic; see,
e.g., the articles by Fishburn and Dunlop (1985), Passy
(1998), Chen et al. (2004), Kim et al. (2004), Kasamsetty
et al. (2000), Sapatnekar (1996), and Sapatnekar et al.
(1993) and the references therein.

1.2. Sizing Optimization via Geometric
Programming

In this paper, we focus on a particular approach, in which
the sizing problem is modeled (at least approximately) as
a geometric program (GP), a special type of mathemati-
cal optimization problem. We refer the reader to the paper,
“A Tutorial on Geometric Programming” (Boyd et al. 2004)
for an introduction to geometric programming, some of the
basic tricks used to formulate problems in GP form, a num-
ber of examples, and an extensive list of references. We
also give a very short introduction to GP in the Appendix.

GP-based circuit sizing is by no means new; it has been
used for digital circuits since the 1980s. In 1985, Fishburn
and Dunlop proposed a method for transistor and wire siz-
ing, based on Elmore delay, that was later found to be a GP.
Since then many digital circuit design problems have been
formulated as GPs or related problems. Work on gate and
device sizing (the main topics of this paper) can be found
in, e.g., Chu and Wong (2001b), Passy (1998), Cong and
He (1999), Kasamsetty et al. (2000), Matson and Glasser
(1986), Pattanaik et al. (2003), Shyu et al. (1988), Sancheti
and Sapatnekar (1996), Sapatnekar and Chuang (2000), and
Sapatnekar et al. (1993). These are all based on gate delay
models that are compatible with geometric programming;
see Kasamsetty et al. (2000), Sakurai (1988), Sutherland
et al. (1999), Rubenstein et al. (1983), and Abou-Seido
et al. (2004) for more on such models. Work on intercon-
nect sizing (also addressed in this paper) includes Alpert
et al. (2001b), Cong and He (1996), Cong and Koh (1994),
Cong et al. (1996), Cong and Leung (1995), Cong and
Pan (2002), Chen et al. (2004), Chen and Wong (1999),
Gao and Wong (1999), Kay and Pileggi (1998), Lee et al.
(2002), Lin and Pileggi (2001), and Sapatnekar (1996);
simultaneous gate and wire sizing is considered in Chen
et al. (1999) and Jiang et al. (2000). In some of these
papers, the authors develop custom methods for solving
the resulting GPs instead of using general purpose interior-
point methods (see, e.g., Chu and Wong 2001b, Ismail
et al. 2000, Young et al. 2001). For some simple prob-
lems, analytic solutions are available (see, e.g., Chu and
Wong 2001a, Gao and Wong 1999). Other problems in dig-
ital circuit design where GP plays a role include buffering
and wire sizing (Alpert et al. 2004; Chu and Wong 1999,
2001a), sizing and placement (Chen et al. 2000), yield max-
imization (Kim et al. 2004, Patil et al. 2005), parasitic

reduction (Qin and Cheng 2003), clock tree design (Vit-
tal and Marek-Sadowska 1997), and routing (Borah et al.
1997). Geometric programming has also been used for the
design of nondigital circuits, e.g., analog circuits (Dawson
et al. 2001, Hershenson 2003, Hershenson et al. 1998, Man-
dal and Visvanathan 2001, Vanderhaegen and Brodersen
2004), mixed-signal circuits (Colleran et al. 2003, Hassibi
and Hershenson 2002, Hershenson 2002), and RF (radio
frequency) circuits (Hershenson et al. 1999; Mohan et al.
1999, 2000; Xu et al. 2004). Geometric programming has
also been used in floorplanning, for both analog and digital
circuits (Moh et al. 1996).

Our focus will not be on any particular sizing problem,
and certainly not on the particular results of any of our
numerical examples; instead our focus will be on the mod-
eling of a variety of problems in GP form. There are several
advantages to modeling a problem, at least approximately,
as a GP. The first is computational: new methods can solve
even large GP problems exactly, globally, and efficiently.
Even if these new methods are not exploited to solve the
problem, the knowledge that a problem is (approximately)
a GP has utility. For example, it tells us that a particu-
lar logarithmic transformation of the variables and con-
straints yields a convex optimization problem, and this can
be exploited to develop a more efficient solution method.
In addition, we have the very useful conclusion that any
local solution of the problem is in fact global. If an ad hoc
solution method can be shown to find a local solution, we
can conclude that it finds a global solution. (For more dis-
cussion of these issues, see Boyd et al. 2004, Boyd and
Vandenberghe 2004.) Another advantage to expressing a
sizing problem in GP form is conceptual: we claim that GP
serves as a unifying standard form for circuit sizing prob-
lems, the same way that linear programming (LP) serves
as a unifying standard form for a wide variety of simple
resource allocation problems.

The traditional approach to solving the GPs that arise
from digital circuit sizing problems is to use an ad hoc or
custom method specially designed for the particular prob-
lem, which does not exploit the GP structure. These meth-
ods typically analyze the timing of a circuit, identify a
critical path, and then resize one or more devices or gates
along the critical path. This is repeated until no further
improvement occurs. This approach was developed in the
1980s, when general purpose methods for solving GPs were
slow and limited to small problems, and some of the prob-
lems were not yet recognized as GPs. While this traditional
approach allows the solution of even very large circuit siz-
ing problems, it can only handle simple problem formu-
lations. Moreover, this approach requires the development
(and tuning) of a new solution method for each new prob-
lem formulation.

In the mid 1990s interior-point algorithms for GP were
developed, which can solve even large-scale GPs extremely
efficiently and reliably (Boyd and Vandenberghe 2004,
Nesterov and Nemirovsky 1994, Nocedal and Wright 1999,
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and Ye 1997). This opens the possibility of formulating
even large circuit sizing problems as large-scale GPs, and
directly solving them using interior-point methods. This
approach easily handles complex problem formulations and
a wide variety of constraints and objectives.

Like all methods, the GP modeling approach has advan-
tages and disadvantages. One advantage is that complex
interactions between the optimization variables are easily
accounted for, and additional constraints are easily added.
As we will see, the method handles complex problems,
such as joint optimization of devices sizes, threshold, and
supply voltage; robust design over corners or taking sta-
tistical variations into account; and the design of circuits
that operate in multiple modes (such as a low power and a
high performance mode). When compared with other meth-
ods based on numerical optimization, methods based on GP
(and interior-point solution methods) have the advantage of
not needing an initial design, or any algorithm parameter
tuning, and always finding the global solution.

We can also list a number of shortcomings of the
approach. The method does not give much insight into why
some set of specifications cannot be achieved, nor does it
suggest how the designer might change the circuit topology
to do better. While solving GPs is fast, it is not as fast as
methods that choose sizes using simple rules, with a few
passes over the circuit.

1.3. Outline

We start with the simplest possible setup: simple gate scal-
ing, with delay modeled as a simple resistor-capacitor (RC)
time constant. We then add various layers of complexity
and modeling accuracy, such as accounting for different fall
and rise times, effects of signal transition times, static and
dynamic power, and so on. Next, we consider problems in
which threshold and power supply voltage are also design
variables to be chosen. Finally, we consider device sizing,
accounting for internal device capacitances, and distributed
wire capacitance. In all cases our focus is on formulating
the problem as a GP, or an extension of GP called gener-
alized geometric programming (GGP) (Boyd et al. 2004).

We consider design problems ranging from simple ones
involving trade-offs among area, speed, and power, to more
complex and interesting formulations such as robust design
(i.e., a design that meets the specifications despite varia-
tions in supply voltage, temperature, and device parame-
ters), statistical design (one that takes manufacturing and
other statistical variations into account), and multimode
designs (i.e., a design that is meant to operate in multiple
modes).

1.4. Audience and Goals

This paper is meant to serve several purposes. First, it is a
tutorial, aimed at those new to GP-based digital circuit siz-
ing, that covers well-known GP-based methods, e.g., gate
sizing with simple RC models and wire and device sizing

using Elmore delay. At the same time we describe a number
of new problems, and variations on known ones, that can
be solved using GP modeling. For example, the observa-
tion that joint device sizing, threshold voltage, and supply
voltage optimization can be carried out using GP is new, as
far as we know. We hope that researchers in digital circuit
sizing will find the more complex problem formulations
and models interesting. For researchers in optimization, we
hope that the paper will serve as an introduction to what
we feel is a promising application area for optimization.

Our main goal is to convince the reader that GP modeling
is widely applicable in digital circuit sizing optimization,
both in the variety of phenomena and effects it can model
(such as signal transition time, distributed RC loads, par-
asitic capacitance, and leakage power), and the number of
problem formulations it lends itself to (such as robust, mul-
timode, and statistical optimization), and therefore is worth
studying.

2. Gate Scaling
2.1. Basic Gate Scaling with Simple Models

2.1.1. Circuit Topology. We consider a combinational
logic circuit that consists of a set of logic gates between
(edge-triggered) flip-flop registers, connected by some
interconnect wires or nets. We refer to the outputs of the
flip-flops that drive the combinational logic block as its pri-
mary inputs, and the inputs of the flip-flops that are driven
by the combinational logic block as the primary outputs.
(The input and output flip-flops do not have to be distinct;
the output of a single flip-flop can drive the combinational
logic block, and its input can be connected to the output of
the combinational logic block.) For simplicity we assume
that each gate has a single output, which is connected to
the inputs of one or more gates, and possibly a primary
output. Each input of each gate is connected to the out-
put of another gate, or a primary input. We assume that
the circuit is acyclic, i.e., it contains no feedback paths or
cycles of gates connected to each other. The circuit topol-
ogy is described by a netlist, or a directed acyclic graph
(DAG) in which each node represents a gate or primary
input and each arc represents a wire or net connection.
The gates are labeled 1, ..., n, and the primary inputs and
outputs are labeled starting at n 4 1. The set of primary
inputs is denoted by PI. The fan-in of gate or primary
output i, denoted FI(i), is the set of predecessors of i in
the DAG, i.e., the gates or primary inputs which drive an
input of gate i. The fan-out of gate or primary input i,
denoted FO(i), is the set of successors of i in the DAG,
i.e., the set of gates or primary outputs which gate i drives.
(When i is a primary input, FI(i) = &, and when i is a
primary output, FO(i) = @. When i is a primary output,
FI(i) has the form {;}, where j is the gate that drives pri-
mary output i.) The output gates are those with no fan-out
gates.
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Figure 1. A combinational logic block with seven Figure 2. Schematic diagram of a two-input NAND
gates, labeled 1,...,7, with primary inputs gate, with inputs A and B, output Z, and scale
labeled 8, 9, 10 and primary outputs labeled factor x.
11, 12.
Vaa
Input flip-flops Combinational logic block  Output flip-flops
8 i i
: Wy =xw) Wy = XW,
. z
in—/— ——out
A W3 = XW3
Clock— 4+ 1 :|
. . B Wy = XWy
Figure 1 shows a small example with seven gates

(labeled 1, ..., 7), three primary inputs (8,9, 10), and two
primary outputs (11, 12). In this example, we have, for
example,

FI(2)={8,9,10},  FO(2)={4,5},
FI(6)={4},  FO(6)={l1}.

Each of the seven gates in this combinational logic block
carries out some particular Boolean function of its inputs,
but we do not specify these functions, because for the
moment it does not matter. To make the example more
concrete, the reader can imagine that gate 1 is an inverter
(i.e., performs logical inversion), gate 2 is a three input
AND gate (i.e., its output is the logical conjunction of its
inputs), gate 3 is a buffer (i.e., its output is the same as
its input), and so on. This combinational logic block com-
putes a function from three Boolean variables (the primary
inputs) to two Boolean variables (the primary outputs). We
note that combinational logic blocks found in current ICs
are far larger than this example, typically with many tens
(or more) of inputs and outputs, and thousands (or more)
gates.

2.1.2. Scale Factor. With each gate we associate a
scale factor or normalized size x; > 1 that scales the widths
of the devices used to form the gate. The scale factor x; =1
corresponds to a minimum-sized gate, and a scale factor
x; = 16 (say) corresponds to a version of the gate in which
all devices have width 16 times the widths of the devices in
the minimum-sized gate. This is illustrated with the NAND
gate shown in Figure 2, which computes the Boolean func-
tion Z = AB. The minimum size NAND gate (correspond-
ing to scale factor x = 1) has device widths w,, ..., w,.
With scale factor x, the device widths are xw, ..., xw,.
The scale factors of the gates, which are the design vari-
ables to be chosen, affect the total circuit area, the power
consumed by the circuit, and the delay of the circuit.

We will see later (in §2.2.2) that the gate scale factor
need not have the literal meaning of a scaling applied to

every device in a gate; in general, it is just a parameter
meant to describe the gate’s size or ability to drive a capac-
itive load (and, indeed, is sometimes referred to as the gate
drive strength). For now, though, we keep the literal inter-
pretation to derive simple models that relate scale factor to
circuit performance. We also note that the scale factors x;
are often restricted to a finite set of allowed values, and
are not allowed to take on a continuum of values. We will
discuss both of these issues later.

2.1.3. RC Gate Delay Model. Each gate has a delay,
which is the time it takes its output signal to transition
to a new value, after its input values have transitioned to
new values. We start with the simplest model of gate delay,
based on the simple resistor-capacitor (RC) circuit shown
in Figure 3. When the output of the gate is logical 1, the
upper switch is closed, and the lower switch is open, so
the output terminal Z is connected to the power supply
voltage V,,, which represents logical 1. When the output of
the gate is logical 0, the upper switch is open and the lower

Figure 3.

RC model of a CMOS gate with two inputs,
A and B, and one output, Z.
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switch is closed, so the output terminal Z is connected to
ground, which represents logical 0.

Each gate has an input capacitance C™, which is a load
for the gate that drives it (or a primary input). Each gate
also has an intrinsic or internal capacitance C™_ which
appears as a load on the gate. These capacitances are mod-
eled as linear functions of the scale factor,
cr=Cra. =G,
where 5}“ and 5}“‘ are the input capacitance and intrinsic
capacitance of gate i with unit scaling.

If i represents a primary output, C" denotes its input
capacitance, i.e., the input capacitance of the associated
flip-flop, which we assume is given. The load capacitance
CF that gate or primary input i drives is the sum of the input
capacitances of the gates and primary outputs it drives:

ch= Y cn

JEFO(i)

(When i represents a primary input, C}- is the input capac-
itance at the primary input which is a load to the flip-flop
that drives it.) The load capacitance CF is a linear function
of the scale factors x, with positive coefficients, so it is a
posynomial function of x. (See Boyd et al. 2004 for the
definition of posynomial.)

Each gate has driving resistance R;, which is inversely
proportional to the scale factor,

R =R;/x;,

where R, is the driving resistance of gate i with unit scale
factor. Thus, R, is a monomial function of x;. (Here we use
the term “monomial” in the sense used in geometric pro-
gramming, not the standard meaning in algebra; see Boyd
et al. 2004.) Gate i thus has parameters C™, C™, and RI™.
These parameters depend on the particular process technol-
ogy used to fabricate the circuit, the power supply voltage,
and other parameters which for now are assumed known
and fixed.

Using this simple RC model of a gate and its load, we
can approximate the gate delay D, as

D, =0.69R,(C" + CF),

which is the time required for the output voltage of an
RC circuit to reach the midpoint between the logic voltage
levels (i.e., 0 and V). Because R;, C-, and C™ are posyn-
omials of the scale factors, the delay of each gate is also a
posynomial function of the gate scale factors.

2.1.4. Path and Circuit Delay. A path through the cir-
cuit is a sequence of gates, with each gate’s output con-
nected to the following gate’s input. The delay of a path
is the sum of delays of the gates on the path, and hence
is posynomial. The circuit delay D (also called the worst-
case or longest-path delay) is the maximum delay along

any path through the circuit. The delay is meant to be the
elapsed time when all primary outputs of the circuit are
valid, after the primary inputs change. Because the worst-
case delay is the maximum path delay, over all possible
paths, it is a maximum of a set of posynomial functions,
and therefore is a generalized posynomial of the scale fac-
tors. (See Boyd et al. 2004 for an extensive discussion of
generalized posynomials.)

Some paths through the circuit correspond to logic tran-
sitions that cannot occur, i.e., there is no input transition
that causes transitions in the outputs of all gates along the
path. These paths are called false paths. It is possible to
consider the “true” (worst-case) delay of the circuit, which
is the maximum delay over all paths on which each gate
actually transitions, for some input transition. This “true”
delay is also a generalized posynomial, because it is the
maximum over a set of path delays, each of which is a
posynomial of the scale factors. Calculating delay ignoring
the false path issue, which is called static timing analysis,
is common practice because it leads to an efficient recursive
formulation (which we describe later). The delay obtained
from static timing analysis is in any case an upper bound
on the true worst-case delay over all possible transitions.

As a specific example, the circuit shown in Figure 1 has
only seven paths from primary inputs to primary outputs.
The (worst-case, static-timing analysis) delay is given by

D =max{D, + D, + Dg, D, + D, + D;, D, + D, + D,
D, + D, + D,, D, + D5+ D,,
D;+ D5+ Dg, Dy + D, }. (1)

To find the true worst-case delay of this circuit we need to
know the Boolean functions that gates 1,...,7 compute.
There are 2° = 8 input states, and thus 8 - 7 = 56 possible
input transitions. For each of these transitions, we deter-
mine the subset of the seven paths on which all gate outputs
change value. (Brute force enumeration of the transitions
is possible for a circuit with three primary inputs, but not
in the general case, because there are 2¥(2% — 1) transitions
for a circuit with k primary inputs.)

A combinational logic block can be thought of as a
project network or activity network, in which the gates rep-
resent tasks or activities to be carried out, and the wires in
the circuit give the precedence relations among the tasks:
the task of gate i is to compute its associated Boolean func-
tion of its inputs, once they have become valid. The delay
of the circuit corresponds to the makespan of the associ-
ated project network, i.e., the time it takes to complete all
tasks, assuming that each task starts as soon as it can (i.e.,
its precedents have finished). Static timing analysis cor-
responds closely to PERT (project evaluation and review
techniques) (Davis 1966; Dodin 1984; Elmaghraby 1970,
1977, Robillard and Trahan 1976) methods for identifying
one critical path (or K most critical paths) in a digital cir-
cuit; see, e.g., Blaauw et al. (2002).
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2.1.5. Area and Power. In the simplest model, we
approximate the (physical) area of gate i as proportional to
the scale factor x;, so the total area of the (combinational
logic block) circuit has the form

A=>"xA,
i=1

where A, is the area of gate i with unit scaling. The total
circuit area is an affine function of the scale factors, with
positive coefficients, and so is a posynomial function.

An output transition of gate i is associated with energy
loss due to charging (or discharging) its intrinsic and load
capacitances, given by

(CM+CH)Va/2,

where V,, is the circuit supply voltage. Similarly, a transi-
tion of primary input i is associated with the energy loss

Ci Vial2.

The total dynamic power dissipated by the circuit can be
written as

n
Pao =2 fiCi Vg + 2 (G + C) Vg @)
iePl i=1
where f; is the activity frequency of primary input i or
the output of gate i. (The activity frequency is defined as
the number of falling/rising cycles of the gate output per
second, and so involves two transitions.) The parameters f;
are often given as a fraction of the clock frequency f;, as
fi = a,f. The fractions «; are called gate activity factors.
The activity factors are often guessed, or estimated from a
behavioral simulation of the circuit. For fixed f; and supply
voltage, the dynamic power is a linear function of the gate
scale factors, with positive coefficients, and therefore is a
posynomial.

The static power or leakage power of a gate is the power
dissipated by the circuit even when the inputs are constant.
The static power of a gate is also approximately propor-
tional to its scale factor (assuming constant supply voltage)
and depends on the input state of the gate. If we have
(either by assumption or simulation) the probability dis-
tribution of the gate input state values, we can form the
average static leakage power for a gate, which is propor-
tional to the scale factor. The total (average) static power
of the circuit has the form

n

P = Z I_ileakxi Vaas (3)

i=1

where I/ is the leakage current of gate i with unit scaling.
The static power is a linear function of the scale factors,
with positive coefficients, and thus a posynomial.

The total power is
P= den +Pslat’

which is a linear function of the scale factors, with positive
coefficients, and therefore a posynomial. (For more details
on dynamic and static power modeling, see Chandrakasan
and Brodersen 1995, Pedram 1996, Roy et al. 2003.)

For the moment, we are assuming that power supply
voltage and clock frequency (which scales the activity fre-
quencies, assuming given activity factors) are constant. But
if clock frequency or supply voltage are varied, the two
components of the total power vary in different ways. (We
consider this in more detail in later sections.)

2.1.6. Basic Gate Scaling Problem. We can now for-
mulate a basic gate scaling problem: choose the scale fac-
tors to give minimum delay, subject to limits on the total
area and power. This can be expressed as the optimization
problem

minimize D
subject to P
1

< Pmax’ A < Amax, (4)
<x;, i=1,...,n.

Here, P™ and A™ are given limits on the total power
and area, and the optimization variables are the scale fac-
tors x;, ..., x,. Because D is a generalized posynomial, and
A and P are posynomials, this problem is a GGP and so
can be solved very efficiently. The solution of problem (4)
gives the fastest circuit, with given power and area budgets.

We can interpret the basic gate scaling problem (4) as a
project network optimization problem. We can think of the
vector of gate scale factors as an allocation of resources
(scale factors) to the tasks (gates), subject to the resource
limitations given by the power and area constraints. The
objective is to allocate the resources in such a way that
the time to complete all tasks is minimized. The interest-
ing twist in the gate scaling problem is that the time to
complete a task (i.e., a gate delay) depends not only on the
amount of the resource allocated to it (i.e., its own gate
scaling), but also the resources allocated to its successor
tasks (i.e., its fan-out gates). When we include signal tran-
sition times in the delay model (the Appendix), the task
completion time will also depend on the resources allocated
to its predecessor tasks.

There are many variations on the basic gate scaling prob-
lem. For example, we can choose area or power as the
objective to be minimized and impose a limit on delay. As
a simple extension, we can formulate the problem as one
of maximizing the circuit clock frequency f,, instead of
minimizing the circuit delay. We assume that the circuit
delay D must not exceed some fixed fraction, such as 80%,
of the clock cycle time 1/f,,. (The extra margin takes into
account the delay of the flip-flops, as well as a required
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setup time.) This can be expressed as D < 0.8/ f,,., which
can be expressed as the inequality

(1/0.8) fa D <1,

where the left-hand side is a generalized posynomial of
the gate scale factors and the clock frequency. Assuming
that the activity factors are fixed, the dynamic power scales
linearly with f,;, whereas the static power does not scale
at all. Thus, the total power is a posynomial of the scale
factors and the clock frequency. To maximize the clock
frequency, we form the problem

maximize f
subject to (1/0.8) f, D < 1,
A

P < Pmax’ < Amax

b}

1<x;, i=1,...,n.

This is a GGP with variables x,, ..., x, and f,.

2.1.7. Trade-Off Analysis and Optimal Sensitivities.
We can minimize a composite objective such as a weighted
sum or maximum, or a product of positive powers of delay,
area, and power. This produces designs that are Pareto opti-
mal, or efficient, with respect to the three objectives: delay,
area, and power. (Solving the basic problem (4) also yields
Pareto optimal points, provided the area and power con-
straints are active.) By generating many such designs, for
various values of the weights (with a weighted sum objec-
tive), or limits P™* and A™* (when the basic problem (4)
is solved) we find the globally optimal trade-off surface for
delay, power, and area (see Boyd et al. 2004).

The optimal trade-off surface has many practical uses.
If, for example, a great reduction in optimal delay can be
obtained with only a modest increase in area and power
(say), the designer may wish to increase the area and power
limits. The optimal trade-off surface is also useful if many
instances of the combinational logic block are to be used in
a large circuit, or in several circuit designs, with (possibly)
different power, area, and delay specifications. Finally, the
optimal trade-off surface allows us to jointly optimize a
set of combinational logic blocks in a sequential circuit
(see §2.5).

When we solve the GGP (4), we get (at no additional
computational cost) the optimal sensitivities or Lagrange
multipliers for the power and area constraints. These num-
bers give local predictions of optimal delay, as P™* and
A™>* are changed a small amount. For example, if S =
—2.3, a 1% increase in allowed area A™* would lead to
a reduction in delay of around 2.3%. These sensitivities
are extremely useful because they quantify how “binding”
the power and area constraints are. (For more discussion
of optimal sensitivities, see Boyd et al. 2004, Boyd and
Vandenberghe 2004.)

2.1.8. Other Constraints. There are many other con-
straints, compatible with geometric programming, that can
be added. For example, we can impose a maximum on the
scale factors, x; < x™, or we can impose a maximum load
capacitance at each primary input. (Because the load capac-
itance at each input is a sum of gate capacitances, it is a
posynomial function of the scaling factors, and imposing a
maximum is a posynomial inequality constraint.)

We also mention a few common constraints that are not
compatible with GGP. One is the requirement that the gate
scaling factors x; lie in discrete sets, such as the set of inte-
gers, or powers of two. With constraints like these, the gate
scaling problem (4) becomes a mixed-integer generalized
geometric program. Dealing with discrete constraints in a
mixed-integer GGP is sometimes called snapping (to the
grid of allowed values). In theory, such problems are very
difficult to solve exactly (whereas in theory, GGPs are easy
to solve), but in practice there are several good heuristics
for obtaining at least an approximate solution. The simplest
snapping method is to solve the GGP, ignoring the dis-
crete constraints, and then round each x; to its nearest valid
value; see §7.3 in Boyd et al. (2004) for more discussion.
Provided we do not insist on always finding the true global
minimum, these snapping heuristics can be quite effective.

Another constraint not compatible with GP is a mini-
mum delay constraint. Such a constraint requires that the
shortest path delay, on any path in the circuit, must exceed
a given minimum value. In GGP we can only impose a
minimum on a monomial function (see the Appendix), and
the minimum path delay of a circuit is certainly not a
monomial. However, such constraints can usually be dealt
with after the design via GP is completed, by inserting
extra delay elements in the paths that are too fast. An effi-
cient design typically has few or no very short path delays,
so little modification is needed to comply with short path
constraints.

2.1.9. Dynamic Programming GP Formulation. The
delay D is the maximum of a set of posynomials, i.e., the
delays of all paths through the circuit. Even small circuits
can have a very large number of paths, in which case it
is not practical to form an expression for D by listing all
the paths. A simple recursion for D can be used to avoid
enumerating all paths. We define 7; as the maximum delay
over all paths that start at a primary input and end with
gate i. We can interpret 7; as the latest time at which the
output of gate i can transition, assuming that the primary
input signals transition at # = 0. For this reason 7; is some-
times called the (latest) signal arrival time at the output of
gate i.

We can express 7; via the recursion

T = T.+D,, 5
j=max T;+D, ®)

with the starting conditions 7; = 0 for i corresponding to
a primary input. This recursion states that the latest signal
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arrival time at the output of a gate is equal to the maximum
signal arrival time of its fan-in gates, plus its own delay.
The delay D of the whole circuit is given by the maximum
over all 7;, which is the same as the maximum over all

output gates:

1

D= max T, = max{T; | i an output gate}.
i=1,...,n

The recursion (5) shows that each 7 is a generalized posyn-
omial of the scaling factors, because generalized posyno-
mials are closed under addition and maximum.

As a specific example, for the circuit shown in Figure 1,
the recursion is

T,=D, i=1,23,
T,=max{T,, T,} + D,,

Ts = max{T,, Ts} + Ds,

Ty =T,+ Dy,

I =max{Ty, Ty, Ts} + Dy,
D =max{T, T,}.

For this small example, the recursion gives no real sav-
ings over expression (1) above based on enumeration of the
paths, but in larger circuits the savings can be dramatic.
This recursion for D allows us to reformulate prob-
lem (4), which is a generalized geometric program, as a
geometric program. Problem (4) is equivalent to the GP

minimize T

subject to T; < for j an output gate,

< T, for jeFI(i), (6)

1

ma: ma:
Y, ASA™Y

+
TSN

NN

i=1,...,n,

ol

with optimization variables x; (the gate scale factors), T,
for i not a primary input (upper bounds on signal arrival
times), and 7 (an upper bound on the overall delay). For
primary inputs, we take 7, = 0. Although we have intro-
duced n+ 1 new variables, the constraints in (6) are sparse:
each of the timing constraints involves only a few variables
(assuming that fan-ins and fan-outs are not very large).
This sparsity can be exploited by a GP solver to obtain
great efficiency; we refer the reader to part III of Boyd and
Vandenberghe (2004) for more on exploiting structure to
obtain efficiency.

To give a rough idea of the current state of the art, a
typical circuit with 1,000 gates can be solved in a few sec-
onds on a small personal computer (see Kim et al. 2004).
Our computational experience with larger problems sug-
gests that it grows quite modestly in the total number of
gates. For typical problems, the running time grows as n®,
with « a bit larger than one. (The growth exponent depends
on the particular structure and algorithm used, but in any
case is between 1 and 2.)

2.1.10. Ladner-Fischer Adder Design Example. In
this section, we describe a simple numerical example,
which we will use to illustrate various design problems
throughout the paper. We consider a 32-bit adder, with a
particular topology first given by Ladner and Fischer (see,
for example, Weste and Harris 2004), and called a Ladner-
Fischer adder. The adder circuit consists of 461 gates
(n=461), with 64 primary inputs and 32 primary outputs.
The total number of paths, from primary inputs to primary
outputs, is 3,214. The circuit has a depth of 8, i.e., the
longest path in the circuit passes through 8 gates.

The Ladner-Fischer adder contains five types of gates,
with associated functions and model parameters listed in
Table 1. The last two gate types, AOI21 and OAI21 (which
are acronyms for “and-or-invert” and “or-and-invert”), are
compound gates. The model parameters come from the log-
ical effort model, described in Sutherland et al. (1999). The
drive strength value R = 0.48 is chosen so that the delay
of a unit size inverter with no load is 0.69-0.48 -3 = 1.
In other words, the time unit is normalized to the delay of
a unit scale inverter, with no load. (This time unit is often
called 7.) For a current state-of-the-art IC process technol-
ogy, this time unit is on the order of 15 ps.

The gate area is the total width of the devices in the gate
(because the gate lengths are always chosen to be the small-
est value allowed in the technology). The unit is the width
of the NMOS device in a unit scaled inverter. The capaci-
tance unit is the capacitance of the NMOS device in a unit
scaled inverter. For a current IC process technology, these
have values on the order of 100 nm, and a few fF, respec-
tively. The average leakage current parameters are taken
from a current IC process and scaled so that static power is
around 10% of the dynamic power for a circuit operating
near maximum speed at normal temperature.

We take the load capacitance of the primary outputs to
be C = 6. We impose a limit on area but not on power, and
solve the basic gate scaling problem (4) using the dynamic
programming formulation (6). The resulting GP has about
1,000 variables and 4,000 constraints but is very sparse,
with each constraint (except for the area constraint) depend-
ing on at most three variables. (The area constraint is not
sparse, but sparse solvers can easily handle a small number
of dense constraints; see Boyd and Vandenberghe 2004.)

Table 1. The five gate types used in the Ladner-Fischer
adder.

Gate type Function cn  Cn R A ek

INV A 3 3048 3 0.006
NAND2 AB 4 6 0.48 8 0.007
NOR2 A+B 5 6 0.48 10 0.009
AOI21 AB+C 6 7 0.48 17 0.003
OAI21 (A+B)C 6 7 048 16  0.003

Note. The first column gives the gate name; the second column
gives the logic function the gate implements, and the remaining five
columns give the model parameters.
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Figure 4. Optimal trade-off curve of minimum delay D
versus maximum area A™* for the 32-bit
Ladner-Fischer adder circuit, with no power
limit.

16,000
é
<
3,000 '
45 55 65

D

The GP is solved using a generic GP solver (that exploits
sparsity) in around one second, on a basic PC. Figure 4
shows the optimal trade-off curve of minimum delay D
versus maximum area A™¥.

2.1.11. Inverter Chain. In a few cases, the gate scal-
ing problem (4) can be solved analytically. One famous
example is a chain of N inverters driving a load capaci-
tance C, shown in Figure 5, with no limit on the scale
factors, area, or power, and a specified input capacitance
C" (Hodges et al. 2004, Rabaey et al. 2002). The input
capacitance constraint fixes the first gate scaling to be x;, =
C™"/C™. Thus, the variables are x,, ..., xy.

The load capacitance on gate i is the input capacitance
of gate i + 1, i.e., we have

Cr = Ciii1 = xi+16in’
and the load capacitance on gate N is Cy = CY. The

delay D of the inverter chain is given by
N-1
D=0.69Y" R,(CF+C™)+0.69Ry(C" + Cy")
i=1
N-1 _ _
=0.69 Y (R/x;)(x;,C" + x,C™)

i=1

+0.69(R/xy)(C" +x,C™)

N—-1
=0.69RC™ <N(6i"t J/C™) + Y Xy /X + (CH/C™) /xN>.

i=1

Figure 5. A chain of N inverters driving a load C.

1 2 N-1 N

in—{ 00— ‘|>O_|>010“t
l c

Setting the derivative with respect to x; to zero (because
we consider here the unconstrained problem), we obtain

—xiﬂ/xi2 +1/x,_,=0

for i=2,...,N — 1. From this we conclude that x;, =
NETETIE i.e., that the optimal scale factor for each gate
(except the first and last) is the geometric mean of the scale
factors of the previous and next gates. It follows that the
optimal scale factors form a geometric series, x; = fi~!x,,
where f is the constant factor between successive stages.
Setting the derivative of D with respect to x, to zero,

we obtain 1/xy_, = (C*/C™)/x%. Substituting

Xy :fN72x1 :fN72(Cin/6in)’
Xy =fN—lx1 :fN_l(Cin/éin)

into this equation, we find that f = (C*/C™")!/~. The opti-
mal scale factors are therefore

x; = (C"/C™)(Ct/Cm) DN =1, N.

With these optimal scalings, the delay of each stage is
the same

D, =0.69RC™((C-/C™)"/N + (C™/Cm)),
and the overall delay of the inverter chain is
D == 069NE51H((CL/C"‘)1/N + (éinl/éin)).

(This, in turn, can be minimized over N to find the opti-
mal number of stages for a given ratio of load to input
capacitance.)

The appearance of the geometric mean, and a geomet-
ric series, is not surprising. Indeed, GPs are solved by the
change of variables e’ = x;; the result above says that the
optimal values of y; (which are the logarithms of the scal-
ings) are evenly spaced and that each y, is the average of

Yir1 and y;_;.

2.1.12. Logical Effort Method. The inverter chain
result above is the starting point for the logical effort
method developed by Sutherland et al. (1999). The logi-
cal effort method starts with the same RC model described
above, along with a specific method for deriving the RC
model parameters from a schematic diagram of the gate.
Sutherland et al. then develop a set of design rules for
gate sizing, based on extensions of the inverter chain result
above. The method can be thought of as a fast method
for approximately solving problem (4) (without the scal-
ing factor, area, or power constraints) using a few simple
calculations and just one, or a few, passes over the cir-
cuit. Logical effort has been widely used for gate sizing;
see, e.g., Ebergen et al. (2004) and Rezvani and Pedram
(2003). Specific applications include adder design Seidel
and Even (2004) and fast low power decoder design for
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RAMs Bharadwaj and Horowitz (2000). (The circuit sizing
problems formulated in these papers can all be cast as GPs.)

As Sutherland et al. (1999) make clear, the main point
of the logical effort method is not to solve the delay min-
imization problem (4) exactly (which doesn’t make much
sense, because the RC delay model is itself an approxima-
tion) but instead to give the circuit designer intuition about
the circuit, to help him or her choose an appropriate number
of stages in the circuit, or find another circuit topology if
needed. In contrast, the GGP formulation (4) or GP formu-
lation (6) of the problem does not give the designer much
insight.

On the other hand, the GP formulation has some advan-
tages over the logical effort method. First, it always solves
problem (4) exactly, taking into account multiple paths,
branching and re-combining, as well as area and power
constraints (or any other constraint compatible with GP).
While solving the GP (6) is not as fast as a simple logical
effort pass over the circuit, it is not much slower, provided
the sparsity of the problem is exploited.

This suggests a combined approach. The choice of cir-
cuit topology, including, for example, the number of stages,
can be guided by the logical effort method. Sizing based
on logical effort can be used for the initial evaluation of
candidate topologies; once a good candidate topology has
been identified, GP can be used to choose the scalings, tak-
ing into account branching, power and area constraints, and
more accurate models, our next topic.

2.2. Better GP Models

In this section, we show how the simple gate scaling prob-
lem (4) can be extended to use more accurate models for
area, delay, and power, while retaining compatibility with
GP (so the problem can still be solved very efficiently).

2.2.1. Generalized Posynomial Models. Our first ob-
servation is that we can replace the simple linear functions
we used for the area and power of a gate with any gener-
alized posynomial of the scale factors. These generalized
posynomial functions might be found by a more refined
analysis, or by fitting generalized posynomials to the actual
cell areas obtained after layout (i.e., the detailed physical
design of the logic gates), or the average power obtained
by circuit simulation, for a number of values of the scaling
parameter. (See Boyd et al. 2004 for a discussion of gen-
eralized posynomial fitting techniques.) The same observa-
tion holds for the driving resistance and input capacitance
of a cell: The simple inverse proportionality and propor-
tionality relations described above can be replaced with any
generalized posynomial functions of the scaling.

The delay does not need to be the simple product of load
capacitance and driving resistance: it can be any increas-
ing generalized posynomial of load capacitance and driving
resistance. Even more generally, we can dispense with the
notion of drive resistance, and model gate delay directly as
a generalized posynomial function of the load capacitance
and the scale factor x.

2.2.2. Abstract and Multiple Scale Factors. When
the area, power, input capacitance, and driving resistance
are generalized posynomials of the scaling factor, the scal-
ing factor x in effect becomes an abstract parameter that
describes the size or strength of a gate, and need not have
the strict interpretation given above of a scale factor for
each device in the gate.

As a simplified example, consider a buffer that consists
of a chain of two inverters. Suppose that x gives the scal-
ing of the devices in the second inverter. Motivated by the
inverter chain example described above, we might scale the
devices in the first inverter by /x. Using very simple elec-
trical models, then, the area and power of the gate would
grow as x + x'/2, the input capacitance would scale as x'/2,
and the drive resistance would scale as x~!. The total delay
of the buffer would have the form a+ bx'/?>+ x~'CL, where
the terms a + bx'/? give the delay of the first inverter, driv-
ing the second inverter. Each of the functions above is a
posynomial, so this model gives a GP formulation of the
scaling factor problem. But in this example, x does not have
the strict interpretation of a scaling factor for all devices in
the gate.

Even more generally, a gate can be parameterized by
more than one parameter. In this case, x is a vector of
parameters. Again, all that matters is that the area, power,
input capacitance, and drive resistance should be gener-
alized posynomial functions of the parameters. A simple
example here is given by an inverter chain with some fixed
number of inverters, with the stages scaled according to a
geometric series (again, following the inverter chain exam-
ple above). We describe the chain by two parameters, which
give the input stage size and the output stage size. Here
too the area, power, input capacitance, and drive resistance
will be posynomials of the two parameters that describe the
inverter chain.

In the extreme case, we can independently vary the width
of every device in the gate, so the parameters are simply the
individual device widths. This is essentially custom (device
level) design, the topic of §4.

2.2.3. Parasitic Capacitance. If the parasitic capaci-
tance of a net (to ground) is known, it can be added to the
load capacitance seen by the gate driving the net. Adding
such a term keeps D; posynomial, so the scaling problem
remains a GP. More generally, we can use estimates of
parasitic capacitance, provided they are generalized posyn-
omials of the scaling factors. (These estimates can involve
factors such as the fan-out of a gate or might come from
preliminary placement and routing.)

One interesting issue arises here. We get accurate val-
ues for the parasitic capacitances only after detailed layout,
which occurs only after sizing the gates. When we reop-
timize the gate scaling factors, we may need to modify
the layout, which changes the parasitic capacitances. The
general approach is to iterate between sizing, layout, and
parasitic extraction (i.e., determining the parasitic capaci-
tances), hoping for convergence. At each optimization step,
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we use an estimate of the parasitic values, such as the val-
ues from the last iteration.

One method that enhances the probability of convergence
is to add a cost term or constraint in the reoptimization
steps that penalizes deviation between the previous design
and the new one. This results in gate scalings that, one
hopes, are not too different from the previous gate scalings.
This in turn leads to layout and routing, and therefore par-
asitics, that are not too different from the previous design.
By adding a penalty term of the form

n
A max{x, /xS, X x; )

i=1

prev

where A > 0 is a parameter, and x; = is the gate scaling
in the previous design iteration, we obtain a new design in
which many of the scalings are (exactly) the same as in
the previous design. (The parameter A controls the trade-
off between optimizing the circuit and keeping many gates
the same size.) This is the GP analog of adding a sum of
absolute values penalty in convex optimization, which is
a well-known heuristic for finding a sparse solution; see
Boyd and Vandenberghe (2004, Ch. 6).

2.2.4. Clock Skew. Another simple extension that is
readily handled via GP involves (known) clock skews at the
input and output flip-flops. These can be incorporated in
the circuit as an extra layer of fictitious gates at the primary
inputs and outputs, with fixed delays that are independent
of the scaling factors (and zero area and power). Equiv-
alently, we can initialize the arrival times of the primary
input signals using the clock skews of the input flip-flops
and subtract the clock skews at the output flip-flops from
the output gates.

2.2.5. Distinguishing Gate Inputs and Transitions.
So far we have associated one delay for each logic gate,
which is independent of the gate input, the particular tran-
sition, and so on. Greater accuracy can be obtained by dis-
tinguishing between rising and falling delays at the gate
output, assigning different delays from each gate input to
the output, or even, in the extreme case, modeling a differ-
ent delay for every possible input transition.

One common approach is to replace the single gate
delay D,, with four different delays, for each input j to
gate i:

D fr

ji®

DY

Ji?

D

Ji? D /ff

The first, D_‘;, denotes the maximum possible delay from
a rising transition on input j to a rising transition on the
gate output. (The maximum is over all possible input tran-
sitions with input j rising and output i rising.) The other
three delays are defined similarly. Depending on the gate
logic, one or more of these transitions might be impossible,
in which case we can leave the associated delay undefined.
For example, a simple NAND gate is always inverting,

so a falling output can only occur when one (or more)
inputs are rising, and vice versa. For such a gate, we would
only have two delays, D'; and D¥, for each input j.

We can form a simple recursion for propagating a bound
on maximum rising and falling signal arrival times at the
output of each gate. Let T} (7}) denote an upper bound on
the rising (falling) signal arrival time at gate i, assuming the
primary input transitions occur at t = (0. We can propagate
these via the recursions

T' =maxmaxy7; + DT,
! JeFI(i) { i T 0ji

T/ = max max{T’ + D,
JEFI(i) J 4

1+ Dy,
1+ D).

In the maxima here we can ignore or remove any transitions
that are not logically valid. As an example, suppose that a
gate is always inverting, i.e., a rising input transition always
yields a falling output transition (or no transition), and vice
versa. Then, the recursions above can be simplified to

T' = max (T.f + D;:),

£ ,
L jeRay s Y T = max (T} ~|—D;.l,)_

jeFIG)
The overall circuit delay can be taken to be the maximum
over all rising and falling signal times:

D= max{max{Tir, Tl.f} | i an output gate}.

As in the simple recursion of a single delay and arrival
time, the resulting problem can be reformulated as a GGP,
provided the delays are generalized posynomials. There can
be false paths, but the delay D is a valid upper bound on the
true maximum delay of the circuit over all input transitions.

Once we distinguish between rising and falling transi-
tions, with different delays from each gate input to its out-
put, we can just as well assign different input capacitance
to each gate input, and a different energy loss for each
transition. This makes the bookkeeping and notation more
complex, but the problem remains a GGP.

2.2.6. Signal Transition Time. So far we have ne-
glected the effect of input signal slope, or transition time,
on the various quantities such as gate power, delay, and
input capacitance. These effects are readily handled in a
GP formulation. Signal transition time is typically defined
as the time for the signal voltage to transition between 10%
and 90% of supply voltage. For our purposes, however, the
exact definition does not matter; signal transition time can
be thought of as an abstract parameter associated with a
signal that allows us to better predict the circuit behav-
ior. (This is similar to the scaling parameter, which can be
thought of as an abstract parameter that describes the size
of a gate.)

We model the delay of gate (during a particular transi-
tion) as a function of its scale factor, load capacitance, and
its input signal transition times,

D, = f,»(x,-, cr, T.i“),

1
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where 7I" is the vector of transition times of input signals
to gate i. Input transition times affect the energy loss E; in
a transition (and therefore the total average power), through
several mechanisms, e.g., short circuit current, so we model
it as

Lo
E; = gi(xi’ G Tim)'
To propagate the signal transition time forward in the
circuit, we model the output transition time of gate i,
denoted 7", as

out __ L in
T —h,-(xi, Co, )

A simpler model, based on the maximum of the transition
times of the input signals, can be used. In this simpler
model, 7" is a scalar.

One simple and commonly used model that includes sig-
nal transition time is
fi(xi, cr, T.i“) = Di(x,-, ClL) + ;7"

i iTi s
hi(xi’ i Tiin) = {iDi(xi’ CiL)’

where k; and {; are positive constants and D, is the gate
delay when the input signals switch instantaneously. (Here
we take 7" to be a scalar.) In this model, nonzero input
signal transition time adds (linearly) to the delay, and the
output signal time is proportional to the gate delay.

The functions f;, g;,, and h; are monotone increasing
functions of the signal transition times, i.e., delay, energy
loss, and output signal transition time all increase when any
input signal transition time is increased. Roughly speak-
ing, circuit behavior degrades with increasing input signal
transition times. This means that we can work with upper
bounds on signal transition times and propagate them recur-
sively in the same way we propagate (bounds on) signal
arrival times. In such a formulation we associate four quan-
tities with each gate output (i.e., each net): T, T*, 7',
and 7". These are interpreted as upper bound (or worst-
case) values of rising and falling signal arrival time, and
rising and falling transition times, respectively. Provided
the functions f;, g;, and h; are generalized posynomial (and
monotone increasing in 7."), we obtain a GP or GGP for-
mulation of the gate scaling problem.

We mention here a related constraint that is not com-
patible with GP. In signal integrity constraints, we require
that a particular gate output signal has a minimum transition
time, i.e., that it cannot rise or fall too quickly. (A rapidly
rising or falling signal can disrupt other signals whose
wires are routed nearby.) These constraints can usually be
dealt with just like minimum path delay constraints, after
the initial design. Alternatively, they can be handled by
changing the routing or spacing of the wires involved.

2.2.7. Design with a Standard Library. We now
show how to apply GP to design with a standard library.

A typical standard cell library contains a variety of gate
types, and for each type, a number of different sizes (typ-
ically around 10 for small, common gate types, and three
or four for gate types that are less frequently used). The
different sizes are generally not obtained by simple scaling
of all the gate devices by a common factor, but do follow
the same general pattern, i.e., larger gates are able to drive
larger loads with smaller delay. For each gate type, a stan-
dard library cell provides a table which, for both rising and
falling transitions of each input pin, gives the input capaci-
tance, delay, average energy loss per transition, and output
transition time, in terms of the size (i.e., scale factor), load
capacitance, and input transition time.

Now suppose that the circuit topology is fixed, and it
remains to choose the size for each gate from among the
choices in the library used. In general this is a combi-
natorial optimization problem, which is difficult to solve
exactly. But the problem can be approached using GP, as
we now outline.

The first step is to develop GP compatible models for
each gate type in the library, for each input/output transition
type (i.e., rising-rising, etc.). This can be done by fitting
generalized posynomials to the data given in the library
characterization tables. This step involves a few subtleties.
The first is avoiding over-fit, i.e., fitting a model with too
many parameters to a small data set (i.e., the given tables).
The second is the choice of the size parameter (or param-
eters) for each type of cell. Often the cell name includes a
number that is related to its size (e.g., 3NANDX32 might
denote a three-input NAND gate with drive strength 32),
and these can be used as the scale factor x. But in fact one
can choose any values for the scale parameters because they
are just abstract labels. Indeed, it is possible to use more
than one scale parameter for each cell type, if necessary.
After developing these GP models, we have a continuously
parameterized family of gates of each type; the gates in
the library correspond to some discrete values of the scal-
ing parameter x;. For each gate type we have generalized
posynomial models of area, delay, input capacitance, output
signal transition time, average energy lost per transition,
and average leakage current, as functions of the scale fac-
tor, load capacitance, and input transition time. Using these
fitted models, we can solve the sizing problem, which is a
GP or GGP. We can then snap the resulting design back to
the valid library values, using a simple rounding procedure,
or a more sophisticated method such as branch and bound
(see Boyd et al. 2004).

In this approach, we start with a combinatorial optimiza-
tion problem, then form a related continuous problem, solve
it, and then snap the resulting continuous design back to
the original library. This might seem like a very round-
about way to (approximately) solve the original combi-
natorial optimization problem. The advantage of forming
the intermediate continuous GP or GGP is that such prob-
lems can easily take into account the complex interactions
among the choices being made on multiple constraints and
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performance measures. The continuous problem is solved
globally and reliably; its solution, we hope, gives a good
starting point for choosing the discrete cell sizes.

2.3. Robust and Multimode Design

In the previous section, we explored more accurate mod-
els of delay, power, and other constraints that are compat-
ible with a GP formulation. In this section, we show how
GP formulations allow us to take into account process and
parameter variation, as well as carry out designs that are
meant to be operated in different modes.

2.3.1. Robust Design over Corners. We start with a
GP formulation of a gate scaling problem. The various gen-
eralized posynomial models such as gate delay, power, and
signal transition times are implicitly based on a particu-
lar set of process parameters (such as oxide thickness and
threshold voltage) and environmental parameters (such as
temperature and supply voltage). In a corner-based robust
design approach, we identify a finite set of corners or sce-
narios, each of which consists of a particular combination
of process and environmental parameters. For each corner,
we develop generalized posynomial models for gate delay,
power, and so on. This can be done analytically (e.g., using
formulas that predict the variation in gate delay with supply
voltage), or by fitting to data obtained from simulations or
measurements.

In the simplest version of robust design over corners, we
replicate the constraints for each of the corners, using the
(slightly) different models for each of the corners. Consider,
for example, constraints on delay and power, of the form
D(x) < D™, P(x) < P™™.

If we have K corners, we have K different models of the
delay and power, say,
DY (x),..., DB (x), PO (x), ..., PP (x).

Here, D®(x) and P® (x) are the delay and total power dis-
sipation of the circuit in scenario k, as functions of the gate
scale factors x. These models of delay and power are dif-
ferent (but, presumably, not radically different) from each
other. Now we form the GP

minimize A

subject to DD (x) < D™, ..., DK (x) < D™, o
7
P(l)(x) <P P(I()(x) < P
1 < Xl-, 1= 1, ,n

The optimal solution of this problem gives a design that
satisfies the specification on delay and power for all cor-
ners, and achieves the minimum area.

Note that if we can identify ahead of time a particular
corner that is always “worst” for, say, delay, for all gates
and all values of x, then we can just as well carry out

an ordinary design using this corner for our delay model.
Robust design with replicated constraints, as in (7), is use-
ful in cases where the effect of the variations is not entirely
clear when the parameters affect different objectives in
different ways (for example, when one parameter change
increases leakage power but decreases dynamic power, so
its net effect on total power is not obvious).

There are many variations on the basic robust design
problem (7). As an example, suppose that the delay D,
which depends on the particular corner or scenario, is our
objective. We can minimize the worst-case or maximum
delay over the corners by taking

D" =max{DV(x), ..., D% (x)},

as the objective to be minimized, subject to a limit on area,
and a limit on power for all corners. (D" is a generalized
posynomial if D® is.) This is a minimax design: it satisfies
the power specification for all corners and achieves the best
possible worst-case delay over the corners.

We can also combine the objectives for different cor-
ners using a weighted sum. Suppose, for example, that
T, ..., T are positive and sum to one. (We can think of
r, as the probability that corner k occurs.) As objective we
can take the weighted sum

D=mDYV(x)+---+m D (x),

which is the expected or average value of the delay, over the
scenarios. More discussion of general robust optimization
can be found in Boyd and Vandenberghe (2004, Ch. 6).

Corner-based robust optimization yields designs that
gracefully tolerate the process and environment parameter
variations that are taken into account in the corners. For
combinations of process and environment parameters not
included in the list of corners, of course, there is no guar-
antee (in general). In most cases, it is not expected that the
actual parameter variations will be one of the given corners;
the method is used as a heuristic for generating designs that
work over the K corners, and therefore are likely to work
with other, similar combinations of parameter values.

There are some subtleties in forming a multicorner robust
optimization problem when worst-case bounds are used in
the formulation. Consider, for example, a delay that is for-
mulated using the dynamic programming approach. The
basic multicorner approach is to form K separate arrival
times at the output of each gate, say,

Ti(k), i=1,....,n,k=1,...,K,

and to propagate the delays separately for each scenario or
corner, as in

(k) k (k)
I’ > max (D +T;"). 8
1 = /eF?(t)( i J ) ( )

In this case, ") is an upper bound on the signal arrival

1

time at the output of gate i, in corner case k.
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Another possibility is to have only one set of arrival time
bounds, propagated as

T > max
JjeFI(i), k=1,....K

(D} +T;). 9)

In this formulation, 7; can be interpreted as an upper
bound on the signal arrival time, valid even when each gate
is associated with a different corner. This formulation is,
of course, the same as carrying out a standard design using
the worst-case delay model for each gate, i.e.,

1

DY = max DWW,
=1,....K
Formulation (8) might be appropriate to model variations
in external power supply voltage (but assuming all gates
have the same supply voltage). Formulation (9) might be
appropriate to model internal variations in power supply
(due to IR drop, for example), in which each gate can have
a different supply voltage.

Robust design problems such as (7) are typically very
large but also very sparse, and so can be solved efficiently
despite the large number of constraints. In particular, the
running time grows modestly with K, the total number of
corners considered. The running time depends on the prob-
lem structure but typically grows almost linearly in K.

2.3.2. Multimode Design. In multimode design or
multiscenario design, the goal is to find one set of gate
scalings that work well in two or more different modes
or scenarios. Mathematically this is very close to corner-
based robust design, where we seek a single set of scal-
ings that work well for a set of different parameter values.
In robust design, the variations are unintentional; in multi-
mode design, however, they are intentional. In both robust
and multimode design, we have K sets of models of gate
delay, power, and signal transition time. In robust design,
we impose the same constraints for each of the corners; in
multimode design, however, we typically impose different
constraints for the different scenarios.

We will explain multimode design with a more specific
example. Consider a circuit that will be operated (at dif-
ferent times, and intentionally), in two modes: a high per-
formance (fast) mode, and low power (slow) mode. These
modes could involve different power supply voltages, dif-
ferent bulk biasing (to change threshold voltages), and
different clock frequencies (and therefore different timing
requirements). The goal is to find one set of gate scalings
that work well in both the fast and slow operating modes.
To do this, we start with two sets of models for delay,
power, and signal transition times: one for the fast mode,
and one for the slow mode. Thus, Df!(x) is the delay of
gate i, with scale factors x, when the circuit is operated in
the fast mode; Di'¥(x) is the delay of gate i, with scale
factors x, when the circuit is operated in the slow mode.
These models can be found using analytical formulas that
predict delay and power when supply and threshold voltage

vary (say), or they can be found by fitting data obtained
from circuit simulation.

In the low power (slow) mode, the power and delay are
required to satisfy

Pslow < Fslow’ Dslow < Ds]ow'

In the high performance (fast) mode, we must have

Pfasl < ﬁfasl’ Dfasl < ﬁfast.
Here, DY and D™ are typically different because the cir-
cuit operates at a different frequency in the two modes.
The power limits, P and P™", are also (presumably)
different.

Now we can form a simple two-mode design problem
by minimizing area (which does not vary with scenario),
subject to these constraints:

minimize A
Dsl sl sl
PbOW’ DSOWgDSOW’

<
< Ffast Dfast < Dfast (10)

subject to POV

Pfast

In this problem, the variables are x, ..., x,; the power and
area limits are given problem parameters. Like a robust
design, this design involves a complex optimization interac-
tion between the two modes because the choice of each x;
has consequences for both the slow and fast modes of cir-
cuit operation. (There is, of course, no electrical interaction
between the two modes.)

This multimode design problem is readily extended in
several ways. For example, suppose that 7% (77%) is the
known probability or fraction of time the circuit operates
in slow (fast) mode. We can minimize average power (over
both modes of operation):

minimize 77.sloislow + ,n.fasleasl

subject to A <A™,

(11)

slow yslow fast Mfast
DYV L DYV, D™ D™,

In multimode design (as described in this section), we
are still only optimizing scaling factors. Each scenario’s
supply voltage, threshold voltage, clock frequency, and so
on, is fixed ahead of time. In §3, however, we will see that
these can also be optimized in a multimode design.

2.4. Statistical Design

In statistical design, we take into account statistical vari-
ation in the device, process, and environment parameters
for each gate. In other words, we consider local variations
in the model parameters for gate delay, energy, and leak-
age current, with each gate having its own set of parameter
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values drawn from some distribution. (This is in contrast
to the framework for robust design over corners, where the
gate model parameter variations are global, i.e., the same
for all gates.) In the simplest case, which we consider here,
the parameter values for each gate are modeled as inde-
pendent random variables, but more sophisticated models
can include correlation between the parameters associated
with different gates. Another approach is to include two
unknown terms in the parameters of each gate: one is a
systematic one, global for the whole circuit (as in robust
design over corners), and the other is the local uncertainty
we consider here. This leads to a blend of robust design
over corners (to handle global parameter variation) and sta-
tistical design (to handle local parameter variation). In this
section, however, we consider pure statistical design.

The statistical variation in the gate parameter values
induces statistical variation in the overall performance
objectives such as power and delay, which are described by
probability distributions (that depend on the choice of scal-
ing factors, i.e., x). We can modify the basic problem by
requiring that the power constraint should hold with some
minimum probability (or reliability) such as 95%, and tak-
ing as objective the 95% quantile (say) of delay:

minimize Q%% (D)

subject to Q*®(P) < P™>, AL A™, (12)

1<y, i=1,...,n.
Here, D and P are random variables, and Q%% (X) denotes
the 95% quantile of the random variable X. In the basic
statistical design problem formulation (12), we insist that
95% of the circuits meet the power constraint, and we judge
a design by the 95% quantile of its delay. These statistical
measures are closely related to the (parametric) yield of the
circuit, i.e., the fraction of circuits that, when manufactured,
meet the performance specifications. Formulation (12) is a
stochastic optimization problem.

The statistical analysis and design of digital circuits
is an area of growing interest and importance; see, e.g.,
Agarwal et al. (2003), Bhardwaj et al. (2003), Brambilla
and Maffezzoni (2001), Jyu et al. (1993), Orshansky et al.
(1999), and Orshansky and Keutzer (2002). This is still an
active research area, and no consensus has emerged as to
what the best statistical models are. In the following sec-
tions, we base our development on some simple models that
have been used, to derive (approximate) GP formulations
of the statistical design problem.

2.4.1. Statistical Power Constraint. The statistical
power constraint Q%% (P) < P™* is not very difficult to
handle, at least approximately, because the power is the
sum of the gate powers. Assuming that the parameter vari-
ations are independent and the circuit contains a large
number of gates (which is always the case in problems of
interest), the power P has a standard deviation that is small
relative to its mean EP. Thus, we can use EP < P™* as

a reasonable approximation of Q% (P) < P™*. (A more
sophisticated approximation can be made using a normal
approximation of P.) Because P = > | P,, our approxi-
mation of the statistical power constraint Q%% (P) < P™
reduces to

n

> EP, < P™.

i=1
Thus, we can take into account the effect of statistical vari-
ation on total circuit power by replacing the nominal gate
power model with a mean gate power model (where the
mean is over the parameter variation).

As an example we consider the leakage power of a gate,
and variation in the threshold voltage V,,, a critical elec-
trical parameter of the devices in a gate. One simple and
commonly used model for threshold voltage variation is
Pelgrom’s model, which predicts that the threshold voltage
of the devices in a gate has variance

U\%lh = &‘ihx_l’
where &‘z,m is the variance for a unit-scaled gate (Pelgrom
1989). This model predicts that larger gates have smaller
variation in threshold voltage than smaller ones. We will
assume that V;, has a Gaussian distribution.

The leakage current for a gate has an exponential depen-
dence on the threshold voltage,

Ileak xe” m/VO’

where V, is a process-related constant. Because V,, has a
Gaussian distribution, it follows that I'* has a lognormal
distribution. Its mean is, therefore,

2 2 ’ =2 2
E[leak — Ileak, nom o’vlh/(ZVo) — Ilea.k,nom tJ'v[h/(2V0 x),

e e

where 1'% m°m jg the leakage current of the gate when sta-
tistical variation is ignored. This formula shows that the
mean leakage current is the nominal leakage current mul-
tiplied by a factor that is always greater than one, and
decreases as the gate scale factor x increases.

The extra term is readily approximated as a generalized
posynomial in x, using

ea‘gl]‘/(zvozx) ~ (1 + 5-‘2/”1/(2V02xa))a,

where a is large. (See Boyd et al. 2004 for discussion of
generalized posynomial approximation of an exponential.)
Thus, to take statistical variation in V,, into account in
power modeling, we simply use the generalized posynomial
(of x),

1 (1 4-.ay /(2Vixa))”, (13)

instead of the constant 7' "™ in Jeakage power
calculations.

In summary, the statistical power constraint Q%% (P) <
P™>* can be (approximately) handled by simply substitut-
ing expression (13) into the leakage power expression (3),
which results in a generalized posynomial constraint in the
scale factor variables.
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2.4.2. Statistical Delay Analysis. The effect of statis-
tical variation in the gate delays is far more difficult to
analyze than the effect of variation in the gate powers and
is what makes the statistical gate sizing problem (12) chal-
lenging. Assuming that the variations in gate delays are
independent, the delay of the paths, which are sums of gate
delays, have reduced variance by a factor on the order of
the number of gates on the path (with is typically not large,
on the order of 10). Thus, the paths still exhibit substantial
statistical variation in delay.

The overall delay of a circuit is the maximum of the path
delays. The maximum of a set of random variables, how-
ever, behaves very differently from a sum. In particular, the
maximum of a set of random variables can have a distribu-
tion with a strong right skew and a variance substantially
larger than the variance of the individual variables.

We first start with an analysis of gate delay variation
induced by variation in V,,. Gate delay varies with thresh-
old voltage according to the alpha-power law model (see
Sakurai and Newton 1990)

V.

D + s
(Vaa = Vi)

where « is a parameter typically between 1.3 and 2.

Assuming that the statistical variation in Vj; is not too large,

we have

. ady,
=
(Ve = V)

aD

— -12p, 14
v x (14)

IS ‘

where o is the standard deviation of the gate delay D.
This shows that the relative standard deviation of a gate
decreases proportionally to the inverse square root of the
gate scale factor. We note for future use that the gate delay
standard deviation is a generalized posynomial of the scale
factors, whenever D is.

The distribution of the overall circuit delay is found from
the gate delay distributions, propagated through the func-
tion that maps gate delays into overall circuit delay, which
is a maximum of a large number of sums. There is no sim-
ple analysis or description of this distribution, which, as
mentioned above, can have a large right skew. For a fixed
design (i.e., choice of x) we can find this distribution by
Monte Carlo analysis, but problem (12) is in general a dif-
ficult stochastic optimization problem.

Statistical (static) timing analysis of a digital circuit is
closely related to the stochastic PERT problem for the asso-
ciated stochastic project network, a well-researched topic
(Anklesaria and Drezner 1986, Bowman 1995, Devroye
1979, Hartley and Wortham 1966, Robillard and Trahan
1976, Van Slyke 1963). Indeed, many techniques for sta-
tistical timing analysis are based on those developed in
the operations research and management science literature,
e.g., criticality analysis (Bowman 1995) and distribution
bounding (Kleindorfer 1971, Ludwig et al. 2001).

2.4.3. A Heuristic for Statistical Design. In this sec-
tion, we describe a simple heuristic for the statistical design
problem (12), which is compatible with GP and seems to
give good results in practice. We start with a (deterministic)
model for each gate, as described above. Here, we inter-
pret the generalized posynomial D; as giving the mean gate
delay. To this mean gate delay we add a zero-mean random
variable with variance af, which represents the statistical
fluctuation or uncertainty in the gate delay. We assume that
o; is, like D;, a generalized posynomial function of the
scale factor, load capacitance, and input signal transition
times. The ratio ;/D; is a measure of the relative or per-
centage variation in the gate delay.

Now we can describe the heuristic method. We form a
“surrogate delay” model
51- =D, +k;0;

[ 4

where k; are constants (often all the same), typically
between 1 and 3, that are used to trade off mean and vari-
ance of the overall delay. The extra term k;o; adds an extra
margin in the gate delay model that scales with increas-
ing gate delay variance. Now we optimize the circuit as
usual, using the surrogate delays li in place of the (mean)
delays D,. Note that when k; = 0, this method is the same
as the standard (nonstatistical) design method. We can ana-
lyze the resulting design using Monte Carlo analysis, cou-
pled with static timing analysis. We can then adjust the
constants k; for optimum performance (for example, esti-
mated yield). For example, designs can be carried out with
all k; constant, and equal to the values k; =2, k; = 2.5,
and k; = 3; the best of the resulting three designs is taken
as the final design.

This method looks simple but is more sophisticated than
it appears because the extra margins are added on a gate-by-
gate basis and not on a path-by-path basis. Our experience
suggests that this heuristic method often yields designs that
are far superior to those obtained by ignoring statistical
variation. Moreover, the designs seem to be good despite
the simplicity of the statistical model (which ignores gate
distribution shape, correlations, and so on). In some cases,
the method yields a design that is provably close to the
global optimum of the (difficult) stochastic optimization
problem. (See Kim et al. 2004 for more details.)

2.4.4. Ladner-Fischer Adder Statistical Design
Example. We illustrate the heuristic method for statisti-
cal design on the Ladner-Fischer adder example, with the
model parameters given in §2.1.10. The gate delays are
taken to be independent and Gaussian. The mean delay
model is the same as the delay model used in the basic
gate scaling example, and the standard deviation model
that follows is given by

0, =0.15x793D,.

This means that for a minimum size gate, the delay has a
relative standard deviation of 15%; as the gate is scaled up,
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Table 2. Comparison of nominal and statistical designs.
Nominal delay ~ ED op  Q*3(D)

Nominal design 45.1 489  0.88 50.4

Statistical design 45.7 47.5 0.47 48.2

the relative standard deviation drops scales as x; />, The
limit on area is taken as A™ = 15,000; no limit is imposed
on power. Monte Carlo analysis revealed that the heuristic
statistical design method gave good results with k; =2.

The performance of the statistical design, found by
Monte Carlo analysis with 5,000 samples, is compared to
the nominal design (i.e., the one obtained by ignoring the
statistical variation) in Table 2. The robust design has a
nominal circuit delay (i.e., a circuit delay ignoring statis-
tical variation) of 45.7, only 1.3% more than the nomi-
nal design. When we take statistical variation into account,
however, the two designs differ. The 95% circuit delay
for the nominal optimal design is 50.4, which is 11.8%
more than the nominal circuit delay. For the robust design,
the 95% circuit delay is 48.2, which is only 5.6% more
than the nominal optimal circuit delay. Thus, the statistical
design has reduced the effect of statistical delay variation
by a factor of around 2, compared to the nominal optimal
design. The standard deviation of the statistical design is
also reduced by a factor of around 2, compared to the nom-
inal design. The distributions of the delay for the nominal
and statistical designs (estimated by Monte Carlo simula-
tion) are shown in Figure 6.

Some insight into why the statistical design performs bet-
ter than the nominal design can be found in Figure 7, which
shows scatter plots of mean delay versus standard devia-
tion for all 3,214 paths in the Ladner-Fischer adder for the
nominal and statistical designs. The problematic paths are
the ones at the upper right, which represent paths that are

Figure 6. Distributions of circuit delay for nominal and
statistical designs.
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Figure 7. Scatter plots of path delay mean versus path
delay standard deviation for the nominal
design (top) and statistical design (bottom).
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near critical and in addition have large standard deviation.
The plots show that in the nominal design, a number of
paths with large expected delays have large standard devia-
tion; in the statistical design, however, the variances of the
paths with large expected delays are smaller; paths with
relatively small expected delays, however, have relatively
larger variances.

2.5. Optimization of Multiple Combinational
Logic Blocks

We now turn to the larger problem of sizing (the gates in)
multiple combinational logic blocks. We start by assuming
that the flip-flop registers between the blocks are fixed, and
present constant capacitive loads at their inputs, and have
fixed drive strength at their outputs. As a result, the perfor-
mance of each block is locally determined, i.e., its delay,
area, and power are independent of the gate scale factors of
the other blocks. Indeed, the registers are precisely meant
to provide electrical and timing decoupling between the
circuits they separate.

For block i, we let D; denotes its delay, A; its area, P; its
power, and x; (the vector of) its gate scale factors. We let
A=A, +---4 Ay denote the total area of the K blocks, and
P =P, +---+ Py denote the total power. The functions A
and P are block separable, i.e., they are sums of functions
of the x;.

Assuming that the clock frequency is fixed, the maxi-
mum delay of each block is fixed. The maximum delays
for each block can be different, but for simplicity we will
assume that each is given by 0.8/ f,, i.e., 80% of the clock
period. In the simplest formulation, the objective is area:

minimize A=A+ -+ Ag
subject to D, <0.8/f,, i=1,...,K,

where the variables are the gate scale factors in each of the
K blocks. (We do not show other constraints local to each



Boyd, Kim, Patil, and Horowitz: Digital Circuit Optimization via Geometric Programming

916

Operations Research 53(6), pp. 899-932, © 2005 INFORMS

block, such as limits on the gate scale factors.) Because
the constraints are decoupled, and the objective is separa-
ble, this problem can be solved by (separately) minimizing
the area of each block, subject to its timing requirement.
The same approach works for any other separable objective,
e.g., power, or a linear combination of area and power.

If area or power is constrained, we introduce (optimiza-
tion) coupling between the blocks. Suppose, for example,
that the problem is

minimize A=A, +---+ Ag
subjectto D, <0.8/f,, i=1,...,K, (15)
P=P +--+ Py < P™.

This problem is, of course, a large GGP (assuming that
the individual block design problems are GGPs). It can
be solved directly, as one very large GGP, or iteratively,
using a method that carries out K separate block designs
in each step.

One such method is a Lagrangian approach, in which
the coupled power constraints are dualized. We form the
problem

minimize A+ AP

(16)

subject to D, <0.8/f,, i=1,....,K,
where A is a (positive) dual variable, the Lagrange multi-
plier associated with the total power limit. This problem is
block separable and can be solved, for any particular A, by
optimizing each block separately. The iteration consists of
adjusting A so that the power constraint is just satisfied, or
equivalently, to maximize the optimal value of the dualized
problem (16). (This can be done by bisection because there
is only one variable A.) Because the large GGP problem is
convex, after a log transformation, there is no duality gap
here, assuming that a constraint qualification holds.

Another interesting approach can be taken when the goal
is to obtain a portion of the optimal delay-area trade-off
curve for the overall circuit. (This would be the case in the
initial exploratory phase of design, when the exact power
limit has not been fixed.) For each block, we find several
designs on the optimal delay-area curve. We can then fit
each of these curves by a generalized posynomial that char-
acterizes the achievable area-power pairs for each block.
(The optimal trade-off curve for a GGP can always be arbi-
trarily well approximated by a generalized posynomial.)
Parameterizing (say) optimal power P," as a function of
maximum allowed area AP™, we obtain the GGP

minimize A=A +... 4+ AF*™
subject to P= Pl()pl 4.4 P[‘épl < P™
where the variables are A7, k=1, ..., K. This extremely

small GGP can be solved for several values of P™* to trace
out the optimal area-delay trade-off curve for (15).

The same general approaches can be taken when more
than one objective involves coupling between the blocks.
For example, we can find the optimal trade-off surface for
clock frequency, area, and power, for the whole circuit by
first finding the optimal trade-off surface for each block
and then solving (several times) a small GGP that com-
bines them.

We mention several extensions and variations on multi-
block optimization and design. First, a flip-flop does not
completely isolate the circuitry at its input from the cir-
cuitry at its output. For example, the setup time for a flip-
flop, which is the time before the clock that the input must
be valid, is a mild function of the capacitive load the flip-
flop drives. This constraint couples the timing of one block
to the sizing of the input gates in another, but the problem
remains a GP. Because the coupling is mild, iterative meth-
ods that ignore it when optimizing the individual blocks
work well.

Another extension involves optimizing the sizes of the
flip-flops as well as the gates in the combinational logic
blocks between them. As the size of a flip-flop varies,
its capacitive load, drive resistance, and timing parameters
vary. This gives a strong coupling between the blocks, but
the problem remains a GGP. One simple approach to jointly
optimizing the flip-flops and gates is to alternate between
fixing the flip-flops and optimizing the gates, and fixing the
gates and optimizing the flip-flops.

3. Supply and Threshold Voltage
Optimization

So far, we have considered threshold and power supply
voltages as fixed parameters, or, in the case of robust, statis-
tical, or multimode formulations, as parameters that vary in
given ways beyond our control. In this section, we consider
problem formulations in which threshold and power supply
voltages are, along with device sizes, design variables to
be optimized.

Supply and threshold voltage optimization, in the con-
text of low power CMOS circuit design, is an area of
active current research; see, e.g., Anis et al. (2003), Chabini
et al. (2003), Chen et al. (2001), Kao et al. (2002), Pant
et al. (2001), and Srivastava and Sylvester (2004). Many
approaches to low power CMOS design have been pro-
posed in the literature, including design with multiple sup-
ply and threshold voltages (Chang and Pedram 1997; Jung
et al. 2003; Kim et al. 2003a, b; Krishnamurthy and Carley
1997; Markovi¢ et al. 2004; Sirichotiyakul et al. 2002;
Srivastava and Sylvester 2004; Yeh et al. 2001), multiple
threshold CMOS (MTCMOS) (Anis et al. 2002, 2003; Cal-
houn et al. 2004; Kao and Chandrakasan 2000), variable
threshold CMOS (VTCMOS) via adaptive body biasing (Im
et al. 2003, Kao et al. 2002, Tschanz et al. 2003, Yang et al.
1997), dynamic threshold CMOS (DTCMOS) (Assaderaghi
et al. 1997), joint device sizing and V,,/V,, assignment
(Augsburger and Nikoli¢ 2002a, b; Chen and Sarrafzadeh
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2002; Hung et al. 2004; Ketkar and Sapatnekar 2002;
Karnik et al. 2002; Liu et al. 2004; Nguyen et al. 2003; Pant
et al. 2001), dynamic frequency scaling (Lu et al. 2002),
supply voltage scaling (Bellaouar et al. 1998), and tran-
sistor stacking (Johnson et al. 2002, Mukhopadhyay et al.
2003).

In this section, we show how GP-based approaches can
be combined with the techniques above. In particular, the
adaptive body biasing, DTCMOS, supply voltage scaling,
and dynamic threshold voltage control problems are related
to multimode design.

3.1. Generalized Posynomial Gate Delay Model

To model the delay of a gate as a function of threshold and
power supply voltage as well as scale factor, load capac-
itance, and input signal transition time, we use the alpha-
power law model (Sakurai and Newton 1990),

Vaa

D=—"%%—¢(x,C" 1"), (17)
(Vaa = Van)*

where « is a constant, typically between 1.3 and 2, and
g is a generalized posynomial. This gate delay model
can be exactly handled by GP. We can replace the signal
arrival time bound constraint in the dynamic programming
formulation,

T.+D<T,
with

T+ Vaaz g(x, CH 7 < T, 2+ Vip < Vi

(Here the new variable z serves as a lower bound on
Via — Vin, which is called the overdrive voltage.) These
are generalized posynomial constraints and result in a
GP formulation without further approximation. (See Boyd
et al. 2004, §7.1 for more details on this trick.) We can
also approximate the delay, using a truncated power series
expansion, to get

D= ledia(l +Vo/Vaa+-+ (Vth/Vdd)S)ag(x’ CL, T

(the right-hand side is a generalized posynomial). The frac-
tional error (D — D)/D of this approximation is smaller
than 1% over the range of interest, V4 =2V, 1.3 <a <2.

Many other gate delay models used in the literature (e.g.,
Chen et al. 1997, Wei et al. 1999) are compatible with GP.
For instance, a gate delay model (Wei et al. 1999) of the
form

V.
D='y< dd _ 4 B
(Vaa = Vin) L.5Vea = Vi

>g(x’ CL, Tin)’

where 8, y are process dependent parameters, can also be
exactly handled by GP.

Another GP-compatible delay model is the velocity sat-
urated model, which has the form

D— (CL + Cim)vdd
21 ’

where the charging current is

x(Vyg — th)z

|=Kk————,
Vaa =V + E.L

with process dependent parameters k, E_, and L. Like the
models above, this can be exactly handled by GGP.

3.2. Generalized Posynomial Power Model

The total dynamic power dissipated is given by formula (2),
but with (possibly) different supply voltages for the gates,

den = ZfiCiLVd2d,i + Zfi(C}“‘ + CiL)ded,i’

iePl i=1

where V,, ; is the supply voltage of gate i. (For i corre-
sponding to a primary input, Vg, ; is the supply voltage of
the flip-flop that drives the logic block.) This is evidently a
posynomial of the device sizes and supply voltages.

The average static power is given by formula (3), but
with (possibly) different supply voltages for each gate,

n
_ N\ Jleak
Py = ZI,' X;Vaa, i-

i=1

The average leakage current 7/ is a function of both Via.i
and Vj, ;. One standard model for the variation of leakage
current with supply and threshold voltage is

I_l_le&k o e~ V= Vaa.)/Vo ,

where yp is a constant, typically around 0.06, and V| is
a constant, typically around 0.04 at room temperature. For
more on leakage current modeling, see Weste and Harris
(2004) and Markovié et al. (2004), or the survey paper by
Roy et al. (2003).

The next step is to develop a generalized posynomial
approximation of the function

—(Vin—vp V. \% Vaa/Vo ,—Vin/ Vi
Ve Vo—7pVaa)/Vo — Vddem /Yo o= Van/ o

which can be done by separately approximating the func-
tion V,,e""a/% (of V,,) and the function e~/ (of V).
The first function, V,,e"™"4/% can be very well mod-
eled by a generalized posynomial because its logarithm is
a convex function of logV,, (see Boyd et al. 2004). For
example, the generalized posynomial approximation

Vaa(1+ (vp/ Vo) Vdd/SOO)SOO

gives a relative error smaller than 1% over the range 0.8 <
Ve <2 for yp, =0.06 and V, =0.039.
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The second function, e¢~"w/%_ cannot be well modeled
by a generalized posynomial, at least over a large range,
because its logarithm is not a convex function of log V.
Fortunately, an approximation that is accurate when e~"#/%
is large will suffice, because when it is small, the dynamic
power will dominate the total power. This can be done
using a monomial approximation over the range where V,,
is near its minimum value. For example, the monomial
approximation

e*\/lh/0,0039 ~ 0002‘/37616 (1 8)

is accurate for V;, near and above 0.2.
Putting these approximations together, we get the leak-
age power model

P =2 @, Vag /(1 + (Vo Vo) Vs, 1/ 500 ™ Vo V&,

i=1

where a; is a constant that depends only on process param-
eters and the particular gate topology. This is a posynomial
of the gate sizes, threshold voltages, and supply voltages.
(This model for static power is not accurate when the static
power is small.) The total power, i.e., the dynamic plus
leakage power, is thus a generalized posynomial.

As a specific example, consider a total power expression
of the form

P= VdZd + 30Vdde—(V[h—0406Vdd)/04039’ (19)

with the region of interest 1.0 <V, < 2.0, 0.2<V,, <04.
This function is shown at the top of Figure 8. Over this
region, for each fixed power supply voltage, the leakage
power increases around 170 times as V,, varies from the
maximum value to the minimum. The corresponding leak-
age power approximation is

P=V240.06V,,(140.0031V,,)>(V,,/0.24)™51°.  (20)

The difference between P and P is shown at the bottom
of Figure 8. The associated fractional error (P — P)/P is
below 2.7% over the entire region of interest.

3.3. Joint Optimization

Now we consider the case when gate supply voltages Vg, ;,
threshold voltages V,, ;, and scale factors x; are design
variables to be chosen. Using the generalized posynomial
models of gate delay and power derived above, we obtain
the GGP

minimize D

subject to P P™, A

< Vi <
<

min
dd < Vdd, i

Figure 8. Approximation of the power function P as it
is given in (19) by the generalized posyno-
mial P given in (20). Total power P (top) and
the associated absolute approximation error
|P — P| (bottom).
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Several constraints must be added to this problem to make
it practical. The most obvious one is that only a hand-
ful of allowed supply and threshold voltages are used in
practice. This addition makes the problem (21) a mixed-
integer GGP. As with the gate scaling problem with discrete
allowed scale factors, we can use the snapping heuristics in
Boyd et al. (2004, §7.3) to approximately solve this mixed-
integer GGP. Other constraints, which we describe below,
limit the supply voltages of the gates depending on their
fan-out gates. We note that even when these constraints are
not added, problem (21) is useful, because it provides a
lower bound or limit of performance on the delay that can
be achieved in practice.

One extension of problem (21) is gate clustering, where
the gates are partitioned into clusters, with a single pair of
supply and threshold voltages for each cluster. This can be
expressed using the monomial equality constraints

Vth,i = Vth,j’ Vdd,i = Vdd,j’

whenever gates i and j belong to the same cluster. Design
with multiple supply voltages inside a combinational logic
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block requires level conversion circuits (Ishihara et al.
2004, Kulkarni and Sylvester 2004). When there is only one
cluster, i.e., all devices have the same supply and threshold
voltages, then the problem reduces to optimal gate scaling,
along with (common) supply and threshold voltage selec-
tion. (This problem has been studied by many researchers;
see, e.g., Markovié et al. 2004.)

Special asynchronous level conversion circuitry is
needed whenever a gate drives another gate with larger sup-
ply voltage. This can be avoided by imposing the monomial
inequality constraints

Vaa,i = Vya,; for all j € FO(i),

which require that all gates only drive gates with smaller
(or equal) supply voltage. This was proposed by Usami and
Horowitz (1995), who called it clustered voltage scaling.
We can also add a regularization term of the form

DD

i=1 jeFO(i)

to the objective, which acts as a heuristic for enforcing a
small number of supply voltage changes (see, e.g., Boyd
and Vandenberghe 2004, Ch. 6).

Multimode design is particularly effective when gate
scalings, and supply and threshold voltage are jointly opti-
mized, because supply voltage can be (intentionally) var-
ied during operation of the circuit, and in some cases, so
can the threshold voltage. Suppose, for example, that all
gates have the same Vy, and V,,, which, however, can be
changed with the particular operating mode or scenario.
We then design one set of gate scalings and different sup-
ply voltages V;gf) and threshold voltages VJP for the sce-
narios k =1, ..., K. This was dubbed dynamic threshold
voltage CMOS (DTCMOS) in Sirisantana and Roy (2004).
The threshold voltage (common for all gates) is adapted to
suit the operating state of the circuit through bulk (body
or substrate) biasing. Another related topic is supply volt-
age scaling, in which the supply voltage (common for all
gates) is adapted to the circuit performance requirement.
Our point here is that such problems can be formulated and
solved as GGPs.

Multiple threshold voltage design can be carried out via
multiple doping concentrations, multiple channel lengths,
multiple oxide thicknesses, and various combinations (Lee
et al. 2004, Sirisantana and Roy 2004). (Recently, a
multiple oxide thickness and dual supply voltage device
approach has become popular in e-DRAMs to achieve
high performance and low leakage power (Takahashi et al.
2000).) As with joint device sizing and supply and thresh-
old voltage optimization, GP-based design can be carried
out with multiple doping concentrations, channel lengths
and oxide thicknesses, because models of gate delay as a
function of doping concentration, channel length, and oxide
thickness, as well as the device width, supply, and threshold

voltage, can be well approximated as generalized posyn-
omials. The models described in Bowman et al. (2001),
Lindert et al. (1999), Yang et al. (2000), and Sirisantana
and Roy (2004), for example, are all (approximately) com-
patible with GP-based design.

3.4. Examples

We consider the 32-bit Ladner-Fischer adder, where each
gate has three design variables: scale factor x;, threshold
voltage Vy, ;, and supply voltage Vg, ;. We use the same
area, delay, and power models used in the simple gate scal-
ing example, except that the drive resistance and average
leakage current (for a unit scaled gate) vary with supply
and threshold voltage as

Vada
(Vdd,i - Vm, i) 13

I_l‘leak — I_l»lea'k’Te(v'h’i_O'OGVdd‘")/0'039/0.00898,

R,=0.3019

where I_,-leak’T is the average leakage current of gate i with

unit scale factor, for the typical supply and threshold volt-
age, Vyy ;=1 and V,, ; = 0.3. With these typical values, the
delay and power models used here coincide with those used
in the simple gate scaling example in §2.1.10. The activity
frequencies of all gates and primary inputs are taken to be
fi=0.05/D™=,

Figure 9 compares the optimal power-delay trade-off
curves for four designs, subject to an area limit A™ =
15,000, and scale factor limit x; > 1. The designs are
described below.

e Standard design. The supply and threshold voltages
are fixed, equal to the typical values Vy; = 1.0 and
Vin.i = 0.3. (This is identical to the simple example given

in §2.1.10.)
o Multithreshold design. The supply voltage is fixed at
typical, V4, = 1, and each gate has one of three pos-

sible threshold voltages, Vj, ; € {0.2,0.3,0.4}. (We solve
the resulting mixed-integer GP using a simple snapping
method.)

Figure 9. Power-delay trade-off curves for the 32-bit

Ladner-Fischer adder circuit.

0 Standard design

CVS

Performance
limit

Multithreshold
design

0
37.5 pmax 75.0
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e Clustered voltage scaling (CVS). Here we have V, ; €
{0.6,1.0}, Vi, ; € {0.2,0.3,0.4}, with the constraint that a
gate cannot drive one with larger supply voltage.

e Performance limit. We solve the general problem, with
0.6<Vy; <1.0,02<V,,;<0.4. This design is not prac-
tical but serves as bound on the best achievable perfor-
mance for design with supply and threshold voltages within
the limits.

Figure 9 clearly shows that the multithreshold designs
outperform the standard designs, which use only the typical
threshold voltage, especially for small required delay. The
CVS designs outperform the standard designs for all delay
specifications. Moreover, the CVS designs, which include
the requirement that gates cannot drive other gates with
higher supply voltage, are not far from the lower bounds
given by the solution of the general problem. This suggests
that CVS is a rather good practical approach.

Figure 10 shows the change of the distribution of gate
threshold voltages in the multithreshold designs, as the
delay specification D™ varies. As D™ increases, the
design uses more high threshold gates and fewer low
threshold gates, which reduces leakage power. For small
delay, however, many of the gates have low threshold volt-
age. One interesting observation is that over the whole
range of delay specification, many gates use high thresh-
old voltage. These are gates off the critical path; the higher
threshold voltage reduces total leakage power.

Figure 11 shows the change of the distribution of gate
supply voltages for the CVS designs, as the delay spec-
ification D™ varies. As D™ increases, more gates use
low V4, which reduces power at the cost of increased delay.
For D™ =37.5, about 60% of the gates have high supply
voltage; for D™ > 55, most gates have low supply voltage.
The plot reveals three distinct regimes. For small delay, all
critical path gates are assigned high supply voltage. For
medium delays, some of the critical path gates are assigned
low V. For large delay, low power designs, all gates are
assigned low V.

Distribution of gate threshold voltages for
multithreshold designs.

Figure 10.

100%
Vi = 0.4

% of gates

V=023

0% s—s V=02
375 Dmax 70.0

Figure 11. Distribution of gate supply voltages for CVS
designs.
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3.4.1. Multimode Design Example. In this section,
we describe a multimode design example, with a single
set of gate scalings, but different supply voltage Vd((]f) and
threshold voltage Vtﬁk) for each of 10 scenarios. (The sup-
ply and threshold voltages are common to all gates.) These
scenarios correspond to clock frequencies

V=150, £ =0.8/50, ..., £1\” = (0.8)°/50.

C C

(Recall that the time unit is 7, the delay of a unit scaled
unloaded inverter. For 7 = 15 ps, these frequencies corre-
spond to £ =1.33 GHz, f®” = 178.5 MHz.) We require
that the circuit delay D® in mode k must not exceed 80%

of the clock period 1/ fc(lﬁ). Thus, we have the constraints

D® <0.8/f® =50.0.89, k=1,...,10.

We use the area constraint A™* = 15,000, and take aver-
age power (over the 10 scenarios) as the objective. The
resulting GP has on the order of 10* variables and 10° con-
straints, and is solved by a generic GP solver that exploits
sparsity in a few minutes.

Figure 12 shows the power versus clock frequency for
the multimode design. For comparison, two other plots are
shown. One shows independent designs carried out (sepa-
rately) for the 10 clock frequencies. The gap between these
individually optimized designs and the multimode design
shows the cost of insisting on one set of gate scalings to
be used for all clock frequencies. The third curve shows
a sequential design approach. Here we first design the cir-
cuit for the fastest clock frequency fV and then optimally
choose V. and V"’ for each of the other nine clock fre-
quencies, with the gate scalings fixed. We call this the
sequential design approach because the gate scalings are
first designed for one clock frequency, and then the supply
and threshold voltage is chosen as a second step. For the
highest clock frequency f(, the sequential and indepen-
dent designs are the same, and give a negligible improve-
ment in power over the multimode design. At all other
clock frequencies, the multimode design gives lower power
than the sequential design and is not too far from the inde-
pendent design.
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Figure 12. Power P versus clock frequency f,, for
multimode design, sequential design, and

independent designs.

10

Sequential

& Independent

1

Multimode

10 1
A Ja A

Note. Both axes are logarithmic.

4. Wire Sizing and Gate Design

In this section, we consider three closely related topics. The
first is wire sizing, in which the widths of wire segments
are chosen. The second is gate design, where we choose
the widths of the devices inside a gate, given specifications
and objectives for the gate. The last topic is custom design,
which combines gate scaling and gate design by optimiz-
ing the widths of the individual devices in all gates in a
combinational logic block.

4.1. RC Tree Optimization

We start with the problem of optimizing an RC tree, which
is the basis for wire sizing, gate design, and custom design.
We consider an RC tree, an example of which is shown in
Figure 13. An RC tree consists of a resistive tree network,
with grounded root, and a capacitance to ground at each
node. We label the nodes (not including ground) 1, ..., N.
Node i has a capacitance C; to ground, and a resistance R;
that connects node i to its parent node. We use the term

Figure 13. Example of an RC tree.
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“upstream” to mean toward the root of the tree, and “down-
stream” to mean toward the leaves of the tree. We will see
that an RC tree can serve as a model for an interconnect
network, or as a model of the internal dynamics of a gate,
that takes into account the nonzero resistance of wire seg-
ments and parasitic capacitance.

4.1.1. Elmore Delay. Let v;(z) denote the voltage at
node i. Suppose that the capacitors in the tree are all initial-
ized as v;(0) = 1. Then, it can be shown that each voltage
monotonically decreases to zero as t — oo. The Elmore
delay at node i is defined as

D, =/ v;(1) dt,
0

the area under the voltage curve, when the voltages are
initialized as v;(0) = 1 (see Elmore 1948). The Elmore
delay D; is a reasonable measure of the time it takes the
voltage at node i to decay, from an initial value of one.

The Elmore delay to a node can also be interpreted as a
measure of delay during a rising transition. Suppose that the
root of the tree is driven by a voltage source that switches
from O to 1 at =0, and the voltages are all initialized at O.
Then, each v;(#) monotonically increases to 1 as t — oo,
and we have

D~ T - () dr,

i.e., the Elmore delay is the area between the voltage
response and the asymptotic value 1.

We define the (critical, or worst-case) Elmore delay D
of the whole RC tree as the maximum Elmore delay to any
of its nodes. (We will see that the maximum always occurs
at one of the leaf nodes.)

There is an analytic expression for the Elmore delay D,
to node i. Let C!** denote the total capacitance downstream
from node i (including C;). Let d; = R,C/*". Then, the
Elmore delay can be expressed as

D= Y d I (22)
jePath(i)

where the sum is over the unique path from node i to the
root. (This shows that d; can be interpreted as the “local”
Elmore delay across resistor R;; the total Elmore delay is
the sum of these local delays along the path to the root.)

Equation (22) is easily understood. When all initial volt-
ages are one, Ci* is the total charge stored on capacitors
downstream from node i. Because this charge must flow
through R;, we see that R;C;*" is the integral of the voltage
that will appear across R; as the RC tree discharges. The
sum in (22) follows because the voltage at node i is the
sum of the voltages across the resistors on the path from
the root to the node.

As an example, the Elmore delay to node 3 in the RC
tree in Figure 13 is given by

D; =R, C{" + R, G + R, G
=R(C;+ -+ C) + Ry(C, + C3) + R, Cs.
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For this example, the Elmore delay is D = max{D;,
Ds, D¢}

A similar analysis can be carried out when the initial
voltages are not all equal to 1 (or 0, when the root of the
tree is driven by a unit voltage source). The total initial
charge stored on the capacitors downstream from node j is

Q;ot — Z

k downstream from j

Cv(0).

(This reduces to C;* when the initial voltages are all one.)
The charge Q7" must flow through R;, so the integral of
the voltage across R; is R;Q}". It follows that

/w v(di= Y R,0%. (23)

JjePath(i)

It can be shown that when the initial voltages are nonneg-
ative, the voltages are always nonnegative, in which case
the integral gives a reasonable measure of the delay. For-
mula (23) is just like the formula for the Elmore delay,
except that the initial voltages scale the capacitances. This
modified version of the Elmore delay can be used when the
initial voltages are not all equal to one.

There is a large literature on Elmore delay and related
topics; see, e.g., Alpert et al. (2001a), Kashyap et al.
(2004), Kahng and Muddu (1997), Gupta et al. (1997),
Fishburn and Schevon (1995), and Horowitz (1984).
Rubenstein et al. (1983) published the simple closed-form
formula described above for computing the mean of the
impulse response of RC interconnect trees. A general tech-
nique to compute higher-order moments was discovered a
few years later in Pillage and Rohrer (1990). In particu-
lar, the authors showed how these moments can be used to
approximate the poles of the circuit, which allows the time
domain waveform to be computed under arbitrary inputs.

4.1.2. Energy Loss. Energy loss is another important
quantity associated with an RC tree. When an RC tree with
grounded root is discharged, the total energy lost in the
resistors is the total initial energy stored in the capacitors,

N
E=Y Cu;(0)*/2,
i=1

which reduces to the simple expression (C, +---+ Cy)/2
when the initial voltages are one. When the root is driven
by a unit voltage source, the total energy loss is

E=3C0(0)~ 172,

which also reduces to (C, + --- 4+ Cy)/2 when the initial
voltages are zero.

4.1.3. Elmore Delay Optimization. Now suppose that
the resistances and capacitances in an RC tree are general-
ized posynomial functions of some optimization variables

x. The Elmore delay to any node is a sum of products
of resistances and capacitances, and therefore is a gener-
alized posynomial. The overall worst-case Elmore delay is
the maximum of these over the leaf nodes, and so is also
a generalized posynomial of the variables. The same obser-
vations apply if the initial voltages are not all equal to one
(but nonnegative): the modified Elmore delay to any node
and the maximum modified Elmore delay are generalized
posynomials. The energy loss is also a generalized posyno-
mial. We can minimize the worst-case Elmore delay, subject
to a maximum energy loss E, and other generalized posyn-
omial constraints, via GGP:

minimize D
subject to E < E™, (24)
fi(x)<0, i=1,...,m.

4.1.4. Dynamic Programming Formulation. We can
use a recursive formulation to obtain a sparse form of the
Elmore delay minimization problem (24). The downstream
capacitance satisfies the recursion

tot __ tot
C=C+ Yy v,

jeChild(i)

where Child(i) denotes the children of node i. The Elmore
delays can be computed through the recursion
D, = DPar(i) + RiCEOI’

where Par(i) denotes the (unique) parent of node i. Relax-
ing these to inequalities we obtain the equivalent GP:

minimize s

subject to s = D,

1

for i an output gate,

C;Ot> Z C;'Ot—i_cl’, i:l,...,n,
jeChild(i) (25)
Dy + R,C, i=1,...,n,

1

D,>
E < Emax’

fi(x)<0, i=1,...,m.

This problem is sparse (except for the energy loss con-
straint), and so can be very efficiently solved. Using this
formulation, we can optimize a tree with more than tens of
thousands of nodes.

4.1.5. Second Central Moment Optimization. Sup-
pose that the initial capacitor voltages are zero, and a one-
volt source is applied to the root of the tree. The resulting
voltage at node i, v;(¢) increases from zero to one as
t — oo. Therefore, it can be interpreted as the cumulative
distribution of a nonnegative random variable, with density
function h;(t) = dv;(t)/dt. The function A, is the impulse
response at node i, i.e., the voltage at node i when a voltage
unit impulse is applied to the root of the RC tree at t =0.
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The impulse response is positive and has integral one. The
Elmore delay D; at node i is the mean of the associated
random variable,

D, =/ th,(1) dt,
0

i.e., the first moment of the impulse response at node i.
This has a natural interpretation as the delay to node i, as
discussed above.

We can also work with the variance of the associated
random variable, i.e., the second central moment of the
impulse response,

[ee) [ee) 2 o0
2— | h(r dt—( th,(t dt> = *h(t)dt—D>.
ot =[ rh@ydi=( [ mydr) = [ rh)di-p

The square root of the second central moment, i.e., the
standard deviation o; of the associated random variable, has
a natural interpretation as the transition time or rise time
of the signal at node i; see, e.g., Kashyap et al. (2004) and
Lin and Pileggi (2001).

Recently, Lin and Pileggi (2001) have shown that the
second central moment O'iz is, like the first moment D;, a
posynomial function of the resistances and capacitances in
the RC tree. We can express the second central moments
via the recursion

O-izza-l%ar(i)—i_ZRi Z o Z dy,

jeChild(i)  kePath(i, j)

with the starting condition O'g =0 for the root node. Here,
Path(i, j) denotes the set of nodes on the path from i to j
excluding i. (See Lin and Pileggi 2001 for the derivation
of this recursion.) This recursion shows that g7 is a posyn-
omial of the resistances and capacitances, so o;, which is
a measure of signal rise time, is a generalized posynomial
of the resistances and capacitances.

As a result, we can add maximum allowable rise time
constraints to the RC tree optimization problem (24), which
remains a GGP. Another option is to use a more refined
measure of the delay to node i, of the form A,u; + A, 0,
where A; are positive constants. This expression is a gen-
eralized posynomial of the resistances and capacitances, so
the RC tree optimization problem (24), with this model for
delay, is still a GGP.

4.2. Wire Sizing

One application of RC tree optimization is interconnect
wire sizing, i.e., the problem of determining the widths
wy, ..., wy of N wire segments in an interconnect network.
The interconnect network forms a tree; its root is driven by
the input signal, which is modeled as a voltage source and a
series resistance. Each wire segment has a given capacitive
load C; connected to it. An example of a simple intercon-
nect network is shown in Figure 14, where an ideal voltage
source in series with a resistor drives a tree of five wire
segments (shown as boxes labeled 1,...,5), with capaci-
tive loads C,, ..., Cs.

Figure 14. An interconnect network consisting of an
input (the voltage source and resistor) driv-
ing a tree of five wire segments (shown as

boxes labeled 1, ..., 5) and capacitive loads

4.2.1. Wire Segment RC Model. We will use a simple
7 model for each wire segment, as shown in Figure 15.
The wire resistance and capacitance are given by
Ri=a;,—, G = Bilyw; +v,l;,

w;

where /; and w; are the length and width of the wire seg-
ment, and «;, B;, and vy, are positive constants (that depend
on the physical properties of the routing layer of the wire
segment). Substituting this model for the wire segments, the
interconnect network becomes an RC tree, where both the
resistances and the capacitances are posynomial functions
of the wire segment widths w;,.

4.2.2. Wire Sizing Problem. Now we can formulate
the wire sizing problem, i.e., the problem of choosing the
wire segment widths w,, ..., wy. We impose lower and
upper bounds on the wire widths,

wmin < w, < wmax

; i P
as well as a limit on the total wire area,

Lw + -+ [ywy <A™

Taking Elmore delay as objective, we obtain the problem
minimize D

subject to wM" < w,

<w™, i=1,...,N, (26)
Lw, 4+ 1ywy <A™,

with optimization variables w,, ..., wy. This is a GGP.

Figure 15.  Wire segment with length /, and width w;

(left) and its 7 model (right).
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This formulation can be extended to use more accu-
rate models of wire segment resistance and capacitance,
as long as they are generalized posynomials of the wire
widths. In addition, other GP-compatible constraints can be
added, e.g., a limit on the energy loss, or signal rise times.
Wire sizing using Elmore delay goes back to Fishburn
and Dunlop (1985); for some more recent work on wire
(and device) sizing via Elmore delay, see, e.g., Shyu et al.
(1988), Sapatnekar et al. (1993), and Sapatnekar (1996).
The state of the art in interconnect wire sizing is well sum-
marized in the survey papers Cong et al. (1996), Sylvester
and Hu (2001), and Ho et al. (2001). The survey paper
by Cong et al. (1996) also summarizes many interconnect
layout issues.

When the wire widths are restricted to take values in
some discrete set, the wire sizing problem (26) becomes a
mixed-integer GGP. As with the gate scaling problem with
discrete scale factors, the snapping heuristics in Boyd et al.
(2004, §7.3) can be used to find an approximate solution.
The problem can also be solved exactly, using a dynamic-
programming-based algorithm, which, however, has a long
worst-case running time, O(N"), where r is the number of
discrete wire sizes (Cong and Leung 1995).

4.2.3. Wire Sizing Example. As a simple example, we
consider the interconnect network shown in Figure 14, with
wire parameter values

=1, a=1, =1 v=1,
load capacitances
¢, =10, C,=10, C;=10, C,=10, C5=10,

and source resistance R, = 0.1. The wire size limits are
w™" =1 and w™ = 10. Figure 16 shows the optimal
trade-off curve of minimum Elmore delay versus maximum
area A™*. For comparison, we also show the area and
Elmore delay obtained when all wire widths are equal, i.e.,
w; = A" /5. Even for this very small example, optimally
sizing the wire segment widths gives a substantial reduction
in delay (for fixed area).

4.3. Gate Design

A (static CMOS) gate is a combination of a pull-down
network of NMOS transistors and a pull-up network of
PMOS transistors, as shown in Figure 17. The pull-up net-
work provides a connection between the output and the
power supply when the gate output is logical high (V,,),
and the pull-down network provides a connection between
the gate output and ground when the gate output is log-
ical low (0). A simple specific example is the two-input
NAND gate shown in Figure 2. The pull-up network con-
sists of a parallel connection of two PMOS devices, and
the pull-down network consists of a series connection of
two NMOS devices.

Figure 16. Optimal trade-off curve of Elmore delay D
versus maximum area A™ for the intercon-
nect network shown in Figure 14.
25 : ;

.

Optimal sizing

5 . =
20 50 80 110

Note. The dashed curve shows the area and delay obtained when all wire
widths are equal.

In this section, we consider the problem of gate design,
i.e., choosing the widths w,, ..., w, of the devices in the
pull-up and pull-down networks in a gate, subject to con-
straints on gate area, delay, input capacitance, power, and
so on. For the simple two-input NAND gate, for exam-
ple, there are four device widths to choose. These device
widths affect the gate area, input capacitance at the two
inputs, gate delay, and dynamic and static power. We can
also include other design variables in the gate design prob-
lem, e.g., threshold voltages for each of the devices. For
simplicity, though, we consider device sizing only. Before
going into the details of gate design, we sketch the basic
approach.

We start with some constraints that are readily for-
mulated. Manufacturing constraints specify minimum and
sometimes also maximum allowable values for the device
widths. The area of a gate is also easily handled, because

Figure 17. A CMOS logic gate formed from a pull-up

network and a pull-down network.
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it can be approximated as a linear function of the device
widths, with positive coefficients, and so is a posynomial.
(We can use a more refined generalized posynomial func-
tion of the device widths that takes into account more
details of the actual gate physical layout.) Input capacitance
is also straightforward to model because it can be approx-
imated as a linear or affine function of the device widths.

Gate delay and power constraints are more complex,
but also GP compatible when the models described below
are used. (Several more sophisticated and accurate models
are also GP compatible; see, e.g., Kasamsetty et al. 2000,
Sapatnekar and Chuang 2000.) For the design of gates with
not too many inputs, it is common to distinguish and model
the gate behavior for every input transition. For each such
transition, we model the energy loss and the delay to the
output (provided the output changes during the input tran-
sition). In a similar way, we model the leakage current for
each input state.

A basic gate design problem might have the form

minimize D =max{D,,..., Dy}
subject to w™ < w; <wM™, i=1,...,p,
A<Amax’
h 27)
K
(1/K) Y E, <E™,
k=1
Cin g Cimmax i=1,....,m

where A denotes the gate area, D, denotes the delay for
transition k, E, denotes the energy loss during transition &,
and C" denotes the input capacitance at gate input i. (Thus,
K is the total number of transitions, and m is the number
of inputs for the gate.) Thus, we seek gate device widths
that minimize (maximum) delay, subject to a gate area limit
A™* an average energy loss (over all transitions) that does
not exceed E™*, and a maximum input capacitance (at any
of the gate inputs) C™™ ™, This problem is a GGP, provided
Dy, E,, and C are generalized posynomials.

There are many variations on the basic gate design prob-
lem. We can impose different delay or energy loss lim-
its for different transitions, and different limits on input
capacitance at different inputs. We can also impose lim-
its on leakage power. We can form a robust design to
take into account variation in the model parameters or load
capacitance.

4.3.1. RC Gate Model. The first step in gate model-
ing is to substitute a switch-level RC model of each device
into the gate schematic diagram. This results in a gate
schematic diagram containing switches (which are open or
closed depending on the inputs), and capacitors and resis-
tors, whose values depend on the device widths. For each
transition we obtain an RC circuit, typically a tree, with
given initial conditions on the capacitors. The energy loss
is modeled as the total energy loss in the RC circuit, and
the gate delay is modeled as the Elmore delay to the gate

925
Figure 18. MOS transistors (left) and the switch-level
RC model (right).
D
GA‘ B Ca D Ca
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G 1 B
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output node. We will see that these are both posynomials of
the device widths. It is also possible to model the leakage
power of a gate as a function of the device widths, but it
is quite involved, so we do not consider it here.

Figure 18 shows a simple switch-level RC circuit model
for a transistor or device. It consists of a source-to-drain
resistance R, which models the channel resistance when the
device is on, and five parasitic capacitances between the
four terminals, bulk (B), gate (G), source (S), and drain (D).
In our discussion we will ignore the gate-drain capacitance,
for simplicity, but it can be handled, in a GP-compatible
way, via the Miller effect. We refer the reader to Hodges
et al. (2004) for detailed discussion of switch-level RC
device models and their use in delay modeling. We assume
that each of these parameters is a posynomial function of
the device width. In one simple model, for example, the
resistance is inversely proportional to width, and the capac-
itances are linear (or affine) in the width.

Substituting this switch-level RC model for each device
in a gate, with the NMOS bulk terminals connected to
ground and the PMOS bulk terminals connected to V,,, we
obtain a switched RC circuit model of a gate. For the pur-
poses of delay and energy analysis, this resulting RC circuit
is equivalent to one in which the capacitances connected to
V,q are connected to ground. For each input transition, we
obtain an RC circuit, with known initial conditions.

To illustrate this approach we consider a simple two-
input NAND gate driving a load capacitance C*, shown
on the top of Figure 19. Using the switch-level RC device
model, it can be modeled as the RC circuit in the middle,
which is electrically equivalent to the RC circuit on the
bottom, where

Cy = Cyp; + Cay + Caps + C", C, = Cy3 + Cypu-

The input capacitances at input pins A and B are

CXI = L2 + CgsZ + Cgb3 + CgsS’
C]i?,n = Cgbl + Cgsl + Cgb4 + Cgs4’
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Figure 19. Two-input NAND gate (top), its switched Figure 20. RC models of the two-input NAND gate for
RC circuit model (middle), and an electri- two input transitions: A remains at Vg, and
cally equivalent switched RC circuit model B falls from V,; (left); A and B rise from
(bottom). zero to Vy, (right).
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Because the device resistance and capacitances are assumed
to be posynomial functions of the widths, the resistances
and capacitances in the switched RC circuit are all posyn-
omials of the device widths. Now we can analyze each
transition separately. There are four input states, and there-
fore 12 possible transitions. Of these 12 transitions, three
transitions cause the output Z to rise from 0 to V4, and
three cause the output Z to fall from V,, to 0.

To illustrate the delay and energy model for a rising tran-
sition, consider the input transition in which gate input B
falls from V, to zero, while gate input A remains at V.
Before the transition, the switches labeled A and B are
closed, and the switches labeled A and B are open. The out-
put Z is at zero, and the capacitors C; and C, have zero ini-
tial charge. When the gate input B falls to zero, the switch
labeled B opens, and the switch labeled B closes. This
leaves us with the RC circuit shown on the left-hand side of
Figure 20, with C; and C, initially uncharged. The Elmore

delay to the output node is
D=R,(C;+ (),

and the energy dissipated is
E=(C+ C2)Vd2d/2-

These are posynomials of the device sizes.

As another example, we consider the input transition in
which both gate inputs A and B rise from zero to V,, which
causes the output Z to fall to zero. In this transition, the
switches labeled A and B close, and the switches labeled
A and B open. This results in the RC tree shown on the
right-hand side of Figure 20. For this transition, the initial
voltage vi™ on C, is not well defined; it can be any value
between 0 and V,,. The (modified) Elmore delay to the
output node Z is

D =R;C, + R,(C, + (v)"/Vy)G,),
and the energy dissipated (during this transition) is
E=C\V2/2+ C,(vl")’ /2.

Using the worst-case value vl = V. we obtain delay and
energy (bounds)

D=R,C,+R,(C,+C,), E=(C,+GC)V;/2,

which are posynomials of the device sizes.

The delay and energy expressions for the six input tran-
sitions which result in an output transition are given in
Table 3. For the last two transitions, the exact expression
depends on v, so the worst-case bound is given. The
third transition also deserves comment. When both inputs
fall from one to 0, the resulting RC circuit is not a tree,
because two resistors (R, and R,) connect to V. As a
result, the delay expression is not a posynomial of the R;.
In this case, however, the delay is always smaller than the
delay when only input A falls from one to 0 (in which R,
alone connects to V), so the (nonposynomial) delay for
this transition can be ignored. The maximum delay (over
all transitions) is

D =max{R;C, + R,(C, + (), R (C, + C,), R,C} },

which is a generalized posynomial. The energy models for
the six input transitions listed in Table 3 are also general-
ized posynomials.
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Table 3. Delay and energy expressions for the two-
input NAND gate for the six input transitions
that yield an output transition.

A B Z Delay Energy dissipated

1-1 1—-0 01 R, (C,+ () (C,+C)VE /2

1-0 1-1 0—~>1 R,C, C\V4/2

1-0 1-0 0—>1 C,RR,/(R,+R,) C,V3/2

1>1 0>1 150 RyC,+R,(C,+Cy)
0>1 1>1 150  R,C,+R,C,
0>1 051 150 RyC,+R,(C,+C,)

(C,+Cy)Viy/2
(Cy+C)Via/2
(Cy+C)Via/2

4.3.2. Example. In this section, we give a simple
numerical example of the design of the simple two-input
NAND gate. Of course, this problem is simple enough
that it could be solved by exhaustive search over the four
widths. The gate design problem becomes more challeng-
ing for more complex gates, with 10 or more devices, in
which case the GGP formulation becomes valuable.

The switch-level RC device model parameters for NMOS
devices are

R=04831/w,  Cp=Cy=006w, Cp=Cy=uw,

and for PMOS devices,

R=2-04831/w, Cyp=Cy=0.6w, Cu=Cq=mw,

g
which are monomials of device sizes.

We solve the gate design problem (27), with minimum
device width wP™ =1, and varying maximum area (taken
as the sum of the widths) A™*. The load capacitance is
CY = 12. Figure 21 shows the optimal trade-off curve of

minimum delay D versus area limit A™*. For comparison

Figure 21. Delay versus area for the design with
w; = A™* /4 (uniform sizing) and optimal

designs.

45

Optimal sizing R \I:Jniform sizing

we also show the delay obtained when all device sizes are
equal, i.e., w; = A™* /4. Even for this very small exam-
ple, optimally sizing the device widths gives a substantial
reduction in delay, compared to the design with all gate
widths equal. For A™* = 24, the optimal widths are

w; = 6.68, w, =5.43, w; =5.03, w, = 6.86,
which are not far from equal, but give a good reduction in
delay.

4.4. Custom Design

The ideas of gate design and gate scaling are readily com-
bined to form the custom design problem. In custom design,
the gates forming a combinational logic block are opti-
mized for overall power, area, and delay, exactly as in gate
scaling; the difference is that in custom design, the opti-
mization variables are the individual devices within each
gate, instead of a single scaling parameter per gate.

If the gate design formulation and the gate scaling for-
mulation are both GP compatible, the overall custom design
problem is also GP compatible. We start with a gate scaling
problem formulation that connects the properties of each
gate, such as delay, power, area, and input capacitance,
to the combinational logic block delay, power, and area.
In gate scaling, the gate properties are generalized posyn-
omials of a single scaling parameter; in custom design,
we substitute the more complex generalized posynomial
expressions for the gate properties, in terms of the gate
device widths. The result is a very large GGP. This works
out because in the gate scaling formulation, the gate prop-
erties can be any generalized posynomial of any design
variables. In simple scaling, the gate properties are posyn-
omials of a single scale parameter x; in custom design,
they are generalized posynomials of the gate device widths
Wy, ey Wy

Indeed, all of the problem formulations described above
can be combined. We can include interconnect wire sizing,
as well as the choice of supply and threshold voltage, in the
custom design problem. We can form robust or multimode
versions of the resulting problems. These problems will be
GP compatible, because, roughly speaking, GP is preserved
under composition and hierarchy.

The natural problem hierarchy arising in the custom
design problem can be exploited computationally in several
ways. The most straightforward is to simply form a very
large scale GP, and let an interior-point solver exploit the
resulting sparsity each time the large problem is solved. In
this approach we formulate the problem in a hierarchical
way, then solve the problem as one large sparse GP.

Another interesting approach is to design a family of
gates, and then form a reduced order model of the family
that can be used in the larger combinational logic block
problem. Consider, for example, a gate with 10 devices.
We design, say, 10,000 different versions of the gate, each
Pareto optimal with respect to input capacitance, energy
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loss, average leakage power, delay, area, and so on, with
varying load capacitance. (This is possible because the
gate design problem is small, and can be solved extremely
quickly.) We then fit two- or three-parameter generalized
posynomial models of the properties of the gates in this
family and use this reduced order model in the larger prob-
lem, instead of the full 10-parameter model that would be
used in custom design.

The theoretical justification of this approach is as fol-
lows. First consider a convex optimization problem. Its
optimal value, as a function of the right-hand sides of the
inequalities, is always a convex function. This basic result
transposes to GGPs via the logarithmic transformation used
to transform a GGP or GP into a convex problem: the opti-
mal value of a GGP, as a function of the right-hand sides
of the constraints, is a function that can be arbitrarily well
approximated by a generalized posynomial. If, for exam-
ple, we design a gate to minimize delay subject to limits
on area, energy loss, leakage power, and input capacitance,
with a given load capacitance, then the resulting minimum
delay, as a function of these limits and the load capaci-
tance, can be arbitrarily well approximated as a generalized
posynomial.

5. Conclusions

In the preceding sections, we have listed a wide variety
of digital circuit sizing problems that can be cast, at least
approximately, as geometric programs or generalized geo-
metric programs. These problems range from simple ones,
involving gate scaling to achieve a trade-off among area,
power, and delay, to complex formulations involving mul-
tiple corners, multiple scenarios, joint device sizing and
threshold voltage optimization, and so on.

The knowledge that a given design problem can be
approximately cast as a GGP can be used in several ways.
The most obvious is to solve the design problem using a
generic interior-point method for GP. But even if an ad hoc
method is used to solve the problem, the knowledge is use-
ful because it tells us that a local solution of the problem
is also a global solution. And it seems to us that reducing
a design problem to a GP is conceptually useful, even if
methods specific to GP are not used to solve the problem.

When a design problem involves discrete constraints, the
resulting optimization problem is a mixed-integer or dis-
crete GP. Such problems are difficult to solve exactly, but
examples show that even relatively simple heuristics, based
on solving one or more (continuous) GPs, seem to work
well in practice. In any case, the relaxed GP formulation
provides a lower bound against which the heuristic can be
judged.

We should make some comments on the various mod-
els described above. Our focus is on GP-compatibility, and
not on accuracy. At the gate or device levels, there are two
extreme approaches to GP modeling. One is based on more
refined analysis and is essentially equation based. The other

is based on fitting GP-compatible functions to character-
ized, simulated, or measured data. Each method has its
advantages and disadvantages. An equation-based method,
for example, can handle many more varying parameters;
a fitting method, on the other hand, gives a simple method
for achieving higher accuracy.

Considering the approximations made in GP modeling,
fitting errors, and ignored constraints, it should be borne in
mind that the final GP formulation is only an approximation
of the original circuit design problem. Its practical value is
in getting close to a good solution; this can be followed
by a final “polishing” of the design, starting from the GP
solution obtained, and using a simple local method, based
on more accurate (but not GP compatible) models.

Appendix. Generalized Geometric
Programming

In this section, we give a very brief description of GP
and GGP. Let x = (x,, ..., x,) be a vector of n real, posi-
tive variables. A function of the form cxj'x3? - - - x%, where
¢ > 0, is called a monomial function; a sum of monomial
functions is called a posynomial function. A generalized
posynomial function is any function obtained from posyn-
omials using addition, multiplication, pointwise maximum,
and raising to constant positive power. The functions

023,  1.5Vx/x.

for example, are monomials; the functions

2x, + x3, 1+ 3x x4

are posynomials; and the function
max {3x; + x,/x3, 2x7 0% + (x; 4+ x3)"7}

is a generalized posynomial.

Any monomial is also a posynomial and a general-
ized posynomial; and any posynomial is also a general-
ized posynomial. Monomials are closed under product and
any power (such as squareroot or inverse). Posynomials are
closed under product and sum. Generalized posynomials
are closed under product, sum, positive powers, and point-
wise maximum.

A geometric program is an optimization problem of
the form

minimize f;(x)
subject to fi(x) <1, i=1,...,m, (28)
gx)=1, i=1,....p,

where fy, ..., f, are posynomial functions and g, ..., g,
are monomials. (The optimization variables are x,, ..., x,,.
If the functions f,..., f, are generalized posynomials,
problem (28) is called a generalized geometric program.
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Several extensions are readily handled. For example, we
can maximize a monomial by minimizing its inverse (which
is also a monomial, hence a posynomial). A constraint of
the form f(x) < g(x), where f is a generalized posyno-
mial and g is a monomial, can be handled by expressing
it as f(x)/g(x) <1 (because f/g is a generalized posy-
nomial). A constraint of the form g(x) = g(x), where g
and g are monomials, can be handled by expressing it as
g(x)/g(x) =1 (because g/¢ is a monomial).
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