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Abstract

We consider the problem of locating a spherical circle with respect to
existing facilities on a sphere, such that the sum of distances between the
circle and the facilities is minimized, or such that the maximum distance
is minimized. The problem properties are analyzed, and we give solution
procedures. When the circle to be located is restricted to be a great circle,
some simplifications are possible.



1 Introduction

The location of a linear facility in space has many potential applications. For
example, the facility may represent a new highway in two-dimensional space or
a pipeline. It could be an electrical power line, a string of radio or mobile phone
transmission towers, or radar stations, and on a smaller scale, a main electrical
conduit on a circuit board.

The problem of locating a linear facility in the plane has been well studied begin-
ning with the work of Wesolowsky [18]. Here the objective is to find a line that
minimizes the weighted sum of shortest Euclidean distances from the line to a set
of existing facilities representing the users or customers. A fundamental property
of this problem that leads to an efficient solution procedure is that the “median”
line must intersect at least two of the existing points. Further refinements and
extensions to the basic model are investigated by Morris and Norback [11, 12]
and Norback and Morris [13]; meanwhile Schébel [16] examines general distance
measures and other forms of generalizations to the problem. Finding a line that
minimizes the maximum distance to a set of users has been studied in Schomer
et al. [17], and in the context of determining the width of a set in Houle and
Toussaint [5]. For a recent overview of line location in the plane, see Schobel [16],
and [9] for a survey on dimensional facility location in general.

It is well recognized that the planar model becomes inaccurate when the users
are spread over larger areas of the earth’s surface, and that spherical distances
should be used to account for the earth’s curvature. Farly work on locating a
point facility on a sphere was done by Drezner and Wesolowsky [2] and Katz
and Cooper [7], among others, and summarized by Wesolowsky [19]. Ongoing
work includes the location of points on the sphere in the presence of forbidden
regions, see [3]. As the general single facility minisum problem on a sphere is
nonconvex, unlike the planar model, Hansen et al. [4] propose a branch-and-
bound algorithm to solve it. The idea is to divide the surface of the sphere into
smaller and smaller sections, using alternative bounds provided by the authors
to fathom unattractive zones, and to proceed in this fashion until the solution is
found within an acceptable accuracy. The problem of locating a point facility on
a sphere with the minimax objective is examined more recently by Das et al. [1]
and Patel and Chidambaram [14].

The purpose of this paper is to study the problem of locating a circle on a sphere,
which is a natural (yet new) extension of the line location problem on the plane.
For example, it would be more suitable to model large scale linear facilities on
the earth’s surface, of the types noted above, as spherical circles or segments
thereof, and to use geodesic distances between the facility and its users, thus
accounting for the earth’s curvature. Geodesic distances are also used in other
totally different contexts, such as the analysis of medical or biological data (e.g.,
see study of rat skulls in Huckemann and Ziezold [6] ). The models introduced in
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Figure 1: A sphere with north pole, south pole, equator, a great circle (dashed) and a
circle (dotted).

this paper may prove useful in these different contexts now or in the future. The
models presented here may also be extended in future research to the location
of “orbits” in space around the sphere. In the next section, some basic concepts
of spherical distances are reviewed and the notation we will use is specified.
Section 3 investigates the problem of locating great circles using the minimax
criterion, while section 4 deals with locating an arbitrary spherical circle. The
main result is that every optimal great circle is at maximum distance from at
least three existing facilities, while an arbitrary circle is even fixtured by four
existing facilities. The remaining sections are devoted to finding minisum great
circles and general circles. Here we will show that an optimal great circle passes
through two of the existing facilities, and state some first results for the case of
general circles.

2 Notation

We use the following notation, based on [8]. To facilitate the discussion, the
reader is also referred to Figure 1. The sphere is denoted by .S, and without loss
of generality we may assume that the radius of the sphere is 1.

A point x = (1,x2) on the sphere is given by its latitude z; (angle from the
equator) and its longitude z5 (angle from the Greenwich meridian). We assume
—5 < z1 < 7, with a negative latitude denoting a point south of the equator,
and —7 < x5 < 7, with a negative longitude denoting a point west of Greenwich.
Henceforth, by a point we mean a point on the sphere.

A great circle is the intersection between the sphere and a plane through the
center of the sphere. The distance between two points is measured along the



great circle containing the points; it is the shorter of the lengths of the two
great circle arcs connecting the points, measured in radians. The largest possible
distance between two points is m, realized when one point is the antipode of
the other point. The distance d(z,a) between the two points x = (z1,z3) and
a = (ay,as) may be computed from the relation

cosd(x,a) = cos 1 cos ay cos(ry — ay) + sin xq sin a;.

A spherical circle is the intersection between the sphere and a plane. Henceforth,
by a circle we mean a spherical circle. A circle is the locus of points with a fixed
distance r from a given point ¢ = (c1,¢2). ¢ is called the center and r is called
the radius of the circle. Denoting the circle by C(c, ), we have

Cle,r)={z € S :d(z,c)=r}.

If a circle C(c,r) has radius r > 7, it may be viewed as a circle with center in
the antipode of ¢ and radius m — r. Thus it suffices to consider circles with radii
in the interval 0 <r < 7, and henceforth we shall do so. A circle with radius 0
is a point, and a circle with radius 7 is a great circle.

The distance between a point a and a circle C' = C(c,r), defined as

D(C,a) = min d(x,a)
can be calculated as follows: Consider the great circle containing a and c. If
this great circle intersects the circle C' in the points x and z, the point to circle
distance D(C,a) is given by

D(C,a) = min{d(z,a),d(z,a)} =: d(y,a).

The closer of the two points x and z is called the footpoint y of a with respect to
C. Furthermore, let P be the shorter part of the great circle connecting a and .
Note that the length of P equals D(C,a).

For the special case r = 0, we have D(C,a) = d(c,a), and for the special case
¢ = a, we have D(C,a) =r.

It is particularly easy to compute the point to circle distance when the center
of the circle is a Pole of the sphere. Suppose for instance that the center of
a circle C' is the North Pole; then the distance from the point a = (aq,as) to

the circle is 7 + a; — 3 if a is north of the circle, and § — r — a; otherwise, or
D(Ca)=|r+a —Z

5 .
In general, we have
D(C,a) = |r —d(c,a)|.

For the case when C'is a great circle, there is a simple relation between the point
to great circle distance, D(C,a), and the smallest Euclidean distance from the
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point to the plane H containing the great circle, E(H,a), namely sin D(C,a) =
E(H,a).
Let n be the number of existing facilities, located at a; = (a;1,a;2) € S with

positive weight w;, for j = 1,...,n. Denote the set of existing facility locations
by A.

Then our optimization problem is finding a circle C' = C(c,r) with center ¢ =

(c1,¢2) and radius r € [0, 7] so as to minimize

ﬂ@zf@ﬂzﬁ?me@ﬂﬂﬂ

or so as to minimize

g(C) =g(c,r) = max w,;D(C(c,r),a;).

]:17...771

The first objective refers to the minisum or median problem, whereas the second
objective refers to the minimax or center problem. We will mainly consider the
unweighted case, i.e., the case in which all weights w; are equal, and hence, may
be set to unity without affecting the optimal solution.

Any given circle C' = C(c, r) separates the sphere in two parts, and it is convenient
to define the index sets J, = {j : d(aj,c) < r}, J- = {j : d(aj,c) > r}, and
Jo={j: d(aj, ) = r}.

3 Finding minimax great circles

We consider the unit weight (or unweighted) Great-Circle-Minimaz problem of
locating a great circle on the sphere that minimizes the maximum distance to the
existing facilities. This problem will be called (GCM). To avoid the trivial case,
let us assume that n > 3.

Lemma 1 Let C* be an optimal solution of (GCM) with objective value g(C*).
Then there are at least three existing facility locations a € A satisfying

D(C*,a) = g(C™).

Proof: Let C* be an optimal great circle and assume first that there exist exactly
two points a;,a; € A with ¢(C*) = D(C*,a;) = D(C*,a;). Without loss of
generality let i = 1, j = 2, and assume that g(C*) > 0; otherwise all points
a € A satisfy D(C*,a) = g(C*).



Determine the corresponding footpoints and great circle segments y; € P; and
y2 € P5. Let € > 0 and define two points y; € Py and y, € P, such that

d(abyl) - d(a'byi) = €
d(a2vy1) - d(a2vy1) = €

Since a great circle is uniquely defined by two points we define C’ as the great
circle passing through y; and y5. Note that the function C mapping two points
Y1,y to the great circle defined by these points is well-defined and continuous
whenever y; # yo and y; and gy, are not antipodes to each other. For this reason
we distinguish the following three cases.

e First assume that y; # y» and the points are not antipodes to each other.
Hence, y; # ys.
We obtain for k£ =1, 2:

D(C', ax) = mind(z, ay) < d(y;, ar) < d(y;, ax) = g(C”)

zeC’

Denote ¢’ = max{D(C’,a1), D(C’,a2)} and note that ¢’ < ¢g(C*). Since
g(C*) > D(C*,a), for all other a € A\ {ai, az}, the continuity of C yields
g > D(C",a), if € is chosen small enough.

Together,
g(C") = rgeach(C',a) =4 < g(C")

contradicting the optimality of C*.

e In the case that y; = ys, the existing facility locations a; and as must be on
opposite sides of C* (otherwise they would coincide). Then rotate C* by a
small amount as in the previous case, but this time about the axis through
the common footpoint, y; = y2. Again we obtain a reduction in distance,
d(ay,yy) = d(az, yh) < g(C*), leading to a similar contradiction as before.

e If y; and yy are antipodes of each other, there are two possibilities: either a;
and ay are on the same side of C*, in which case rotate C* a small amount
about the axis through y; and y,; or a; and as are on the opposite sides of
C*, in which case use the line on C* perpendicular to (y;,y2) as the axis of
rotation. Again we obtain a similar contradiction as before.

To exclude that there exists only one unique point a; on C* satisfying g(C*) =
D(C*,a;), we proceed as follows. Let a; be such a unique point, y be the corre-
sponding footpoint, and P be the great circle segment between a; and y. Similar
to the first part of the proof, we fix an arbitrary point = € C* \ {y}, find ¢/ € P
such that

d(aj,y) — d(a;,y') =
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for some € > 0, and choose a new circle C” as the great circle passing through x
and y'. Since g(C") < g(C*), we again have a contradiction.

QED

Now we turn our attention to computing an optimal great circle.

First, we remark that it can happen that all three existing facilities with the
maximum distance to the circle may lie on the same side of the circle, as the
following example demonstrates.

Consider three existing facilities all on the northern hemisphere, but all three of
them close to the equator, e.g.,

2 2
A= {(Ev 0)7 (Ev _71-)7 (Ev __71-)}'
3 3
Using Lemma 1 and checking all great circles at equal distance to the three
existing facilities yields the equator C'((3,0), %) with distance of € to all three
points as the optimal great circle.

From Lemma 1 we know that all optimal circles of (GCM) have the same positive
distance to at least three points a;, a;, ay € A. Note that in the case that not all
points are contained in one common great circle, no pair of these points a;, a;,
and aj, can be antipodes to each other, since they all have the same positive
distance to an optimal great circle. Furthermore, at least two of these points lie
on the same side of C; without loss of generality let us assume that i,k € J,.
Since D(C,a) = |r —d(a,c)| and i,k € J, we obtain d(c,a;) = § — D(C,a;) =
5 — D(C,ar) = d(c,ax), ie., the distance from both points a; and a to the
center ¢ of the circle is the same. In other words, ¢ lies in the set By, = {x €
S :d(z,a;) = d(z,ar)}, which is the bisector of a; and a;. Note that bisectors
on the sphere are great circles. Hence, to find the center point ¢* of an optimal
circle C*, only points on the bisectors By,i # k,i,k € {1,...,n} need to be
investigated. Finding the best great circle with center ¢ on some bisector (great
circle) Bj; hence reduces to a one-dimensional optimization problem.

To tackle this problem we can furthermore use that the distance of an optimal
great circle D(C*, a;) to a third point a; is the same as to the points a; and ay
defining the bisector Bjy.

We hence only have to investigate the points a; satisfying that D(C,a;) =
D(C,a;) which can be reformulated as |5 — d(c, a;)| = |5 — d(c, a;)|.

We need to consider two cases.

Case 1: Assume that a; is on the same side of the optimal circle C* as a; and
ai. In this case, a; satisfies
T

d(c,a;) = g - D(C"4)) = 5 - D(C",a)) = d(e.ay),



Figure 2: Construction of B;; = C(b;;, 5) and Cj; = C(cyj, 5).

hence the set of candidates to be investigated can be determined by inter-
secting By, with all bisectors B;;, j =1,...,n,5 #¢,7 # k.

Case 2: Assume that a; lies on the opposite side of C* as a; and a;, do. Conse-
quently, a; satisfies § — d(c, a;) = —F + d(c, a;), or, equivalently,

T =d(c,a;) + d(c, a; ).

As candidates for the optimal center ¢ we hence have to consider all points
ceCy={re S dxa)+dxa;)=mr}

For Case 1 it is well known that B;; is a great circle. In the following we show that
also Cj; is a great circle and how the centers of B;; and Cj; can be constructed.
To this end, let C' denote the (unique) great circle passing through a; and a;. Let
¢;; be the midpoint on the great circle segment of C' joining a; and a; and choose
bij € C such that d(b;, ¢;;) = 7, see Figure 2. Note that by construction we have
d(cij, a;) = d(cq,a;) and d(b;j, a;) + d(b;j, a;) = w. Then the following holds.

Lemma 2
1. Bij = C(byj, 3)
2. Cij = Clcyy, 3)

Proof:

1. Consider any point z € S such that d(z,q;) = d(x,a;). Since d(c;j, a;) =
d(cij,a;) it follows by congruence that the great circle segment joining z
and c;; belongs to Bj;, or d(b;;,v) = 5. The reverse obviously holds: If

x € Byj, then d(z, ;) = d(z, a;).



2. Suppose x € S satisfies d(z,a;) + d(x,a;) = m, and without loss of gen-
erality, d(z,a;) < d(x,a;). Using center z, draw three circles Cy, Cy, Cs
of radius d(z,a;),7/2,d(z,a;), respectively. Clearly, Cy bisects the angle
(=d(z,aj) —d(z,a;)) subtended by C; and C5 and the center of the sphere,
and by symmetry, C; intersects the great circle segment joining a; and a;
at its mid-point ¢;;. We conclude that x € C;;. The argument also applies
in reverse such that from z € C;; we conclude that d(z,a;) + d(z,a;) = 7.

QED

This means, in both cases we have to find the intersection of two great circles.
This gives two points z1, x5 € S. But note that x; and x5 are antipodes to each
other and hence define the same great circle. This means that only one of these
points needs to be further investigated.

Algorithm 1 for (GCM)

Step 1: Let the candidate set K =0

Step 2: For all triples (4,7, k) € {1,...,n}, determine an intersection point hiljk
of the bisectors B;; and B;;, and an intersection point hfjk of the bisector B
and the great circle Cjj; let K = K U {hj;, hi;.}

Step 3: Evaluate all candidates ¢ € K by calculating

9(C(c,3)) = max;_ __, |d(aj;,c) — 5| and take the one with the smallest objective
value.

Since there are O(n?) triplets {a;, a;,ar} to be evaluated (or O(n?) candidate
solutions in general), and O(n) operations are required to verify each candidate
solution, the resulting time complexity is O(n?). However, some simplifications
of this algorithm are possible. For example, if the spherical triangle formed by
the triplet {a;, a;, a;} contains a fourth existing facility, then {a;, a;, a} cannot
determine an optimal circle of the type given by case 1. We can therefore delete
the candidate hj;,. If the (spherical) convex hull of a subset of the fixed points
contains all the points of the triplet within its interior, then case 2 does not apply,
and we can delete the three intersection points (h, hi;, h3;.) derived for this
triplet. Thus, some pre-processing steps may reduce the number of candidates
considerably.

We add a short remark on the weighted great circle minimax problem. In this
case we allow general positive weights for the existing facilities and minimize the
maximum weighted distance to the circle. Lemma 1 then states that there must
be three existing facilities ¢, j, k satisfying

’UJZD(C*,CLZ) = ij(C*,CLj) = ka(C*,ak) = g(C*),



which may be shown by an analogous proof. Unfortunately, the sets B;; and Cj;
are no longer great circles in the weighted case, such that Algorithm 1 cannot
be applied as easily. Finding h}jk or h?jk is equivalent to solving a system of
two nonlinear equations in two unknowns (z = (z1,2)), which appears in the
weighted problem to require a numerical procedure.

Another problem, intimately related to (GCM), is that of locating a plane H
through the center of the sphere, such that the maximum of the Euclidean dis-
tances between the existing facilities and the plane is minimized. This problem
is called the restricted Euclidean minimax problem (REM), because the plane
cannot be located anywhere in IR?, but is restricted to contain the center of the
sphere; henceforth the center of the sphere will be called the origin, O. The
Euclidean distance between a point a and a plane H is found as follows: Con-
sider a line through a, perpendicular to H, and let the line intersect H in b; the
Euclidean point to plane distance is the Euclidean length of the line segment
between a and b. Let us denote this distance by E(H,a). (REM) may then be
written as the problem of minimizing
G(H) = j{I%aan(H, a;)

Consider an arbitrary great circle C' and the plane containing it, H. For all
existing facilities, we have E(H,a;) = sin(D(C,a;)). Since sin(v) is increasing
on the relevant interval, 0 < v < 7, the existing facility, j', that is furthest
from H (measured by Euclidean distance) is also furthest from C' (measured
by angle). This observation means that E(H,a;) = max;_;  , E(H,a;) and
D(C,a;) = max;_y__, D(C, a;), and allows us to characterize the relationship
between the two problems.

Lemma 3 The problems (GCM) and (REM) are equivalent: If a plane H* solves
(REM), then the great circle contained in H* solves (GCM), and if a great circle
C* solves (GCM), then the plane containing C* solves (REM).

Proof: Trivial.

QED

The equivalence also holds for the weighted case. This gives an alternative proof
of Lemma 1 by using Theorem 3 of [15] which states that all optimal hyperplanes
of (REM), i.e., all hyperplanes in IR? through one specified point that minimize
the maximum distance to a given set of points ay,...,a, are equidistant to at
least three affinely independent points of this set.

The algorithmic implication is clear: To solve the great circle minimax problem,
we can equivalently solve the restricted Euclidean minimax problem. If all can-
didate hyperplanes are investigated, the complexity of this approach remains the
same as the complexity of Algorithm 1.
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4 Finding minimax circles

Now we consider the unweighted Circle-Minimaz problem (CM), where we relax
the restriction to great circles, in order to allow any circle on the sphere. Again
our goal is to minimize the maximum distance to the existing facilities. Although
many more circles are allowed as feasible solutions the problem is more straight-
forward to solve. First of all, we prove the following result which is stronger than
the result of Lemma 1. Here we need to assume that n > 3, and the existing
facilities are not all contained in the same circle.

Theorem 1 Let C* be an optimal solution of (CM) with objective value g(C*).
Then there are at least four existing facility locations a € A satisfying

D(C*,a) = g(C™).

Furthermore, at least two of these facilities must be located inside C* (i.e., belong
to Ji ), and at least two of them must be located outside C* (i.e., belong to J_).

Proof: Let C* be an optimal circle which is at maximum distance from exactly
m € {1,2,3} existing facilities. Without loss of generality assume that these

existing facility locations are aq, ..., a,,; thus,
g(C*) = D(C* a;) >0
g(C*) = D(C" a,)>0

The goal is to define a circle C” with a smaller objective value. This is done as
follows: For j = 1,...,m, consider the footpoint y; of a; with respect to C*, and
the great circle segment P; between y; and a;. Furthermore, let us assume that no
two footpoints coincide. (Otherwise, use the chord through the common footpoint
y; and the center of the disc formed by C* as an axis of rotation similarly as in
Lemma 1). Choose € > 0, and for j = 1,..., m, define a new point y; by moving
y; along P; a distance e closer to ay, i.e., y; € P; and d(y;, a;) — d(yj,a;) = €
Furthermore, choose 3 — m arbitrary points in C* \ {y1,...,yn}. This defines
m+ 3 —m = 3 points which uniquely define a new circle C’, and if the footpoints
are different, the function mapping these 3 points to a circle C’ is well-defined
and continuous. Hence, we can choose € > 0 in such a way that

|D(C*,a;) — D(C',a;)| <6 forall j=1,...,n.
To calculate the objective value of C” we first consider j = 1,...,m, and obtain

D(C' a;) = mind(z,a;)

zeC’

d(y;, aj)
d(yj,a;) —€
9(C") — e

A
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Defining ¢’ := max;—;,_,, D(C’, a;), this yields
0<e<g(C*)—g <o
On the other hand, for all j =m +1,...,n, we know that
D(C",a;) < g(C");
hence, choosing § < 1 (g(C*) — max;_p41,..» D(C*, a;)) implies that
D(C' a;) < D(C*a;)+0 < g(C*) -6 <.

Thus, D(C’,a;) < ¢ for all j = 1,...,n, and hence, g(C") = ¢’ < g(C*). We
conclude that m > 4.

Now suppose that only one extreme point is located inside an optimal circle
C* = C(c*,r*) , while the remaining three or more extreme points are located
outside. Without loss of generality, let a; denote the internal extreme point, and
let y; be its footpoint on C*. Consider a new circle C’ with radius 7’ = r* + ¢,
and center ¢’ displaced a distance e from ¢* along the great circle through 1
and ¢*, and in the direction away from y;. Note that C’ is now closer to all
the external extreme points, except possibly one with common footpoint ¥;, and
g(C") = g(C*) for small enough positive e. But this contradicts the requirement
that m > 4, and we conclude that C* cannot be an optimal circle. Similarly, if
ay is the only extreme point outside C*, construct C’ with radius " = r* — e,
and center ¢ displaced in the same manner as before, except distance € towards
y1, to arrive at the same conclusion. Thus, we finally conclude that at least two
extreme points are located on each side of C*.

QED

It should be noted that Theorem 1 gives an analogous result as obtained by
Drezner et al. [10] for the (unweighted) minimax circle in the plane. The following
rather simple procedure can now be used to determine an optimal circle for the
unweighted (CM). The algorithm is based on the fact that the center of the
optimal circle must, as a result of Theorem 1, be an intersection point of two
bisector circles.

In the unlikely event that two bisectors B;; and By, are identical great circles,
any point ¢ on the common bisector becomes a candidate. In this case, we would
move ¢ along the common bisector in order to reduce the objective value until a
new extreme point is added. Thus, the case where bisectors B;; and Bj; coincide
may be ignored. To simplify the procedure below, we assume that B;; and By,
are always different circles. Hence, they intersect at exactly two points that are
antipodes of each other.

12



Algorithm 2 for (CM)

Step 1: Let K = (.

Step 2: For all pairs of pairs {7,5} C {1,...,n} and {k,I} C{1,...,n}\ {4, j},
determine an intersection point h;;i; of the bisectors B;; and By, and let K =
K U{hiju}-

Step 3: Determine the radius r;;;; for each candidate in K as follows:

Tijet = (d(Pij, ai) + d(hijrr, ag)) /2.

Step 4: Evaluate all candidates, ¢ € K, by calculating

9(Cle,r) = max;_s,.. |d(a;, ) — 1],

where 7 is the corresponding radius obtained in step 3,

and take the one with the smallest objective value.

Note that the time complexity of this procedure is O(n?).

Again, a similar proof can be given for the weighted circle problem, in which
positive weights for the existing facilities are allowed. In this case, Theorem 1
can be extended to four existing facilities at the same weighted distance to the
optimal circle. Unfortunately that does not help much for finding the optimal
circle in the weighted case, since in the case that w; # w; the set {x € § :

3r such that w;(d(z,a;) — r) = w;(d(x,a;) — )} contains all points = for which
wjd(z,a;)—w;d(x,a;)
Wi —w;

For any two pairs {i,j}, {k, 1} ({7,757} N {k,1} = 0), the resulting subproblem
requires solving three nonlinear equations in three unknowns ( (x,r) = (x1, s, 7)),
namely,

wid(z, a;) — wid(z, a;) = (w; — w;)r,

wid(x, a)) — wid(z, ag) = (w; — wy)r,

r = (w;d(z,a;) + wrd(x, a))/(w; + wy),

which again appears to require a numerical procedure.

is positive.

5 Finding minisum great circles

In this section we consider the problem of finding a great circle minimizing the
sum of (weighted) distances to the given facilities. This problem will be called
(GCS).

In a first result, we relate the minisum great circle problem to that of locating
a plane H through the center of the sphere, such that the sum of the Euclidean
distances to the points ay,...,a, is minimized. We denote this problem as a
restricted Euclidean minisum problem (RES). It can be stated as the problem of
minimizing

jzlv"'vn
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Recall that the Euclidean distance E(H,a;) = sin(D(C,q;)), if H is the hyper-
plane containing the great circle C'. Unfortunately, we cannot show that (RES)
and (GCS) are equivalent as in the minimax case, but we can at least use the
hyperplane location problem for getting an upper and lower bound.

Lemma 4 Let H* be an optimal hyperplane for (RES), and let C* be an optimal
great circle for (GCS). Furthermore, let C(H*) = H* N S be the great circle
contained in H* and H(C™*) be the hyperplane passing through C*. Then

F(H") < F(H(C™)) < f(C") < f(C(HY)).
Proof:

F(HY) < F(H(CY))
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QED

Note that for (RES) it is known that all optimal hyperplanes pass through at
least two of the existing facilities (see Theorem 3 of [15]); i.e., C(H*) always
contains two points a;, a;.

Locating a great circle may be viewed as the spherical equivalent of locating
a straight line on the plane; in fact, the latter problem may be viewed as a
special case where the existing facility locations remain a finite distance apart
while the radius of the sphere increases without bound. The following result thus
generalizes a well-known property of the optimal line in the plane (e.g., see [16]).

Lemma 5 An optimal solution C* of (GCS) may be found that intersects at least
two of the existing facility locations.

Proof: Consider first the trivial case where all existing facilities are located on
some great circle, C'. Obviously, C* = C'is the optimal solution, with f(C*) = 0.

Now assume that all existing facilities are not located on the same great circle.
The problem is to minimize

F(C) = f(e,3) = Ljey, wil§ — dle,a5)) + Zjey w;(5 — d(c, a5)),
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where the index sets J, and J_ contain the existing facilities on each side of the
great circle, and ¢ is the antipode of ¢. Suppose we have an optimal solution
C* = (c*, 5) that does not contain any existing facilities. It is known that the
distance from a given point a to another point on the sphere is a convex function
within a circle of radius 7 and center a (e.g., see [4]). Hence d(c, a;) is convex in a
local neighborhood of ¢* for j € J,, and d(c, a;) is convex in a local neighborhood
of ¢*/ for j € J_. Furthermore, since ¢ = ¢ + (7,0), the convexity extends to
¢ for j € J_. We conclude that f(C) is locally concave at ¢* in a strict sense,
and hence, C* must intersect one of the existing facility locations, say a,. Now
use the line through a, and the center of the sphere as the axis of rotation, to
conclude in similar fashion (for adjusted J,,J_) that f(C) is locally concave,
and C* may be rotated further without increasing the objective function until it
intersects a second fixed point.

QED

This result permits a finite solution method for (GCS): Compute the objective
function value for the great circle through each pair of existing facilities (ignoring
any pairs that are antipodes of each other); the optimal solution is the great circle
with lowest value. The time complexity of this algorithm is O(n?).

6 Finding minisum circles

The problem we discuss here, denoted by (CS), is to find a circle minimizing the
sum of (weighted) distances to the existing facilities.

Recall that for this purpose we identify a circle C = C(¢,r) C S by its center
point ¢ € S and its radius 7.
The objective function of (CS) may be written as
fle,r) =0 w;D(Ca;) = 30 wy|r —d(c, aj)|.
The first observation is the following.

Lemma 6 There exists an optimal solution C* to problem (CS) passing through
at least one of the existing facilities.

Proof: Let C'= C(c, r) be any optimal solution of (CS). Now fix the center ¢ and
consider the problem of finding the optimal radius 7*, i.e.,

min, 37, wjlr —d(c, aj)].
This problem is equivalent to the problem of locating a point on a line for which
it is well known that an optimal solution r* exists satisfying r* = d(c, a;+) for
some j* € {1,...,n} (e.g., see [8]). Consequently, C* = C(c,r*) contains a;-,
and its objective value satisfies

fle,r) = i wilr = d(e, a5)| < Ej_ywylr = d(e, a5)] = fle,r). QFD
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At the other extreme, one might conjecture the existence of an optimal circle
containing three existing facilities, whenever the number of existing facilities is
four or more. This conjecture is false in general, as shown by the following
example: consider n = 6 existing facilities with locations a; = (—4¢,0), as =
(4t,0), ag = (=5t,0), ay = (5t,0), as = (0,3t), ag = (0, —3t), where t = 7/20,
and unit weights. Using Maple, we computed the objective function values for
those circles containing at least three existing facilities; they were all larger than
the value for the circle centered at (0,0) with radius 4¢, intersecting exclusively
a; and ay. It is still an open question, if there always exists an optimal circle
containing at least two existing facilities.

Finding the global minimum requires a systematic search. Using Lemma 6, it
follows that for a given center ¢, and after sorting the distances d(c, a;) in nonde-
creasing order, an optimal radius r*(c) may be found in linear (O(n)) time. The
resulting circle C'(c, r*(c)) intersects at least one of the a;, and divides the set of
existing facilities into three subsets, J—, J., and J_ (that are also functions of
¢). The objective function becomes:
fle, () = Ejes, wi(r™ —d(c, a3)) + Xjey wild(e, a;) — 7).

Solving (CS) is thus reduced to finding an optimal center ¢*. But f(c,7*(c)) is
seen to be a sum of convex and concave terms, that may in general contain several
local minima. Furthermore, since J; and J_ also change as ¢ and r*(c) change,
the objective function will not be differentiable everywhere. These difficulties
may be handled by a branch-and-bound procedure, as outlined in the simple
approach below. (Note that a branch-and-bound method is also proposed for the
well-known median point location problem on the sphere [4].)

Since any circle C' with center ¢ may also use the antipode ¢ as the center of
the circle, it suffices to consider only the northern hemisphere for the purposes of
finding ¢*. We therefore begin by dividing the northern hemisphere into subsets
S; by drawing great circles along the longitude at equi-spaced increments of 7/N;
starting at o = 0, and circles along the latitude at equi-spaced increments of
w/(2Ns) starting at z; = 0, where the parameters N; and Ny depend on the
accuracy required. Fach subset (or cell) S; may be characterized by a mid-point
¢; = (i + 7/(4N32), z9 + 7/(2Ny)), and objective function value f(c;, r*(¢;)),
which may be used as an upper bound f; for the optimal solution in S;.

To find a lower bound f, associated with S;, let d;(S;) = minces, d(c, a;), d;(S;) =
maxces, d(c, a;), r(5;) = min.g, 7*(c), and 7(S5;) = max.eg, r*(c). Since the
elements of J, and J_ are not known at this stage, a simple lower bound may be
formulated as follows:

[, = 2o wi(max{0,r(S;) — d;(5;)} + max{0,d;(5;) —7(5)})-

The maximum distance from a; to S; (denoted by d;(S;)) occurs at the corner
point of S; that is furthest from a;, or at a point on the furthest edge of S; where
a circle centered at a; just becomes tangent to the edge. Similarly, the minimum
distance d;(.S;) may occur at the closest corner point of S, or a point along the
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closest edge of S; where a circle centered at a; just becomes tangent to the edge.
Both distances are easily determined. This no longer holds for the minimum and
maximum radii (r(S;) and 7(5;)) since the point a;, that intersects C'(c, r*) may
change as a function of ¢ € S;. However, the following result may be used to
resolve this difficulty.

Assume that J, U J- and J_ U J_ each contain at least three elements, Vc € S
(otherwise minor modifications are required).

Lemma 7 Let ¢; = argmax.cgs, 7*(c) and ¢; = argmingeg, 7*(c). Then both ¢;
and ¢; may be found satisfying one of the following conditions:

(i) it coincides with the center of a circle intersecting three fixed points ap, a;, ay
(denote this center as c(h,j, k));

(1) it coincides with the intersection of a bisector By; with an edge of S;;

(i11) it is a corner point of S;; or

(iv) it is a point on an edge of S;, such that r*(¢;) = d(¢;, a;.) (1*(¢;) = d(c;, ajx) ),
for some a;., and this point maximizes (minimizes) the distance from a;. to the
edge.

Proof: Referring to Lemma 6, it follows that the circle C' = C(¢,7*(c)) may
be rotated until it contains three of the existing facilities, without violating the
existing median property; i.e., >c; U W; = Yjey Wy, and Yoic; g wj >
> jes, wj. Thus, an unconstrained local maximum (or minimum) of 7*(c) can
only occur at an intersection point c(h, j, k) that satisfies the median property.
This implies that any interior point of S; is a candidate only if it is the center of
a circle intersecting three existing facilities.

Now suppose ¢; (¢;) occurs at a point on the boundary of S; that does not satisfy
condition (ii), (iii), or (iv). Then, clearly, we can move ¢; (¢;) in a direction along
the edge without decreasing r*(¢;) (increasing r*(¢;)) until one of these conditions
is satisfied, whichever occurs first.

QED

A preprocessing step may be used to determine the relevant c(h, j, k), the relevant
bisector segments, and the closest and furthest points on the edges of .S; to each
a;. The lower bounds f, are then set up using the maximum value 7(S;) and
the minimum value r(.S;) obtained from the candidates in each .S; identified by
Lemma 7. Also note that the optimal solution may actually be one of the circles
intersecting three of the existing facilities. If f > min, fo, we delete cell S;;
otherwise S; is divided in four equally sized parts and the lower bounds for each
subcell re-calculated. The branch-and-bound process may be terminated when
the difference between the incumbent solution (i.e., best solution so far) and the
minimum lower bound is within an acceptable tolerance.

The Weiszfeld procedure for Euclidean distances (e.g., see [8]) may be adapted
in a similar fashion as in the well-studied Weber problem on the sphere, where a
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point rather than a circle is to be located (see the survey in [4]), to provide an ap-
proximate solution method for (CS). The method uses the first-order conditions
for a stationary point to derive a simple single point iterative scheme. However,
just as in the Weber problem on the sphere, since the objective function is gener-
ally non-convex, the stationary point may be a local minimum or maximum, or
a saddle point; furthermore, convergence is not guaranteed.

In order to assure that the objective function is differentiable everywhere in the
standard Weiszfeld procedure, a hyperbolic approximation or smoothing of the
distance function is introduced (see [8]). In our case we propose a different
approach of perturbing the radius a small amount by alternately setting r =
r*(c) £ A in order to impose that J_ is the null set at all times. The partial
derivatives are then given by:
Of /0c1 = Y5 wj(sincy cosajy cos(cy — ajz) — coscysinayy)/B;

— Y jes, wj(sin ey cos aji cos(ca — ajp) — coscysinag)/ By,
Of [0cy = 3 ey wjcoscy cosajsin(cy — aj2)/B;

— Yje, Wj oS ¢y cos ajy sin(cy — ajo)/Bj, where
B, = sin(arccos(cos ¢; cos aji cos(cy — aja) + sin ¢y sinayy)).

Setting the two derivatives equal to zero and simplifying considerably yields

ZjeJ+ w; COS ajl(sin ajg)/Bj — ZjGJ, w; COS ajl(sin ajg)/Bj
ZjELLr wj COS Cle(COS ajg)/Bj — ZjeJ, ’UJj COS ajl(cos ajg)/Bj ’

tancy =

tan ¢ Yjes, wilsina;1)/ By — e, wj(sina;i)/B;

siney > je, WjCos aji(sinaje)/Bj — 3 ey w;cosaj (sinaje)/B;

Now a procedure for finding a local minimum may be outlined. We start by
choosing an arbitrary point ¢ on the sphere and use this as the center of a circle.
Given this center, the optimal radius, r*, is easily found by solving the equivalent
median problem of locating a point facility on a line. Given ¢ and the perturbed
radius r, the index sets, J, and J_ (J= = ()), may be specified. Now the ex-
pression for tan cy is used for finding a new value for ¢, and the expression for
tan c;/ sin ¢y is then used to find a new value for ¢;. The procedure is continued
iteratively until significant changes in the three decision variables no longer occur,
indicating that a stationary point is being reached.

7 Conclusions

In this paper we present a new model, the location of a circle on a sphere, which is
a natural extension of the linear facility location problem in the plane. The min-
imax (or center) problem and the minisum (or median) problem are formulated
for two cases: location of great circles and general circles. Problem properties
are developed that lead to polynomial algorithms for the minimax problem (both
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cases) and the minisum great circle problem. A branch-and-bound procedure
and a single point iterative search method are outlined for the general minisum
problem.

Future research directions include further investigation of the proposed solution
methods, in particular the branch-and-bound. A related problem of potential in-
terest concerns the location of an “orbit” above a sphere where a third dimension
of altitude is introduced.
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