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Abstract

We present a Simplex-type algorithm, that is, an algorithm that moves from one extreme point of
the infinite-dimensional feasible region to another not necessarily adjacent extreme point, for solving
a class of linear programs with countably infinite variables and constraints. Each iteration of this
method can be implemented in finite time, while the solution values converge to the optimal value as
the number of iterations increases. This Simplex-type algorithm moves to an adjacent extreme point
and hence reduces to a true infinite-dimensional Simplex method for the important special cases of
non-stationary infinite-horizon deterministic and stochastic dynamic programs.

1 Introduction

In this paper, we present a Simplex-type algorithm to solve a class of countably infinite linear programs
(henceforth CILPs), i.e., linear programming problems with countably infinite variables and countably
infinite constraints. CILPs often arise from infinite-horizon dynamic planning problems [27, 28] in a
variety of models in Operations Research, most notably, a class of deterministic or stochastic dynamic
programs with countable states [17, 32, 41, 45] whose special cases include infinite-horizon problems with
time-indexed states considered in Sections 4 and 5. Other interesting special cases of CILPs include infinite
network flow problems [42, 47], infinite extensions of Leontief systems [50, 51], and semi-infinite linear
programs [5, 25, 26], i.e., problems in which either the number of variables or the number of constraints is
allowed to be countably infinite. CILPs also arise in the analysis of games with partial information [13],
linear search problems with applications to robotics [15] and infinite-horizon stochastic programs [30, 34].

Unfortunately, positive results on CILPs are scarce due to a disturbing variety of mathematical
pathologies in subspaces of R∞. For example, weak duality and complementary slackness may not hold
[44], the primal and the dual may have a duality gap [5], the primal may not have any extreme points even
when each variable is bounded [5], extreme points may not be characterized as basic feasible solutions,
and finally, basis matrices, reduced costs, and optimality conditions are not straightforward [5].

It is perhaps due to the complications outlined above that almost all published work on concrete
solution algorithms for infinite linear programs has focused on the semi-infinite and/or the uncountable,
i.e., “continuous” case. A partially successful attempt to extend the Simplex method to semi-infinite linear
programs with finitely many variables and uncountably many constraints was made in [4]. A simplex-
type method for semi-infinite linear programs in Euclidean spaces was developed in [3] using the idea of
locally polyhedral linear inequality systems from [2]. A value convergent approximation scheme for linear
programs in function spaces was proposed in [31]. Weiss worked on separated continuous linear programs
[52] and developed an implementable algorithm for their solution in MATLAB. Earlier, Pulan also worked
on similar problems [39, 40]. Continuous network flow problems were studied in [6, 7, 38]. There has been
a recent surge of interest in applying the theory developed in [5] to uncountable state-space stationary
Markov and semi-Markov decision problems [17, 18, 32, 35, 36].
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Recent work [47] on countably infinite network flow problems used the characterization of extreme
points through positive variables for countably infinite network flow problems from [42] to devise a Simplex
method. It was noted that each pivot operation in that Simplex method may require infinite computation
in general. On the other hand, each pivot could be performed in finite time for a restricted subclass of
inequality constrained network flow problems. Unfortunately, this class excludes countable state dynamic
programming problems that are often the motivation for studying CILPs.

The above observations have recently motivated our theoretical work on CILPs where we developed
duality theory [23] and sufficient conditions for a basic feasible characterization of extreme points [22]. In
this paper, we focus on algorithmic aspects of CILPs. From this perspective, since CILPs are characterized
by infinite information, our first question is whether it is possible to design a procedure that uses finite
information to perform finite computations in each iteration and yet approximates the optimal value of
the original infinite problem. Any such implementable procedure could proceed by solving a sequence
of finite-dimensional truncations of the original infinite problem [27, 28, 29]. However, constructing an
appropriate finite truncation of countably infinite equality constraints in countably infinite variables is
not straightforward. When such a truncation is naturally available owing to amenable structure of the
constraint matrix as in [44] or in this paper, it would indeed be sufficient to solve a large enough truncation
by any solution method to approximate the optimal value of the infinite problem assuming it is embedded
in appropriate infinite-dimensional vector spaces. Then the second, far more demanding question is
whether it is possible to approximate an optimal policy and in particular an optimal extreme point
policy. Note that our special interest in extreme point solutions is motivated by their useful properties,
for example, correspondence to deterministic policies in Markov decision problems [41]. An additional
complication in this context is that countably infinite linear programs may have an uncountable number
of extreme points, and unlike finite-dimensional linear programs, values of a sequence of extreme point
solutions with strictly decreasing values may not converge to the optimal value as illustrated in the binary
tree example in Section 2.

The approach presented in this paper surmounts difficulties listed above for a class of CILPs with a
finite number of variables appearing in every constraint. These CILPs subsume the important class of
non-stationary infinite-horizon dynamic programs in Sections 4 and 5 and more generally are common in
dynamic planning problems where problem data are allowed to vary over time owing to technological and
economic change hence providing a versatile modeling and optimization tool. We devise an implementable
Simplex-type procedure, i.e., an algorithm that implicitly constructs a sequence of extreme points in the
infinite-dimensional feasible region and asymptotically converges to the optimal value while performing
finite computations on finite information in each step. This is achieved by employing results in [14], which
assert that each extreme point of any finite-dimensional projection, i.e., shadow of the infinite-dimensional
feasible region can be appended to form some extreme point of the infinite-dimensional feasible region.
Specifically, we develop a polyhedral characterization of these shadows and employ the standard Simplex
method for solving the resulting finite-dimensional linear programs of increasing dimensions. For the
important special case of non-stationary infinite-horizon dynamic programs in Sections 4 and 5, our
Simplex-type method moves through adjacent extreme points of the infinite-dimensional feasible region
and hence reduces to a true Simplex method in the conventional sense. This partly answers a question
from [5] as to whether it is possible to design a finitely implementable Simplex method for any non-trivial
class of CILPs in the affirmative. Owing to the critical role that finite-dimensional shadows play in our
approach, we call it the Shadow Simplex method.

2 Problem Formulation, Preliminary Results and Examples

We focus on problem (P ) formulated as follows:

(P ) min
∞∑

j=1

cjxj
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subject to
∞∑

j=1

aijxj = bi, i = 1, 2, . . .

xj ≥ 0, j = 1, 2, . . .

where c, b and x are sequences in R∞ and for i = 1, 2, . . ., ai ≡ {aij}∞j=1 ∈ R∞ is the ith row vector of a
doubly infinite matrix A. Note that CILPs with inequality constraints and free variables can be converted
to the standard form (P ) above as in the finite-dimensional case. Our assumptions below ensure that
all infinite sums in the above formulation are well-defined and finite. We also show later (Proposition
2.7) that (P ) indeed has an optimal solution justifying the use of “min” instead of “inf”. We employ the
product topology, i.e., the topology of componentwise convergence on R∞ throughout this paper.

We now discuss our assumptions in detail. The first assumption is natural.

Assumption 2.1. Feasibility: The feasible region F of problem (P ) is non-empty.

Assumption 2.2. Finitely Supported Rows: Every row vector ai of matrix A has a finite number of
non-zero components, i.e., each equality constraint has a finite number of variables.

Note that this assumption does not require the number of variables appearing in each constraint to
be uniformly bounded. Note as a simple example that this assumption holds in infinite network flow
problems if node degrees are bounded. Similarly in infinite-horizon deterministic production planning
problems where there is one inventory balance constraint in each period and every such constraint has three
variables with non-zero coefficients. In addition, this assumption is also satisfied in CILP formulations
of deterministic and stochastic dynamic programming problems discussed in detail in Sections 4 and 5.
Assumption 2.2 helps in the proof of closedness of the feasible region F in Lemma A.1 in Appendix
A. In addition, it is used in Section 3 to design finite-dimensional truncations of F that ensure a finite
implementation of iterations of Shadow Simplex.

Assumption 2.3. Variable Bounds: There exists a sequence of non-negative numbers {uj}∞j=1 such
that for every x ∈ F and for every j, xj ≤ uj.

Note that this assumption does not require a uniform upper bound on variable values. It holds by con-
struction in CILP formulations of dynamic programming problems in Sections 4 and 5, and in capacitated
network flow problems. Assumption 2.3 implies that F is contained in a compact subset of R∞ and hence
ensures, along with closedness of F proved in Lemma A.1, that F is compact as in Corollary A.2 in
Appendix A.

Assumption 2.4. Uniform Convergence: There exists a sequence of non-negative numbers {uj}∞j=1

as in Assumption 2.3 for which
∞∑

j=1
|cj |uj < ∞.

Remark 2.5. Let {uj} be as in Assumption 2.4. Then the series
∞∑
i=1

cixi converges uniformly over

X = {x ∈ R∞ : 0 ≤ xj ≤ uj} by Weierstrass M-test [8] hence the name uniform convergence. The

objective function may be written as C(x) ≡
∞∑
i=1

cixi, C : X → R. Since the functions fi : X → R

defined as fi(x) = cixi that form the above series are each continuous over X, the function C(x) is also
continuous over X [8] and hence over F ⊆ X. Nevertheless we prove this continuity from first principles
in Appendix A Lemma A.3.

Assumption 2.4 is motivated by a similar assumption in the general infinite-horizon optimization frame-
work of [46] and other more specific work in this area [44]. It is conceptually similar to the ubiquitous
assumption (see Chapter 3 of [5]) in infinite-dimensional linear programming that the costs and the vari-
ables are embedded in a (continuous) dual pair of vector spaces. Such assumptions are also common in
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mathematical economics where commodity consumptions and prices are embedded in dual pairs of vector
spaces [1]. It allows us to treat problems embedded in a variety of sequence spaces in R∞ within one
common framework as for example shown in the following Lemma proven in Appendix A.

Lemma 2.6. Assumption 2.4 holds in each of the following situations:

1. When c is in l1, the space of absolutely summable sequences, and u in Assumption 2.3 is in l∞, the
space of bounded sequences. This situation is common in planning problems where activity levels are
uniformly bounded by finite resources and costs are discounted over time.

2. When c is in l∞, and u in Assumption 2.3 is in l1. This situation arises in CILP equivalents of
Bellman’s equations for discounted dynamic programming as in Sections 4 and 5 where immediate
costs are uniformly bounded and variables correspond to state-action frequencies that sum to a finite
number often normalized to one.

(The reader may recall here that 〈l1, l∞〉 is a dual pair of sequence spaces [1]).

Proposition 2.7. Under Assumptions 2.1, 2.2, 2.3, and 2.4, problem (P ) has an extreme point optimal
solution.

The proof of this proposition, provided in Appendix A, follows the standard approach of confirming
that the objective function and the feasible region of (P ) satisfy the hypotheses of the well-known Bauer
Maximum Principle (Theorem 7.69 page 298 of [1]), which implies that (Corollary 7.70 page 299 of [1]) a
continuous linear functional has an extreme point minimizer over a nonempty convex compact subset of
a locally convex Hausdorff space (such as R∞ with its product topology). In the sequel, we denote the
set of optimal solutions to problem (P ) by F ∗.

We first show (Value Convergence Theorem 2.9) that optimal values of mathematical programs with
feasible regions formed by finite-dimensional projections, i.e., shadows of the infinite-dimensional feasible
region F converge to the optimal value of (P ). The necessary mathematical background and notation
from [14] is briefly reviewed here. Specifically, we recall from [14] the concept of a projection of a non-
empty, compact, convex set in R∞ such as F . The projection function pN : R∞ → RN is defined as
pN (x) = (x1, . . . , xN ) and the projection of F onto RN as

FN = {pN (x) : x ∈ F} ⊂ RN (1)

for each N = 1, 2, 3, . . .. The set FN can also be viewed as a subset of R∞ by appending it with zeros as
follows

FN = {(pN (x); 0, 0, . . .) : x ∈ F} ⊂ R∞. (2)

Using FN to denote both these sets should not cause any confusion since the meaning will be clear from
context. Our value convergence result uses the following lemma from [14].

Lemma 2.8. ([14]) The sequence of projections FN converges in the Kuratowski sense to F as N →∞,
i.e.,

lim infFN = lim supFN = lim FN = F.

Now consider the following sequence of optimization problems for N = 1, 2 . . .:

P (N) min
N∑

i=1

cixi, x ∈ FN .

Set FN is non-empty, convex, compact (inheriting these properties from F ), finite-dimensional and the
objective function is linear implying that P (N) has an extreme point optimal solution. Let F ∗

N be the
set of optimal solutions to P (N). We have the following convergence result.
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Theorem 2.9. Value Convergence: The optimal value V (P (N)) in problem P (N) converges to the
optimum value V (P ) in problem (P ) as N → ∞. Moreover, if Nk → ∞ as k → ∞ and xk ∈ F ∗

Nk
for

each k, then the sequence {xk} has a limit point in F ∗.

Our proof of this theorem in Appendix A employs Berge’s Maximum Theorem (Theorem 17.31 page
570 of [1]), where the key intuitive idea is to use convergence of feasible regions of problems P (N) to the
feasible region of problem (P ) from Lemma 2.8 and continuity of their objective functions to establish
value convergence. Theorem 2.9 implies that the optimal values in P (N) arbitrarily well-approximate
the optimum value in (P ). In addition, when (P ) has a unique optimal solution x∗, a sequence of
optimal solutions to finite-dimensional shadow problems converges to x∗. Similar value convergence for
finite-dimensional approximations of a different class of CILPs was earlier established in [28]. Finally, we
remark that since V (P (N)) is a sequence of real numbers that converges to V (P ) as N →∞, V (P (Nk))
also converges to V (P ) as k →∞ for any subsequence Nk of positive integers. This fact will be useful in
Section 3.

2.1 Examples

Infinite horizon non-stationary dynamic programs, one of our most important and largest class of ap-
plications, is discussed in Sections 4 and 5. Here we present two concrete prototypical examples where
Assumptions 2.1-2.4 are easy to check.
Production planning: Consider the problem of minimizing infinite-horizon discounted production and
inventory costs while meeting an infinite stream of integer demand for a single product [43]. Demand
during time-period n = 1, 2 . . . is Dn ≤ D, unit cost of production is 0 ≤ kn ≤ K during period n and
unit inventory holding cost is 0 ≤ hn ≤ H at the end of period n. The discount factor is 0 < α < 1.
Production capacity (integer) in period n = 1, 2, . . . is Pn ≤ P and inventory warehouse capacity (integer)
is In ≤ I ending period n = 0, 1, 2, . . .. Then letting the decision variable xn for n = 1, 2, . . . denote
production level in period n, and yn denote the inventory ending period n for n = 0, 1, . . ., where y0 is
fixed, we obtain the following CILP:

(PROD) min
∞∑

n=1
αn−1(knxn + hnyn)

xn ≤ Pn, n = 1, 2, . . .

yn ≤ In, n = 1, 2, . . .

yn−1 + xn − yn = Dn, n = 1, 2, . . .

xn, yn ≥ 0, n = 1, 2, . . .

Note that problem (PROD) can be converted into form (P ) after adding non-negative slack variables in
the production and inventory capacity constraints respectively. A sufficient condition for Assumption 2.1
to hold is that production capacity dominates demand meaning Pn ≥ Dn for n = 1, 2, . . .. Assumption
2.2 is satisfied as the inventory balance constraints have three variables each and the capacity constraints
(after adding slack variables) have two variables each. Assumption 2.3 holds because |xn| ≤ P , |yn| ≤ I.
Finally, for Assumption 2.4, note that |kn| ≤ K, |hn| ≤ H, and

∞∑
n=1

αn−1KP +
∞∑

n=1

αn−1HI =
KP + HI

1− α
< ∞.

Dynamic resource procurement and allocation: We present a dynamic extension of a prototypical
planning problem in linear programming [37]. Consider a resource allocation problem with n activities
and m resources with opportunities to purchase resources from an external source with limited availability.
In particular, during time-period t = 1, 2, . . ., amount 0 ≤ bi(t) ≤ Bi of resource i = 1, . . . ,m is available
for consumption. An additional amount up to 0 ≤ Di(t) ≤ Di of resource i may be purchased at unit cost
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0 ≤ ci(t) ≤ ci in period t. Each unit of activity j consumes amount 0 < aij(t) of resource i in period t
for j = 1, . . . , n, and i = 1, . . . ,m. Let aij ≡ inf

t
aij(t). We assume that aij > 0, that is, a unit of activity

j consumes a strictly positive amount of resource i in all time periods. Each unit of activity j yields
revenue 0 ≤ rj(t) ≤ rj in period t. Resources left over from one period can be consumed in future periods
however the carrying capacity for resource i is 0 ≤ Ei(t) ≤ Ei from period t to t+1. The cost of carrying
a unit of resource i from period t to period t + 1 is 0 ≤ hi(t) ≤ hi. The discount factor is 0 < α < 1.
Our goal is to determine an infinite-horizon resource procurement and allocation plan to maximize net
revenue. Let xj(t) denote the level of activity j in period t, yi(t) denote the amount of resource i carried
from period t to t + 1, and zi(t) denote the amount of resource i purchased in period t. Let yi(0) = 0 for
all i. The optimization problem at hand in these decision variables can be formulated as the following
CILP:

(RES − PROC −ALL) max
∞∑

t=1

αt−1

 n∑
j=1

rj(t)xj(t)−
m∑

i=1

ci(t)zi(t)−
m∑

i=1

hi(t)yi(t)


zi(t) ≤ Di(t), i = 1, . . . ,m; t = 1, 2, . . .

yi(t) ≤ Ei(t), i = 1, . . . ,m; t = 1, 2, . . .
m∑

j=1

aij(t)xj(t) + yi(t)− yi(t− 1)− zi(t) = bi(t), i = 1, . . . ,m; t = 1, 2, . . .

zi(t) ≥ 0, i = 1, . . . ,m; t = 1, 2, . . .

yi(t) ≥ 0, i = 1, . . . ,m; t = 1, 2, . . .

xj(t) ≥ 0, j = 1, . . . , n; t = 1, 2, . . .

Problem (RES−PROC−ALL) can be converted into standard form (P ) by transforming into a net cost
minimization problem and adding non-negative slack variables in the capacity constraints. This problem
is feasible. For example, select and fix any activity j and set xj(t) = bi(t)/aij(t), xk(t) = 0 for all k 6= j,
yi(t) = zi(t) = 0 for all resources i and all t yielding a feasible solution. Thus Assumption 2.1 holds.
Each material balance constraint includes m + 3 variables whereas each capacity constraint includes two

variables (after adding slacks) hence satisfying Assumption 2.2. Note that xj(t) ≤
max

i
(Bi+Di+Ei)

max
i

aij
≡ Fj

for all time periods t. Then Assumption 2.3 holds with vector u whose components all equal B ≡
max{max

i
Di,max

i
Ei,max

j
Fj}. This u is in l∞. Let M1 =

n∑
j=1

rj , M2 =
m∑

i=1
ci, M3 =

m∑
i=1

hi, and M =

max{M1,M2,M3}. Then Assumption 2.4 is satisfied because the cost vector is in l1 as
∞∑

t=1
αt−1M =

M
1−α < ∞.

Recall that our goal is to design an implementable Simplex-type procedure for solving problem (P ).
Since this involves implicitly constructing a value convergent sequence of extreme points of the infinite-
dimensional feasible region F using finite computations, we must devise a “finite representation” of these
extreme points. This is achieved in Section 3, however we first illustrate with a binary tree example some
of the challenges involved in designing a value convergent sequence of extreme points even for CILPs that
appear simple.
A binary tree example: Consider a network flow problem on the infinite directed binary tree shown
in Figure 1. The nodes are numbered 1, 2, . . . starting at the root node. Tuple (i, j) denotes a directed
arc from node i to node j. There is a source of (1/4)i at nodes at depth i in the tree, where the root is
assumed to be at depth 0. The cost of sending a unit of flow through “up” arcs at depth i in the tree is
(1/4)i, where the arcs emerging from the root are assumed to be at depth 0. The cost of pumping unit
flow through “down” arcs is always 0. The objective is to push the flow out of each node to infinity at
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minimum cost while satisfying the flow balance constraints. The unique optimal solution of this problem
is to push the flow through the “down” arc at each node at zero total cost. This flow problem over an

Figure 1: An infinite network flow problem.

infinite binary tree can be formulated as a CILP that fits the framework of (P ) above. This CILP has flow
balance (equality) constraints in non-negative flow variables. It is clearly feasible satisfying Assumption
2.1 and satisfies Assumption 2.2 as each flow balance constraint has three entries two of which are −1 the
third being +1. As for Assumption 2.3, note that the flow in any arc must be less than the total supply

at all nodes, which equals
∞∑
i=0

2i 1
4i =

∞∑
i=0

1
2i = 2 implying that the choice uj = 2 for all j suffices hence

this u is in l∞. Moreover, the cost vector is in l1 since the sum of costs associated with all arcs is again
∞∑
i=0

2i 1
4i = 2. Thus Assumption 2.4 holds.

Extreme points of feasible regions of infinite network flow linear programs were defined in [21, 42].
For the network flow problem in Figure 1, a feasible flow is an extreme point if it has exactly one
path to infinity out of every node, where a “path to infinity” is defined as a sequence of directed arcs
(i1, i2), (i2, i3), . . . with positive flows. In other words, a feasible flow is an extreme point if every node
pushes the total incoming flow out through exactly one of the two emerging arcs. Thus, this feasible
region has an uncountable number of extreme points. We will say that two arcs are “complementary” if
they emerge from the same node. A pivot operation involves increasing the flow through one arc from
zero to an appropriate positive value and decreasing the flow through its complementary arc to zero. It is
then possible to construct an infinite sequence of adjacent extreme point solutions whose values (strictly)
monotonically decrease but do not converge to the optimal value.

More specifically, suppose we start at the extreme point solution illustrated in Figure 2 (a), where
the arcs with positive flows are shown with solid lines and the ones with zero flows with dotted lines. In

this extreme point solution, a flow of (1/4)i is pushed through 2i paths each with total cost
∞∑
j=i

(1/4)j for

i = 0, 1, 2, . . .. Thus the cost of this extreme point solution equals

∞∑
i=0

(
1
4

)i (
2i
) ∞∑

j=i

(
1
4

)j

=
∞∑
i=0

(
1
4

)i (
2i
)(1

4

)i ∞∑
j=0

(
1
4

)j

=
∞∑
i=0

(
1
8

)i(4
3

)
=

32
21

.

The adjacent extreme point formed by increasing the flow in arc a1 and decreasing the flow in arc b1

to zero is shown in Figure 2 (b). This extreme point has a strictly lower cost than the initial extreme
point. Similarly, the extreme point obtained by another pivot operation that increases the flow in arc a2

and decreases the flow in arc b2 to zero is shown in Figure 2 (c). Again, this extreme point has strictly
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lower cost than the one in Figure 2 (b). Repeating this infinitely often, we obtain a sequence of adjacent
extreme points with strictly decreasing values that remain above one — the cost of the “up” arc out of
the root node. Note that such a situation cannot occur in feasible, finite-dimensional problems where
every extreme point is non-degenerate and the optimal cost is finite, as the Simplex method that chooses
a non-basic variable with negative reduced cost to enter the basis in every iteration reaches an optimal
extreme point in a finite number of iterations.

(a) (b) (c)

Figure 2: Pivots in the binary tree example described in the text.

3 The Shadow Simplex method

The Shadow Simplex method builds upon results in [14], which provide that for every n, and for every
extreme point x(n) of an n-dimensional shadow, there exist extreme points of all higher dimensional
shadows, including the infinite-dimensional one, such that their first n coordinates exactly coincide with
those of x(n). These results from [14] are stated here.

Lemma 3.1. ([14]) For every extreme point x of FN there exists an extreme point of FN+1 which is
identical to x in its first N components.

Lemma 3.2. ([14]) For every extreme point x of FN there exists an extreme point of FM , for every
M > N which is identical to x in its first N components.

Lemma 3.3. ([14]) For every extreme point x of FN there exists an extreme point of F which is identical
to x in its first N components.

Remark 3.4. In view of Lemmas 3.1, 3.2 and 3.3 we informally say that every extreme point of FN is
liftable for each N = 1, 2, . . .. In other words every extreme point of a finite-dimensional shadow FN is
a projection of some extreme point of F . As a result, a sequence of extreme points of finite-dimensional
shadows of F is in fact a projection of a sequence of extreme points of F . Thus an algorithm that
moves from one extreme point of a finite-dimensional shadow to another implicitly constructs a sequence
of extreme points of the infinite-dimensional feasible region. This observation is central to the Shadow
Simplex method.

Unfortunately, it is not in general easy to characterize shadows of F . We therefore focus attention on
“nice” CILPs where shadows of F equal feasible regions of finite-dimensional linear programs derived from
(P ). This requires some more notation and an assumption that are discussed here. Under Assumption
2.2, without loss of generality (with possibly reordering the variables) we assume that (P ) is formulated
so that for every N there is an LN < ∞ such that variables xLN+1, xLN+2, . . . do not appear in the first N
constraints. See [44] for a detailed mathematical discussion on this issue. As a simple example, let vn and
wn be the non-negative slack variables added in the production and inventory capacity constraints of the
production planning problem described in Section 2. We order the variables as (x1, v1, y1, w1, x2, v2, . . .)
and the equality constraints by time-period:

x1 + v1 = P, y1 + w1 = I, x1 − y1 = D1 − y0,
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x2 + v2 = P, y2 + w2 = I, y1 + x2 − y2 = D2 . . .

Then it is easy to see that L1 = 2, L2 = 4, L3 = 4, L4 = 6, L5 = 8, L6 = 8 .... Since CILPs most
commonly arise from infinite-horizon planning problems, such an ordering of variables and constraints
is often the most natural as there is a set of one or more constraints grouped together corresponding to
every time period (see [27, 44]).

Now consider truncations TN of F defined as

TN = {x ∈ RLN :
LN∑
j=1

aijxj = bi, i = 1, . . . , N ; xj ≥ 0, j = 1, 2, . . . , LN}.

That is, TN is the feasible region formed by ignoring all variables beyond the LN th and all equality
constraints beyond the Nth. Observe that FLN

⊆ TN . To see this, let y ∈ FLN
. Then by definition of

FLN
, yj ≥ 0 for j = 1, 2, . . . , LN , y ∈ RLN and there is some x ∈ F whose first LN components match with

y. Thus y ∈ TN because the variables beyond the LN th do not appear in the first N equality constraints
in problem (P ).

Definition 3.5. The truncation TN is said to be extendable if for any x ∈ TN there exist real numbers
yLN+1, yLN+2, . . . such that

(x1, x2, . . . , xLN
, yLN+1, yLN+2, . . .) ∈ F,

i.e., if any solution feasible to truncation TN can be appended with an infinite sequence of variables to
form a solution feasible to (P ).

Lemma 3.6. Truncation TN is extendable if and only if TN = FLN
.

In non-stationary infinite-horizon deterministic dynamic programs we consider in Section 4, we assume
that in a finite-horizon truncation, a finite sequence of decisions that reaches a “terminal” state can be
appended with an infinite sequence of decisions to construct a decision sequence feasible to the original
infinite-horizon problem. This assumption is without loss of generality by following a “big-M” approach
mentioned in Section 4 and discussed in more detail in Appendix A. Consequently, extendability of finite-
horizon truncations can be forced in CILP formulations of all non-stationary infinite-horizon dynamic
programs — our largest class of deterministic sequential decision problems. Thus we work with the
following assumption in the rest of this paper.

Assumption 3.7. There exists an increasing sequence of integers {Nn}∞n=1 for which truncations TNn

are extendable.

In infinite-horizon planning problems the above sequence of integers is often indexed by lengths of
finite horizons n = 1, 2, . . . and Nn corresponds to the number of equality constraints that appear in the
n-horizon problem. We discuss three concrete examples.

In the production planning problem (PROD) in Section 2, we consider the sequence Nn = 3n for
n = 1, 2, . . . since there are 3 equality constraints in every period after adding slack variables. If the
production capacity dominates demand in every period, i.e., Pn ≥ Dn for all n, then truncations T3n

are extendable for all n. Notice that this dominance is not necessary for extendability, which in fact
can be forced without loss of generality whenever (PROD) has a feasible solution by adding “sufficient

inventory” inequality constraints in (PROD). In particular, let ∆n
m =

m∑
i=n+1

(Di−Pi) for n = 0, 1, . . ., and

m = n+1, n+2, . . .. Also let ∆n = max ({0,∆n
n+1,∆

n
n+2, . . .}). Here ∆n

m represents the “total deficit” in
production capacities in periods n+1 through m as compared to the total demand in these periods. Thus,
in order to satisfy the demand in these periods, inventory yn must be at least ∆n

m. The quantity ∆n is the
largest of all such inventory requirements, and represents the minimum inventory needed ending period
n to satisfy future demand. Thus, if y1, y2, . . . is an inventory schedule feasible to (PROD) then it must
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satisfy yn ≥ ∆n for n = 1, 2 . . .. Hence we can add these “sufficient inventory” inequalities to (PROD)
without altering the set of feasible production-inventory schedules, and finite-horizon truncations of this
modified problem are extendable (see [24] for details). This approach of adding “valid inequalities” to
ensure extendability often works for planning problems where decisions in two periods are linked by some
kind of an inventory variable.

Note that finite-horizon truncations of the resource allocation problem (RES − PROC − ALL) are
also extendable. To see this, suppose for some t-horizon feasible solution, resource type j left over at the
end of period t is yj(t). This feasible solution can be extended to an infinite-horizon feasible solution by
exhausting available resource yj(t)+ bj(t+1) in period t+1, never buying additional resources in periods
t′ > t, and choosing activity levels in periods t′ > t+1 to entirely consume resource amounts bj(t′) so that
there is no resource inventory carried over to period t′ + 1. Thus Assumption 3.7 holds with Nt = 3mt
for t = 1, 2, . . ..

Under Assumption 3.7, Lemma 3.6 characterizes shadows FLNn
as TNn . Thus we define a sequence of

finite-dimensional linear programming problems P (LNn) for n = 1, 2 . . . as follows:

P (LNn) min
LNn∑
i=1

cixi, x ∈ FLNn
≡ TNn .

Since the integer subsequence LNn →∞ as n →∞, Theorem 2.9 implies that optimal values V (P (LNn))
converge to the optimal value V (P ) as desired when n → ∞. We are now ready to present the Shadow
Simplex method.

3.1 The Shadow Simplex Method

The Shadow Simplex method is an iterative procedure that runs in stages n = 1, 2, . . ., where problem
P (LNn) is solved to optimality in stage n. Theorem 2.9 implies that the optimum objective function
value achieved at the end of stage n converges to the optimum objective function value of problem (P )
as n → ∞. We informally explain the implementation details of these stages here. Problem P (LN1) has
N1 constraints and LN1 variables. A Phase I procedure is employed to find an extreme point x(N1) of
the feasible region TN1 ≡ FLN1

of this problem. The problem is then solved by using Phase II of the
standard finite-dimensional Simplex method that starts at extreme point x(N1) and stops at an optimal
extreme point x∗(N1). The first stage ends here. Problem P (LN2), which has the first N2 constraints and
the first LN2 variables is then solved in the second stage. This stage begins by implementing a Phase I
procedure to find an extreme point x(N2) of the feasible region TN2 ≡ FLN2

whose first LN1 components
are the same as those of x∗(N1). Note that existence of such an extreme point is guaranteed by Lemma
3.2, and the Phase I procedure begins by eliminating the first LN1 variables from the first N2 constraints
by substituting their values from x∗(N1). This eliminates the first N1 constraints since variables LN1 + 1
to LN2 do not appear there and leaves variables LN1 + 1 to LN2 in the next LN2 constraints. Problem
P (LN2) in variables x1 . . . , xLN2

is then solved by Phase II of the Simplex method that starts at x(N2)
and ends at an optimal extreme point x∗(N2). The second stage ends here. This is repeated for all stages
n ≥ 3. The formal algorithmic procedure is stated below.

Algorithm 3.8. The Shadow Simplex Method
Start with n = 1, LN0 = 0.

1. Implement Stage n to solve problem P (LNn) as follows.

(a) Eliminate variables x1, . . . , xLNn−1
from constraints 1, 2, . . . , Nn.

(b) Use Phase I of the standard finite-dimensional Simplex method to find an extreme point x(Nn)
of P (LNn) whose first LNn−1 components are the same as that of x∗(Nn−1). (Note that steps
(a) and (b) reduce to the usual Phase I procedure when n = 1).
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(c) Starting at x(Nn), use Phase II of the standard finite-dimensional Simplex method to find an
extreme point optimal solution x∗(Nn) of P (LNn).

2. Set n = n + 1 and goto step 1.

Several remarks are now in order. Every finite-dimensional extreme point visited by the Shadow
Simplex method can be appended to yield an extreme point of the feasible region F of problem (P ) by
Lemma 3.3 (also see Remark 3.4). Thus even though it is unnecessary (and impossible) to find these
continuations, one may view the above procedure as an algorithm that iterates over a countably infinite
number of extreme points of F . The reason for implementing a Phase I-Phase II procedure as above is
that we want x∗(Nn−1) and x(Nn) to lift to the same extreme point of F . Thus it is necessary that their
first Nn−1 components be identical. The Shadow Simplex method may be viewed as a pivot selection rule
at extreme points of F that guarantees convergence in value. This is a crucial observation in view of the
example presented in Section 2, where naive pivot selections fail to ensure value convergence. Perhaps
more importantly, in the non-degenerate case of a unique optimal solution say x∗ to (P ) (this must be an
extreme point solution in view of Proposition 2.7), Shadow Simplex implicitly constructs a sequence of
extreme points of F that converges to x∗. Observe that we successfully perform this challenging task by
implementing finite computations and using finite information in every iteration. We discuss properties
of the Shadow Simplex method when applied to non-stationary deterministic and stochastic dynamic
programming problems.

4 Application to non-stationary infinite-horizon deterministic dynamic
programming

We briefly describe a non-stationary infinite-horizon discounted deterministic dynamic programming
problem whose typical “dynamic programming network” looks as illustrated in an example in Figure
3 (a). Consider a dynamic system that is observed by a decision maker at the beginning of each period
n = 1, 2, . . . to be in some time-indexed state sn ∈ Sn where Sn is a finite set with cardinality uniformly
bounded over all n. The initial state of the system is known to be s1. The decision maker chooses an
action an from a finite set A(sn) with cardinality uniformly bounded over all states sn and incurs a non-
negative cost cn(sn, an) ≤ c < ∞. The choice of action an causes the system to make a transition to some
state sn+1 ∈ Sn+1. For brevity, we use state transition functions gn and the equation sn+1 = gn(sn, an)
as a surrogate for the earlier longer statement. This procedure continues ad infinitum. Note that circles
in Figure 3(a) represent states whereas arrows represent actions. Both these are numbered to facilitate
discussion later. The decision maker’s goal is to compute a feasible action in every possible state begin-
ning every period so as to minimize total discounted infinite-horizon cost where the discount factor is
0 < α < 1. We consider the case where any two distinct actions feasible in a state transform the system
into two distinct states in the next period. This is without loss of generality because otherwise the action
with the higher immediate cost can be eliminated from consideration.

The above dynamic program can be formulated as a CILP as follows. For any sn ∈ Sn, let X(sn)
denote the set of state-action pairs (sn−1, an−1) such that the system is transformed to state sn if we
choose action an−1 ∈ A(sn−1) in state sn−1 in period n− 1, i.e., gn−1(sn−1, an−1) = sn. For example, in
Figure 3, X(6) = {(2, 5), (3, 6), (4, 7)}. Note that for every state sn−1 there is at most one action an−1 with
this property. Let {β(sn)} be any sequence of positive numbers indexed by states sn ∈ Sn for all periods n

such that
∞∑

n=1

∑
sn∈Sn

β(sn) < ∞. Then, the non-stationary infinite-horizon dynamic programming problem

is equivalent to solving the following linear program in decision variables z(sn, an) (see [17, 32, 41, 45]):

(DP ) min
∞∑

n=1

∑
sn∈Sn

∑
an∈A(sn)

cn(sn, an)z(sn, an)
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Figure 3: (a) An illustration of a non-stationary infinite-horizon discounted deterministic dynamic pro-
gramming network. (b) A two-horizon truncation of the network in (a). States numbered 5 and 6 are
“terminal”.

∑
an∈A(sn)

z(sn, an)− α
∑

(sn−1,an−1)∈X(sn)

z(sn−1, an−1) = β(sn), sn ∈ Sn, ∀n,

z(sn, an) ≥ 0, sn ∈ Sn, an ∈ A(sn), ∀n.

It is clear that problem (DP ) above is a special case of (P ). We show in Lemmas 4.1 and 4.2 that it also
satisfies the required assumptions.

Lemma 4.1. Problem (DP ) satisfies Assumptions 2.1, 2.2, 2.3, and 2.4.

Consider any n-horizon truncation of the infinite-horizon dynamic program described above. Refer
to Figure 3 (b). Let (s1, a1), (s2, a2), . . . , (sn, an) be any sequence of feasible state-action pairs in this
truncation. That is, for i = 1, . . . , n, si ∈ Si, ai ∈ A(si) and si+1 = gi(si, ai) for i = 1, . . . , n− 1. Suppose
sn+1 = gn(sn, an). Then we call sn+1 a “terminal state” of the n-horizon truncation. We assume that
there exists an infinite sequence of state-action pairs {(st, at)}∞n+1 starting at the terminal state sn+1

and feasible to the original infinite-horizon problem, i.e., st ∈ St, at ∈ A(st) and st+1 = gt(st, at) for
t = n + 1, . . .. We call this “extendability of finite-horizon strategies”.

Again note that if the original formulation of the dynamic program does not have this property, it is
often possible to enforce it by adding valid inequalities to the set of feasible actions especially in planning
problems where the state corresponds to some type of inventory as discussed in problem (PROD). More
generally, it is possible to design a “big-M” approach for dynamic programs where a terminal state
with no feasible continuation can be appended with a sequence of artificial state-action pairs each with
“big-M” cost making the choice of these artificial actions and hence the terminal state they emerge from
unattractive in the infinite-horizon problem. This approach, motivated by the “big-M” method for finding
an initial basic feasible solution in finite-dimensional linear programs [11], forces extendability without
loss of optimality in the infinite-horizon problem (see Section A.7 in Appendix A for more details).

The N -horizon truncation of (DP ) is then given by the following finite-dimensional linear program:

DP (N) min
N∑

n=1

∑
sn∈Sn

∑
an∈A(sn)

cn(sn, an)z(sn, an)
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∑
an∈A(sn)

z(sn, an)− α
∑

(sn−1,an−1)∈X(sn)

z(sn−1, an−1) = β(sn), sn ∈ Sn, n = 1, . . . , N,

z(sn, an) ≥ 0, sn ∈ Sn, an ∈ A(sn), n = 1, . . . , N.

The following lemma shows that our extendability of finite-horizon strategies assumption in the original
dynamic program carries over to truncations DP (N) of the CILP (DP ).

Lemma 4.2. The N -horizon truncations DP (N) are extendable for all horizons N and hence Assumption
3.7 holds for (DP ).

Since all required assumptions are satisfied, Value Convergence Theorem 2.9 implies that optimal
values V (DP (N)) converge to the optimal value V (DP ) as N → ∞ and our Shadow Simplex method
can be employed to solve (DP ). Interestingly, the Shadow Simplex method for (DP ) in fact reduces to a
true infinite-dimensional Simplex method for reasons discussed below.

4.1 A Simplex method for problem (DP)

Our argument requires precise characterizations of extreme points of DP (N) and (DP ) as well as pivot
operations in these problems.
Pivots at extreme points of problem DP(N)
First note that the finite-dimensional linear program DP (N) is a special case of the standard linear
programming formulation for finite-state discounted stochastic dynamic programs (see page 224 of [41]).
It is well-known that extreme points of the feasible region of this problem are precisely feasible solutions
z having the property that for every state sn ∈ Sn for n = 1, . . . , N , z(sn, an) > 0 for exactly one
an ∈ A(sn) (Proposition 6.9.3 page 227 of [41]). This is viewed as a one-to-one correspondence between
extreme points and deterministic policies [41]. Thus a pivot operation at extreme point z1 of DP (N)
during execution of the Shadow Simplex method is of the form described in the next paragraph. It often
helps to “visualize” this pivot operation on the relevant portion of a dynamic programming network as
in Figure 4 where actions with positive z values are shown in solid arrows.

sn
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tN
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an+1 aN-1

bn
bn+1 bN-1 bN
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sn+1

tn+1
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an+1 aN-1
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(a) (b)

Figure 4: A DP (N) pivot as described in the text. (a) Portion of the dynamic programming network at
the original extreme point z1. (b) The same portion of the dynamic programming network at the new
extreme point z2 after a pivot operation.

Choose any state sn ∈ Sn, for some n = 1, . . . , N , and an action an ∈ A(sn) such that z1(sn, an) = 0.
Let sn+1 = gn(sn, an). There is exactly one finite sequence of state-action pairs {(sr, ar)}, r = n+1, . . . , N ,
such that sr ∈ Sr, ar ∈ A(sr), sr+1 = gr(sr, ar) and z1(sr, ar) > 0. Select the action bn ∈ A(sn) for
which z1(sn, bn) > 0 and let tn+1 = gn(sn, bn). There is exactly one finite sequence of state-action pairs
{(tr, br)}, r = n + 1, . . . , N , such that tr ∈ Sr, br ∈ A(tr), tr+1 = gr(tr, br) and z1(tr, br) > 0. Note that
z1(tr, br) ≥ α(r−n)z1(sn, bn) for r = n + 1, . . . , N . Set z2(sn, an) = z1(sn, bn) and increase z1(sr, br) by an
amount α(r−n)z1(sn, bn) for r = n + 1, . . . , N to form the corresponding components of z2. Set z2(sn, bn)
to zero and reduce z1(tr, br) by an amount α(r−n)z1(sn, bn) for r = n+1, . . . , N to form the corresponding
components of z2. The new solution z2 thus formed is non-negative, satisfies the equality constraints and
has the property that for each state exactly one z2 value is positive. Thus it is a new extreme point of
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DP (N) and the pivot operation is complete.
Pivots at extreme points of problem (DP)
We first show that the one-to-one correspondence between extreme points and deterministic policies in
finite-dimensional linear programs DP (N) carries over to our CILP (DP ). This essentially means that
extreme points of (DP ) are equivalent to its basic feasible solutions. The first, straightforward direction
(Lemma 4.3) of this equivalence states that a basic feasible solution is an extreme point and its extensions
hold for CILPs in general.

Lemma 4.3. Suppose z is a feasible solution to (DP ) having the property that for every state sn, there
is exactly one action an ∈ A(sn) for which z(sn, an) > 0. Then z is an extreme point of (DP ).

We remark that the converse below is of independent interest since it often fails (and is considered one
of the major pathologies) in CILPs where variable values are not bounded away from zero [5, 22, 42] as
in (DP ). Its proof outlined in Appendix A considers two cases. The first case is roughly the counterpart
of lack of finite cycles in extreme points of infinite network flow problems [22, 42] and is straighforward.
The second case relies on the special structure of (DP ), i.e., its similarity to time-staged acyclic network
flow problems (see Figure 3 for example) and that quantities β(sn) are positive.

Lemma 4.4. Suppose z is an extreme point of (DP ). Then z has the property that for every state sn,
there is exactly one action an ∈ A(sn) for which z(sn, an) > 0.

Lemmas 4.3 and 4.4 imply that a pivot operation in (DP ) is conceptually identical to the pivot
operation in DP (N) described above, the only difference being that in (DP ) it involves changing values
of a countably infinite number of variables. As a result, a pivot in DP (N) is a “projection” of a pivot in
(DP ) and a pivot in (DP ) is an “extension” of a pivot in DP (N). Thus the Shadow Simplex method
reduces to a true Simplex method in the conventional sense for problem (DP ) — moving from one extreme
point to an adjacent extreme point in every iteration. We now discuss three concrete examples where this
theory applies.
Production planning: Consider a (non-linear) generalization of problem (PROD) where the production
cost function in period n is denoted cn(·) and the inventory holding cost function is denoted hn(·). The
goal is to find an infinite-horizon production schedule x = (x1, x2, . . .) that satisfies demand (D1, D2, . . .)
subject to production and inventory warehouse capacities at minimum discounted infinite-horizon total

cost
∞∑

n=1
αn−1(cn(xn) + hn(yn)) where the inventory schedule y = (y1, y2, . . .) is defined by the material

balance equations stated in (PROD). It is easy to see that this problem is a special case of the general
non-stationary infinite-horizon deterministic dynamic programming problem where the state corresponds
to the inventory on hand beginning a period, and the actions correspond to feasible production quantities
in that period. Under the assumption that capacities dominate demand, i.e., Pn ≥ Dn for every n,
finite-horizon truncations of our dynamic program are extendable. When the data do not satisfy such
dominance, extendability can be forced by adding valid inequalities as discussed in (PROD).
Equipment replacement under technological change: This is the problem of deciding an equipment
replacement strategy so as to minimize total purchase and maintenance costs over an infinite-horizon.
Specifically, we initially have an s1 period old piece of equipment. At the beginning of each period, we
have two options - either to sell the equipment on hand and spend the money received to buy a brand
new piece or to carry the equipment through one more period incurring maintenance costs. The life
of an equipment is L periods. Note we have assumed the life is independent of the period of purchase
for simplicity. The cost of purchasing a brand new equipment at the beginning of period n is pn, the
maintenance cost function during period n is denoted mn(·) where the argument corresponds to the age of
the equipment beginning period n, and finally, the salvage value function at the beginning of period n is
denoted vn(·) where the argument corresponds to the age of the equipment at the beginning of period n.
The goal is to decide, at the beginning of each period, whether to retire the current equipment and buy a
new one or to maintain the equipment through that period so as to minimize discounted infinite-horizon
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total cost (see [9] for example). Again, note that this is a special case of the general non-stationary
infinite-horizon deterministic dynamic programming problem where the state corresponds to the age of
the equipment on hand at the beginning of a period and actions correspond to buying a new equipment
or keeping the current one. Any finite-horizon equipment purchase/retire strategy can be extended to an
infinite-horizon feasible sequence say for example by retiring the current equipment and buying a new one
in every future period.
Optimal exploitation of a renewable natural resource: Suppose we are initially endowed with
s1 ∈ S ≡ {0, 1, . . . , η} units of a natural resource, for example fish in an ocean, where η is a positive
integer. If the resource remaining at the beginning of period n is sn units, and we consume an of these
units, then we receive a reward of rn(an). Moreover, the remaining sn − an units renew according to a
function gn(sn − cn) during period n where the range of function gn(·) is {0, 1, . . . , η} and gn(0) = 0 for
all n. Our goal is to find a consumption plan a1, a2, . . . that maximizes discounted infinite-horizon reward
(see [20] for example). Again this is a special case of non-stationary infinite-horizon dynamic programming
where the state corresponds to the units of resource available beginning a period, and actions correspond
to the number of units consumed in that period. Observe that any finite-horizon consumption plan can
be extended to an infinite-horizon feasible plan say by consuming zero resource in all future periods.

5 Application to non-stationary infinite-horizon Markov decision prob-
lems

Non-stationary infinite-horizon Markov decision problems also termed non-stationary infinite-horizon
stochastic dynamic programs [12, 17, 32, 33, 41, 45, 53] are an important generalization of the above
deterministic dynamic programming problem where the state transitions are stochastic. Given that an
action an ∈ A(sn) was chosen in state sn, the system makes a transition to state sn+1 ∈ Sn+1 with
probability pn(sn+1|sn, an), incurring non-negative cost cn(sn, an; sn+1) ≤ c < ∞. The term Marko-
vian policy in this context denotes a rule that dictates our choice of action in every possible state (ir-
respective of the earlier states visited or actions taken) over an infinite-horizon. The goal then is to
find a Markovian policy that minimizes total infinite-horizon discounted expected cost when the dis-
count factor is 0 < α < 1. Let Y (sn, an) ⊆ Sn+1 denote the set of states sn+1 ∈ Sn+1 such that
pn(sn+1|sn, an) > 0. Let cn(sn, an) denote the expected cost incurred on choosing actions an ∈ A(sn) in
state sn ∈ Sn. That is, cn(sn, an) =

∑
sn+1∈Y (sn,an)

pn(sn+1|sn, an)cn(sn, an; sn+1). Finally, for any state

sn ∈ Sn, let X(sn) denote the set of states sn−1 ∈ Sn−1 such that there exists an action an−1 ∈ A(sn−1)
with pn−1(sn|sn−1, an−1) > 0. For each sn−1 in X(sn), we use X (sn−1, sn) to denote the set of actions
an−1 ∈ A(sn−1) with pn−1(sn|sn−1, an−1) > 0. Let {β(sn)} be a sequence of positive numbers indexed by

states sn ∈ Sn for all periods n such that
∞∑

n=1

∑
sn∈Sn

β(sn) < ∞. Then the non-stationary infinite-horizon

Markov decision problem is equivalent to solving the following linear program in variables z(sn, an) (see
[41, 45]) :

(MDP ) min
∞∑

n=1

∑
sn∈Sn

∑
an∈A(sn)

cn(sn, an)z(sn, an)

∑
an∈A(sn)

z(sn, an)− α
∑

sn−1∈X(sn)

∑
an−1∈X (sn−1,sn)

pn−1(sn|sn−1, an−1)z(sn−1, an−1) = β(sn),

∀sn ∈ Sn, n = 1, 2, . . .

z(sn, an) ≥ 0, ∀sn ∈ Sn, an ∈ A(sn), n = 1, 2, . . .

Problem (MDP) is a special case of (P ). Lemmas 5.1 and 5.2 confirm that it satisfies the required
assumptions.
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Lemma 5.1. Problem (MDP ) satisfies Assumptions 2.1, 2.2, 2.3 and 2.4.

Again we assume extendability of finite-horizon strategies and consider the following N -horizon trun-
cation of (MDP ) as in the (DP ) case:

MDP (N) min
N∑

n=1

∑
sn∈Sn

∑
an∈A(sn)

cn(sn, an)z(sn, an)

∑
an∈A(sn)

z(sn, an)− α
∑

sn−1∈X(sn)

∑
an−1∈X (sn−1,sn)

pn−1(sn|sn−1, an−1)z(sn−1, an−1) = β(sn),

∀sn ∈ Sn, n = 1, . . . , N

z(sn, an) ≥ 0, ∀sn ∈ Sn, an ∈ A(sn), n = 1, . . . , N.

Lemma 5.2. The N -horizon truncations MDP (N) are extendable for all horizons N and hence Assump-
tion 3.7 holds for (MDP ).

Value Convergence Theorem 2.9 then implies that V (MDP (N)) → V (MDP ) as N →∞ and we can
apply the Shadow Simplex method to solve (MDP ). In the next section, we present a brief outline of
our argument as to why Shadow Simplex also reduces to a true infinite-dimensional Simplex method for
(MDP ). The discussion is similar to the one for (DP ).

5.1 A Simplex method for problem (MDP )

Again note that the finite-dimensional linear program MDP (N) is a special case of the standard linear
programming formulation for finite-state discounted stochastic dynamic programs (see page 224 of [41]).
It is well-known [41] that a feasible solution z for this problem is an extreme point of its feasible region
if and only if for every state sn ∈ Sn, z(sn, an) > 0 for exactly one action an ∈ A(sn) and z(sn, bn) = 0
for all other actions bn ∈ A(sn). Consequently, a pivot operation is characterized as follows: at an
extreme point solution z1, select a state sn ∈ Sn and an action an ∈ A(sn) such that z1(sn, an) = 0.
Let action bn ∈ A(sn) be the action in A(sn) for which z1(sn, bn) > 0. Then similar to the (DP ) case
decrease z1(sn, bn) to zero and increase z1(sn, an) to a positive value adjusting values of other variables
appropriately to construct a new extreme point z2. By liftability of extreme points, z1 and z2 are both
projections of extreme points of the feasible region of (MDP ). Moreover, Lemmas 4.3 and 4.4 can be
extended to the (MDP ) case so that a feasible solution z to (MDP ) is an extreme point if and only
if for every state sn ∈ Sn, z(sn, an) > 0 for exactly one action an ∈ A(sn) and z(sn, bn) = 0 for all
other actions bn ∈ A(sn). Thus the extreme points of (MDP ) whose projections equal z1 and z2 have
this property. Consequently, a pivot in MDP (N) is a “projection” of a pivot in (MDP ) and a pivot in
(MDP ) is an “extension” of a pivot in MDP (N). In other words, Shadow Simplex reduces to a true
infinite-dimensional Simplex method for (MDP ).

6 Conclusions

We showed that the Shadow Simplex algorithm performs finite computations on finite information in
every iteration and implicitly constructs a sequence of infinite-dimensional extreme points that converges
in value to the optimal value of the CILP at hand. This result is perhaps of independent theoretical
interest since a CILP may in general have an uncountable number of extreme points. When the CILP
has a unique extreme point optimal solution, the aforementioned sequence of extreme points converges
to the optimal solution. In general, two consecutive extreme points in the sequence of extreme points
constructed by our algorithm need not be adjacent. However, for a class of CILPs that corresponds to
dynamic programs with time-indexed states, our algorithm moves through adjacent extreme points of
the infinite-dimensional feasible region. This result may also be of independent interest since the feasible
region of a CILP is not in general polyhedral.
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A Proofs of Technical Results

Proofs of results in the text are presented here.

A.1 Proof of Lemma 2.6

To see that the first condition is sufficient for Assumption 2.4 to hold, note that for any x ≥ 0, |cjxj | =

|cj ||xj | = |cj |xj ≤ |cj |uj and
∞∑

j=1
|cj |uj ≤ ||u||∞

∞∑
j=1

|cj | < ∞ since u ∈ l∞ and c ∈ l1. Similarly, to see

that the second condition is sufficient, observe that for x ≥ 0, |cjxj | = |cj ||xj | = |cj |xj ≤ |cj |uj and
∞∑

j=1
|cj |uj ≤ ||c||∞

∞∑
j=1

|uj | < ∞ since c ∈ l∞ and u ∈ l1.

A.2 Proof of Proposition 2.7

The proof requires three preliminary results that we now state and prove.

Lemma A.1. The feasible region F of problem (P ) is closed.

Proof. For row i of matrix A, let J(i) denote the finite (by Assumption 2.2) support set {j : aij 6= 0}.

Consider sets Xi = {x ∈ R∞ :
∑

j∈J(i)

aijxj = bi} for i = 1, 2, . . .. Notice that F =
∞⋂
i=1

Xi
⋂
{x ∈ R∞ : x ≥

0}. The set {x ∈ R∞ : x ≥ 0} is closed. We show that sets Xi are closed for all i. Then since arbitrary
intersections of closed sets are closed, F must be closed. Let {xi(n)}∞n=1 be a convergent sequence of
points in Xi with limit x̄i ∈ R∞. For any integer n we have

∑
j∈J(i)

aijx
i
j(n) = bi. Taking limits we obtain

lim
n→∞

∑
j∈J(i)

aijx
i
j(n) = bi. Hence

∑
j∈J(i)

aij

(
lim

n→∞
xi

j(n)
)

= bi since J(i) is finite. Thus
∑

j∈J(i)

aij x̄
i
j = bi.

Therefore x̄i ∈ Xi implying Xi is closed.

Corollary A.2. The feasible region F of (P ) is compact.

Proof. Let 0 ≤ u ∈ R∞ be as in Assumption 2.3. Consider the set X = {x ∈ R∞ : 0 ≤ xj ≤ uj ∀j}. X
is compact by Tychonoff Product Theorem (Theorem 2.61 page 52 of [1]). F is closed by Lemma A.1.
Assumption 2.3 implies that F ⊆ X. Therefore F is compact.

Lemma A.3. The objective function of problem (P ) is continuous over its feasible region F .

Proof. Let {x(n)}∞n=1 be a convergent sequence of points in F with limit x̄ ∈ F . We need to show that

the sequence of objective function values
∞∑

j=1
cjxj(n) converges to

∞∑
j=1

cj x̄j as n →∞. Fix any ε > 0. Let

0 ≤ u ∈ R∞ be as in Assumption 2.4. Since the series
∞∑
i=1

|ci|ui of non-negative summands converges by

Assumption 2.4, there exists an integer K such that the tail
∞∑

i=k+1

|ci|ui < ε/2 for all k ≥ K. Fix any such

k and note that for any integer n,∣∣∣∣∣∣
∞∑

j=1

cjxj(n)−
∞∑

j=1

cj x̄j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∞∑

j=1

cj(xj(n)− x̄j)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

k∑
j=1

cj(xj(n)− x̄j)

∣∣∣∣∣∣+
∣∣∣∣∣∣

∞∑
j=k+1

cj(xj(n)− x̄j)

∣∣∣∣∣∣ ,
which is bounded above by

k∑
j=1

|cj ||(xj(n)− x̄j)|+
∞∑

j=k+1

|cj ||(xj(n)− x̄j)| ≤
k∑

j=1

|cj ||(xj(n)− x̄j)|+
∞∑

j=k+1

|cj |uj
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because 0 ≤ xj(n) ≤ uj and 0 ≤ x̄j ≤ uj . The second term is strictly less than ε/2. The first term

is bounded above by ( max
1≤j≤k

|(xj(n) − x̄j)|)(
k∑

j=1
|cj |). The only interesting case is where

k∑
j=1

|cj | 6= 0.

Since the sequence {x(n)}∞n=1 converges to x̄ componentwise, there exists an integer Nk large enough

such that ( max
1≤j≤k

|(xj(n) − x̄j)|) < ε 
2

kP
j=1

|cj |
! for all n ≥ Nk. Therefore, |

∞∑
j=1

cjxj(n) −
∞∑

j=1
cj x̄j | < ε

for all integers n ≥ Nk. Hence the objective function is continuous over F . (Note that an identical
proof can be reproduced to reach the stronger conclusion that the objective function is continuous over
X = {x ∈ R∞ : 0 ≤ xj ≤ uj ∀j}).

Note that the feasible region F of (P ) is nonempty (by Assumption 2.1) convex (since it is the
intersection of convex sets Xi defined in Lemma A.1 with the convex set {x ∈ R∞ : x ≥ 0}) and
the product topology on R∞ is locally convex Hausdorff (Lemma 5.74 page 206 of [1]). Existence of
an extreme point optimal solution to (P ) then follows directly from Corollary A.2, Lemma A.3 and a
Corollary (Corollary 7.70 page 299 of [1]) of the Bauer Maximum Principle (Theorem 7.69 page 298 of
[1]).

A.3 Proof of Theorem 2.9

We use Berge’s Maximum Theorem (Theorem 17.31 page 570 of [1]). Let I denote the set of extended
positive integers {1, 2, . . .}

⋃
{∞}. Also let X = {x ∈ R∞ : 0 ≤ xj ≤ uj ∀j} where sequence {uj} is as

in Assumption 2.4. Recall that F ⊆ X by Assumption 2.3 and also that FN ⊆ X by the definition of
projections of F in Equations (1) and (2). Now define a correspondence Ψ from I into X as

Ψ(N) = FN for N = 1, 2, . . .

Ψ(∞) = F.

Sets FN are non-empty for all N since F is non-empty by Assumption 2.1. Similarly, FN is also compact
for each N implying that correspondence Ψ has non-empty compact values. Moreover, it is continuous
by Lemma 2.8. Now define a function f : I ×X → R as

f(N,x) =
N∑

i=1

cixi for N = 1, 2, . . . , x ∈ X

f(∞, x) =
∞∑
i=1

cixi for x ∈ X.

Function f is continuous. To see this, fix ε > 0 and suppose xk → x in X and Nk →∞ as k →∞.

|f(∞, x)− f(Nk, x
k)| =

∣∣∣∣∣
∞∑
i=1

cixi −
Nk∑
i=1

cix
k
i

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
i=1

cixi −
∞∑
i=1

cix
k
i

∣∣∣∣∣+
∣∣∣∣∣
∞∑
i=1

cix
k
i −

Nk∑
i=1

cix
k
i

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=1

cixi −
∞∑
i=1

cix
k
i

∣∣∣∣∣+
∣∣∣∣∣∣

∞∑
i=Nk+1

cix
k
i

∣∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
i=1

cixi −
∞∑
i=1

cix
k
i

∣∣∣∣∣+
∞∑

i=Nk+1

|cix
k
i |

≤

∣∣∣∣∣
∞∑
i=1

cixi −
∞∑
i=1

cix
k
i

∣∣∣∣∣+
∞∑

i=Nk+1

|ci|ui because xk ∈ X.

Recall from the proof of Lemma A.3 that the objective function is continuous over X. Hence
∞∑
i=1

cix
k
i

converges to
∞∑
i=1

cixi because xk → x as k → ∞. Thus the first term in the above upper bound can be
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made smaller than ε/2 by choosing k large enough. The second term also can be made smaller than ε/2
for k large enough by Assumption 2.4. Therefore, there exists an integer K such that for all k ≥ K,
|f(∞, x)− f(Nk, x

k)| < ε. Thus f is continuous.
Now define the “value function” m : I → R as follows.

m(N) = min
x∈FN

N∑
i=1

cixi = max
x∈Ψ(N)

−f(N,x), N = 1, 2, . . .

and

m(∞) = min
x∈F

∞∑
i=1

cixi = max
x∈Ψ(∞)

−f(∞, x).

From the first part of Berge’s Maximum Theorem, the value function is continuous, i.e., m(N) → m(∞)
as N → ∞. This proves the first claim in Theorem 2.9. For the second claim, define the “argmax”
correspondence µ from I into X as

µ(N) = {x ∈ Ψ(N) : f(N,x) = m(N)} ≡ F ∗
N , N = 1, 2, . . .

µ(∞) = {x ∈ Ψ(∞) : f(∞, x) = m(∞)} ≡ F ∗.

The second claim then follows from the second part of Berge’s Maximum Theorem.

A.4 Proof of Lemma 3.6

For the “if” part, let TN = FLN
. Then TN is extendable by definition of FLN

. For the “only if” part,
suppose TN 6= FLN

. Then there is some x ∈ TN that is not in FLN
. In particular, there is no y ∈ F whose

first LN components match with x. Thus TN is not extendable.

A.5 Proof of Lemma 4.1

We constructively show that (DP ) is feasible. Every infinite-horizon feasible state by definition has at
least one feasible action. We inductively construct a feasible solution to (DP ) by choosing exactly one
feasible action in each state in each period and setting the corresponding z variable to a positive value
so as to satisfy the equality constraints. Specifically, pick a1 ∈ A(s1) and set z(s1, a1) = β(s1). Set
z(s1, a) = 0 for all a ∈ A(s1) different from a1. Suppose choosing action a1 in state s1 transforms the
system to state s2 in period 2. Pick a2 ∈ A(s2) and set z(s2, a2) = β(s2) + αz(s1, a1) = β(s2) + αβ(s1).
Also set z(s2, a) = 0 for all a ∈ A(s2) different from a2. Continuing this procedure ad infinitum yields a
feasible solution to (DP ) satisfying Assumption 2.1. Let Θ be a uniform upper bounded on cardinalities
|Sn|, Λ a uniform upper bound on cardinalities |A(sn)|. It is easy to see that every equality constraint
has at most Λ + Θ variables hence Assumption 2.2 holds. We now claim that for every feasible solution
z to (DP ) and every period n = 1, 2, . . .,∑

sn∈Sn

∑
an∈A(sn)

z(sn, an) = αn−1β(s1) + αn−2
∑

s2∈S2

β(s2) + . . . + α
∑

sn−1∈Sn−1

β(sn−1) +
∑

sn∈Sn

β(sn).

We prove this claim by induction on n. The claim is true for n = 1 since S1 = {s1} and
∑

a1∈A(s1)

z(s1, a1) =

β(s1) from the equality constraint since X(s1) = ∅. Suppose the claim is true for some period n. Then
the equality constraint in (DP ) implies that∑

sn+1∈Sn+1

∑
an+1∈A(sn+1)

z(sn+1, an+1) =
∑

sn+1∈Sn+1

β(sn+1) + α
∑

sn∈Sn

∑
an∈A(sn)

z(sn, an)

=
∑

sn+1∈Sn+1

β(sn+1) + αnβ(s1) + . . . + α
∑

sn∈Sn

β(sn),
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where the last equality follows from the inductive hypothesis. This restores our inductive hypothesis
proving the claim. Non-negativity of z then implies that

z(sn, an) ≤ αn−1β(s1) + αn−2
∑

s2∈S2

β(s2) + . . . + α
∑

sn−1∈Sn−1

β(sn−1) +
∑

sn∈Sn

β(sn)

for all sn ∈ Sn, an ∈ A(sn) and all n. Hence Assumption 2.3 holds with

u(sn, an) = αn−1β(s1) + αn−2
∑

s2∈S2

β(s2) + . . . + α
∑

sn−1∈Sn−1

β(sn−1) +
∑

sn∈Sn

β(sn).

Notice that components of u depend only on the time period and not on sn and an (since s1 is fixed). As
a result, Assumption 2.4 holds since costs are in l∞ as 0 ≤ cn(sn, an) ≤ c < ∞ and u is in l1. To see that

u ∈ l1 note that
∞∑

n=1

∑
sn∈Sn

∑
an∈A(sn)

u(sn, an) is bounded above as

≤ ΘΛ
∞∑

n=1

αn−1β(s1) + αn−2
∑

s2∈S2

β(s2) + . . . +
∑

sn−1∈Sn−1

αβ(sn−1) +
∑

sn∈Sn

β(sn)


= ΘΛ

(
β(s1) + . . . +

∑
sn∈Sn

β(sn) + . . .

)( ∞∑
n=1

αn−1

)
=

( ∞∑
n=1

∑
sn∈Sn

β(sn)

)
ΘΛ

1− α
< ∞.

Here the discount factor α, our choice of β(sn), and the inherent structure of our dynamic programs help
us embed u in l1. Recall that the discount factor appears in the constraints rather than with the costs in
linear programming formulations of dynamic programs as in problem (DP ). Thus even though the costs
are discounted, the cost coefficients in the linear objective function are in l∞, unlike say the production
planning problem (PROD) discussed in the paper. These same structural features will also prove helpful
in deriving inequality (3) critical for our “big-M” method below.

A.6 Proof of Lemma 4.2

Let z be a feasible solution to DP (N) and let sN+1 be any terminal state of the N -horizon truncation
of our original dynamic program. Owing to our extendability of finite-horizon strategies assumption, any
finite sequence of actions that terminates in sN+1 has an infinite-horizon feasible continuation. We append
z along the state-action pairs of this continuation respecting equality constraints and non-negativity to
construct a feasible solution to (DP ). The detailed procedure is similar to the one used in showing that
(DP ) has a feasible solution and hence is omitted.

A.7 A brief outline of the “big-M” approach for dynamic programs

We modify the original non-stationary infinite-horizon dynamic program defined in Section 4 as follows.
Include an artificial action ν(sn) feasible in state sn ∈ Sn for n = 1, 2, . . .. Similarly, include an ar-
tificial state ∆n feasible in period n and a corresponding feasible action µn for n = 2, 3, . . .. We set
gn(sn, ν(sn)) = ∆n+1 and gn(∆n, µn) = ∆n+1. See Figure 5. Let cn(sn, ν(sn)) = cn(∆n, µn) = M for
some arbitrarily large number M . Notice that extendability of finite-horizon strategies holds in this “ar-
tifical” dynamic program. Let γ(∆n) be a sequence of positive numbers indexed by artificial states ∆n

such that
∞∑

n=2
γ(∆n) < ∞. Then the CILP corresponding to the artificial dynamic program is given by

(DPM ) min
∞∑

n=1

∑
sn∈Sn

∑
an∈A(sn)

cn(sn, an)z(sn, an) +
∞∑

n=1

∑
sn∈Sn

My(sn, ν(sn)) +
∞∑

n=1

Mw(∆n, µn)
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Figure 5: A portion of the dynamic programming network for the artificial dynamic program corresponding
to the dynamic program in Figure 3. The artificial states and actions are shown with solid arrows for
emphasis. Artificial action labels are included next to the arrows.

y(sn, ν(sn)) +
∑

an∈A(sn)

z(sn, an)− α
∑

(sn−1,an−1)∈X(sn)

z(sn−1, an−1) = β(sn), sn ∈ Sn, ∀n,

w(∆n, µn)− αw(∆n−1, µn−1)− α
∑

sn−1∈Sn−1

y(sn−1, ν(sn−1)) = γ(∆n), n = 2, 3, . . .

z(sn, an) ≥ 0, sn ∈ Sn, an ∈ A(sn), ∀n, y(sn, ν(sn)) ≥ 0, sn ∈ Sn, ∀n
w(∆n, µn) ≥ 0, n = 2, 3 . . . .

Note that the variables in (DPM ) include the original variables z in (DP ) as well as the artificial variables
y and w. By replicating the proof of Lemma 4.1 one can confirm that (DPM ) satisfies Assumptions 2.1-
2.4. Hence (DPM ) has an optimal solution. More importantly, all finite-horizon truncations of (DPM ) are
extendable by an argument similar to Lemma 4.2 because finite-horizon strategies in the artificial dynamic
program are extendable. Notice that if solution z is feasible to (DP ) then it is also feasible to (DPM ) by

setting y(sn, ν(sn)) = 0 for all sn ∈ Sn, n = 1, 2, . . ., and w(∆n, µn) = γ(∆n)+
n−1∑
i=2

αn−iγ(∆i) ≡ ŵ(∆n, µn)

for n = 2, 3, . . .. Suppose z̄, ȳ, w̄ is an optimal solution to (DPM ) and suppose ȳ(sn, ν(sn)) > 0 for some sn

and ν(sn). Then w̄(∆n, µn) ≥ ŵ(∆n, µn) for all n. Then as in the “big-M” method for finite-dimensional
linear programs (Exercise 3.26 of [11]) it is easy to prove that (DP ) is infeasible. For if it is not, and if z

is feasible to (DP ), then
∑∞

n=1

∑
sn∈Sn

∑
an∈A(sn) cn(sn, an)z(sn, an) +

∞∑
n=1

Mŵ(∆n, µn) is at least

∞∑
n=1

∑
sn∈Sn

∑
an∈A(sn)

cn(sn, an)z̄(sn, an) +
∞∑

n=1

∑
sn∈Sn

Mȳ(sn, ν(sn)) +
∞∑

n=1

Mw̄(∆n, µn),

owing to feasibility of z, y = 0, ŵ and optimality of z̄, ȳ and w̄ to (DPM ) respectively. Therefore,∑∞
n=1

∑
sn∈Sn

∑
an∈A(sn) cn(sn, an)z(sn, an) is bounded below as

≥
∞∑

n=1

∑
sn∈Sn

∑
an∈A(sn)

cn(sn, an)z̄(sn, an) +
∞∑

n=1

∑
sn∈Sn

Mȳ(sn, νn) +
∞∑

n=1

M (w̄(∆n, µn)− ŵ(∆n, µn))

≥
∞∑

n=1

∑
sn∈Sn

Mȳ(sn, νn) +
∞∑

n=1

M (w̄(∆n, µn)− ŵ(∆n, µn)) ,
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where the second inequality uses non-negativity of cn(sn, an) and z̄(sn, an). Let n ≥ 1 be the smallest
period for which there exist sn and ν(sn) such that ȳ(sn, ν(sn)) > 0. This implies that w̄(∆n+1, µn+1)−
ŵ(∆n+1, µn+1) > αȳ(sn, ν(sn)). Then using an upper bound from Lemma 4.1 on the left hand side we

get cΘΛ
1−α

(
∞∑

n=1

∑
sn∈Sn

β(sn)

)
≥ M(ȳ(sn, ν(sn)) + αȳ(sn, ν(sn))), i. e.,

cΘΛ
1−α

(
∞∑

n=1

∑
sn∈Sn

β(sn)

)
ȳ(sn, ν(sn)) + αȳ(sn, ν(sn))

≥ M, (3)

which is a contradiction since M is arbitrarily large. Thus Assumption 2.1 implies ȳ = 0. This also
implies that w̄ = ŵ. Moreover, in that case, z̄ is in fact optimal to (DP ). In summary, (DPM ) satisfies all
assumptions required for Shadow Simplex and is equivalent to (DP ). This also shows that our assumption
that finite-horizon strategies are extendable is without loss of generality.

A.8 Proof of Lemma 4.3

First recall that a point in a convex set is its extreme point if it cannot be expressed as a convex
combination of two other distinct points in the convex set. Let z be as in the hypothesis of the lemma.
Suppose by way of contradiction that z is not an extreme point. Then there exist feasible solutions x and
y and a fraction 0 < λ < 1 such that z = λx+(1−λ)y. We show that x = y = z. Non-negativity of x and
y implies that for all states sn and actions an ∈ A(sn) for which z(sn, an) = 0, x(sn, an) = y(sn, an) = 0.
Then one can confirm using simple algebra starting at state s1 and working inductively that under this
restriction the equality constraints in (DP ) have a unique solution, namely, z. This implies x = y = z.

A.9 Proof of Lemma 4.4

Suppose z is a feasible solution to (DP ) and there exists a state sn (called a “bad” state) with (at least)
two actions an ∈ A(sn) and bn ∈ A(sn) such that z(sn, an) > 0 and z(sn, bn) > 0. Let sn+1 = gn(sn, an)
and tn+1 = gn(sn, bn) and note that sn+1 6= tn+1 since two distinct actions lead to two distinct states.
In this proof, we consider two types of state-action sequences whose existence follows from the structure
of problem (DP ). The first is of the form {(sr, ar)}∞r=n+1 starting at sn+1 such that for all r, sr ∈ Sr,
ar ∈ A(sr), sr+1 = gr(sr, ar) and z(sr, ar) > 0. The set of all such sequences is denoted Ω(sn, an). The sec-
ond is of the form {(tr, br)}∞r=n+1 starting at tn+1 such that for all r, tr ∈ Sr, br ∈ A(tr), tr+1 = gr(tr, br)
and z(tr, br) > 0. The set of all such sequences is denoted Ω(sn, bn). We say that a sequence from
Ω(sn, an) “passes through” a particular state, or this particular state “belongs to” the sequence if it is
included in a state-action pair that is in the sequence. Similarly for sequences in Ω(sn, bn). We also use
this terminology for state-action pairs. We consider two possible cases and in both these show that it is
possible to construct two distinct solutions x and y feasible to (DP ) such that z = (x + y)/2 and hence
z cannot be an extreme point to complete the proof by contrapositive.
Case 1: There exists a bad state sn for which a sequence from Ω(sn, an) passes through a state that also
belongs to some sequence in Ω(sn, bn).
Let sn+k be the first state that these two sequences have in common for some k > 1, that is, sn+k = tn+k,
and sn+j 6= tn+j for j = 2, 3 . . . , k − 1. Specifically, let ε(an) > 0 be the largest amount that can
be subtracted from z(sn, an), reducing values of z(sn+1, an+1), . . . , z(sn+k−1, an+k−1) in order to satisfy
the equality constraints in (DP ) at the same time forcing these variables to be non-negative. Simi-
larly, let ε(bn) > 0 be the largest amount that can be subtracted from z(sn, bn), reducing values of
z(tn+1, bn+1), . . . , z(sn+k−1, bn+k−1) in order to satisfy the equality constraints in (DP ) at the same time
forcing these variables to be non-negative. Set ε = min{ε(an), ε(bn)}. Let x be the feasible solution
formed from z by subtracting ε from z(sn, an), reducing values of z(sn+1, an+1), . . . , z(sn+k−1, an+k−1),
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adding ε to z(sn, bn), and increasing values of z(tn+1, bn+1), . . ., z(tn+k−1, bn+k−1) to satisfy equal-
ity constraints. Similarly, let y be the feasible solution formed from z by adding ε to z(sn, an), in-
creasing values of z(sn+1, an+1), . . . , z(sn+k−1, an+k−1), subtracting ε from z(sn, bn), and reducing val-
ues of z(tn+1, bn+1), . . . , z(tn+k−1, bn+k−1) to satisfy equality constraints. Then it is easy to check that
z = (x + y)/2 and hence z is not an extreme point.
Case 2: There is no bad state sn for which a sequence from Ω(sn, an) and a sequence from Ω(sn, bn)
both pass through a common state.
Consider any bad state sn and corresponding actions an ∈ A(sn) and bn ∈ A(sn) such that z(sn, an) > 0,
and z(sn, bn) > 0. For any sequence ζ ∈ Ω(sn, an), and any period N ≥ n+1, ζN denotes the state-action
pair that ζ passes through in period N and thus we can write z(ζN ). Define φz

N (sn, an) =
∑

ζ∈Ω(sn,an)

z(ζN ).

Suppose without loss of generality that z(sn, an) ≥ z(sn, bn). Note that φz
N (sn, an) ≥ α(N−n)z(sn, an),

which in turn is at least α(N−n)z(sn, bn), and also that φz
N (sn, bn) ≥ α(N−n)z(sn, bn). Let x be a new

feasible solution formed as follows. x(sn, an) = z(sn, an) − z(sn, bn) and x(ζN ) = z(ζN ) − ε(ζN ) for
some 0 ≤ ε(ζN ) ≤ z(ζN ) for all ζN ∈ Ω(sn, an) for all N ≥ n + 1. These ε(ζN ) are chosen so that
φε

N (sn, an) = α(N−n)z(sn, bn) satisfying (DP ) equality constraints at every state that sequences ζ pass
through. Moreover, x(sn, bn) = 2z(sn, bn) and x(ξN ) = z(ξN ) + δ(ξN ) for some 0 ≤ δ(ζN ) ≤ z(ξN )
for all ξN ∈ Ω(sn, bn) for all N ≥ n + 1. These δ(ξN ) are chosen so that φδ

N (sn, bn) = α(N−n)z(sn, bn)
satisfying (DP ) equality constraints at every state that sequences ξ pass through. Similarly, y is a new
feasible solution formed so that y(sn, an) = z(sn, an) + z(sn, bn) and y(ζN ) = z(ζN ) + ε(ζN ). More-
over, y(sn, bn) = 0 and y(ξN ) = z(ξN ) − δ(ξN ). All the other components of x and y are equal to the
corresponding components of z implying z = (x + y)/2.

A.10 Proof of Lemma 5.1

We first show constructively that (MDP) has a feasible solution. The procedure is similar to problem
(DP ). The first equality constraint is simply

∑
a1∈A(s1)

z(s1, a1) = β(s1) since X(s1) = ∅. Thus we

arbitrarily choose one action a1 ∈ A(s1) and set z(s1, a1) = β(s1). For all other actions in a ∈ A(s1), we set
z(s1, a) = 0. Then, the equality constraint corresponding to every s2 ∈ S2 reduces to

∑
a2∈A(s2)

z(s2, a2) =

αp1(s2|s1, a1)z(s1, a1) + β(s2). We therefore choose an arbitrary action a2 ∈ A(s2) and set z(s2, a2) =
αp1(s2|s1, a1)z(s1, a1) + β(s2). That is, set z(s2, a2) = αp1(s2|s1, a1)β(s1) + β(s2). For all other actions
a ∈ A(s2) we set z(s2, a) = 0. Continuing this way we can construct a feasible solution to (MDP) thus
satisfying Assumption 2.1. Every equality constraint has at most Λ + ΛΘ variables hence Assumption
2.2 holds. Similar to problem (DP ) we now claim that for any n,

∑
sn∈Sn

∑
an∈A(sn)

z(sn, an) = αn−1β(s1) +

αn−2
∑

s2∈S2

β(s2)+ . . .+
∑

sn∈Sn

β(sn) . We prove this by induction. The claim is true for n = 1 as S1 = {s1}

and X(s1) = ∅ implying that
∑

a1∈A(s1)

z(s1, a1) = β(s1). Now suppose it is true for some period n. Then

owing to the equality constraint,
∑

sn+1∈Sn+1

∑
an+1∈A(sn+1)

z(sn+1, an+1) equals

∑
sn+1∈Sn+1

β(sn+1) + α
∑

sn+1∈Sn+1

∑
sn∈X(sn+1)

∑
an∈X (sn,sn+1)

pn(sn+1|sn, an)z(sn, an)

=
∑

sn+1∈Sn+1

β(sn+1) + α
∑

sn∈Sn

∑
an∈A(sn)

z(sn, an) =
∑

sn+1∈Sn+1

β(sn+1) + αnβ(s1) + . . . + α
∑

sn∈Sn

β(sn),

where the last equality follows from the inductive hypothesis. This restores the inductive hypothesis
proving our claim. The rest of the proof is identical to (DP ) and hence is omitted.
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A.11 Proof of Lemma 5.2

Similar to the (DP ) case hence omitted.

27


