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Abstract

In this paper, we propose to solve the linear multicommodity flow problem using a
partial Lagrangian relaxation. The relaxation is restricted to the set of arcs that are
likely to be saturated at the optimum. This set is itself approximated by an active set
strategy. The partial Lagrangian dual is solved with Proximal-ACCPM, a variant of the
analytic center cutting plane method. The new approach makes it possible to solve huge
problems when few arcs are saturated at the optimum, as it appears to be the case in
many practical problems.

Acknowledgments. The work was partially supported by the Fonds National Suisse
de la Recherche Scientifique, grant # 12-57093.99.

1 Introduction

The instances of the linear multicommodity flow problem, in short LMCF, that are en-
countered in real applications are often of such large a size that it is impossible to solve
them as standard linear programming problems. To get around the challenge of dimen-
sion, one often resorts to Lagrangian relaxation. One has then to solve the Lagrangian
dual problem, a non-differentiable concave programming problem of much smaller size.
We propose an efficient way to handle the dual problem and get a primal feasible solution
with guaranteed precision.

The literature on the linear multicommodity flow problem proposes many different
solution methods. Direct approaches consist in solving the large linear programming
problem with a linear programming code exploiting the special block-network structure
of the constraint matrix. The solver can be either simplex-based, e.g. [13], or use inte-
rior point methodology, e.g. [1]. The other popular approach is based on price-directive
decomposition, i.e., a Lagrangian relaxation approach, or equivalently, a column genera-
tion scheme. The standard way to solve the Lagrangian dual problem is Kelley’s method
[10], or its dual, the Dantzig-Wolfe decomposition scheme [3]. Farvolden et al. [6] apply
Dantzig-Wolfe decomposition to solve an arc-chain formulation of the multicommodity
flow problem. In [2], P. Chardaire and A. Lisser compare Dantzig-Wolfe decomposition
with direct approaches and also with ACCPM [9] on oriented multicommodity flow prob-
lems. They conclude that using a fast simplex-based linear programming code to solve
the master program in Dantzig-Wolfe decomposition is the fastest alternative on small
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2 THE LINEAR MULTICOMMODITY FLOW PROBLEM

and medium size problems. The bundle method [12] can also be used to solve the La-
grangian dual. A. Fragioni and G. Gallo [7] implement a bundle type approach. In a
recent contribution, Larsson and Yuang [11] apply an augmented Lagrangian algorithm
that combines Lagrangian relaxation and nonlinear penalty technique. They introduce
nonlinear penalty in order to improve the dual convergence and obtain convergence to a
primal solution. They are able to find solutions with reasonable precision on very large
problem instances. They also compare their method to Dantzig-Wolfe decomposition and
to bundle method.

In this paper, we apply the analytic center cutting plane method [9] to solve the
Lagrangian dual problem. Following [5], we add a proximal term to the barrier function
of the so-called localization set. We further speed up the solution method by using an
active set strategy. This is motivated by our observation that on practical problems, the
number of congested arcs in an optimal solution is but a small fraction of the total number
of arcs in the graph. In [2], P. Chardaire and A. Lisser claim that in real transmission
networks the number of saturated arcs is usually no more than 10 percent of the total
number of arcs. T. Larsson and Di Yuan in [11] make the same observation on their
test problems. McBride and Mamer report the same in [14]. In other words, for a large
majority of arcs, the total flow in the optimal solution is strictly less than the installed
capacity. Consequently, the Lagrangian dual variables associated with these arcs must
be null at the optimum. If this (large) set of null optimal dual variables were known in
advance, one could perform a partial Lagrangian relaxation restricted to the saturated
arcs. This would considerably reduce the dimension of the Lagrangian dual and make
it much easier to solve. In practice, the set of saturated arcs at the optimum is not
known, but can be dynamically estimated as follows. An arc is added to the active set as
soon as the flow associated with the current primal solution exceeds the capacity of this
arc. The strategy to remove an arc from the active set is more involved. The arcs to be
discarded are selected among those whose capacity usage by the current solution is below
some threshold, but a dual-based safeguard is implemented to decrease the chances that
a deleted arc be later reinserted in the active set. The use of an active set strategy in
solving the general multicommodity flow problem is not new. It has been implemented
within the framework of bundle method to solve the Lagrangian dual [7] and in a primal
partitioning method [15]. Both papers report significant speed-ups.

The new method is applied to solve a collection of linear multicommodity problems
that can be found in the open literature. As in [11], we focus on problems with many
commodities, each one having one origin and one destination node. The subproblems
are simple shortest path problems, possibly very numerous. We use four categories of
problems. The first two categories, planar and grid, gather artificial problems that
mimic telecommunication networks. Some of them are very large. The third category
is made of four small to medium size telecommunication problems. The last category
includes six realistic traffic network problems; some of them are huge, with up to 13,000
nodes, 39,000 arcs and over 2,000,000 commodities. We are able to find an exactly feasible
solution with a relative optimality gap less that 10−5 for all problems including the larger
ones.

The paper is organized as follows. In Section 2 we give formulations of the linear
multicommodity flow problem. Section 3 presents Lagrangian relaxations. In Section 4
we define our so-called active set that amounts a partial Lagrangian relaxation. Section
5 deals with a brief summary of ACCPM and its variant with a proximal term. Section
6 details our algorithm and provides information on its implementation. Section 7 is
devoted to the numerical experiments.

2 The linear multicommodity flow problem
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3 LAGRANGIAN AND PARTIAL LAGRANGIAN RELAXATIONS

Given a network represented by the directed graph G(N ,A), with node set N and arc set
A, the arc-flow formulation of the linear multicommodity flow problem is the following
linear programming problem

min
∑

a∈A
ta

∑
k∈K

xk
a (1a)∑

k∈K
xk

a ≤ ca, ∀a ∈ A, (1b)

Nxk = dkδk, ∀k ∈ K, (1c)
xk

a ≥ 0, ∀a ∈ A, ∀k ∈ K. (1d)

Here, N is the network matrix; ta is the unit shipping cost on arc a; dk is the demand for
commodity k; and δk is vector with only two non-zeros components: 1 at the supply node
and −1 at the demand node. The variable xk is the flow of commodity k on the arcs of the
network. The parameter ca represents the capacity on arc a ∈ A to be shared among all
commodity flows xk

a. Problem (1) has |A| × |K| variables and |A|+ |N | × |K| constraints
(plus the bound constraints on the variables). Let us mention that problem (1) can be
formulated in a more compact way. Consider the set of commodities that share the same
origin node. If we replace the constraints (1c) associated with those commodities with
their sum, we obtain a new formulation with less constraints and variables. It can be
easily checked that this new formulation is equivalent to (1). This transformation may
be useful for direct methods, particularly on problems with many more commodities than
nodes, because it drastically reduces the problem dimension. If the solution method is a
Lagrangian relaxation, as it is the case in this paper, the transformation is irrelevant: the
complexity of the problem remains unchanged.

The linear multicommodity flow problem can be also formulated using path-flows
instead of arc-flows. Though we shall not really use this formulation, it may prove useful
to remind it for the sake of illustration. Let us denote π a path on the graph from some
origin to some destination. A path is conveniently represented by a Boolean vector on
the set of arcs, with a “1” for arc a if and only if the path goes through a. For each
commodity k, we denote {πj}j∈Jk

the set of paths from the origin of demand dk to its
destination. Finally, the flow on path πj is denoted ξj and the cost of shipping one unit
of flow along that path is γj . The extensive path-flow formulation of the problem is

min
∑
k∈K

∑
j∈Jk

ξjγj (2a)

∑
k∈K

∑
j∈Jk

ξjπj ≤ c, (2b)

∑
j∈Jk

ξj = dk, ∀k ∈ K, (2c)

ξ ≥ 0.

The path-flow formulation is compact but the cardinality of the set of paths is exponential
with the dimension of the graph. Therefore, it cannot be worked out explicitly, but on
very small problems. It is nevertheless useful, since the solution method to be discussed
later can be interpreted as a technique of generating a few interesting paths and use them
to define a restricted version of problem (2).

3 Lagrangian and partial Lagrangian relaxations

In the standard Lagrangian relaxation of (1), one relaxes the coupling capacity constraint∑
k∈K xk

a ≤ ca and assigns to it the dual variable u ≥ 0. The Lagrangian dual problem is

max
u≥0

L(u)
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3 LAGRANGIAN AND PARTIAL LAGRANGIAN RELAXATIONS

where
L(u) = min

xk≥0, k∈K

{
L(x, u) | Nxk = δk, ∀k ∈ K

}
, (3)

and L(x, u) is the Lagrangian function

L(x, u) =
∑
a∈A

ta
∑
k∈K

xk
a +

∑
a∈A

ua(
∑
k∈K

xk
a − ca).

Since the Lagrangian dual is the minimum of linear forms in u, it is concave. Moreover, it
is possible to exhibit an element of the anti-subgradient of L at ū if we know an optimal
solution x̄ of (3) at ū. Indeed, for any u, we have from the definition of L

L(u) ≤
∑
a∈A

ta
∑
k∈K

x̄k
a +

∑
a∈A

ua(
∑
k∈K

x̄k
a − ca). (4)

Inequality (4) clearly shows that −c +
∑

k∈K x̄k is an anti-subgradient. Inequality (4) is
sometimes referred to as an optimality cut for L. Note that the minimization problem in
(3) is separable into |K| shortest path problems. We also recall that the optimal solutions
u∗ of the Lagrangian dual problem are also optimal solutions of the dual of the linear
programming problem (1).

The dimension of the decision variable in L(u) is |A|. We now investigate the possibility
of reducing the problem size. From the strict complementarity theorem, we know that
there exists at least a pair (x∗, u∗) of strictly complementary primal and dual solutions
of (1). Actually we know more: there exists a unique partition A = A∗

1 ∪A∗
2 of the set of

arcs such that for all strictly complementary pair
u∗a > 0 and

∑
k∈K

(xk
a)∗ = ca, ∀a ∈ A∗

1,

u∗a = 0 and
∑

k∈K
(xk

a)∗ < ca, ∀a ∈ A∗
2.

This partition is called the optimal partition. If this partition were known in advance, it
would possible to drop all constraints∑

k∈K

(xk
a)∗ ≤ ca, ∀a ∈ A∗

2,

in (1). This information would also be very useful in solving a Lagrangian relaxation of
(1).

If |A∗
1| is much smaller than |A|, the associate Lagrangian dual also has much smaller

dimension. Since in practical problems it is generally observed that the number of inactive
constraints is large, the strict complementarity theorem suggests that the dimension of
the Lagrangian dual function can be dramatically reduced, and thus the problem made
easier. In view of the above partition, we define the partial Lagrangian as

LA∗1 (x, uA∗1 ) =
∑
a∈A

ta
∑
k∈K

xk
a +

∑
a∈A∗1

ua(
∑
k∈K

xk
a − ca)

= −
∑

a∈A∗1

uaca +
∑

a∈A∗1

(ta + ua)
∑
k∈K

xk
a +

∑
a∈A∗2

ta
∑
k∈K

xk
a.

The Lagrangian dual problem is

max
uA∗

1
≥0
{LA∗1 (uA∗1 ) = −

∑
a∈A∗1

uaca +MA∗1 (uA∗1 )}, (5)
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4 ACTIVE SET STRATEGY

with

MA∗1 (uA∗1 ) =
∑
k∈K

min

 ∑
a∈A∗1

(ta + ua)xk
a +

∑
a∈A∗2

taxk
a | Nxk = δk, xk

a ≥ 0, ∀a ∈ A

 .

Note that one can obtain an anti-subgradient of MA∗1 in the exact same manner as
described for the full Lagrangian dual function (see (4)).

4 Active set strategy

Obviously, the optimal partition A = A1 ∪ A2 is not known in advance. We shall now
discuss ways of dynamically estimate it. The scheme is based on the fact that it is always
possible to construct flows that meet all the demands. If the resulting total flow does not
meet the capacity constraint on some arc in A2, then this arc is potentially binding at
the optimum and should be moved to A1. A more complex scheme shifts arcs from A1

to A2. Prior to describing with full details the updating schemes, let us see how one can
obtain the above-mentioned vector of total flows.

The Lagrangian relaxation scheme substitutes to problem (1) the dual problem (3)
that is solved by a cutting plane method based on (4). In this inequality, Π̄ =

∑
k∈K x̄k is

the total flow resulting from shipping the individual commodities along appropriate paths.
Let us also denote Γ̄ =

∑
k∈K

∑
a∈A tax̄k

a the cost associated with that flow. Suppose that
our iterative procedure has generated Πt, t = 1, . . . T , such vectors with associated costs
Γt. Any convex combination of such vectors, defines flows on the arcs

y =
T∑

t=1

µtΠt, with
t∑

i=1

µt = 1, µ ≥ 0,

that can be associated with individual commodity flows that satisfy the demands. The
issue is to check whether this total flow is compatible with the capacity constraints. We
partition A with respect to this y to get A1 = {a | ya ≥ ca} and A2 = {a | ya < ca}. The
set A1 could be used to estimate A∗

1. In the sequel, we shall name it the active set.
The discussion raises the issue on how to find the above-mentioned convex combination

vector. In the Lagrangian relaxation, the problem can be seen as the one of finding
appropriate prices where to query the oracle. The constraints set consists in a set of
inequalities generated by the oracle. The dual view of the problem consists in finding a
convex combination of path-flow columns. This defines the cuts, or, in a column generation
framework, a restricted version of the original path-flow formulation (2). It is easy to see
that µ can be identified with a primal variable for the master program. It appears to be
a by-product in Kelley’s method when solving the master program. Proximal-ACCPM
and others methods also generate this information. We thus can use it to form a convex
combination of the cuts generated by the oracle.

We conclude this section by presenting a heuristic rule to update the active set in the
course of the maximization of the Lagrangian dual function. Assume we are given a set
of paths as described above and a current partition of A = A1 ∪A2 into an active set and
its complement. Assume also we are given a dual variable u, with uA1 ≥ 0 and uA2 = 0,
and a set of non-negative variable µt summing to one. These variables form a primal dual
pair of solutions in the restricted path-flow problem

min
T∑

t=1

µtΓt (6a)

(
T∑

t=1

µjΠt)a ≤ ca, ∀a ∈ A1, (6b)

5



5 PROXIMAL-ACCPM TO SOLVE THE DUAL LAGRANGIAN

T∑
t=1

µt = 1, (6c)

µ ≥ 0.

The µ variable is feasible for the original path-flow problem if (6b) also holds for all
a ∈ A2. If not, any arc in A2 such that (

∑T
t=1 µtΠt)a > ca should be moved into the

active set.
The rule to remove an arc from the active set is heuristic. Assume that the pair

(µ, u) is reasonably closed to an optimal solution of (6). There are two obvious necessary
conditions for an arc to be moved to the inactive set. First, the current flow on the arc
should be sufficiently far away from the available capacity. Second, the Lagrangian dual
variable ua should be closed enough to zero. We have thus two threshold values η1 > 0
and η2 > 0 and the conditions

ua ≤ η1 and (
T∑

t=1

µtΠt)a ≤ η2ca. (7)

Those two conditions turn out to be insufficient in practice to guarantee that an arc
that is made inactive will not become active later on in the process. To increase our chance
to have the newly made inactive arc remain inactive, we look at the contribution of the
dual variable u to the linear component of the Lagrangian dual, namely the product uaca

(see (5)). If this product is small and contributes for little to the total sum
∑

a∈A1
uaca,

setting ua to zero will not affect much the linear part of the Lagrangian function and
plausibly not call for a serious readjustment in the second component MA1(uA1). We
thus have a last condition

uaca ≤ η3

∑
a∈A1

uaca, (8)

where η3 is a positive small enough number.

To summarize the above discussion, we have introduced two heuristic rules that move
elements between A1 and A2:

Move from A2 to A1 all arcs such that (
∑T

t=0 µtΠt)a > ca.

Move from A1 to A2 all arcs such that ua ≤ η1, (
∑T

t=0 µtΠt)a ≤ η2ca and
uaca ≤ η3

∑
a∈A1

uaca.

Note that the rules assume there exists µ ≥ 0 feasible to (6).

5 Proximal-ACCPM to solve the dual Lagrangian

As discussed in Section 3, the dual Lagrangian (5) is a concave optimization problem. We
present below a solution method for this class of problems, whose canonical representative
can be written as

max{f(u)− cT u | u ≥ 0}, (9)

where f is a concave function revealed by a first order oracle. By oracle, we mean a
black-box procedure that returns a support to f at the query point ū. This support takes
the form of the optimality cut

aT (u− ū) + f(ū) ≥ f(u), for all u, (10)

where the vector a ∈ Rn is an element of the anti-subgradient set1 a ∈ −∂(-f(ū)).

1We use the notation ∂(·) to designate the subgradient set of a convex function. In our case −f is convex.
An anti-subgradient of the concave function f is the opposite of a subgradient of −f .
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5 PROXIMAL-ACCPM TO SOLVE THE DUAL LAGRANGIAN

The hypograph of the function f is the set {(z, u) | z ≤ f(u)}. Problem (9) can be
written in terms of the hypograph variable z as

max{z − cT u | z ≤ f(u), u ≥ 0}. (11)

Optimality cuts (10) provide an outer polyhedral approximation of the hypograph set of
f . Suppose that a certain number query points ut, t = 1, . . . , T have been generated.
The associated anti-subgradients at are collected in a matrix A. We further set γt =
f(ut)− (at)T ut. The polyhedral approximation of the hypograph is γ ≥ ze−AT u, where
e is the all-ones vector of appropriate dimension. Finally, let θ be the best recorded value:
θ = maxt(f(ut)− cT ut).

In view of the above definitions, we can define the so-called localization set, which is
a subset of the hypograph of f

Fθ = {(u, z) | −AT u + ze ≤ γ, z − cT u ≥ θ, u ≥ 0}. (12)

Clearly, the set always contains all optimal pairs (u∗, f(u∗)). Thus, the search for a
solution should be confined to the localization set.

The solution method we use is a cutting plane scheme in which each query point is
chosen to be the proximal analytic center of the localization set. For the sake of clarity,
let us first briefly sketch the basic step of a generic cutting plane method.

1. Select a query point in the localization set.

2. Send the query point to the oracle and get back the optimality cut.

3. Update the lower and upper bounds and the localization set.

4. Test termination.

The proximal analytic center cutting plane is defined as the unique minimizer of a
logarithmic barrier for the localization set, augmented with a proximal term

F (u, z) =
ρ

2
||u− u||2 −

T∑
i=0

log st −
n∑

i=0

log ui,

with s > 0 defined by

s0 = z − cT u− θ,

st = γt − z + (at)T u, t = {1, . . . , T}.

In this formula, the proximal center u is chosen as the query point ut that achieves the
best recorded value θ, i.e., u = arg maxt{f(ut)− cT ut}.

The proximal analytic center method defines the next query point as the u component
of the solution (u, z) to the minimization problem

min F (u, z) = ρ
2 ||u− u||2 −

T∑
i=0

log st −
n∑

i=0

log ui

s0 = z − cT u− θ ≥ 0,

st = γt − z + (at)T u ≥ 0, t = {1, . . . , T}.

(13)

The quadratic term ensures that the augmented logarithmic barrier always has a minimum
value.

In the next few paragraphs, we shall use the following notation. Given a vector s > 0,
S is the diagonal matrix whose main diagonal is s. We also use s−1 = S−1e to denote the

7



5 PROXIMAL-ACCPM TO SOLVE THE DUAL LAGRANGIAN

vector whose coordinates are the inverse of the coordinates of s. Similarly, s−2 = S−2e.
With this notation, the first order optimality conditions for Problem (13) are

ρ(u− u)−As−1 + s−1
0 c− u−1 = 0, (14)

eT s−1 − s−1
0 = 0, (15)

s0 − z + cT u + θ = 0, (16)
s− γ + ze−AT u = 0. (17)

The algorithm that computes the analytic center is essentially a Newton method ap-
plied to (14)–(17). (A closely related method is described in [5].) To write down the
formulae, we introduce the residuals

ru = −(ρ(u− u)−As−1 + s−1
0 c− u−1),

rz = −(eT s−1 − s−1
0 ),

rs0 = −(s0 − z + cT u + θ),
rs = −(s− γ + ze−AT u).

The Newton direction is given by(
ρI + AS−2AT + s−2

0 ccT + U−2 −As−2 − s−2
0 c

−(s−2)T AT − s−2
0 cT eT S−2e + s−2

0

) (
du
dz

)
(18)

=
(

ru −AS−2rs + s−2
0 rs0c

rz + (s−2)T rs − s−2
0 rs0

)
.

Let v = (u, z). The steplength α > 0 along the search direction dv = (du, dz) must
ensure u + αdu > 0. In general, we take α to be a fixed fraction of ᾱ = arg max{α |
u + αdu > 0}. If rs0 = 0 and rs = 0, then the step can be determined by solving the
one-dimensional problem

αopt = arg min
α

F (v + αdv). (19)

The Newton method can be summarized as

• Select an initial point v0.

• Basic iteration

1. Compute the Newton step dv by (18).

2. Test termination.

3. Take a fixed step or perform linesearch (19) to update v.

Upper bound on the optimal value We propose here a general technique to
compute an upper bound. Since the constraints −AT u+ ze ≤ γ define a relaxation of the
hypograph of the function to f , one obtains an upper bound by solving

θ̄ = max
u;z

{z − cT u | −AT u + ze ≤ γ, u ≥ 0}. (20)

or, by duality,
θ̄ = min

µ
{γT µ | Aµ ≤ c, eT µ = 1, µ ≥ 0}. (21)

Assume that we have at hand a nonzero vector µ̄ ≥ 0. Without loss of generality, we
assume eT µ̄ = 1. Let r = c−Aµ̄. Clearly, µ̄ is feasible to

θ̄ = min
µ
{γT µ | Aµ ≤ c + r−, eT µ = 1, µ ≥ 0}. (22)

8



6 THE ALGORITHM

where r = r+ − r− is the decomposition of r into a positive and a negative part. In view
of the dual of (22)

max
u;z

{z − (c + r−)T u | −AT u + ze ≤ γ, u ≥ 0},

we conclude that for all u feasible to (20)

z − (c + r−)T u ≤ γT µ̄.

In particular,
f(u∗)− cT u∗ ≤ γT µ̄ + (r−)T u∗, (23)

where u∗ is an optimal solution of (9).
The quality of the bound depends on the choice of µ̄. We certainly wish to have the

first term in the right-hand side of (23) be small. Besides, since u∗ is not known, it is
also desirable to have r− as small as possible. We now propose a heuristic to choose
µ̄ which satisfies those requirements. The heuristic uses the information collected in the
computation of the analytic center. More precisely, assume that (uc, zc) is an approximate
analytic center, in the sense that sc

0 and sc, defined by (16) and (17), are strictly positive,
and the equations (14) and (15) are approximately satisfied. Let

µc = (sc
0)(s

c)−1 > 0. (24)

If (15) is satisfied, then eT µc = 1. Otherwise, we scale µc to meet the condition. It is
easy to relate r = c − Aµc to the residual in (14). If we are getting close to an optimal
solution of the original problem, i.e., ||uc − u∗|| is small, we can reasonably hope that r−

is small. We have the chain of inequalities

f(u∗)− cT u∗ ≤ γT µc + (r−)T u∗,

= γT µc + (r−)T uc + (r−)T (u∗ − uc),
≤ γT µc + (r−)T uc + ||r−||δ. (25)

The last inequality follows from Cauchy-Schwarz and δ ≥ ||u∗ − uc|| is an upper bound
on the distance of the current point uc to the optimal set. Note that if r− = 0, then (25)
gives an exact bound. It turns out that for the linear multicommodity flow problems the
condition r− = 0 is often met. Since the oracle generates true lower bounds, the difference
between the two bounds provides a reliable optimality gap that is used to terminate the
cutting plane algorithm.

6 The algorithm

We first review the main items in the implementation of our solution method.

Oracle To solve the shortest path problems, we use Dijkstra’s algorithm [4]. This algo-
rithm computes all the shortest paths from a single node to all other nodes in a directed
graph. We partition the commodities according to the origin node of the demand and
solve |S| Dijkstra’s algorithms, one per source node, where S ⊂ N is the set of all origin
nodes. To improve computational time, we have implemented special data structures for
the updating of the distance value of adjacent nodes and for the search of the node with
the lowest distance measure. We also exploit the sparsity of the graph and the fact that
the oracle solves Dijkstra’s algorithm on the same graph at each iteration.

Bounds on the objective The oracle computes a solution for the dual problem by
solving shortest path problems. It thus produces a lower bound θ for the original problem.

9



6 THE ALGORITHM

The upper bound θ̄ is computed with (25). Let us interpret it in the context of linear
multicommodity flow problem. Recall that a column of A can be interpreted as the result
of a flow assignment that meets all demands (but not necessarily the capacity constraints).
In view of the definition of the shipping cost t, we have γ = AT t. Given a vector µ, with
eT µ = 1 and µ ≥ 0, the vector y = Aµ can be viewed as a convex combination of flow
assignments. It satisfies the demand constraints, and, if Aµ ≤ c, it also satisfies the
capacity constraints. Then γT µ = tT Aµ = tT y is the primal cost of a fully feasible flow
assignment, thus an exact upper bound. If Aµ 6≤ c, then γT µ is not an upper bound,
but (25) still provides an approximate upper bound. We do not use it as our termination
criterion. In practice, we use µ defined by (24).

Termination criterion The standard termination criterion is a small enough relative
optimality gap:

(θ̄ − θ)/max(θ, 1) ≤ ε, (26)

where θ̄ is the best exact upper bound obtained so far. In our experiments we use ε = 10−5.

Proximal center The initial proximal center is the first query point. Thereafter, the
proximal center is updated to the current query point whenever the oracle returns an
objective function value that improves upon the best upper bound.

Proximal parameter We used a fixed value for ρ, e.g. ρ = 10−2. For problems with
high tolerance requirement, say ε = 10−5, we need not update this value. Indeed, when
approaching the optimal solution, (25) keeps generating exact upper bounds. If a lower
precision is required, say 10−3, it may happen that (25) only generates approximate upper
bounds. Instead of iterating with the same ρ until (25) delivers an exact upper bound
with the required precision, we find it convenient to use the approximate upper bound to
signal closeness to the solution. We then switch to ρ = 10−10. By lowering the impact
of the proximal term, it makes it easier for Proximal-ACCPM to find a primal feasible
solution, i.e., an exact upper bound.

Weight on epigraph cut The localization set is bounded below by a special constraint
on the objective. We named it the epigraph cut. It is easily checked that the epigraph
cut makes a negative angle with the optimality cuts. When the number of optimality
cuts increases, their total weight dominates the weight of the epigraph cut in (13). Thus,
the epigraph cut tends to become active at the analytic center, with the possible effect of
slowing the global convergence. To counteract this negative effect, we assign a weight to
the epigraph cut equal to the total number of generated cuts. If we aim to a low precision,
say 10−3, we found that setting the weight to 50 times the total number of optimality
cuts is more efficient.

Column elimination It is well-known that column generation techniques are adversely
affected by the total number of generated columns. This is particularly true with ACCPM,
since the Newton iterations in the computation of the analytic center have a complexity
that is roughly proportional to the square of the number of generated columns. It is thus
natural to try to reduce the total number of columns by eliminating irrelevant elements.
Our criterion to eliminate columns is based on the contribution of a column to the primal
flow solution. Let µ be defined by equation (24). (We assume without loss of generality
that eT µ = 1.) Then Aµ is the total flow on the network. If µi is much smaller than
the average of µ, then column i contributes little to the solution (dually, the distance si

between the analytic center and the cut is high). Such column is a good candidate for
elimination. To make the elimination test robust, we use the median of µ and eliminate
the columns whose coefficient µi is less than 1/κ times the median. In practice, we choose
κ = 4. We also perform the test once every τ iterations. A good value, is τ = 20. (For
the largest problem, we took τ = 100.)

The algorithm is best described using a concept of a coordinator acting as a mediator

10
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between the oracle that produces shortest paths and the query point generator (Proximal-
ACCPM) that produces analytic centers. The coordinator keeps a repository of generated
shortest paths and is responsible for managing the active set (Section 4). The coordinator
also computes the relative optimality gap (26) and tests termination.

The coordinator queries the oracle at the current point u (with uA2 = 0), and transmits
to Proximal-ACCPM the part of the shortest path that corresponds to the active set A1.
It retrieves from Proximal-ACCPM a pair of primal-dual (approximate) analytic center
(uA1 , µ). The latter is used to compute a convex combination of all shortest paths yielding
an upper bound and a test for updating the active set.

The initialization phase and the basic step that compose the algorithm are described
below.

Initialization
At first, all arcs are declared inactive. Solve the shortest path problems (corresponding
to u = 0).

M =
∑
k∈K

min

{∑
a∈A

taxk
a | Nxk = δk, xk

a ≥ 0, ∀a ∈ A

}
.

Create the partition A = A1 ∪ A2 using the solution xk according to A1 = {a |∑
k∈K xk

a ≥ ca} and A2 = {a |
∑

k∈K xk
a < ca}. Then, we initiate the algorithm with

uA1 > 0 (in practice, take ua = 10−3).

Basic step

1. The oracle solves shortest path problems MA1(uA1) and returns the objective func-
tion L(uA1), a new anti-subgradient vector a ∈ −∂(−L(uA1)) and a path flow vector
Πj (a = Πj − c). This information defines a new cutting plane

aT (u′A1
− uA1) + L(uA1) ≥ L(u′A1

), for all u′A1
.

2. Proximal-ACCPM computes a new query point uA1 , the dual variable µ (and the
associated flow y =

∑T
t=1 µtΠt) and an upper bound θ̄ (exact or estimated).

3. Update the lower bound with

θ = max(θ,L(uA1)).

4. If the termination criterion (relative optimality gap criterion with a primal feasible
solution) is reached, then STOP

5. Update the partition A = A1 ∪ A2 using the flow vector y and the dual variables
uA1 .

• All inactive arcs a ∈ A2 such that ya ≥ ca are declared active.
• All active arcs a ∈ A1 such that ua ≤ η1, ya ≤ η2ca and

uaca ≤ η3

∑
a∈A1

uaca,

are declared inactive.

7 Numerical results
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7.1 Test problems

We used four sets of test problems. The first set, the planar problems, contains 10
instances and has been generated by Di Yuan to simulate telecommunication problems.
Nodes are randomly chosen as points in the plane, and arcs link neighbor nodes in such
a way that the resulting graph is planar. Commodities are pairs of origin and destination
nodes, chosen at random. Arc costs are Euclidean distances, while demands and capacities
are uniformly distributed in given intervals.

The second set, the grid problems, contains 15 networks that have a grid structure
such that each node has four incoming and four outgoing arcs. Note that the number of
paths between two nodes in a grid network is usually large. The arc costs, commodities,
and demands are generated in a way similar to that of planar networks. These two sets
of problems are solved in [11]. The data can be downloaded from http://www.di.unipi.
it/di/groups/optimize/Data/MMCF.html.

The third collection of problems is composed of telecommunication problems of various
sizes. The cost functions for these problems are originally non-linear. To make them
linear, we use different techniques depending on the type of non-linear cost function that
was used. In the small ndo22 and ndo148 problems, the cost functions have a vertical
asymptote. We use this asymptote as a natural capacity bound. Problem 904 is based on
a real telecommunication network. It has 904 arcs and 11130 commodities and was used
in the survey paper [16].

The last collection of problems is composed of transportation problems. The problems
Sioux-Falls, Winnipeg, Barcelona are solved in [11]; there the demands of Winnipeg
and Barcelona are divided, as in [11], by 2.7 and 3 respectively, to make those problems
feasible. The last three problems, Chicago-sketch, Chicago-region and Philadelphia
can be downloaded from http://www.bgu.ac.il/~bargera/tntp/. The data include an
increasing congestion function that is not adapted to our formulation. This function uses
capacity and “free flow time”. We use this free flow time as unit cost. To turn those
problems into linear ones we use the following strategy. For each problem, we divide all
the demands by a same coefficient. We increase this coefficient until the problem becomes
feasible with respect to the capacity constraints. We end up using coefficients 2.5, 6 and
7 for problems Chicago-sketch, Chicago-region and Philadelphia, respectively.

Table 1 displays data on the four sets of problems. For each problem instance, we give
the number of nodes |N |, the number of arcs |A|, the number of commodities |K|, the
cost value z∗ of an optimal solution to (1) with a relative optimality gap less than 10−5.
Some instances are huge. In Section 2 we mentioned that the most compact formulation
of the linear programming problem as a single linear program involves |N |× |A| variables
and |A|+ |N |2 variables. This means over 500 millions variables and nearly 200 millions
constraints for problem Philadelphia. The last column of Table 1 displays the percentage
of saturated arcs, denoted % |A∗1 |

|A| , at the optimum. Note that the figures in the last column
are low, in particular for the real-life transportation problems.

7.2 Numerical experiments

The goals of the numerical study are five-fold. First, we compare Proximal-ACCPM with
the standard ACCPM. The later method has no proximal term but uses artificial bounds
on the dual variables u to ensure compactness of the localization set. In this comparison
we do not use the active set strategy. In the second set of experiments, we analyze the
impact of column elimination while in the third one, we focus on the active set strategy.
In the forth experiments, we combine column elimination and the active set strategy
to achieve the fastest computing time. Finally, in the last experiment, we compare our
solution method with the augmented Lagrangian algorithm of T. Larsson and Di Yuan
[11].

12
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Problem ID |N | |A| |K| z∗ %
|A∗1 |
|A|

planar problems

planar30 30 150 92 4.43508× 107 9.3

planar50 50 250 267 1.22200× 108 11.6

planar80 80 440 543 1.82438× 108 24.3

planar100 100 532 1085 2.31340× 108 16.3

planar150 150 850 2239 5.48089× 108 27.5

planar300 300 1680 3584 6.89982× 108 7.4

planar500 500 2842 3525 4.81984× 108 2.0

planar800 800 4388 12756 1.16737× 108 3.0

planar1000 1000 5200 20026 3.44962× 109 9.6

planar2500 2500 12990 81430 1.26624× 1010 14.7

grid problems

grid1 25 80 50 8.27323× 105 8.7

grid2 25 80 100 1.70538× 106 25.0

grid3 100 360 50 1.52464× 106 4.2

grid4 100 360 100 3.03170× 106 8.3

grid5 225 840 100 5.04970× 106 3.7

grid6 225 840 200 1.04007× 107 13.5

grid7 400 1520 400 2.58641× 107 7.0

grid8 625 2400 500 4.17113× 107 11.8

grid9 625 2400 1000 8.26533× 107 16.3

grid10 625 2400 2000 1.64111× 108 16.3

grid11 625 2400 3000 3.29259× 108 11.0

grid12 900 3480 6000 5.77189× 108 6.2

grid13 900 3480 12000 1.15932× 109 8.0

grid14 1225 4760 16000 1.80268× 109 3.5

grid15 1225 4760 32000 3.59353× 109 4.0

Telecommunication-like problems

ndo22 14 22 23 1.88237× 103 9.0

ndo148 58 148 122 1.39500× 105 0

904 106 904 11130 1.37850× 107 9.2

Transportation problems

Sioux-Falls 24 76 528 3.20184× 105 2.6

Winnipeg 1067 2975 4345 2.94065× 107 2.0

Barcelona 1020 2522 7922 3.89400× 107 0.4

Chicago-sketch 933 2950 93513 5.49053× 106 1.0

Chicago-region 12982 39018 2297945 3.06541× 106 0.6

Philadelphia 13389 40003 1151166 1.65428× 107 0.4

Table 1: Test problems: optimal value with 10−5 optimality gap.
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For all results using Proximal-ACCPM and ACCPM, the tables give the number of
outer iterations, denoted Outer, the number of Newton’s iteration, or inner iterations,
denoted Inner, the computational time in seconds CPU and the percentage of CPU time
denoted %Or spent to compute the shortest path problems. When the active set strategy
is activated, the working space of Proximal-ACCPM is reduced to the active arcs only.
Thus, we also give the percentage of arcs in the active set, % |A1|

|A| , and the percentage of

saturated arcs, % |A∗1 |
|A| , at the end of the solution process.

The Proximal-ACCPM code we use has been developed in Matlab at the Logilab
laboratory, while the shortest path algorithm is written in C. The tests were performed
on a PC (Pentium IV, 2.8 GHz, 2 Gb of RAM) under Linux operating system.

7.2.1 Proximal-ACCPM vs. ACCPM

In this subsection Proximal-ACCPM and ACCPM are implemented without using the
active set strategy. The ACCPM code we use is essentially the same as the Proximal-
ACCPM code in which we just set the proximal parameter to zero and introduce instead
upper bounds on the variables to enforce compactness in the initial phase. In our experi-
ments, the default upper bounds are chosen to be quite large, say 106, to be inactive at
the optimum. All problems, but three, are solved with a relative gap of 10−5. None of
the two algorithms could solve planar2500, Chicago-region and Philadelphia, partly
because too many cuts in the localization set jammed the memory space. Table 2 shows
that the results with Proximal-ACCPM and ACCPM are quite similar. The number of
basic steps and the computational times are more or less the same. For this class of prob-
lems, the two methods appear to be equivalent. However, we will use Proximal-ACCPM
in all further experiments, because it is easier to manipulate the unique parameter ρ than
implementing individual strategies to move the upper bounds on the variables.

7.2.2 Column elimination

In this subsection, Proximal-ACCPM solves the set of problems using column elimination.
We report the results in Table 3. Column Nb cuts displays the number of remaining cuts
at the end of the process while the last column CPU Ratio gives the improvement ratio of
the CPU time of Proximal-ACCPM without using column elimination strategy (see Table
2), and with column elimination strategy. In this table all problems are solved with a
relative optimality gap of 10−5, except planar2500 that is solved with a 10−4 precision.
We observe a speed-up on all problems, with an average value 1.5. Since the number of
outer iterations is about the same, the speed-up is due to a reduction of the computation
time in Proximal-ACCPM. It is apparent in comparing the proportion of time spent in
the oracle (column 5 in Table 2 and column 6 in Table 3).

7.2.3 Active set strategy

In this subsection, Proximal-ACCPM solves the linear multicommodity flow problems
with the active set strategy. Table 4 shows the results with a relative optimality gap of
10−5. planar2500 is solved with a relative gap of 1.2 × 10−5. In the last column of the
table, we give the improvement ratio of the CPU time of Proximal-ACCPM without using
active set strategy (see Table 2), and with the active set strategy (see Table 4).

Table 4 shows that the active set strategy reduces the CPU time with a factor around
2 to 8 on most problems. The reduction is achieved in the computation of the analytic
center. Indeed, the complexity of an inner iteration is roughly proportional to the square
of the dimension of the working space. As shown in the second column of Table 4, the
dimension of the working space —measured by |A1| at the end of the iterations— is a
small fraction of the total number of arcs. It is also interesting to note that the active
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Proximal-ACCPM ACCPM

Problem ID Outer Inner CPU %Or Outer Inner CPU %Or

planar30 59 176 0.7 21 59 189 0.8 18

planar50 109 266 1.9 20 106 286 2.1 18

planar80 281 617 20.5 9 277 645 19.8 9

planar100 263 593 20.4 9 265 638 19.4 10

planar150 688 1439 330.0 2 700 1544 339.6 2

planar300 374 909 122.2 2 384 988 129.6 2

planar500 229 744 88.7 21 231 799 88.6 21

planar800 415 1182 557.2 16 419 1270 553.9 17

planar1000 1303 2817 7846.7 12 1314 2995 7896.8 12

planar2500 - - - - - - - -

grid1 35 114 0.3 26 36 120 0.4 17

grid2 73 222 0.8 30 77 251 1.0 26

grid3 65 239 1.2 21 66 261 1.5 18

grid4 99 319 2.4 21 97 326 2.5 19

grid5 121 414 7.3 21 120 420 7.6 20

grid6 315 770 45.1 11 313 815 45.3 11

grid7 308 827 80.0 16 317 901 87.0 15

grid8 686 1601 893.9 8 691 1686 812.0 8

grid9 942 2082 1793.8 6 942 2159 1798.1 6

grid10 946 2096 1885.1 6 947 2173 1842.6 6

grid11 648 1515 715.1 10 647 1565 702.3 11

grid12 509 1341 658.5 18 507 1397 644.8 18

grid13 673 1629 1226.8 12 679 1728 1214.4 12

grid14 462 1363 843.6 22 469 1450 845.4 22

grid15 520 1450 1055.1 20 522 1529 1045.6 20

ndo22 18 59 0.1 12 18 62 0.1 12

ndo148 17 82 0.2 20 17 83 0.3 18

904 269 640 33.2 12 271 671 34.7 12

Sioux-Falls 30 95 0.3 24 32 117 0.4 19

Winnipeg 224 592 81.2 18 258 942 120.8 14

Barcelona 157 421 35.9 23 156 457 37.8 22

Chicago-sketch 180 493 79.2 47 182 523 83.6 45

Chicago-region - - - - - - - -

Philadelphia - - - - - - - -

Table 2: Proximal-ACCPM vs. ACCPM.
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Problem ID Nb cuts Outer Inner CPU %Or CPU ratio

planar30 40 63 142 0.7 18 1.0

planar50 68 104 224 1.8 27 1.1

planar80 145 274 593 14.5 19 1.4

planar100 105 338 705 14.2 23 1.4

planar150 314 814 1641 136.9 16 2.4

planar300 171 383 803 80.7 25 1.5

planar500 103 221 495 59.4 37 1.5

planar800 188 388 845 281.3 39 2.0

planar1000 645 1058 2148 2861.4 20 2.7

planar2500∗ 1628 2156 4349 47355.8 18 -

grid1 31 35 97 0.3 18 1.0

grid2 46 60 132 0.6 19 1.3

grid3 47 63 193 1.2 17 1.0

grid4 60 93 249 2.0 18 1.2

grid5 81 123 364 6.1 20 1.2

grid6 164 308 683 28.5 21 1.6

grid7 182 312 749 55.2 23 1.4

grid8 385 706 1526 503.8 16 1.8

grid9 538 959 2008 1039.6 15 1.7

grid10 532 969 2022 1043.8 16 1.8

grid11 350 663 1453 434.6 22 1.6

grid12 280 520 1258 436.2 30 1.5

grid13 362 687 1575 773.5 25 1.6

grid14 231 478 1296 539.7 39 1.6

grid15 275 537 1367 696.9 36 1.5

ndo22 18 18 59 0.1 12 1.0

ndo148 17 17 82 0.2 20 1.0

904 119 254 533 19.1 21 1.7

Sioux-Falls 24 30 93 0.3 23 1.0

Winnipeg 118 227 613 54.5 25 1.5

Barcelona 105 156 438 28.9 27 1.2

Chicago-sketch 108 178 491 55.1 41 1.4

Chicago-region 460 1376 3030 44117.3 64 -

Philadelphia 326 885 1859 22937.2 66 -
∗ Problem solved with a relative optimality gap of 10−4.

Table 3: Proximal-ACCPM with column elimination.
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Problem ID % |A1|
|A| %

|A∗1 |
|A| Outer Inner CPU %Or CPU ratio

planar30 12.7 9.3 46 154 0.5 24 1.5

planar50 13.2 11.6 99 258 1.1 32 1.7

planar80 25.7 24.3 279 656 7.4 24 2.8

planar100 17.5 16.3 260 626 5.9 31 3.5

planar150 29.0 27.5 716 1597 93.8 8 3.5

planar300 9.1 7.4 343 835 15.4 18 7.9

planar500 2.6 2.0 140 359 12.8 87 6.9

planar800 3.6 3.0 317 786 81.7 85 6.8

planar1000 10.4 9.6 1249 2860 1244.9 36 6.3

planar2500∗ 15.8 14.7 2643 7160 34022.2 21 -

grid1 12.5 8.7 24 83 0.2 25 1.4

grid2 32.5 25.0 61 202 0.7 30 1.2

grid3 5.0 4.2 37 104 0.3 46 3.8

grid4 10.3 8.3 79 213 1.0 39 2.4

grid5 6.0 3.7 90 256 1.9 60 3.9

grid6 20.6 13.5 294 731 13.3 35 3.4

grid7 9.3 7.0 264 704 19.1 58 4.2

grid8 13.2 11.8 623 1465 155.5 37 5.1

grid9 18.1 16.3 907 2158 413.6 25 4.3

grid10 18.0 16.3 919 2209 432.7 26 4.4

grid11 12.2 11.0 569 1391 140.3 46 5.1

grid12 7.4 6.2 394 979 121.4 74 5.4

grid13 9.6 8.0 558 1333 209.4 59 5.9

grid14 4.4 3.5 310 767 139.8 89 6.0

grid15 4.9 4.0 364 902 173.7 86 6.1

ndo22 9.0 9.0 11 49 0.1 11 1.5

ndo148 1.7 0.0 2 13 0.01 35 14.6

904 13.1 9.2 321 984 15.9 30 2.1

Sioux-Falls 7.9 2.6 13 56 0.1 33 3.2

Winnipeg 2.9 2.0 158 393 12.8 83 6.3

Barcelona 0.5 0.4 35 111 2.1 86 17.0

Chicago-sketch 1.2 1.0 60 195 13.0 95 6.1

Chicago-region 1.1 0.6 683 1961 14684.2 98 -

Philadelphia 0.6 0.4 193 529 3125.2 99 -
∗ Problem solved with a relative optimality gap of 1.2× 10−5.

Table 4: Proximal-ACCPM with the active set strategy.
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set strategy leads to a satisfactory estimate of the set of saturated arcs at the optimum.
Table 4 shows that the percentage of arcs in the active set % |A1|

|A| and the percentage of

saturated arcs % |A∗1 |
|A| are very close. Last but not least, the active set strategy has a

favorable, though nonintuitive, influence on the total number of outer iterations.

7.2.4 Active set strategy with column elimination

In this set of experiments, we combine column elimination and the active set strategy.
The results are displayed on Table 5. Column Nb cuts displays the number of remaining
cuts at the end of the process. The last two columns display CPU ratios. The next to
the last column gives the ratio between the CPU times in Table 4 and Table 5, while
the last column does a similar comparison between Table 2 and Table 5. As expected,
column elimination is efficient, not only because it decreases the time spent in computing
analytic center, but also because it often permits a reduction of the total number of outer
iterations. This last observation is rather surprising.

Problem ID Nb cuts Outer Inner CPU %Or CPU ratios

planar30 30 48 150 0.4 29 1.1 1.7

planar50 61 97 252 1.1 32 1.0 1.8

planar80 144 283 703 6.5 28 1.1 3.1

planar100 110 257 641 5.2 34 1.1 3.9

planar150 296 820 1893 64.5 13 1.5 5.1

planar300 199 325 721 9.7 27 1.6 12.6

planar500 76 118 258 10.5 90 1.2 8.5

planar800 168 252 545 60.7 91 1.3 9.2

planar1000 628 890 1904 572.6 55 2.2 13.7

planar2500 2089 3009 7546 29457.3 28 - -

grid1 24 24 83 0.2 25 1.0 1.4

grid2 41 52 164 0.6 31 1.2 1.5

grid3 32 32 88 0.3 39 1.0 3.7

grid4 47 66 175 0.7 46 1.4 3.3

grid5 58 75 194 1.6 58 1.2 4.5

grid6 165 239 607 8.3 46 1.6 5.4

grid7 159 228 582 13.7 70 1.4 5.8

grid8 374 528 1248 97.5 50 1.6 8.1

grid9 518 720 1680 212.8 38 1.9 8.4

grid10 499 722 1654 215.6 41 2.0 8.7

grid11 329 458 1094 84.9 62 1.7 8.4

grid12 232 329 803 88.9 84 1.4 7.4

grid13 343 460 1086 136.8 74 1.5 9.0

grid14 171 252 623 107.0 94 1.3 7.9

grid15 206 294 708 131.7 91 1.3 8.0

ndo22 11 11 49 0.1 11 1.0 1.5

ndo148 2 2 13 0.01 35 1.0 14.6

904 171 311 819 12.2 38 1.3 2.7

Sioux-Falls 2.6 13 56 0.1 33 1.0 3.2

Winnipeg 93 143 372 11.1 87 1.2 7.3

Barcelona 35 35 111 2.1 86 1.0 17.0

Chicago-sketch 44 65 170 12.9 96 1.0 6.1

Chicago-region 524 742 2080 15012.1 99 1.0 -

Philadelphia 127 192 525 3092.3 99 1.0 -

Table 5: Proximal-ACCPM with active set strategy and column elimination.
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7.2.5 Proximal-ACCPM vs. ALA

In [11], the authors propose an augmented Lagrangian algorithm (ALA) to generate feasi-
ble solutions with a reasonable precision. In this section, we compare Proximal-ACCPM
to their algorithm. In [11], the authors introduce the concept of “near optimal solution” to
designate feasible solutions with a relative optimality gap around 10−3 (actually, ranging
from 6.10−4 to 6.10−3). Their solution method consists in running twice their algorithm,
a first pass to compute a lower bound and a second pass to compute an upper bound.
The total CPU time that is reported in Table 6, is the sum of the two CPU times. To
make a valid comparison, we aimed to results with a similar precision. Since the precision
is moderate, we had to resort to the strategy defined in Section 6.

Table 6 displays the comparative results on the instances used in [11]. We report
original computing times. Since the machines are different (a Pentium IV, 2.8 GHz with
2 Gb of RAM and a Sun ULTRASparc with 200 MHz processor and 2 GB of physical
RAM), we used an artifact to estimate the speed ratio. We solved a large set of problems
on the Pentium IV and on a Sun ULTRASparc with 500 MHz processor, the only Sun
ULTRASparc we have at our disposal. We found a ratio of 4 between the Pentium IV and
the Sun ULTRASparc 500, and we propose a 2.5 ratio between the two SUN’s. Finally,
we retain a factor of 10 between our machine and the one used in [11]. The last column
of Table 6 gives a CPU ratio between the CPU times of Proximal-ACCPM and the CPU
times of ALA. This CPU ratio includes the speed ratio between the two computers. Of
course, those ratios are just indicative.

Table 6 shows that ALA is more efficient on the smaller instances2 while the reverse
holds for the larger ones3. In view of the active set strategy discussed in the subsection
(7.2.3), we propose the following explanation for the behavior of Proximal-ACCPM on
small problems. Note that the percentage of time spent in the oracle vs. the master pro-
gram steadily increases with the problem dimension. This suggests a possible computing
overhead in Proximal-ACCPM. Indeed, Proximal-ACCPM is written in Matlab, while the
oracle is implemented in C. Moreover, Proximal-ACCPM is a general purpose code that
is designed to handle a very large variety of problems. Consequently, the code contains
a lot of structures that are costly to manipulate. However, on the large instances, the
linear algebra operations dominate and Matlab is very efficient in performing them. An
implementation of Proximal-ACCPM in C would presumably improve the performance,
essentially on the smaller instances.

Table 7 displays the results for the other instances that are not considered in [11]. We
solve them with a precision of 10−3. For the two larger problems (Chicago-region and
Philadelphia) we also give the results to obtain the first feasible solution without any
condition on the relative gap. The reader will observe that our solution method produces
a feasible solution for the larger problems in a very short time and with a reasonable
relative optimality gap (around 10−2). The computing time to gain one digit of accuracy
is important. Yet, the overall time with a 10−3 relative precision is moderate.

Conclusion

In the present study, we used a special version of the proximal analytic center cutting
plane method to solve the linear multicommodity flow problem. The main new feature is
the use of an active set strategy: it cuts down computational times by a factor from 2 to
14 and permits to solve the three larger instances that could not be solved previously. We
also test the ability of our method to produce fast “near optimal solutions” in the sense
of [11]. In that paper, the authors used an augmented Lagrangian algorithm (ALA). We

2Problems smaller than planar150 and grid9 and also Sioux-Falls.
3Problems larger than planar150 and grid9 and Winnipeg and Barcelona.
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7 NUMERICAL RESULTS 7.2 Numerical experiments

Proximal-ACCPM ALA Ratio

Problem ID % |A1|
|A| Outer Inner CPU %Or Gap CPU Gap CPU

planar30 11.3 35 178 0.4 21 0.0014 0.18 0.002 0.04

planar50 12.8 52 304 0.9 21 0.0023 1.28 0.0032 0.15

planar80 25.9 101 487 2.6 25 0.0045 12.25 0.0019 0.47

planar100 17.8 82 396 1.8 32 0.0026 12.51 0.0021 0.69

planar150 30 187 925 13.4 14 0.0044 61.80 0.0026 0.46

planar300 8.8 56 280 1.5 31 0.0018 103.09 0.0016 7

planar500 2.3 27 116 3.5 87 0.0010 211.22 0.0017 8.5

planar800 3.5 41 184 9.8 92 0.0014 1572.33 0.0017 16

planar1000 11.1 108 450 45.2 85 0.0021 3097.22 0.0018 6.8

planar2500 15.6 229 896 707.0 87 0.0018 34123.14 0.0013 4.8

grid1 11.1 17 104 0.17 20 0.0007 0.040 0.0062 0.02

grid2 28.7 26 161 0.42 21 0.0015 0.12 0.0060 0.03

grid3 4.4 12 63 0.17 29 0.0010 0.44 0.0022 0.26

grid4 9.2 23 106 0.35 34 0.0012 0.23 0.0029 0.07

grid5 6 20 115 3.8 7 0.0009 1.31 0.0012 0.03

grid6 15.6 35 190 1.1 51 0.0016 2.28 0.0023 0.2

grid7 11.9 23 151 1.4 70 0.0014 8.10 0.0016 0.6

grid8 17.2 42 219 4.9 78 0.0017 19.94 0.0020 0.4

grid9 19.5 50 261 7.4 76 0.0016 52.17 0.0023 0.7

grid10 22.9 48 233 7.3 80 0.0017 104.41 0.0022 1.4

grid11 16.7 34 189 4.7 82 0.0015 262.54 0.0014 5.6

grid12 13 22 140 5.6 90 0.0014 248.57 0.0019 4.4

grid13 15.6 26 157 6.5 89 0.0014 948.26 0.0019 14.7

grid14 7.8 16 102 6.7 95 0.0012 1284.79 0.0016 19

grid15 8.5 21 136 9.0 95 0.0012 2835.03 0.0014 31.2

Sioux-Falls 7.9 8 33 0.1 23 0.0023 0.47 0.0043 0.5

Winnipeg 3.4 65 203 5.2 84 0.00055 239.20 0.00061 4.6

Barcelona 1.6 30 85 1.9 82 0.00034 283.64 0.00057 15

Table 6: Proximal-ACCPM vs. ALA.

Problem ID % |A1|
|A| Outer Inner CPU %Or Gap

ndo22 9 7 22 0.06 12 10−3

ndo148 - 2 13 0.01 40 10−9

904 14.5 248 721 10.6 35 10−3

Chicago-sketch 1.2 12 50 2.6 96 10−3

Chicago-region 2.9 12 274 213.8 99 0.026

Chicago-region 2.3 111 463 2239.8 99 10−3

Philadelphia 1.2 8 145 112.5 99 0.012

Philadelphia 1.1 40 203 619.4 99 10−3

Table 7: Proximal-ACCPM.
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compared our results to theirs and observed an acceleration factor from 2 to 31, on the
large problem instances. We did not perform a comparative study with other methods,
e.g., the Dantzig-Wolfe algorithm and the Bundle method, but we have noted in [11] that
ALA is competitive with those two algorithms.

Let us review some directions for future research. First, we believe that the method
can be accelerated by exploiting the fact that the objective is the sum of independent
components. In previous studies on the nonlinear multicommodity flow problem [8, 16],
the implementation exploited the fact that the function f in (9) is the sum of |K| indepen-
dent functions. It associates with each one of them an epigraph variable and optimality
cuts. A much richer information is thus transferred to the master program that enables
convergence in very few outer iterations (often less than 15 on large problems). In the
meantime, the computation time of the analytic centers dramatically increases. As a
result, 95% of the time is spent in the master program that computes analytic centers
[8, 16]. In the present paper, the proportion is just reverse: we observe that 95% of the
time is spent in solving shortest path problems for the larger problem instances. If we
could achieve a better balance between the two components of the algorithm, we would
improve performance.

Second, it will be interesting to see whether our method performs well on other for-
mulations of the LMCF. There exist at least two different versions of LMCF. In the
formulation used in this paper, the flows of all commodities compete equally for the ca-
pacity on the arcs. In other formulations, often motivated by road traffic considerations,
the commodities belong to families. The unit shipment cost on an arc depends on the
commodity, and all commodities can compete for the mutual or/and individual capacity.
For each family of commodities, flows may be further restricted to a subnetwork, see e.g.
[1, 7]. In the Lagrangian relaxation, the subproblems are min cost flow problems that
must be solved by an algorithm that cannot reduce to the shortest path. Since the two
formulations yield different implementations the papers in the literature deal with either
one of them, but not with both simultaneously.
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