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We analyze a short-term revenue optimization problem involving the targeting of customers for a promotion in which a
finite number of perishable items are sold on a last-minute offer. The goal is to select the subset of customers to whom the
offer will be made available in order to maximize the expected return. Each client replies with a certain probability and
reports a specific value that might depend on the customer type, so that the selected subset has to balance the risk of not
selling all items with the risk of assigning an item to a low value customer.

We show that threshold strategies, which select all those clients with values above a certain optimal threshold, might
fail to achieve the maximal revenue. However, using a linear programming relaxation, we prove that they attain a constant
factor of the optimal value. Specifically, the achieved factor is 1/2 when a single item is to be sold and approaches 1 as the
number of available items grows to infinity. Also, for the single item case, we propose an upper bound based on a sharper
linear relaxation that allows us to obtain a threshold strategy achieving at least 2/3 of the optimal revenue. Moreover,
although the complexity status of the problem is open, we provide a polynomial time approximation scheme for the single
item case.
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1. Introduction
In this paper we consider a short-term revenue optimization
problem that involves selecting a set of customers for a
promotion in which a finite number of perishable items are
sold on a last-minute offer. The goal is to maximize the
total expected return by choosing the subset of customers to
whom the offer will be made available, taking into account
that each client replies with a certain probability and reports
a specific value that might depend on the customer type.
Any item not sold is either lost or derived to a secondary
market at a fixed price that sets a reference value from
which we measure a customer’s surplus value.
As a motivation example consider the situation faced by

an airline offering discount business upgrades on a flight
close to its departure date, say two days ahead. The offer
may be sent to some or all of the passengers that hold a
current booking in economy class for that flight. The airline
values its clients differently, based on personal character-
istics such as past travel behavior, propensity to buy an

upgrade at regular price, level of fidelization, or other spe-
cific demographic data. However, because of lack of time
it is not possible to make the offer on a one-by-one basis
from higher to lower valued customers, and they must all be
contacted at once by e-mail, after which the items will be
assigned according to a first-come-first-served discipline.
A similar situation happens with the business class

upgrades sold at the gate by several airlines. Available busi-
ness class seats are offered at a certain price to a subset
of the customers who are waiting for boarding, who may
be discriminated according to the fare class they bought.
Although the price is flat, the airline values its clients
differently, as consistently making upgrades available for
cheaper fares disincentives the sales for more expensive
ones. If, however, the upgrades are made available only to
the highest fare class, the airline risks of not selling enough
upgrades. One can imagine similar situations in the car or
computer industries, where a company wants to put on sale
some old units currently held in stock before a new model
is released to the market.
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Intuitively, the promotion should include enough cus-
tomers to have a high probability of selling all the items.
However, if too many customers are included, one may
face an excess of demand and end up selling an item to a
low revenue client who displaces a higher valued customer
responding later. Handling this type of trade-off is a basic
issue in revenue management problems. A natural policy
is to select all customers whose values are above a cer-
tain threshold, which is chosen to maximize the expected
revenue. Such strategies are indeed optimal if low revenue
clients react to the promotion before higher revenue clients
but could fail to be optimal otherwise. In our short-term
setting, we assume that there is no correlation between
the order in which customers react and their value. In this
case we show that a threshold policy, although not optimal,
attains a guaranteed fraction of the optimal revenue. More-
over, this fraction becomes asymptotically close to one as
the number of items grows.
In practice, the estimation of the acceptance probabili-

ties and the values of clients might be based on historic
data accumulated from previous promotional sales, possibly
by grouping the clients into classes or categories accord-
ing to different demographic and behavioral characteristics.
Because such estimates might be imprecise, it is worth not-
ing that, although small errors could significantly change
the optimal solution, the optimal objective value varies con-
tinuously with the input data. Furthermore, threshold poli-
cies are robust under calibration errors because they depend
only on the order of clients rather than on specific values.
Then our approximation results for these types of policies
hold even under noisy data.
Our setting differs significantly from classic revenue

management approaches (we refer the reader to Talluri and
van Ryzin 2005 for a detailed treatment). Probably the most
relevant difference comes form our short notice assump-
tion. For instance, without this assumption the so-called
nested policies (i.e., threshold policies applied over several
rounds) turn out to be optimal (Ball and Queyranne 2009).
On the other hand, although sampling targets from a pop-
ulation for a direct mail campaign is an issue already con-
sidered in marketing (Bult and Wansbeek 1995), our model
deviates from the marketing literature because the short-
notice assumption does not allow a dynamic approach. In
this sense, note that the first-come-first-served discipline
appears to be reasonable in a short-notice setting, as it is
indeed the right model whenever the response times of the
customers are independent and identically distributed. This
contrasts with rationing policies that yield better revenues
when more time is available to sell the items.
The paper is structured as follows. Section 2 gives a

mathematical description of the problem, which leads to
a basic, though unexplored, discrete optimization problem.
We present in §2.2 counterexamples to some natural prop-
erties that one might expect, such as the nonoptimality of
threshold policies, while in §3 we show that these types
of solutions lead to algorithms with explicit bounds on the

approximation guarantees. In particular, we describe a triv-
ial heuristic with a 1/2-approximation guarantee for the
single item case that becomes asymptotically optimal when
the number of items on sale goes to infinity. In §4 we dis-
cuss a sharper LP relaxation and derive an improved 2/3-
approximation algorithm for the single item case, which
is also a threshold strategy. Then, in §5, we deviate from
threshold strategies and provide an algorithm that takes any
� > 0 and outputs a �1+ ��-approximate solution in time,
which is polynomial for fixed �, that is to say a polyno-
mial time approximation scheme (PTAS). We conclude in
§6, pointing out some directions for further research, while
in the appendix we present statistics on the numerical per-
formance of the proposed algorithms and their comparison
with two additional heuristics.

2. Problem Formulation
A finite number of m identical perishable items is to be
offered on a promotional sale among a finite set of cus-
tomers C = �1� � � � � n�. Each customer i ∈ C is character-
ized by a probability pi ∈ 	0�1
 of accepting the offer, and
a value vi � 0 that he reports when buying an item. This
value represents the net expected revenue, namely, the pro-
motional price minus the expected value of the customer
if he is excluded from the promotion, accounting for the
possibility that he would buy an item anyway at the reg-
ular price. We assume that any unsold item is lost, as for
instance in the case of empty seats on a given flight close
to its departure date. We also suppose

∑
pi � m and that

customers have been pre-ordered by decreasing values so
that v1 � v2 � · · · � vn. The problem is to choose the set
of customers A ⊆ C to whom the promotional sale will
be made available. If m is large, more clients should be
included; while for small m, one should be more selective
to avoid high-revenue customers being displaced by low-
revenue clients. The goal is to balance the risk of displace-
ment and the risk of not selling all the items, maximizing
the total expected return.
Note that we assume neither that the values vi are similar

in any way, nor that they are correlated with the proba-
bilities pi. Thus the model is also suitable to incorporate
other customer-specific characteristics in other type of pro-
motional sales, including regional considerations, loyalty
issues, dispatching costs, among others. In some situations,
it might be reasonable to assume that pi > pj whenever
vi > vj . If this is the case, it is easy to observe that thresh-
old policies (i.e., policies selecting all customers reporting
a value above a certain threshold) are optimal. However,
this assumption is not necessarily the most natural, because
vi is the value of the client from the point of view of the
company, not the valuation from the point of view of the
customer. For instance, consider again the business upgrade
example given in the introduction, and assume the value of
a client for the company is given by the discounted price of
the upgrade minus the regular price times the probability a



Cominetti et al.: Optimal Selection of Customers for a Last-Minute Offer
880 Operations Research 58(4, Part 1 of 2), pp. 878–888, © 2010 INFORMS

customer buys at regular price. In such a situation, a cus-
tomer with low propensity to buy (small pi) will also be
less likely to induce dilution (i.e., his propensity to buy at
regular price if he does not receive the offer will also be
small), and therefore the value of such a client from the
point of view of the company will be higher.

2.1. The Optimization Problem

To state the problem precisely we introduce decision vari-
ables xi ∈ 	0�1
, which represent the probability with which
we make the offer available to customer i. This approach
involves a randomized choice of the customers and cov-
ers the possibility of an include/exclude policy represented
by the extreme values xi = 1 or xi = 0. Alternatively, we
consider as decision variable the value yi = pixi, which rep-
resents the probability for customer i to be a respondent,
that is to say, a client who receives the offer and is willing
to accept it. Consider the Bernoulli random variables

Yi =
⎧⎨
⎩
1 if customer i is a respondent

0 otherwise

with ��Yi = 1� = yi, and let R = �i ∈ C� Yi = 1� be the
random set of respondents. If �R� � m all the demand can
be satisfied yielding a total revenue of

vR =∑
j∈R

vj �

Otherwise, because only m items are available, we must
choose m customers from R to assign the items. If this is
done according to a first-come-first-served discipline and
we assume no correlation between the �pi� vi�s and the
reaction time, every subset B ⊆ R of m clients is equally
likely to occur with probability q = 1/

(�R�
m

)
, and then the

expected value for R is

vR = ∑
B⊆R� �B�=m

(∑
j∈B

vj

)
q = m

�R�
∑
j∈R

vj �

Both cases may be recombined in the formula vR =
min�1�m/�R��∑j∈R vj , with the convention vR = 0 when
R = �. Finally, assuming that customers act independently,
the total expected revenue is

V �y� = ∑
R⊆C

vR pR�y� = Ɛ

[
min

{
1�

m∑
j∈C Yj

}∑
j∈C

vjYj

]
� (1)

where pR�y� = ∏
j∈R yj

∏
j �∈R�1 − yj� is the probability of

observing the respondent set R. The optimization problem
to be solved is therefore

�P� V ∗ = max
0�yi�pi

V �y��

Although the variables yi are continuous, problem �P�
has a discrete nature: Because V �y� is affine with respect

to each yi, it follows that �P� has an extremal opti-
mal solution with yi ∈ �0� pi�. Indeed, if y∗ is opti-
mal, the slope corresponding to any “fractional” variable
0 < y∗

i < pi must be zero, so that rounding up to pi or down
to 0 indifferently does not change the value and yields
an extremal solution and a corresponding optimal subset
of customers A∗ = �i ∈ C� y∗

i = pi� with no randomization
involved. More generally, to any feasible y we may asso-
ciate an extremal solution 	y
 with V �	y
�� V �y� by using
the following monotone rounding procedure: Consider each
fractional variable 0 < yi < pi sequentially and compare the
alternative solutions with yi = pi and yi = 0, updating y to
the best of both. We will denote A	y
 the support of this
solution, that is, the set of those i ∈ C with 	y
i > 0.
It follows that, when C is a small set, �P� may be solved

by brute force considering all possible subsets A ⊆ C and
comparing the values VA = V �yA� with yA

i = pi for i ∈ A
and yA

i = 0 otherwise. This is feasible provided that V �y�
can be computed efficiently. The sum in (1) has exponen-
tially many terms and is not well suited for direct computa-
tion. An alternative expression may be derived considering
the random variables S =∑

j∈C Yj and Si =
∑

j �=i Yj , which
allows us to write

V �y� =∑
i∈C

vi 
i�y�� (2)


i�y� = Ɛ

[
min

{
1�

m

S

}
Yi

]
= yi Ɛ

[
min

{
1�

m

1+ Si

}]
� (3)

where 
i�y� represents the probability that customer i ∈ C
gets an item (i.e., he receives an offer, he accepts it, and
he is lucky enough to get one of the available items). The
distribution of each Si may be computed by convolution in
O�n2� arithmetic operations (see Cormen et al. 2001), so
that (2)–(3) provide an effective way to compute V �y� in
O�n3�.

2.2. Conjectures and Counterexamples

To reduce the effort involved in solving �P� by brute force,
one may seek structural properties to limit the search to a
smaller range of subsets. Unfortunately, most intuitive con-
jectures turn out to be false. For instance, because high
values vi are preferable it is natural to expect an optimal
set of the form A∗ = �1� � � � � k� = �i� vi � v̄� for a certain
threshold value v̄, a common policy in revenue manage-
ment (Littlewood 1972, Talluri and van Ryzin 2005). In
our setting this turns out to be suboptimal, as shown by
an elementary example for m = 1 items and n = 3 cus-
tomers with characteristics p1 = p2 = 0�5, p3 = 1, v1 = 2,
v2 = 1, v3 = 0�9, for which the optimal solution is A∗ =
�1�3�. Roughly speaking, a customer is valuable only if
his contribution to reducing the risk of not selling all the
items compensates the losses produced when he displaces
a higher valued client. In the example above, the second
player is not valuable enough but the third is, despite the
fact that v2 > v3. This occurs because p2 is too small while
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p3 is large enough, showing that the decision to include
a customer depends not only on the values but also the
probabilities of all clients.
In general, the highest value customer is always in

the optimal set as he cannot displace any higher valued
demand. Also using (2) it follows that if i ∈ A∗ then A∗

contains all customers j satisfying vj > vi and pj � pi

simultaneously. Observe that this implies that if pis and
vis are positively correlated, then the optimal solution is a
threshold strategy, and thus can be found efficiently. How-
ever, except for such simple properties, the structure of the
optimal set has little to do with the order of the vis. As
a matter of fact, any set containing the highest value cus-
tomer can be optimal. More precisely, let Ā ⊆ �+ be any
finite set with 1 ∈ Ā. Then one can find an instance with
m = 1, in which customers are strictly ordered by decreas-
ing values v1 > v2 > · · · > vn, and where the optimal solu-
tion is exactly A∗ = Ā. To build such an instance, let C =
�1� � � � � n� with n to be set later on, and take momentar-
ily v1 = 10, p1 = 0�1 and vi = 1, pi = � for i = 2� � � � � n.
Now, any subset A including customer 1 together with k
additional clients has expected revenue

V��k� = 1− 0�9
�k + 1��

	�1− ��k+1 − 1+ �k + 1��1− ��k�
�

Considering the monotone change of variables
y = �1− ��k+1, we have V��k� = 1− �0�9 ln�1− ��/��g�y�,
where g�y� = �y − 1�/ ln y + y��/��1− �� ln�1− ���� is
strictly concave and attains its maximum at a unique
point y� ∈ �0�1�. It turns out that V��k� as a function
of the continuous variable k has a unique maximum,
which is characterized by the first-order optimality con-
dition. More explicitly, taking � such that e−� = 1 − �
and setting x = k + 1, this optimality condition reads
e�x = �x�x�e� −1�+1�+1. We observe that for any x > 1,
by taking � = 1/x the right-hand side of this equation
is larger, while for � big the left-hand side dominates.
Hence, there exists � for which the equality holds at x. In
particular, for x = �Ā� one may find � > 0, such that the
maximum of V��k� is attained precisely at k̄ = �Ā� − 1.
Now, using this fact and taking n > max�i� i ∈ Ā�, it
follows that any subset of C that contains customer 1
and k̄ additional customers is optimal. Moreover, if we
decrease the probabilities pi = � to pi < � for all i ∈ C\Ā,
we get that the only optimal solution is Ā. Finally, we
may perturb the values vi so that v1 > v2 > · · · > vn, with
a perturbation small enough to ensure that Ā remains the
unique optimal solution.
Given the previous counterexample, one might think that

sorting the customers according to an alternative criterion
such as expected revenue pivi could be more appropri-
ate (except for the highest valued customer who is always
included in A∗). However, not only can the optimal set dif-
fer significantly from any set complying with the order of
pivis, but also any such solution may be arbitrarily poor.
Indeed, let � > 0 and consider the instance with C = C1 ∪

C2 = �1� � � � � n� where n is sufficiently large. Take vi = 1,
pi = 1 for i ∈ C1, and vi = 1/�, pi = � for i ∈ C2, and
slightly perturb the values vi so that the customers in C1

have slightly higher pivi. Clearly, for large �C2�, the optimal
solution has value V ∗ arbitrarily close to 1/�. On the other
hand, if in addition �C1� � �C2�, the best solution comply-
ing with the order of pivis has value arbitrarily close to 1.

3. A Simple Approximation Algorithm
Although the computational complexity of problem �P� is
open, the examples in §2.2 suggest that an optimal solu-
tion might have a complicated structure. These observations
motivate the following question: Can the best �1� � � � � k�
strategy be far away from V ∗? In the sequel, we answer
this question in the negative by providing constant fac-
tor approximation algorithms returning solutions of this
form. These algorithms run in polynomial time and have
an approximation guarantee that improves and becomes
asymptotically optimal as the number of items m increases.
Because V �y� can be computed in O�n3�, the best threshold
solution for the form A∗ = �1� � � � � k� can be found in O�n4�
arithmetic operations by running the following algorithm.

Algorithm 1 (max-k)
Compute Vk = V �p1� � � � � pk�0� � � � �0� for k = 1� � � � � n
choose the best Vk and set A∗

1 = �1� � � � � k�.

We will measure how far the solution A∗
1 might be from

the optimal value by comparing to an even simpler method
that requires only two function evaluations with an O�n3�
complexity. Surprisingly, this trivial heuristic computes a
threshold-type solution that becomes asymptotically opti-
mal when the number of items m is large.

Algorithm 2 (add-m)
Find the largest k with p1 + · · · + pk �m;
Let z̄ = �p1� � � � � pk���0� � � � �0� with � = m −∑k

i=1 pi;
Set A∗

2 = A	z̄
 the support of the monotone rounding of z̄.

Note that a randomized variant of this method, which
computes z̄ and then selects �1� � � � � k� with probability 1−
�/pk+1 and �1� � � � � k + 1� with probability �/pk+1, gives a
solution whose expected value satisfies all the guarantees
we prove for Algorithm 2. Because no monotone rounding
is involved, this variant runs in O�n� without ever comput-
ing the objective function!
To estimate the quality of the solutions A∗

1 and A∗
2, we

consider the following relaxation of �P�. We observe from
(3) that 
i�y� � yi and

∑
i 
i�y� = Ɛ	min�S�m�
 � m, so

that V ∗ may be bounded from above by the linear program

V ∗
�max

z

{∑
i

vizi� zi ∈ 	0� pi
�
∑

i

zi �m

}
=∑

i

viz̄i = 	V �

where the optimum z̄ is obtained by putting as much weight
as possible on higher valued customers, which is precisely
the solution computed in add-m. Clearly, V �z̄� � V ∗ � 	V
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and because the set A∗
2 corresponds to the monotone round-

ing 	z̄
 we deduce

V �z̄�� VA∗
2
� VA∗

1
� V ∗

� 	V � (4)

A lower bound showing that V �z̄� is not too far from the
optimal value V ∗ is obtained by letting

��y� = Ɛ

[
min

{
1�

m

1+ S

}]
�

so that 
i�y� � yi��y�. Hence V �y� � ��y�
∑

i viyi, from
which we get Lemma 1.

Lemma 1. V �z̄�� ��z̄� 	V .

3.1. The Single Item Case

A direct consequence of (4) and Lemma 1 is that z̄ yields
a 1/2-approximate solution if m = 1.

Proposition 2. If m = 1, then V �z̄�� �1/2�V ∗ and A∗
1�A∗

2
are 1/2-approximate solutions for �P�.

Proof. It suffices to note that for z̄ we have Ɛ�S� = 1
and then ��z̄� = Ɛ�1/�1+ S�� � 1/�1+ Ɛ�S�� = 1

2 . Hence
V �z̄�� 1

2
	V , which combined with (4) gives the desired con-

clusion. �

The bound of 1/2 is tight for m = 1. For instance, if
v1 = 1, p1 = � and v2 = 0, p2 = 1− �, the optimal solution
is y∗ = �p1�0� with value V ∗ = �, while the relaxed prob-
lem gives z̄ = �p1� p2� with V �z̄� = �1/2�	�+�2
. The ratio
V �z̄�/V ∗ clearly tends to 1/2 as � ↓ 0. Thus our analysis
is tight.

3.2. The Multiple Item Case

To prove the asymptotic optimality of z̄ when m → �, we
establish a lower bound for ��z̄� that converges to 1. To
this end we note that using the Cauchy-Schwartz inequality,
we get

��z̄� = 1− Ɛ

[
1+ S − m

1+ S
��S�m�

]

� 1− 1
m + 1

Ɛ	�1+ S − m���S�m�


� 1− 1
m + 1

√
Ɛ	�1+ S − m�2


√
��S �m��

Because Ɛ�S − m� = 0 we have Ɛ	�1+ S − m�2
 = 1+ 	�2,
where 	�2 =Var�S� =∑

i z̄i�1− z̄i�, and then

��z̄�� 1−
√
1+ 	�2

m + 1

√
��S �m�� (5)

Now, 	�2 � m and ��S � m� � 1 imply the lower bound
��z̄�� 1− 1/

√
m + 1, showing that V �z̄� is asymptotically

optimal for large m. A sharper bound can be obtained using
Jogdeo and Samuels (1968, Theorem 3.2), who state that
“if the mean number of successes in n independent hetero-
geneous Bernoulli trials is an integer m then the median is
also m” (see Siegel 2001).

Proposition 3. Let 	�2 = ∑
i z̄i�1 − z̄i�. Then ��z̄� � 1 −

�1/
√

m + 1�
√

1
2 + 1/�2

√
m�.

Proof. Because Ɛ�S� = m ∈ �, the median of S is also
m, that is to say ��S > m� � 1

2 � ��S � m�, and
therefore ��S � m� = ��S > m� + ��S = m� � 1/2 +
��S = m�. Now, according to Cominetti and Vaisman
(2008) and Vaisman (2005) we have ��S = m� � M/ 	�
with M = maxu�0

√
2ue−2u

∑�
k=0�u

k/k!�2 < 1/2, so that
��S �m��min�1�1/2+ 1/�2 	���, which plugged into (5)
yields

��z̄�� 1−
√
1+ 	�2

m + 1
min

{
1�

√
1
2

+ 1
2 	�

}
�

Because the map � �→ �1 + �2�min�1� 1
2 + 1/�2��� is

increasing, the conclusion follows from 	� �
√

m. �

Proposition 3 implies that the solutions A∗
1 and A∗

2 are
asymptotically optimal with rate of convergence of order
1/

√
m. This rate cannot be improved because of the central

limit theorem. Indeed, consider a large instance of n identi-
cal clients with vi = 1 and pi = p. The optimal solution for
any number of items m is to include all customers A∗ = C,
with optimal value V ∗ ∼ m for n large enough. Now sup-
pose that p = m/k with k integer so that A∗

2 = �1� � � � � k�
which according to (1) gives a value

VA∗
2
= Ɛ	min�S�m�


= m + Ɛ

[
min

{
S − m√
m�1− p�

�0
}]√

m�1− p��

where S has binomial distribution B�k�p� with Ɛ�S� = m
and Var�S� = m�1− p�. If we now consider a case with p
fixed and m�k large, the central limit theorem implies that
VA∗

2
∼ m	1−√

�1− p�/�2
m�
, which underestimates the
optimal value by a factor of the order 1/

√
m.

3.3. An Alternative Approach for the Single
Item Case

Both solutions A∗
1 and A∗

2 provide a lower bound for
the optimal value V ∗. We proved in Proposition 2 that
for m = 1 the value VA∗

2
is at least �1/2� 	V so that

V ∗ ∈ 	�1/2� 	V � 	V 
. An improved lower bound (and a
corresponding approximate solution) can be obtained
using (3) and noting that 
i�y� = yi Ɛ	1/�1+ Si�
 �

yi/�1+ Ɛ�Si�� = yi/�1+∑
j �=i yj � � yi/�1+∑

j∈C yj�.
Therefore, V ∗ � �V , with �V = max0�yi�pi

�
∑

i∈C viyi�/
�1+∑

i∈C yi�� The latter is closely related to the common
lines problem in transit network optimization (Chriqui and
Robillard 1975) and can be easily solved by a linear time
algorithm.

Algorithm 3 (max-avg)
Find k with 	v1p1 +· · ·+vkpk
/	1+p1 +· · ·+pk
 maximal
set A∗

3 = �1� � � � � k�.
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The set found by this algorithm satisfies �V � VA∗
3
� V ∗.

Note that for each z feasible in the relaxation 	V we have

∑
i∈C

vizi � 2
∑

i∈C vizi

1+∑
i∈C zi

� 2 �V �

from which we get �1/2� 	V � �V so that �V is a sharper
lower bound and then V ∗ ∈ 	 �V � 	V 
. It follows that A∗

3 is a
1/2-approximate solution for �P� as well.

4. A Sharper Relaxation
We now derive an improved LP relaxation of �P�, which
follows from a nonlinear nonconvex formulation, and use it
to obtain a 2/3-approximation algorithm for the single item
case. Using the expression V �y� =∑

R⊆C vRpR�y� given in
(1) and introducing new variables xR = pR�y�, we have

V ∗ =max
∑
R⊆C

vRxR

0� yi � pi for all i ∈ C

xR = ∏
j∈R

yj

∏
j �∈R

�1− yj� for all R ⊆ C�

The xRs are equivalently defined by the constraints xR =
xR\�i��yi/�1− yi�� for all i ∈ R together with

∑
R⊆C xR = 1,

so that the problem becomes

V ∗ =max
∑
R⊆C

vR xR

0� yi � pi for all i ∈ C

xR = xR\�i�

yi

1− yi

for all R ⊆ C� i ∈ R

∑
R⊆C

xR = 1�

which may then be relaxed into the following linear
program:

V ∗
� VLP =max

∑
R⊆C

vRxR

0� xR � xR\�i�

pi

1− pi

for all R ⊆ C� i ∈ R

∑
R⊆C

xR = 1�

Although there are instances for which V ∗ < VLP , the fol-
lowing property of extremal solutions for VLP provides intu-
ition on the structure of the above linear program.

Lemma 4. Let x be a basic solution for VLP . Then for all
R �= � such that xR > 0, we have

xR = x�

∏
i∈R

pi

1− pi

� (6)

Proof. The inequalities xR � xR\�i��pi/�1− pi�� induc-
tively imply xR � x�

∏
i∈R�pi/�1− pi�� and then, because

the sum of the xRs is 1, it follows that x� > 0.

Let us build a graph G = �N �E� with one vertex nR ∈ N
for each R ⊆ C with xR > 0, and an edge �nR�nR\�i�� ∈
E iff i ∈ R and xR = xR\�i��pi/�1− pi��. We claim that
G is connected, from which (6) follows at once. If this
was not the case, we could find a nontrivial partition of N
into L ∪ U with n� ∈ L, such that xR < xR\�i��pi/�1− pi��
when nR ∈ U and nR\�i� ∈ L. Let ��� > 0 be such that
�
∑

R∈U xR = �
∑

R∈L xR, and small enough so that x̄ and x̃
defined as

x̄R =
⎧⎨
⎩

xR�1− ��� for all R ∈ U

xR�1+ ��� for all R ∈ L�
and

x̃R =
⎧⎨
⎩

xR�1+ ��� for all R ∈ U

xR�1− ��� for all R ∈ L�
and

are feasible for LP. It follows immediately that x =
�1/2�x̄ + �1/2�x̃, and thus x is not an extreme point. This
contradiction shows that G is connected, which completes
the proof. �

Although VLP seems to be a fairly tight upper bound on
V ∗, it might be hard to compute since it has exponentially
many variables and constraints. We may, however, derive a
weaker relaxation for the single item case, which yields a
2/3–approximation algorithm. Let us rewrite the LP as

VLP =max
∑
i∈C

vi

∑
R�i

xR

�R�
0� xR � pi�xR\�i� + xR� for all R ⊆ C� i ∈ R∑
R⊆C

xR = 1�

Letting zi =
∑

R�i�xR/�R��, we get
∑

i∈C zi = 1− x�, while
the inequalities xR � pi�xR\�i� + xR� yield

zi �
∑
R�i

pi�xR\�i� + xR�

�R� � pi�x� + x�i��

+ pi

2

∑
R�i� �R��2

�xR\�i� + xR��

Because
∑

R xR = 1 the last sum is equal to 1− x� − x�i�,
so that zi � �pi/2��x� +x�i� +1�� �pi/2�	x�/�1− pi�+1
.
Combining these inequalities and renaming the variable x�

as x, we get

VLP � VLP2
=max

∑
i∈C

vizi

zi �
pi

2

[
x

1− pi

+ 1
]

for all i ∈ C

∑
i∈C

zi = 1− x

zi� x � 0�

from which we derive the following alternative approxima-
tion algorithm.
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Algorithm 4 (lp-relax)
Find a basic optimal solution �z∗� x∗� for VLP2

and let yi =
2z∗

i /�x∗/�1− pi� + 1�
Set A∗

4 = A	y
 the support of the monotone rounding of y.

Note that the solution given by this algorithm is also of
threshold type A∗

4 = �1� � � � � k�. Indeed, once the optimal x∗

is known, the optimal values z∗
i are obtained by putting as

much weight as possible on high-value customers, saturat-
ing the constraints.

Proposition 5. When m = 1, we have VA∗
4
� 2

3V
∗.

Proof. Because VA∗
4
� V �y� and VLP2

� V ∗, it suffices to
show V �y�� 2

3VLP2
. To this end we write

V �y� =∑
i∈C

viyiƐ

(
1

1+∑
j �=i Yj

)
=∑

i∈C

viz
∗
i �i�

with �i = 2Ɛ�1/�1+∑
j �=i Yj��/�1 + x∗/�1− pi��. Let us

prove that �i � 2/3 whenever z∗
i > 0. Indeed, Jensen’s

inequality implies �i � 2/	�1+∑
j �=i yj ��1+ x∗/�1− pi��
,

and because

∑
j �=i

yj =
∑
j �=i

2z∗
j

1+x∗/�1−pj�
�

2
1+x∗

∑
j �=i

z∗
j = 2�1−x∗−z∗

i �

1+x∗ �

we deduce

�i �
2�1+ x∗�

�3− x∗ − 2z∗
i ��1+ x∗/�1− pi��

�

When x∗ = 0, the inequality �i � 2/3 follows at once. For
the case x∗ > 0 we note that because �z∗� x∗� is a basic
solution, exactly one of the two inequalities involving each
z∗

i must be tight so that z∗
i > 0 implies z∗

i = �pi/2��1+ x∗/
�1− pi��, which plugged into the previous bound yields

�i �
2�1+ x∗�

�3− pi − x∗/�1− pi���1+ x∗/�1− pi��
�

The conclusion follows because the latter is at least 2/3 for
all x∗ ∈ 	0�1
. �

Note that if we have three clients with characteristics
p1 = �, p2 = p3 = 1− �/2, v1 = 1, v2 = v3 = �/�2− ��, we
have that VLP2

= V ∗ = � and A∗
4 = �1�2�3�, whose value

approaches 5�/6 for � small. Thus our algorithm is not
better than a 5/6-approximation. On the other hand, our
analysis in the last proposition is tight. Indeed, the client-
by-client bound �i that we use to prove the result can actu-
ally achieve the value 2/3. To see this note that in the same
three-client instance above the value z1 in LP2 is �/2, while
in V �A∗

4� the coefficient accompanying v1 approaches �/3.

5. A PTAS for the Single Item Case
In this section we provide polynomial time approximation
scheme (PTAS) for the single item case, namely, given
� > 0 we show how to compute (in time which is poly-
nomial for fixed �) a strategy that yields a value within a
factor �1+�� from the optimum. Recall that after introduc-
ing �P� in §2 we noted that this problem has an equivalent
combinatorial version, namely

max
A⊆N

VA �= ∑
R⊆A

vRpR� (7)

where pR = ∏
i∈R pi · ∏i∈A\R�1 − pi�. We say a client i ∈

N is large if pi > � and small otherwise. We will show
that the following algorithm computes an �1 + O�

√
���-

approximate solution:

Algorithm (PTAS)
For all Al ⊆ N with �Al�� �1/�� ln�1/�� do

→ Discard all large clients in N\Al

→ for all k = 1� � � � � n compute VAl∪�1�����k�

Output the best solution found.

The running time of the algorithm can be estimated as
follows. We try at most

(
n

�1/�� ln�1/��

)
subsets Al and, for

each one, we evaluate VAl∪�1�����k� for k = 1� � � � � n. Because
each evaluation takes O�n3�, the overall running time of
the algorithm is O�n4+ln�1/��/��, which is polynomial for
fixed �.
To establish the �1 + O�

√
��� approximation guaran-

tee we proceed as follows. First, we show that restrict-
ing the optimization in (7) to strategies with at most
�1/�� ln�1/�� large clients, accounts for a loss factor of at
most �1+ O����. Therefore, it suffices to check all strate-
gies A that contain a subset of large clients Al of size at
most �1/�� ln�1/��. Second, for the small clients we will
show that the best threshold strategy is near optimal. This
is precisely what the algorithm does.

5.1. Restricting the Optimal Strategy

We show that there is a near-optimal solution for �P� whose
sum of probabilities is not too large.

Lemma 6. For small � > 0 there is A ⊆ N with
∑

i∈A pi �

ln�1/�� such that V ∗ � �1+ 3��VA.

Proof. Take A∗ optimal for �P� and assume without loss
of generality that A∗ = �1� � � � � n�. If

∑
i∈A∗ pi � ln�1/��

just take A = A∗. Otherwise, let A �= �1� � � � � k� ⊆ A∗ with
k the largest integer satisfying

∑k
i=1 pi � ln�1/��. The prob-

ability that no customer in A accepts can be bounded as

q �= � 	no customer in A accepts


= ∏
i∈A

�1− pi�� e−∑k
i=1 pi � e−�ln�1/��−1� = e��

where the first inequality follows from 1−x � e−x and the
second from the definition of k.
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When no customer in A accepts the strategy, A gets zero
revenue while A∗ gets at most vk. On the other hand, if
some customers in A accept, then strategy A gets more
revenue than A∗, and of course revenue at least vk. Thus,
for �� �3−e�/3e, we have VA∗ −VA � vk � q/�1− q�VA �

3�VA. �

According to this lemma, we may restrict to strategies A
such that

∑
i∈A pi � ln�1/��, which accounts for a loss of

at most a factor 1+ O���.

5.2. Modifying the Instance

The next step is to consider a modified instance that is
easier to solve and from which we recover an approximate
solution for the original problem �P�. The idea is to split
each small client pi � � into several clones with an even
smaller probability �, and to show that this does not affect
too much the expected revenue. More precisely, given an
instance I = ��v1� p1�� � � � � �vn�pn�� with set of clients N
and a small � > 0, we build an instance I ′ that contains
all large customers in I ; and also for each small customer
i ∈ I , we add to I ′ a number qi of clones with value vi and
probability �. Here qi is chosen to be the largest integer
satisfying

1− pi � �1− ��qi � (8)

Observe that the quantity p̃i �= 1− �1− ��qi can be made
arbitrarily close to pi by taking � small enough. For con-
venience, we denote Ĩ the perturbed instance of I in which
each small pi is changed into p̃i. By continuity, for any
A ⊂ N , the value VA in both instances I and Ĩ are arbitrar-
ily close. Hence, by choosing � small enough we can make
the optimal values of I and Ĩ lie within a factor arbitrarily
close to 1.
Let N ′ denote the set of clients in I ′ and let �� N ′ → N

so that for each i ∈ N the set �−1�i� denotes the cor-
responding clones in N ′ (just one if client i is large).
We claim that I ′ and Ĩ have very similar optimal values.
Roughly speaking, we interpret the value of a strategy A in
I as the value under a modified random process in which
a client i ∈ A accepts if and only if at least one clone in
�−1�i� accepts in I ′. As usual, for every j ∈ N ′ we let Y ′

j

denote a Bernoulli random variable with ��Y ′
j = 1� equal

to pj if j is a large, and equal to � for all clones j of small
customers. We will also denote Yi = max�Y ′

j � j ∈ �−1�i��
for each i ∈ N and we observe that these Yis are indepen-
dent Bernoulli’s of parameter pi for i ∈ N large and p̃i for
i ∈ N small. Using these variables the value VA′ of a strat-
egy A′ ⊂ N ′ in the instance I ′ can be expressed as

VA′ = Ɛ

[∑
j∈A′

vjY
′
j

/∑
j∈A′

Y ′
j

]
�

while the value �VA of a strategy A ⊂ N in the instance Ĩ is

�VA = Ɛ

[∑
i∈A

viYi

/∑
i∈A

Yi

]
�

We will show that both A and A′ = �−1�A� yield the same
revenue with high probability. To this end we note that
the probability that all customers in �−1�i� reject the offer
in I ′ is

� 	�−1�i� reject
 = �1− ��qi = 1− p̃i� (9)

while the the next lemma shows that the probability that
more than one clone in �−1�i� accepts simultaneously is
very small.

Lemma 7. Let R′ be the respondent customers in A′ =
�−1�A�. If � < 1/2, then for each small client i ∈ N we
have � 	��−1�i� ∩ R′�� 2
� 2 p̃2

i � 2p2
i .

Proof. We observe that

� 	��−1�i� ∩ R′�� 2
 +� 	��−1�i� ∩ R′�� 1


= 2� 	��−1�i� ∩ R′�� 2
 +� 	��−1�i� ∩ R′� = 1


� Ɛ	��−1�i� ∩ R′�
 = qi�� ln
1

1− p̃i

�
p̃i

1− p̃i

�

where the last inequalities follow by taking logarithm in
(9). Now, using (9) once again we have

� 	��−1�i� ∩ R′�� 1
 = 1−� 	�−1�i� reject
 = p̃i�

which combined to the previous estimate yields
� 	��−1�i� ∩ R′�� 2
� p̃i/�1− p̃i� − p̃i � 2p̃2

i . �

We will say that a (random) respondent set R′ for the
instance I ′ is good if ��−1�i� ∩ R′�� 1 for all small clients
i ∈ N . Otherwise, we will say that R′ is bad.

Lemma 8. Let A ⊆ N with
∑

i∈A p̃i � ln�1/�� and A′ =
�−1�A�. Then VA′ � �1+ O�

√
��� �VA.

Proof. First notice that �VA � �1 + O�
√

��� ·∑
R� �R��1/

√
� vRp̃R. Indeed,

�VA =∑
i∈A

vi

( ∑
R�i� �R��1/

√
�

p̃R

�R� + ∑
R�i� �R�>1/

√
�

p̃R

�R�
)

�
∑
i∈A

vi

( ∑
R�i� �R��1/

√
�

p̃R

�R� +∑
R�i

p̃R

√
�

)

�
∑
i∈A

vi

∑
R�i� �R��1/

√
�

p̃R

�R� +∑
i∈A

vip̃i

√
�

�
∑

R� �R��1/
√

�

vRp̃R + �1− ln��
√

� �VA�

where the last inequality comes from

�VA =∑
i∈A

vip̃iƐ

(
1

1+ Si

)

�
∑
i∈A

vip̃i

1
1+∑

i∈A p̃i

�
∑
i∈A

vip̃i

1
1− ln�

�
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On the other hand, VA′ can be bounded as follows:

VA′ = ∑
R⊆A

∑
R′ � ��R′�=R

vR′pR′

�
∑

R⊆A��R��1/
√

�

( ∑
R′ good� ��R′�=R

vR′pR′

)
� (10)

Now, for all R′ good we have vR′ = vR, while∑
R′ good� ��R′�=R pR′ is the probability that a random R′ is

good and ��R′� = R; that is to say

∏
i�R

� 	��−1�i� ∩ R′� = 0

∏
i∈R

� 	��−1�i� ∩ R′� = 1


�
∏
i�R

�1− p̃i�
∏
i∈R

�p̃i − 2p̃2
i � = p̃R

∏
i∈R

�1− 2p̃i��

where the inequality follows from Lemma 7. Plugging the
latter into (10) we get

VA′ �
∑

R⊆A� �R��1/
√

�

vRp̃R

∏
i∈R

�1− 2pi�

�
∑

R⊆A� �R��1/
√

�

vRp̃R�1− 2��1/
√

��

The lemma follows by combining this bound with that
obtained for �VA. �

Lemma 9. Let A ⊆ N and set A′ = �−1�A�. Then VA′ �

�1+ O���� �VA.

Proof. Note that from the definition of Yi = max�Y ′
j � j ∈

�−1�i���
∑

j∈�−1�i� Y ′
j . Then

VA′ =∑
i∈A

∑
j∈�−1�i�

vjpjƐ

(
1

1+∑
k �=j Y ′

k

)

�
∑
i∈A

vi

∑
j∈�−1�i�

pjƐ

(
1

1+∑
l∈A� l �=i

∑
k∈�−1�l� Y ′

k

)

�
∑
i∈A

viƐ

(
1

1+∑
l �=i Yl

) ∑
j∈�−1�i�

pj �

To conclude, observe that if i is big, then �−1�i� is a sin-
gleton and

∑
j∈�−1�i� pj = pi, while for i small we have∑

j∈�−1�i� pj = �qi � �1+ O����p̃i. �

5.3. Proof of Approximation Guarantee

Theorem 1. For small � > 0 our algorithm computes a
�1+ O�

√
���-approximate solution in polynomial time.

Proof. Let V ′ be the optimal value of instance I ′. Using
Lemma 6 there is A′ with

∑
i∈A′ pi � ln �1/�� whose value

is within a factor �1 + O���� of V ′. Let Al denote the
set of large customers in A′ so that we necessarily have
�Al� � �1/�� ln �1/��. Now, let also As be the set of small
customers in A′, so that Al ∪ As = A′. Note that we can
assume without loss of generality that As contains all clones

of the highest valued small clients, except eventually for a
threshold small client i∗ for which only a strict subset of
its clones �−1�i∗� is considered. Indeed, because all small
clients have the same probability �, if j �∈ As and k ∈ As

are two small clients with vj > vk, then exchanging j and
k in As increases the value of A′.
We observe that strategy A = ��A′�\�i∗� is of the form

considered in the algorithm, so that denoting A∗ the best
strategy found by the algorithm, we have

VA � VA∗ � V ∗� (11)

Now, consider the strategy A′′ = �−1�A�. The only differ-
ence between A′′ and A′ is that A′′ does not contain any
clone in �−1�i∗�. Thus the value of A′′ is smaller than that
of A′ only if no customer in A′′ accepts and some cus-
tomer in A′ does, in which case the difference is exactly vi∗ .
This event occurs with probability at most �, from where
we get VA′ � VA′′ + �vi∗ . Moreover, if A′′ �= A′, then VA′ �

vi∗ , as otherwise including one more clone j of customer
i∗ to A′ would lead to a strategy whose value is at least
�1 − ��VA′ + �vi∗ . This implies �1 − ��VA′ � VA′′ , which
combined with Lemmas 8 and 9 yields

�VA = �1+ O�
√

���VA′′

� �1+ O�
√

���VA′ = �1+ O�
√

���V ′� (12)

Clearly, by a continuity argument, we can fix a priori �
small enough so that the p̃is are all sufficiently close to the
pis in order to guarantee VB = �1+O���� �VB for all B ⊆ N .
In particular, such a � guarantees that VA = �1+ O���� �VA,
which combined with (11) and (12) leads to

VA∗ � VA � �1+ O�
√

���V ′� (13)

Now, by Lemma 6 there is a set Ā ⊆ N , whose sum
of probabilities is at most ln�1/��, such that V ∗ � �1 +
O����VĀ. Again, the choice of � implies VĀ � �1 +
O���� �VĀ, while Lemma 8 gives

�VĀ � �1+ O�
√

���V�−1�Ā� � �1+ O�
√

���V ′�

so that V ∗ � �1+ O�
√

���V ′. The latter together with (13)
concludes the proof. �

6. Final Remarks
Throughout the paper we have assumed that customers
are selected according to a first-come-first-served disci-
pline. We have argued that this policy is reasonable in our
short-term setting, because it only assumes that customers
response times are independent and identically distributed,
and moreover, this seems to be the only alternative because
it may be too difficult, or too late, to discriminate among
clients. In addition, note that our approximation results
concerning threshold policies in §3, use as a comparison
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benchmark (upper bound) 	V , the solution of a linear pro-
gram that is also an upper bound for the revenue of any
rationing policy, so that the potential gain of using a more
sophisticated policy is still at most O�1/

√
m�. In particular,

for 10 items, our simple policies are guaranteed to obtain
at least 80% of the revenue of any rationing policy, and
this fraction grows to 1 as the number of items to be sold
grows.
Let us now comment on further research directions.

First, a natural extension, related to stochastic knapsack
(Dean et al. 2008), is the following. As before, customers
accept the offer with probabilities pi and contribute a
value vi if they buy an item. The difference is that cus-
tomer i ∈ C demands si � 1 units. The function V �y�
becomes more complicated, and the problem is now NP-
hard: For pi = 1 we have the standard knapsack problem.
Furthermore, in this situation computing V �y� is actually
#P-complete (Platzman et al. 1988). An interesting ques-
tion is whether the techniques derived in this paper may be
adapted to design approximation algorithms for this more
general problem.
Another possible extension is to consider a multistage

problem as in revenue management. In this situation the
short-term assumption is no longer valid, and one may
address offers in several rounds, maybe a fixed number k.
One would now look for an adaptive online algorithm that,
given the current situation and the number of rounds left,
computes the optimal subset of clients to whom the offer
should be addressed in the next round.
A third direction, related to the airline-industry applica-

tion mentioned in §1, concerns pricing. When clients can
be contacted in a personalized fashion by email, the air-
line may quote a different price for each selected client.
Naturally, the clients’ probability of accepting an offer will
decrease as the price increases, while the value of a client
increases with the selling price. Therefore, a natural model
is to associate with client i a decreasing function pi� �+ →
	0�1
 and an increasing function vi� �+ → �+, represent-
ing the acceptance probability and value for a given price,
respectively. One may argue about the actual shape of these
functions; for instance, it is natural to take vi�·� as an affine
function. The problem is now to select the customers to
whom the offer will be made available, together with a
price for each selected customer, so as to maximize the
expected revenue.

Appendix: Numerical Experiments
In this section we present some statistics that illustrate the
numerical performance of the algorithms A∗

1 through A∗
4

discussed previously. We also compare these solutions with
two additional heuristics that work well in practice. The
first heuristic starts from A = � and recursively adds or
removes a single element to get a maximal increase in
value, namely

Heuristic 5 (in-out)

Initialize A∗
5 = �

Find B with �B �A∗
5� = 1 and VB maximal

If VB � VA∗
5
, then stop; otherwise set A∗

5 = B and repeat.

The resulting solution may be suboptimal, as for m = 1
and n = 3 with p1 = 0�5, p2 = 0�9, p3 = 1, v1 = 75, v2 = 50,
v3 = 47, we have A∗

5 = �1�3� while the optimal solution
is A∗ = �1�2�. This example reveals another unexpected
feature: If Ak ⊆ C denotes an optimal solution for the orig-
inal problem with the additional constraint �A� � k, then a
customer included in Ak need not be considered when we
relax to �A� � k + 1. As counterintuitive as it may seem,
this occurs in the example above where A1 = �3� while
A2 = A3 = A∗ = �1�2�.
The second heuristic builds on the previous idea consid-

ering not only the addition/removal of elements but also
the swapping of an element in the current solution with an
element from outside.

Heuristic 6 (swap)

Initialize A∗
6 = �

Find B of the form B = �A∗
6\�i�� ∪ �j� with VB maximal

If VB � VA∗
6
, then stop; otherwise set A∗

6 ← B and repeat.

The resulting solution A∗
6 is still suboptimal as for m = 1

and n = 5 with

Probabilities (pi) 0�7 0�6 0�7 0�2 1�0
Values (vi) 94 69 68 67 64

where A∗
6 = �1�5�, while the optimal solution is A∗ =

�1�2�3�.

Table A.1. Algorithm performance: m = 1, n = 5,
10,000 instances

Algorithm % opt Min ratio Avg ratio Time

optimal (A∗) 100�0 1�0000 1�0000 12�9
max-k (A∗

1) 98�2 0�9590 0�9999 3�2
add-m (A∗

2) 77�4 0�7531 0�9928 0�6
max-avg (A∗

3) 51�2 0�7358 0�9793 0�7
lp-relax (A∗

4) 88�3 0�9451 0�9989 18�3
in-out (A∗

5) 99�8 0�9489 0�9999 3�9
swap (A∗

6) 100�0 0�9972 1�0000 6�9

Table A.2. Algorithm performance: m = 1, n = 10, 200
instances.

Algorithm % opt Min ratio Avg ratio Time

optimal (A∗) 100�0 1�0000 1�0000 1�611�2
max-k (A∗

1) 93�0 0�9916 0�9998 23�5
add-m (A∗

2) 47�5 0�8168 0�9771 0�4
max-avg (A∗

3) 11�5 0�8169 0�9564 2�3
lp-relax (A∗

4) 74�0 0�9775 0�9988 21�5
in-out (A∗

5) 99�0 0�9918 0�9999 15�4
swap (A∗

6) 100�0 1�0000 1�0000 36�5
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Table A.3. Algorithm performance: m = 3, n = 10, 200
instances.

Algorithm % opt Min ratio Avg ratio Time

optimal (A∗) 100�0 1�0000 1�0000 1�601�8
max-k (A∗

1) 88�0 0�9813 0�9995 23�5
add-m (A∗

2) 72�5 0�9049 0�9968 5�0
in-out (A∗

5) 97�0 0�9738 0�9995 66�9
swap (A∗

6) 100�0 1�0000 1�0000 202�2

We run a series of 10,000 random instances for m = 1
and n = 5 (with pis and vis generated uniformly in 	0�1

and 	0�100
, respectively), which we solved exactly as well
as by each of the six algorithms. Table A.1 shows the per-
centage of problems solved to optimality by each method,
the minimal and average optimality ratios attained over the
10,000 trials, and the average running time per instance (in
milliseconds).
The lower bound �V was always in the range 	0�5�0�86


with an average of 0.66, while the upper bound 	V was
in 	1�00�1�49
 with 1.18 as average. The exercise was
repeated with 200 instances of size m = 1 and n = 10, with
the result shown in Table A.2.
We note the excellent performance attained by max-k

and lp-relax, at a small fraction of the execution time
required by the brute force method. Despite the fact that
add-m and max-avg are dominated by max-k, which finds
the best threshold solution, these methods are still close
to the optimum on average and are much faster, so they
could be useful in applications where speed is an issue.
On average, add-m outperforms max-avg both in optimal
value and execution time, with the additional advantage
that add-m applies for all m and not only for m = 1 as
max-avg. The in-out and swap heuristics get closer to the
optimal value with a moderate increase in execution time.
The situation is similar for m = 3, n = 10, as shown in
Table A.3 (note that max-avg and lp-relax do not apply
for m > 1).
When we increase the dimension of the problem the

exact solution takes too long to be computed by brute force
and all the running times grow, with an increasing relative
advantage for add-m. For m = 15 and n = 50 we get the

following values and running times:

Algorithm max-k add-m in-out swap

Value 1�057�9 1�057�9 1�058�2 1�058�2
Time 3�265 140 41�740 494�321

Note that the in-out and swap running times increase sig-
nificantly. We do not know if these heuristics run in poly-
nomial time or not.
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