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1. Introduction
In this paper we study the approximation of decision prob-
lems, subject to structural monotonicity constraints, in view
of robustly determining optimal actions. A key motiva-
tion for imposing monotonicity constraints on the approx-
imation of a decision problem is to combine information
from available data with structural insights obtained from
a model-based analysis of the problem. Structural mono-
tonicity constraints naturally arise when viewing the objec-
tive function as a composition of several “component
functions,” each of which directly relates to an observable
phenomenon that may naturally exhibit a monotone behav-
ior, such as a supply curve that is increasing in price, a
demand curve that is decreasing in price, a response curve
that is increasing in a certain stimulus, or a production
function with a decreasing slope due to decreasing returns
to scale.

Our approach has five key features. First, it is semi-
parametric in the sense that each element of the class of
approximating functions (splines of a certain degree and
for a certain set of breakpoints or “knots”) can be repre-
sented by a unique, finite-dimensional parameter vector.1

With this it is possible to arbitrarily closely approximate
any continuous component function (and not just functions
within a narrow parameterized class). Standard parametric
approximation methods do not have this feature. For exam-
ple, in a classical linear regression one varies parameters
so as to select a linear model by minimizing a quadratic
cost criterion, which may lead to a significant residual
error whenever the actual underlying system is nonlinear.
In addition, the method provides a natural way of incor-
porating monotonicity constraints with respect to first and

second derivatives of the component function by translating
them into simple restrictions in the parameter space.2

Second, the approach combines the problems of model
estimation and optimization by evaluating the approxi-
mation error using any user-defined robustness criterion,
such as average performance, worst-case performance,
expected gain, or competitive ratio. The approach is there-
fore in the spirit of recent advances in operational statistics
(Shanthikumar and Liyanage 2005, Lim et al. 2006, and
Besbes et al. 2010), which emphasize the importance of
using a metric for the evaluation of an approximation error
that can be directly related to the cost of mistakes in the
underlying decision. An optimal robust decision is obtained
together with an optimal approximation error by solving a
pair of nested optimization problems.

Third, the method works equally well in data-rich and
data-poor (or sample-sparse) environments, because it treats
interpolation and approximation in the same unifying frame-
work. In a sample-sparse environment the intersample
behavior of a component function we wish to approximate is
not well understood. This may be the case even though the
information at a given sample point is extremely accurate.
We therefore distinguish between intersample and intrasam-
ple uncertainty. Our method deals with both sources of
parameter uncertainty jointly by fitting a stochastic process
instead of a deterministic function (cf. Figure 1). The result-
ing stochastic model can be used to design optimal experi-
ments for the acquisition of additional data points, so as to
maximize the value of the additional information.

Fourth, in fitting the stochastic process, we use informa-
tion derived from the data as well as the structural insights
about the behavior of the component functions. The latter
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Figure 1. (a) Approximation of response curve in
sample-sparse environment. (b) Detail with
confidence interval.

(a)

(b)

implies a set of “consistent parameters” (a bounded polyhe-
dron as we show), whereas the former yields a conditional
probability distribution over these consistent parameters.

Fifth, the method produces not only an optimal decision
relative to a given robustness criterion (and a “best approxi-
mation error”), but also a probability measure that indicates
the likelihood of optimality for any feasible action. The
latter constitutes a valuable input for sensitivity analysis.

We illustrate the method for the practical problem of
designing optimal settlement offers to collect delinquent
credit-card debt (cf. §5).

1.1. Related Literature

a. Robust Optimization and Identification. Work on
the problem of joint system identification and optimiza-
tion dates back to Haimes et al. (1971), who formulate
a bicriterion vector-optimization problem that includes a
quadratic error measure for the identification of a finite

number of model parameters based on sample observa-
tions and a cost function to evaluate the quality of deci-
sions. As detailed further by Haimes and Wismer (1972),
several approaches to this multicriteria optimization prob-
lem are possible. First, one can consider the minimization
of a convex combination of the two criteria (parametric
approach). Second, it is possible to alternate between mini-
mizing each criterion individually and using the solution to
one problem for the other problem. This recursive two-step
approach does not generally converge. Third, by incorpo-
rating one of the two criteria as a constraint when opti-
mizing the other criterion, the trade-offs between optimiza-
tion and identification can be made apparent (�-criterion
approach). Fourth, one can follow a “robust” procedure by
optimizing a worst-case version of the model, in which the
parameters have been chosen so as to most adversely affect
the optimization result (maximin approach). The last two
approaches resurface in more recent work on robust opti-
mization (see, e.g., Ben-Tal and Nemirovski 1998, 2002; or
Bertsimas and Sim 2004), which studies the dependence of
a mathematical program, consisting of an objective func-
tion and a constraint set, on the set of unknown parameters
either with or without a probabilistic structure incorporat-
ing a priori information about likelihood of the different
parameter realizations. It aims at solving robust versions of
the original problems, approximating uncertainty sets, e.g.,
by suitable ellipsoids, to obtain computationally tractable
programs. In that same spirit, our method generates a lin-
early constrained parameter domain (a bounded polyhe-
dron) that represents the decision maker’s knowledge about
the model structure and which defines the support of the
robustness criterion.

b. Shape-Preserving Approximation. The problem of
“monotone approximation” (i.e., the approximation of a
monotone function f with monotone functions of a cer-
tain class) was introduced by Shisha (1965).3 Early efforts
in this area concentrated on bounding the approximation
error by the modulus of continuity of derivatives of f . Such
“Jackson-type” inequalities were established, for example,
by De Vore (1977a, b) for polynomials and splines, respec-
tively, and by Anastassiou and Yu (1992) for wavelets.
Much of the subsequent developments have focused on
the special case where the available data points satisfy
the monotonicity constraints themselves, so that monotone
interpolation becomes feasible. McAllister et al. (1977),
based in part on Passow and Roulier (1977), provide an
algorithm that determines an interpolating shape-preserving
(i.e., increasing, convex) spline. The monotonicity domain
for the parameters of spline polynomials is generally not
simple. For example, in the case of cubic �1-splines, the
monotonicity domain for the data-normalized coefficients
consists in the nontrivial union of a triangle and an ellipsoid
(Fritsch and Carlson 1980). This stands in contrast to the
computationally much simpler polyhedron obtained here
using so-called B-splines (see, e.g., De Boor 1978/2001).4
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B-splines have been used by Dierckx (1980) for approx-
imating convex functions, and by Ramsay (1988) for
approximating increasing functions. Kocić and Milovanović
(1997) and Kvasov (2000) survey recent advances in
shape-preserving approximation of data by polynomials
and splines, which include more general shape constraints
such as symmetry, unimodality, or discontinuities. The
extant work on shape-constrained spline interpolation has
produced a multitude of algorithms that yield various
candidates for interpolation functions, depending on the
precise constraints, smoothness requirements, and degrees
of the splines considered. However, for the purpose of
jointly identifying and optimizing a decision model it is
necessary to characterize the class of suitable models,
i.e., by constructing finite-dimensional and computation-
ally simple parameter domains, rather than by pinpointing
particular candidate functions. In that sense, our work is
related to recent papers by Beliakov (2000, 2002), who
examines conditions for the approximation of functions
using least-squares splines subject to shape constraints.5

c. Applications. Shape-preserving approximation tech-
niques have seen only very few applications in economics
and management science.6 Wang and Judd (2000) approx-
imate a two-dimensional value function in a savings allo-
cation problem using two-dimensional shape-constrained
splines. In the statistics literature, there has been work on
the parametric estimation of functions subject to econom-
ically motivated shape constraints, such as isotone regres-
sion (Robertson et al. 1988) or concave regression (Hanson
and Pledger 1976). This work is principally concerned with
model identification and relies on the assumption that the
chosen class of parametric regressors is appropriate for the
model under consideration. The criteria used to measure
the approximation error (such as mean square error or max-
imum absolute error) are typically disconnected from the
underlying decision problem. Besbes et al. (2010), moti-
vated in part by this deficiency, develop a hypothesis test
for the significance of a parameterization based on sam-
ple data of objective-function values when comparing the
parameter-induced optimum to a nonparametric baseline
estimate of the objective function. In sample-sparse envi-
ronments, however, parametric methods are of limited use
only, because the data does not induce any reasonable
assumptions on the model class. We therefore concentrate
on nonparametric (or semiparametric) methods.

A much-needed assumption for many of the available
nonparametric estimation methods in the literature is that
a “well-diversified” and “sufficiently large” data sample is
available. However, in many applications, such as the prob-
lem of designing optimal credit-card settlement offers dis-
cussed in §5, adding a new sample point may be fairly
expensive. As a result, a method is needed that performs
well in such sample-sparse environments by systematically
using all available structural information to identify prim-
itives of the problem in view of making good decisions

(and not necessarily to minimize an abstract error crite-
rion). We assume that the structural information is avail-
able in the form of monotonicity constraints and require
an entire class of approximating functions (consistent with
these constraints) to remain “in play” until a decision
has been selected, tightly coupling the optimization and
identification.

1.2. Performance Comparison

To illustrate the performance gain that can be achieved
using our method in a sample-sparse environment, we
compare it to three standard nonparametric estimation
procedures: (i) kernel-based, (ii) K-nearest-neighbor, and
(iii) orthogonal-series.7 Each of these methods provides an
estimate y of a dependent variable ỹ, conditional on the
realization x of an independent variable x̃. The estimated
functional relationship, f �x� = E	ỹ � x̃ = x
, is then typi-
cally used in place of the unknown relationship in the deci-
sion problem. Another common feature of these methods is
that they all seek to replace the true functional relationship
y = f �x� by an approximate relationship,

f̂ �x�=
n∑
j=1


jWn� j�x�� (1)

which is obtained as a superposition of n “weight func-
tions,” Wn�j� · �, j ∈ �1� � � � � n�. Specifically, in meth-
ods (i) and (ii) n is the cardinality of the data sample
z = ��xj� yj��

n
j=1, it is 
j = yj , and the weight function

is given by Wn�j�x�=���x− xj�/��/
∑n

l=1���x− xl�/��,
where �� �→� is a suitable kernel function. Note that in
method (ii) the (variable) scaling factor �= ��x� is chosen
so as to include the K nearest data points closest to x in (1).
Common shapes of �� · � include rectangular, triangular,
and quadratic (Epanechnikov). In method (iii) n is the order
of the (truncated) orthogononal series, the Wn�js are basis
functions for the approximation class (e.g., �0	a� b
), and
the 
js are the corresponding Fourier coefficients.

In sample-sparse environments (see, e.g., the application
in §5), methods (ii) and (iii) are unsuitable. In method (ii),
any nontrivial support diameter may lead to excessive aver-
aging, which makes it impossible to obtain function esti-
mates that include higher-frequency components (which
allow for fast variations and thus flexible intersample
behavior in sample-sparse regions). Method (iii) does allow
for higher frequencies, yet in its standard form provides
only a single trend estimate, without necessarily interpo-
lating the data. At least in data-sparse settings, the lat-
ter is not useful when the accuracy at the few sample
points is fairly large. We also note that the quality of the
approximation is limited by the well-known sampling the-
orem (Shannon 1949) that relates the maximum frequency
in (1) (“bandwidth” B) to the required distance between
two sample points (“Nyquist rate” 1/�2B�). Lastly, stan-
dard orthogonal-series methods are at present unsuited for
use in conjunction with monotonicity constraints.8
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Consider now method (i), kernel-based estimation.9 Sim-
ilar to method (ii), the Wn�js are scaled by a (constant)
scaling factor � > 0 to avoid trivial estimation of the
relation y = f �x� between sample points. As before, this
introduces—via averaging—an approximation error in the
function estimate f̂ �x�, especially when the (few) avail-
able data points are fairly accurate. Furthermore, the func-
tion estimate inherits the properties of the kernel functions.
Because the latter are typically not monotone, this compli-
cates the consideration of shape constraints. The following
example illustrates the performance of our procedure based
on B-splines in comparison to method (i).
Numerical Example. For the Epanechnikov kernel,

with

Wn�j�x�=
[ n∑
l=1

(
1−

(
x− xl
�

)2)
1	xl−��xl+�


]−1

·
(
1−

(
x− xj
�

)2)
1	xj−��xj+�
�

Figure 2. (a) Approximation of the response-rate function using Epanechnikov kernel. (b) Expected income (spin)
using Epanechnikov kernel. (c) Approximation of the response-rate function by a stochastic process using
the proposed monotone approximation method. (d) Stochastic process of expected income (spin) using the
proposed monotone approximation method.

given the support diameter 2� > 0, Figure 2(a) shows the
kernel-based estimation procedure applied to a sample-
sparse debt-collection problem (cf. §5, Segment 2) to obtain
an estimate f̂ �x� of a “response rate,” where x ∈ 	0�1

corresponds to a settlement rate, and where the data sam-
ple z = ��0�1�� �0�49�0�0996�� �0�6�0�0743�� �1�0�0457��
is given. The decision maker is interested in maximizing
the expected revenue g�f̂ �x�� x�= xf̂ �x�, depicted in Fig-
ure 2(b). As can be seen, kernel-based estimation incor-
rectly suggests an optimal settlement rate of 100%, given
various reasonable bandwidths, although the data itself sug-
gest that a settlement rate of 49% is superior. Figures 2(c)
and 2(d) show the corresponding results for the monotone
approximation method used in this paper. As detailed in
§5, the method predicts that the optimal average perfor-
mance is obtained at a settlement rate of 20%. The expected
return (“spin”) at the optimal settlement rate suggested by
our method is about 80% larger than what is achieved by
the kernel-based estimator.10 The performance difference
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for a different robustness measure (competitive ratio) is
similarly large. The main driver for the difference is that
the new method considers all functional relationships con-
sistent with the existing knowledge about the structure of
the decision problem, which provides significant additional
information, especially in sample-sparse settings.

1.3. Outline

The paper is organized as follows. Section 2 introduces
the decision problem, its decomposition into component
functions, and the basic problem of approximating the
component functions subject to structural monotonicity
constraints. Section 3 provides characterizations of the
“monotonicity domain” and the “robust approximation set”
conditional on observed sample data. Spline parameters
in the latter set guarantee that approximations are within
a prespecified approximation-error bound and satisfy the
monotonicity constraints. Section 4 examines informational
issues related to the use of sample data, in terms of both
consistent belief updates and information acquisition by
selecting an optimal experiment. In §5 we analyze a debt-
settlement problem as an application of the method in a
sample-sparse setting. Section 6 concludes.

2. The Model

2.1. Decision Problem

We consider the decision problem of finding

x∗ ∈ argmax
x∈X

g�f �x�� x�� (2)

where X = 	a� b
 ⊂ �, with −� < a < b <�, is a given
choice set, f � X→� is a component function, and g� �×
X → � is a structural objective function. We make the
following assumptions on the primitives of the decision
problem (2).
A1. g ∈ �0

L, i.e., the structural objective function g is
Lipschitz-continuous.
A2. For some r � 1� f ∈ �r 	a� b
, i.e., the component

function f is r-times continuously differentiable.
We assume that although the structural objective function

g is known, an analytic expression for the component func-
tion is generally not available. In other words, the decision
maker knows how to compute his objective function

"�x�= g�f �x�� x� (3)

only after f has been identified. For example, if x is the
price of a product and f �x� denotes a (downward-sloping)
market demand curve, then a revenue-maximizing firm’s
objective function "�x� is given by g�f �x�� x�= xf �x�.

Remark 1. The situation in which the objective function
itself is unknown corresponds to the special case where
g�f �x�� x�= f �x�.

Remark 2. The reason for writing the objective function
in (2) as a composition of a structural objective function
and a component function is that this enables the deci-
sion maker to use both his knowledge about properties of
the component function and his knowledge about how the
component function affects the objective function before
committing to a specific feasible action x ∈ X. Using this
decomposition, the decision maker can solve the identifi-
cation problem and the optimization problem jointly. The
standard procedure would be to first solve the identification
problem to obtain a component-function approximation
f̂ � X → �. The decision maker’s approximate objective
function is then

�"�x�= g�f̂ �x�� x��

leading to the approximate solution

�x ∈ argmax
x∈X

g�f̂ �x�� x��

This procedure, however, ignores the model uncertainty
resulting from the approximation of f by f̂ at the optimiza-
tion step.

Lastly, we assume that the decision maker knows that
the component function satisfies a set of monotonicity
constraints.
M1. The component function f satisfies a first-order

monotonicity constraint of the form

#1f
′�x�� 0� ∀x ∈X� (4)

given some real number #1.
M2. If r � 2, then the component function f satisfies a

second-order monotonicity constraint of the form

#2f
′′�x�� 0� ∀x ∈X� (5)

given some real number #2.
Note that if #1 = 0 or #2 = 0, then the corresponding con-
straints (M1 and/or M2) are not active. Without loss of
generality, #1 and #2 can be chosen in �−1�0�1�.

2.2. Component-Function Approximation

Data relative to the component function f is available in
the form of the sample z= ��xj� yj��

n
j=1 containing n noisy

observations zj = �xj� yj� with a= x1 < x2 < · · ·< xn = b,
which are such that

yj = f �xj�+ $j (6)

for all j ∈ �1� � � � � n�, where $j are realizations of indepen-
dent zero-mean random variables $̃j .

Remark 3. In applications, multiple observations of the
component function evaluated at the same set of xj -values
can sometimes be obtained. If for a given xj the i.i.d.
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sample yj�1� � � � � yj�m is available, then by the strong law

of large numbers ȳj�m = �yj�1� � � � � yj�m�/m
a�s�−→ f �xj� as

m→�. Furthermore, by the central limit theorem the sam-
ple mean ȳj�m is asymptotically normal.11 Thus, in practice
we collapse the vector �yj�1� � � � � yj�m� to its sample mean
yj = ȳj�m and assume that the corresponding sample error
is normal, i.e., $̃j ∼N�0� �(2

j �, with zero mean and variance
�(2
j = 1

m�m−1�

∑m
l=1�yj� l− ȳj�m�2.

Given a family of functions s� · ) *�� � → �, indexed
by a parameter vector * in a finite-dimensional parameter
space +, we henceforth use the approximation error

e�* � z�= ∥∥�w1�s�x1) *�− y1�� � � � �wn�s�xn) *�− yn��
∥∥
�

= max
j∈�1�����n�

�wj�s�xj) *�− yj��� (7)

which represents the (weighted) maximum absolute devia-
tion of s� · ) *� from the sample z, where w= �w1� � � � �wn�
is a given vector of positive weights.12 The inclusion of
weights in the error norm is isomorphic to having different
standard deviations for different yjs (cf. Remark 3). The
weight is typically chosen larger at a point with smaller
standard deviation, e.g., wj = 1/ �(j .

2.3. Robust Decision Making

The set +# ⊂+ containing parameters for functions s� · ) *�
that satisfy the monotonicity constraints M1 and M2 for a
given # = �#1� #2� is referred to as monotonicity domain.
Relative to the family of functions that is considered for
the approximation of a component function, the set +#

contains all component-function approximations that sat-
isfy the monotonicity requirements, i.e., all those that could
possibly be relevant for the decision problem (2), even in
the complete absence of empirical data.

Given a sample z, which contains data on the component
function, we can, for any approximation error �� 0, deter-
mine the set �+��#�z� ⊂ +# that contains all those param-
eter vectors * for which the maximum absolute devia-
tion e�* � z�� �. The set �+��#�z� is referred to as the robust
approximation set (cf. Figure 3). It is used as a starting
point for what we term a robust solution to the decision
problem (2). More specifically, considering component-
function approximations in �s� · ) *��*∈+# , we say that �x∗�z�
is a robust solution to the decision problem (2) (relative to
the sample z) if

�x∗�z� ∈ argmax
x∈ �X�z�

�	g�s�x) *�� x� � * ∈+#
� (8)

where

�X�z�= ⋃
�∈	�

¯
� �̄


�X��� z�� (9)

and

�X��� z�= argmax
x∈X

�	g�s�x) *�� x� � * ∈ �+��#�z�� z
 (10)

Figure 3. Model primitives in the parameter space.

for all � in the set of admissible approximation errors,
	�
¯
� �̄
. The lower bound �

¯
cannot be smaller than �

¯#
�z�,

which is the minimum achievable error such that �+�
¯
� #�z� is

nonempty (cf. Equation (25) in §3.3) and �̄ is a maximum
acceptable error, specified by the decision maker.13 Given a
nonempty measurable subset �+ of the parameter space +,
the robustness criterion �	g�s�x) *�� x� � * ∈ �+
 is a real-
valued functional that evaluates its argument g�s�x) *�� x�
at all * ∈ �+. Following are a number of well-known robust-
ness criteria. Let �F �* � z� be a cumulative distribution func-
tion (cdf) that represents the decision maker’s beliefs over
realizations of * in �+, conditional on the observed data
sample z.14 The following are standard robustness criteria
for x ∈X:

�Avg	g�s�x) *�� x� � * ∈ �+�z

=

∫
�+
g�s�x) *�� x�d �F �* � z�� Average Performance;

�WC	g�s�x) *�� x� � * ∈ �+�z

= inf�g�s�x) *�� x�� d �F �* � z� > 0��

Worst-Case Performance;

�EG	g�s�x) *�� x� � * ∈ �+�z

=

∫
�+

[
g�s�x) *�� x�−max

�x∈X
�g�s��x)*�� �x��

]
d �F �* � z��

Expected Gain;

�CR	g�s�x) *�� x� � * ∈ �+�z

=

∫
�+

[
g�s�x) *�� x�

max�x∈X�g�s��x)*�� �x��
]
d �F �* � z��

Competitive Ratio.

Other robustness criteria can be used. All robustness cri-
teria are defined analogously when they are not condi-
tioned on z. Our definition of a robust solution �x∗�z� to
the decision problem (2) in (8)–(10) guarantees that the
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decision maker does not pay excessive attention to the data
when jointly considering the problems of approximating the
objective function and determining a best action. In rela-
tion (10) the decision maker determines the set of optimal
actions �X��� z�, considering all component-function candi-
dates s� · ) *� that achieve a specified error bound � relative
to the available data sample z. In (9) the decision maker
determines the superset of actions that may be optimal,
given any allowable error � ∈ 	�

¯
� �̄
.15 Finally, in (8) an

optimal robust action is determined by testing any potential
solution against all parameter realizations * ∈ +# , with-
out conditioning on z. The decision-relevant information
contained in the data sample z is transmitted from prob-
lem (10) to problem (8) via the set �X�z�. For example,
when the amount of data is very large, then because of
the fact that the conditional distribution �F �* � z� in (10) is
sharply concentrated around the true parameter value, the
set �X��� z� becomes insensitive to the error �, so that the
cardinality of �X�z� is “small.”

Remark 4. The robust solution �x∗�z� in (8)–(10) implies
the optimal approximation error

�̂∗�z�= inf�� ∈ 	�
¯
� �̄
� �x∗�z� ∈ �X��� z��� (11)

which is the smallest allowable error � such that �X��� z�
contains �x∗�z�.
Remark 5. To understand the hierarchical nature of a
robust solution to the decision problem (2) that satis-
fies (8)–(10), it is useful to consider a simple exam-
ple without monotonicity constraints (i.e., # = 0). Let
s�x) *� = 2* − x, where the parameter * � 0 is unknown,
and let g�s�x) *�� x� = s�x) *�x = �2* − x�x. Given a
sample z = ��xj� yj��

n
j=1 and � � �

¯
, it is * ∈ �+��#�z� =

�0 ∈ +#� maxj∈�1�����n� �yj − �20 − xj�� � �� if and only
if *1��� z� � * � *2��� z�, for some appropriate functions
*1, *2. Taking average performance as a robustness crite-
rion, solving the optimization problem (10) yields

�X��� z�= �E	*̃ � * ∈ �+��#�z�� z
�

= argmax
x∈X

∫ *2��� z�

*1��� z�
�2*− x�x d �F �* � z��

where X = 	0� x̄
 for some large enough x̄ > 0. The solution
to (9) becomes

�X�z�= �E	*̃ � *1��� z�� *� *2��� z�� z
� �� �
¯
��

so that by Equation (8) we obtain as the optimal robust
decision �x∗�z� the point in �X�z� that is closest to *̄=E	*̃
.

Remark 6. If the hierarchy between problems (8) and (10)
is eliminated by replacing the monotonicity domain +#

in (8) by the robust approximation set �+�̄�#�z�, then the
decision maker can choose �̄ so as to ignore certain unfavor-
able parameter values. Using such an “ostrich-algorithm,”
the decision maker may be led to overly optimistic actions
when the initially observed sample suggests “good news.”16

3. Monotone Approximation
We now consider the approximation of a twice contin-
uously differentiable real-valued component function f .
By M1 and M2, f satisfies the monotonicity constraint

min�#1f
′�x�� #2f

′′�x��� 0 (12)

for a given # = �#1� #2�. The key idea is to select a fam-
ily of approximating functions s� · ) *�, so that the mono-
tonicity constraint (12) can be transformed into a parameter
constraint such that

min�#1s
�1��x) *�� #2s

�2��x) *��� 0 ⇔ * ∈+# (13)

for an appropriate monotonicity domain +# ⊆+. The latter
is determined explicitly in Corollary 1 below.

3.1. Approximating Functions

The set of approximating functions is the linear space
�k�2� of splines of degree k � 1, defined on the interval
	a� b
 with an ordered vector of knots 2 ∈�a�b, where

�a�b =
{
�20� � � � � 23+1� ∈�3+2�

a= 20 < 21 < · · ·< 23+1 = b and 3 ∈�
}
�

Let 2 ∈ �a�b and 3 = dim�2� − 2. A spline s ∈ �k�2� is
a function s� 	a� b
→ � that satisfies the following two
conditions.
S1. For all i ∈ �0� � � � � 3�: s�	2i� 2i+1


∈�k, i.e., the restric-
tion of the function s to the interval 	2i� 2i+1
 is a polyno-
mial of degree k;
S2. s ∈�k−1	a� b
, i.e., the function s and its derivatives

up to order k− 1 are continuous on 	a� b
.

Remark 7. (i) The components of the knot vector 2 do not
have to be strictly increasing if condition S2 is appended
as follows: if 2i = · · · = 2i+l for some i� l with l� k, then s
is required only to have continuous derivatives up to order
k− l− 1 at the point 2i. (ii) It is possible to use splines of
degree k = 0, i.e., piecewise-constant functions, by drop-
ping condition S2 altogether and replacing the closed inter-
vals 	2i� 2i+1
 in condition S1 by the right-open intervals
	2i� 2i+1�. The right endpoint s�b� is then either undefined
or specified separately (see, e.g., Dierckx 1993).

For any i ∈ �−k� � � � � 3�, let Ni�k+1� 	a� b
→� denote a
(normalized) B-spline of degree k with knots 2i� � � � � 2i+k+1,
where we assume that17

2−k = 2−k+1 = · · · = 2−1 = 20 = a� and

b= 23+1 = 23+2 = · · · = 23+k = 23+k+1�

It can be shown that every spline s ∈ �k�2� has a
unique B-spline representation as a linear combination of
B-splines, in the form

s�x) *�=Nk+1�x�*� for all x ∈ 	a� b
� (14)
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where

*= �*−k� � � � � *3�
T ∈�k+3+1

is the B-spline-coefficient vector, and

Nk+1 = �N−k�k+1� · · · �N3�k+1�

is a row vector of k+3+ 1 B-splines, forming a basis for
the spline space �k�2�.

Remark 8. For our developments below it proves useful
to introduce an equivalent representation of s in parameters
*̂= L−1

k+1*,

s�x) *̂�= �Nk+1�x�*̂=Nk+1�x�Lk+1L
−1
k+1*= s�x) *�� (15)

where �Nk+1 = Nk+1Lk+1, and Lk+1 is a �k + 3 + 1� ×
�k+ 3+ 1� lower-triangular matrix with ones as the only
nonzero entries, so that

L−1
k+1 =



1 0

−1 1

−1 1

· · · · · ·
0 −1 1


� (16)

We recall that splines of any positive order can be used
to approximate continuous functions on a compact interval
in the sup-norm.

Lemma 1 (Denseness of Splines in �0	a� b
).18 Let k� 0.
For any given f ∈�0	a� b
 and � > 0, there exist 2 ∈�a�b

and s ∈�k�2� such that supx∈	a� b
 �f �x�− s�x��<�.

3.2. Monotonicity Domain

Given an element of the spline space �k�2� in the repre-
sentation (14) or (15), we seek to convert the monotonic-
ity constraint (12) (i.e., M1 and M2) into an equivalent
parameter constraint of the form * ∈ +# , where +# is an
appropriate monotonicity domain.

The first derivative of the ordered basis Nk+1 can be
written, using standard properties of B-spline functions
(cf. Appendix B),19 in the form

N
�1�
k+1 = �0�Nk�6k+1� (17)

where Nk = �N−k+1� k� � � � �N3�k� forms an ordered basis for
�k−1�2�, defined over the same set of knots as Nk+1,

6k+1 = �Lk+1Dk+1�
−1 =D−1

k+1L
−1
k+1�

and

Dk+1 =
1
k


20− 2−k 0

21− 2−k+1

� � �

0 2k+3− 23

 �

Similarly, the second derivative of the ordered basis Nk+1

can be expressed in the form

N
�2�
k+1 = �0� �0�Nk−1��

[
0 0

0 6k

]
6k+1� (18)

In terms of the representation (15), the first and second
derivatives of s� · ) *̂� are therefore

s�1��x) *̂�= �N �1�
k+1�x�*̂� (19)

s�2��x) *̂�= �N �2�
k+1�x�*̂� (20)

for all x ∈ 	a� b
, where

�N �1�
k+1 = �0�Nk�D

−1
k+1 and

�N �2�
k+1 = �0� �0�Nk−1��

[
0 0

0 D−1
k L−1

k

]
D−1
k+1�

Proposition 1 (First-Order Monotonicity). Let k� 0,
2 ∈�a�b, and let s ∈�k�2� be given in the B-spline represen-
tation (15), s = �Nk+1*̂, for some *̂= �*̂−k� *̂−k+1� � � � � *̂3�

T ∈
�k+3+1. Then

(i) s is nondecreasing on 	a� b
 if

*̂′ = �*̂−k+1� � � � � *̂3�
T
� 0) (21)

(ii) if k ∈ �0�1�2� and s is nondecreasing on 	a� b
, then
condition (21) must hold.

Part (i) states that the first-order monotonicity con-
straint M1 is implied by the linear constraint (21). Part (ii)
guarantees that for splines of at most second degree this
condition is also necessary.

To ensure that the second derivative of a spline s ∈�k�2�
is nonnegative it suffices to have Ik�06

′
k*̂

′ � 0, where

6′k = �diag�21− 2−k+1� � � � � 2k+3− 23�Lk�−1 (22)

and Ik�0 is the �k+3�× �k+3� identity matrix whose first
element is zero.

Proposition 2 (Second-OrderMonotonicity). Let k�1,
2 ∈ �a�b, and let s ∈ �k�2� be given in the B-spline rep-
resentation (15), s = �Nk+1*̂, for some *̂= �*̂−k� *̂−k+1� � � � �

*̂3�
T ∈�k+3+1. Then
(i) s�1� is nondecreasing on 	a� b
 if

Ik�06
′
k*̂

′
� 0) (23)

(ii) if k ∈ �1�2�3� and s�1� is nondecreasing on 	a� b
,
then condition (23) must hold.

Condition (23) is equivalent to

*̂−k+1

21− 2−k+1

�
*̂−k+2

22− 2−k+2

� · · ·� *̂3
2k+3− 23

�
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Remark 9. Linear inequality conditions (similar to the
ones in Propositions 1 and 2) on the B-spline coefficient *̂
of a spline s ∈ �k�2� can be obtained to guarantee that
a higher-order derivative s�r�, for some r ∈ �1� � � � � k�, is
nonnegative-valued a.e. on 	a� b
.

Corollary 1 (Monotonicity Domain). Let k ∈ �1�2�,
2 ∈ �a�b, and let s ∈ �k�2� be given in the B-spline rep-
resentation (14), s = Nk+1*, for some * ∈�k+3+1. For any
# = �#1� #2� it is

min�#1s
�1��x) *��#2s

�2��x) *��� 0

⇔ * ∈+# = �0 ∈�k+3+1� M#0 � 0��

where

M# =
[
0 #1Ik

0 #2Ik�06
′
k

]
L−1
k+1 ∈�2�k+3�×�k+3+1��

and Ik denotes the �k+3�× �k+3� identity matrix.

The last result provides a characterization of the mono-
tonicity domain +# , combining the insights from the first
two propositions. It gives necessary and sufficient param-
eter restrictions for the corresponding approximation func-
tions to satisfy the monotonicity constraints M1 and M2.20

3.3. Robust Approximation Sets

Given a data sample z = ��xj� yj��
n
j=1 (of size n � 3) and

an allowable approximation error �, we consider the subset

�+��#�z�=
{
* ∈+#� e�* � z�� �� s� · ) *� ∈�k�2�

}
(24)

of the monotonicity domain +# , which we term a robust
approximation set. This set contains all parameter vectors *
that are compatible with z and �. Relative to the avail-
able data and the allowable approximation error, candidates
for robust decisions (i.e., decisions that maximize a robust-
ness criterion as introduced in §2.3) are judged against all
parameters in +# (cf. Equations (8)–(10)).

Proposition 3 (Boundedness). Let k ∈ �1�2�. For any
# �= 0 and nonnegative �, the robust approximation set
�+��#�z� is a bounded polyhedron.

The last result ensures that no matter what the approx-
imation error � or the monotonicity constraints on the
component function (in terms of # �= 0), the parameter
set of interest is a compact subset of a finite-dimensional
Euclidean space, allowing the use of standard numerical
algorithms when solving the robust decision problem. In
the case where # = 0, e.g., when no structural knowledge
about the monotonicity of the component function is avail-
able, the robust approximation set �+��#�z� may become
unbounded.

Let �
¯#
�z� denote the smallest error such that �+��#�z� is

nonempty, i.e.,

�
¯#
�z�= inf

{
�� 0� �+��#�z� �= �

}
� (25)

If �
¯#
�z�= 0, then the approximation error is zero, and inter-

polation of the sample data is possible.21

To determine if for a given � the robust approximation
set is empty or not, we formulate the following “sample
monotonicity conditions” in analogy to the original mono-
tonicity conditions M1 and M2.
M̂1. For a given real constant #1 the sample z satisfies

a “first-order divided-difference condition” of the form

#1:j�z�≡ #1

yj+1− yj
xj+1− xj

� 0 (26)

for all j ∈ �1� � � � � n− 1�.
M̂2. For a given real constant #2, the sample z satisfies

a “second-order divided-difference condition” of the form

#2:
2
j �z�≡ #2

(
yj+1− yj
xj+1− xj

− yj − yj−1

xj − xj−1

)
� 0 (27)

for all j ∈ �2� � � � � n− 1�.
In general, there is no reason to believe that the (noisy)

data points in z always satisfy the sample monotonicity con-
ditions in Equations (26)–(27). As long as the approxima-
tion error is allowed to be positive, there is no need to satisfy
them strictly. The following �-relaxations, M̂1� and M̂2�,
determine if the sample z can be “adjusted” to a sample ẑ=
��xi� ŷi��

n
i=1 such that the adjusted sample ẑ satisfies M̂1 and

M̂2 and at the same time the distance between z and ẑ (in
the sup-norm) does not exceed �. Each one of these can be
conveniently formulated in terms of a linear program (LP).

M̂1�� The value of the LP
min
t� ŷ

n∑
<=1

t< s.t. −#1�ŷj+1− ŷj �� tj �

�1� i� n� 0� ti�

�1� j � n− 1� −��wi�ŷi− yi�� ��


is zero, given the constants �� 0 and #1 ∈ �−1�0�1�.

M̂2�� The value of the LP
min
t� ŷ

n∑
<=1

t< s.t. −#2

(
ŷj+1− ŷj
xj+1−xj

− ŷj− ŷj−1

xj−xj−1

)
� tj �

�1� i�n� 0� ti�

�2� j�n−1� −��wi�ŷi−yi����


is zero, given the constants �� 0 and #2 ∈ �−1�0�1�.

We say that the sample z satisfies the �-relaxation of the
sample monotonicity condition M̂1 or M̂2 if the optimal
value of the corresponding LP vanishes. The sample z sat-
isfies both �-relaxations jointly if the LPs in M̂1� and M̂2�
admit a common solution �t) ŷ� = �t1� � � � � tn) ŷ1� � � � � ŷn�,
and their respective optimal values are both zero. It is now
possible to use these conditions to guarantee that the mono-
tone approximation set �+��#�z� is nonempty.
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Proposition 4. Let #1 ∈ �−1�0�1� and � � 0 be given.
If the sample z satisfies the relaxed sample monotonicity
condition M̂1�, then there exists 2 ∈�a�b such that �+��#�z�
is nonempty for # = �#1�0�.

Remark 10. (i) Proposition 4 generalizes the main finding
in Pruess (1993) for monotone spline interpolation from
k= 3 to k � 1. (ii) The proof of our result is constructive
in the sense that it provides a simple condition N1 for the
knot vector 2, which can be used directly for a numerical
implementation.

Proposition 5. Let # ∈ �−1�0�1�2 and � � 0 be given.
If the sample z satisfies the relaxed sample monotonicity
conditions M̂1� and M̂2� jointly, then there exists 2 ∈�a�b

such that �+��#�z� is nonempty.

Remark 11. As for Proposition 4, the proof of Proposi-
tion 5 is constructive, and provides an algorithm for finding
an appropriate knot vector, in terms of conditions N1 and
N2, which together are less restrictive than condition N1
mentioned in Remark 10.

4. Information for Robust Decisions
As pointed out in §2.3, conditional on observing the
data sample z = �xj� yj�

n
j=1, an optimal robust decision

�x∗�z� together with an optimal approximation error �̂∗�z�
(cf. Remark 4) can be obtained by solving the nested pair
of optimization problems (8)–(10). The robustness criterion
generally depends on the decision maker’s beliefs about
the realization of the parameter vector *. We now inves-
tigate two important issues, the belief update conditional
on sample data, and the acquisition of new information by
designing an optimal experiment.

4.1. Belief Update

The decision maker’s prior beliefs about the distribution of
the parameter vector * on the monotonicity domain +# ,
given by the cdf F �*�, can be updated using the data sam-
ple z. In Remark 12 below we discuss how such beliefs
can be obtained in practice. Let the updated beliefs be rep-
resented by the cdf F �* � z�. Furthermore, for any * ∈+# ,
let h�z � *� be the probability density for the realization
of the random data sample z conditional on the parame-
ter vector *. Because the yjs are independent given *, by
Remark 3 we have

h�z � *�=
n∏
j=1

1√
2" �(j

exp
[
− �yj − s�xj) *��

2

2 �(2
j

]
�

Given F �*� and h�z � *�, the updated beliefs are obtained
by Bayes’ rule,

dF �* � z�= h�z � *�dF �*�∫
+#
h�z �0�dF �0� � (28)

Remark 12. In practice, the question might arise as to
which prior beliefs F �*� might plausibly be used for

determining the posterior distribution in Equation (28). We
outline three (in part implicit) approaches.

(i) Uniform prior on +# . Without any available informa-
tion, a decision maker might simply assume the (entropy-
maximizing) uniform distribution over the monotonicity
domain +# . The updated beliefs �F �* � z� over the robust
approximation set �+��#�z�⊂+# are given by

�F �* � z�= 1�*∈�+��# �z��
F �* � z�

P�*̃ ∈ �+��#�z��
� (29)

(ii) Uniform posterior on iso-error sets. If no other
information about the structural properties of the compo-
nent function is available, the decision maker may want to
consider all parameter realizations * that produce a given
approximation error, i.e., are such that all

* ∈?��#�z�≡ �0 ∈+#� e�0 � z�= ���

are equally likely. Therefore, the updated beliefs can be
written as

dF �* � z�=
∫
�+
@�* � �� z�dA�� � z�� (30)

where @� · � �� z� is the standard Lebesgue measure over
?��#�z�,

22 and for �� 0:

A�� � z�= P

(
max

j∈�1�����n�
wj �yj − s�xj) *̃��� � � z

)
�

Assuming that f ∈ �k�2� (motivated by Lemma 1), the
error probability A can be derived from the probability dis-
tribution function of $̃j = yj − s�xj) *̃�. By Remark 3 the
independent error terms $̃j are normally distributed with
mean zero and variance �(2

j . Thus, A�� � z� can be written
in the form

A�� � z�=
n∏
j=1

P�w2
j �yj − s�xj) *̃��2 � �2��

Note that each P�w2
j �yj − s�xj) *̃��

2 � �2� is in fact a
B2
1 distribution with mean w2

j (
2
j and variance 2w2

j (
2
j . The

beliefs �F �* � z� over �+��#�z� can be obtained from Equa-
tion (29) as in (i).

(iii) Uniform posterior on iso-difference sets. Similar
to the last method, the decision maker may consider all
parameter realizations *, satisfying

* ∈ ?̂C�# = �0 ∈+#� s�xj)0�− yj = Cj� 1� j � n��

i.e., located at the same position relative to the sample z,
as equally likely. The updated beliefs are then

dF �* � z�=
∫
�n
@�* � C�z�dA�C � z��

where the measure @ is as in (ii), and

A�C � z�=
n∏
j=1

1√
2" �(j

exp
[
− �Cj�

2

2 �(2
j

]
�

The beliefs �F �* � z� over �+��#�z� are obtained from Equa-
tion (29) as in (i).
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4.2. Information Acquisition

Let us now consider the question of how to best improve
the quality of the optimal decision by selecting from all
available experiments one of maximum value. For this we
consider a family of available experiments � = �r̃
�
∈A
indexed by 
 in the compact set A ⊂ 	0�1
. Each exper-
iment r̃
 is a random variable with realizations in the
(nonempty, measurable) sample space R. Conditional on a
true parameter vector * ∈+# , it is distributed with the con-

ditional cdf F
�r � *�. Let �X0��� z� be the set of “default”
decisions maximizing a robustness criterion � (cf. §2.3),
so that by Equation (10)

x0 ∈ �X0��� z�

⇒ max
x∈X

�	g�s�x) *�� x� � * ∈ �+��#�z�� z


=�	g�s�x0) *�� x0� � * ∈ �+��#�z�� z
≡�∗
0��� z�)

and let �X
�r ��� z� be the set of “contingent” decisions
maximizing the robustness criterion conditional on having
observed the realization r of the signal r̃
, so that

x
� r ∈ �X
�r ��� z� ⇒ �∗

� r ��� z�

=�
[
g�s�x
� r ) *�� x
� r � � * ∈ �+��#�z�� z� r̃
 = r

]
�

where

�∗

� r ��� z�≡max

x∈X
�	g�s�x) *�� x� � * ∈ �+��#�z�� z� r̃
 = r
�

for all r ∈ R. From Equations (8) and (9) we obtain the
corresponding optimal values of the robustness criterion,

�̄∗
0�z�= max

x∈ �X0�z�
�	g�s�x) *�� x� � * ∈+#
�

�̄∗

� r �z�= max

x∈ �X
�r �z�
�	g�s�x) *�� x� � * ∈+#
�

where
�X0�z�=

⋃
�∈	�

¯
� �̄


�X0��� z� and �X
�r �z�=
⋃

�∈	�
¯
� �̄


�X
�r ��� z��

Remark 4 yields the optimal approximation errors �̂∗
� r �z�
and �̂∗0�z� corresponding to the contingent and default solu-
tions �X
�r ��� z� and �X0��� z�. The expected value of the
experiment r̃
 is then

V �
 � z�=
∫
R
��∗


� r ��̂
∗
r �z�� z�−�∗

0��̂
∗
0�z�� z��dF̄
�r � z��

where F̄
�r � z� is the cdf for the realizations of the signal
r̃
 obtained by

F̄
�r �z�=
∫
+#

F
�r �*�z�dF �* �z�=
∫
+#

F
�r �*�dF �* �z��
with conditional cdf F �* � z� as in §4.1. An optimal experi-
ment maximizes the value of information over all available
experiments. Correspondingly, we refer to finding


∗�z� ∈ argmax

∈A

V �
 � z�
as the decision maker’s (robust) information acquisition
problem. The solution to this problem (which always exists,
as long as V �
 � z� is continuous in 
, for A is com-
pact) defines an optimal experiment in terms of its expected
improvement to the robustness criterion.

5. Application: Optimal Debt-Settlement
Offers

In October 2009, the Federal Reserve Statistical Release
(G.19) reported the 2008 U.S. total consumer credit out-
standing in excess of 2.5 trillion dollars, of which about
40% is revolving debt such as unpaid credit-card balances.
The debt-collection sector of the credit-card industry, which
is concerned with the retrieval of outstanding loans from
“delinquent” accounts (with an outstanding repayment sig-
nificantly past the agreed due dates), can be viewed as a
multibillion dollar industry in and of itself. A credit-card
issuer’s debt-collection process typically consists of differ-
ent collection phases that vary among the various account
segments (e.g., according to the holder’s FICO score, the
outstanding balance, the account age, or business versus
personal use). A common feature across all segments and
collection phases is that a large fraction (typically in the
order of 40%–50%) of all delinquent accounts fail to repay
any of their debt. Moreover, a delinquent account holder’s
assets tend to “decay” due to financial distress, bankruptcy
costs, and claims by other lenders, which implies declin-
ing prospects for collecting the outstanding amount as time
passes. Hence, credit-card issuers increasingly look favor-
ably upon the option of extending early settlement offers
to delinquent account holders. The design of optimal set-
tlement offers can be interpreted as a revenue management
problem, in which a bank sets the settlement rate so as
to maximize the product of collected amount (correspond-
ing to rate times outstanding balance) and a response rate
(describing the likelihood of payback).

Optimization Model. We consider two segments of
accounts. Each segment is modeled in the aggregate with
the total outstanding balance and hidden characteristics
such as willingness and ability to pay off the balance.
These segment-specific characteristics are summarized by
a “type” vector *, which from the bank’s point of view is
distributed on an appropriate type space +. The type vector
describes how a segment’s average response rate, f �x� ≈
s�x) *� ∈ 	0�1
, decreases in the settlement rate x ∈ 	0�1
,
where s�0) *�= 1. For a given data sample z= ��xj� yj��

n
j=1

and an allowable approximation error � the relevant set of
types is �+��#�z�⊂+# , where # = �−1�0�. The bank’s goal
is to maximize its aggregate payoff g�s�x) *�� x�= xs�x) *�
using an appropriate robustness criterion (cf. §2.3).

The Data Set. Data obtained from a major credit-
card company, covering the time between 2005 and 2007,
includes full financial information for different types of
credit-card accounts, segmented by attributes such as FICO
score, line of credit, outstanding balance, or mortgage sta-
tus. We focus on two segments of a charge-card product
consisting of about 12,000 and 33,000 similar accounts,23

respectively, each subdivided into three smaller groups. In
the settlement-offer experiment two groups were offered a
reduced settlement rate, and the remaining group served
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Table 1. Summary statistics as a function of settlement
rate: (a) sample size; (b) response rate.

(a)

Settlement rate

0.49 0.60 1

Segment 1 1�964 8�244 2�320
Segment 2 5�032 22�710 5�561

(b)

Segment 1 (%) 4.74 4.36 2.87
Segment 2 (%) 9.96 7.43 4.57

as control. The response of an account holder in a given
group is considered positive if the demanded portion of the
outstanding balance is fully paid in a timely manner. Aver-
aging the individual responses in each group (cf. Remark 3)
yields the response rates in Table 1(b). Due to the cost-
liness of settlement-offer trials, and a potentially negative
reputation effect, the available experiments are sparse in X,
with only n= 4 data points available.

Numerical Analysis. The response-rate samples in
Table 1 satisfy M̂1 and M̂2 for # = �−1�0�, so that by
Proposition 5 there exists a knot vector 2 such that the
robust approximation set �+��#�z� is nonempty for any �� 0.
Indeed, for k = 2, the vector 2 = �0�0�2�0�4�0�6�0�8�1�
guarantees that �

¯#
�z� = 0 in Equation (25), i.e., interpola-

tion is possible. Moreover, by Proposition 3 the set �+��#�z�
is a bounded polyhedron, described by the following set of
linear inequalities,{
�W�N̄k+1*− Y ��� � ��

M#*� 0�

where N̄k+1 and M# are specified in the proof of Propo-
sition 3 and Remark 9, respectively, Y = �y1� � � � � yn�

T is
a data vector, and W = diag�w1� � � � �wn� is a diagonal
matrix of positive weights.24 For any �� 0, the elements of
�+��#�z� can be obtained as a convex hull of its vertices (or
“vertex solutions”). Figure 4 depicts the vertex solutions as
well as their associated response and spin curves for the
two account segments, when � = 0. Figure 5 shows both
the response-rate and spin distributions, based on a uniform
posterior on iso-difference sets (cf. Remark 12(iii)), inside
a 99.9% confidence region (corresponding to �̄).

Optimal Robust Decisions. We choose �̄ ∈ �3%�4�2%�
so as to provide 99.9% confidence (with the smaller of
the two values for Segment 2; cf. Figure 1(b)), and then
solve Equations (8)–(10) to determine an optimal robust
decision with respect to average performance and competi-
tive ratio as criteria. Figure 6 shows the robustness criteria
used in Equation (10) for �= �̄. As illustrated, Segment 1’s
expected spin (respectively, competitive ratio) is maximized

at a settlement rate of 18% (respectively, 17%). For Seg-
ment 2 both robustness criteria are maximized at a settle-
ment rate of 20%. Interpreting the competitive ratio, the
expected income at the optimal settlement rate is on aver-
age about 90% of the highest achievable repayment, in
either segment.

The solution to the optimization problem (10) is depicted
in Figure 8(a) for Segment 2 when � ∈ 	0� �̄
 and �̄= 3%.
The optimal decision �x∗�z� is unique and does not vary
for � ∈ 	0� �̄
 due to the quality of the available data.
This implies that the decision maker can be quite confi-
dent in the quality of �x∗�z� = 20% as an optimal robust
settlement offer.25 Indeed, this offer increases the bank’s
expected payoff by at least 60% over the best available
settlement-rate experiment. Figure 8(b) shows the average-
performance robustness criteria in problems (8) and (10)
together for Segment 2. It can be seen that without any data,
a settlement rate of about 65% becomes optimal. Interest-
ingly, this rate is consistent with one of the bank’s initial
experiments of offering to settle at a rate of 60%.

Distribution of Optimal Robust Decisions. The prob-
ability measure d �Fx for the distribution of the maximizer
x�*� ∈ argmaxx∈X g�s�x) *�� x�, for * ∈ �+��#�z�, can be
obtained from the measure d �F �* � z� in §4.1. Because
g�s�x) *�� x� is continuous in *, the support of d �Fx is com-
pact. For � = �̄, and given a uniform posterior on iso-
difference sets (cf. Remark 12(iii)), Figure 7 illustrates the
distribution of settlement offers that are optimal for some
parameter realizations.

Information Acquisition. Figure 9 compares the ex-
pected spin if another data point at a different settlement
rate were available for either segment. As an example of
how to interpret the curves, Figure 9(b) shows that if we
knew the response rate for a 15% settlement offer for
Segment 2, then we could expect a 0.3% spin increase.
The outstanding aggregate balance of the accounts under
consideration amounts to more than $100 million dol-
lars; a 0.3% spin increase therefore has a significant abso-
lute impact on the bank’s collection revenues. Using these
curves, the solution to the information acquisition problem
in §4.2 (for A= 	0�1
 and r̃
 as the response to offers at
the rate of 
) for Segment 1 (Segment 2) is to conduct an
additional settlement experiment at the rate of 20% (15%).

6. Conclusion
The proposed robust approximation method has been
shown to yield good results in sample-sparse environments.
Our approach has two key features that aim at making
maximum use of the available data points, as few as they
may be. First, the method allows the direct use of struc-
tural knowledge about the problem, in the form of first- and
second-order monotonicity constraints. It therefore supple-
ments the data sample with information about the shape
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Figure 4. (a) Vertices of �+0� �−1�0��z� with response rates and associated expected income (spin) for Segment 1. (b) Ver-
tices of �+0� �−1�0��z� with response rates and associated expected income (spin) for Segment 2.

Figure 5. (a) Distribution of response rates for Segment 2 (with �= �̄). (b) Distribution of spins for Segment 2 (with
�= �̄).
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Figure 6. Expected spin and competitive ratio for settlement offers to Segment 1 and Segment 2 ((a)/(b)).

Figure 7. Probability density of optimal settlement offer to Segment 1 (a) and Segment 2 (b).

Figure 8. (a) Maximum expected spin and optimal settlement offer as a function of the allowable sample error (for Seg-
ment 2). (b) Robustness criteria in Equation (8) (maximized at �x∗���), and in Equation (10) with information
obtained from the data sample z (maximized at �x∗�z�).
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Figure 9. (a) Expected spin with and without extra information at different settlement rates for Segment 1. (b) Expected
spin with and without extra information at different settlement rates for Segment 2.

of the unknown functional relationship. In contrast to most
of the extant literature on shape-preserving approximation,
we do not constrain the data in order to guarantee the exis-
tence of shape-preserving approximations (see, e.g., Fritsch
and Carlson 1980), but characterize the parameter domain
consistent with the shape constraints as a function of the
available data. For any given model error relative to the
data, the resulting robust approximation set as a subset of
the monotonicity domain is a bounded polyhedron.

The second key feature of the method is that it con-
siders the shape-preserving approximation problem embed-
ded in a decision problem. By linking the optimization
and identification problems in Equations (8)–(10), an action
and an approximation error (cf. Remark 4) are obtained
simultaneously. All models consistent with the structural
knowledge are considered up to the very point when the
decision maker finally commits to an optimal robust action.
An interesting consequence of this jointness is that to strive
for the smallest-possible approximation error may not be
optimal, given the goal of determining optimal robust deci-
sions which perform well despite possible variations of the
model specification. The relevant trade-off is between the
increased robustness from considering a larger set of mod-
els when relaxing the approximation error, and an improved
estimate of the objective function in the decision prob-
lem (2) when decreasing the approximation error. The prac-
tical application in §5 confirms that it is not always optimal
to minimize the approximation error, which underlines the
importance of the joint consideration of data and decisions.
These findings relate to recent advances in operational
statistics that seek to relate the error metric for approxima-
tion to the objective function. A contribution of this paper
is to combine the use of structural knowledge about the
problem (monotonicity constraints) with joint robust iden-
tification and decision making.

Appendix A. Proofs

Proof of Proposition 1

Let k � 0, 2 ∈ �a�b, and let s ∈ �k�2� be given in the
B-spline representation (15), so that s = �Nk+1*̂.

(i) By Equation (19), because

�N �1�
k+1 = �0�Nk�D

−1
k+1

= �0� kN−k+1� k/�21− 2−k+1�� � � � � kN3�k/�2k+3− 23��
� 0�

condition (21) is clearly sufficient for the nonnegativity
of s�1�.

(ii) We now show that for k ∈ �0�1�2�, condition (21)
is also necessary for s = �Nk+1*̂ to be nondecreasing. Let
s ∈�0�2�. This means that s is a piecewise-constant func-
tion. Using Equation (14), we can write s as

s =N1*�

where * = �*0� � � � � *3� and N1 = 	1	20� 21��1	21� 22�� � � � �
1	23� 23+1



 is an ordered basis for �0�2�, which partitions
unity over 	a� b
. Having *̂′ � 0 is equivalent to

*0 � *1 � · · ·� *3�

which is a necessary condition for s to be nondecreas-
ing. Let s ∈ �1�2�. Using Equation (19), it is s�1� =
�0�N1�D

−1
2 *̂, where D−1

2 is a diagonal matrix with positive
entries. Therefore, s�1� � 0 if and only if *̂′ � 0. Now let
s ∈�2�2�. Equation (19) implies that

s�1� = �0�N2�D
−1
3 *̂�

where the components of N2 are given by

N−1�2�x�=
1− �x− 20�/�21− 20�� if x ∈ 	20� 21
�
0� otherwise�
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for i=−1;

Ni�2�x�=


�x−2i�/�2i+1−2i�� if x∈ 	2i�2i+1
�

1−�x−2i+1�/�2i+2−2i+1�� if x∈ 	2i+1�2i+2
�

0� otherwise)

for i ∈ �0� � � � � 3− 1�, and

N3�2�x�=
�x− 23�/�23+1− 23�� if x ∈ 	23� 23+1
�

0� otherwise)

for i = 3. Therefore, at x = 2i+1, i ∈ �−1� � � � � 3� we have
s�1��2i+1� = 2*̂i/�2i+2− 2i�, which yields the claim, i.e.,
s�1��x�� 0 implies that *̂′ � 0.
This completes our proof. �

Proof of Proposition 2

The proof follows directly from the proof of Proposi-
tion 1. �

Proof of Proposition 3

Using Corollary 1, for any given �� 0, # ∈ �2, 2 ∈ �a�b,
and z = ��xj� yj��

n
j=1, the set �+��#�z� is characterized by

the inequalities

�W�N̄k+1*− Y ��� � ��

M#*� 0�

where W = diag�w1� � � � �wn� is the (diagonal) matrix
of weights, Y T = �y1� � � � � yn� is a data vector, *T =
�*−k� � � � � *3� is the parameter vector, and

N̄k+1 =


N−k�k+1�x1� · · · N3�k+1�x1�

���
���

N−k�k+1�xn� · · · N3�k+1�xn�

 � (A1)

First note that �+��#�z� is linearly constrained, and thus a
polyhedron. We now show that �+��#�z� is bounded. For
this we assume that, without any loss in generality, w1 =
w2 = · · · =wn = 1. Thus, if * ∈ �+��#�z� and # �= 0, then the
constant

M =max
{�yn− y1� + 2�

b− a �
�y2− y1� + 2�

x2− a
�
�yn− yn−1� + 2�

b− xn−1

}
· �b− a�+max��y1�� �yn��

bounds �s� · ) *�� uniformly, i.e., is such that �s�x) *���M
for all x ∈X. The fact that M does not depend on * implies
immediately that �+��#�z� is bounded. �

Proof of Proposition 4

We can restrict attention to the case where #1 � 0, because
the proof is symmetric for #1 < 0. Without loss of gen-
erality, one can assume that the yj -values of the sample
z = ��xj� yj��

n
j=1 are part of a solution to the LP in M̂1�,

so that the sample monotonicity condition M̂1 holds. We
now show that the following condition on the knot vector
2 ∈�a�b implies that the robust approximation set �+��#�z�
is nonempty.
N1. The knot vector 2 = �20� 21� � � � � 23+1� ∈ �a�b is

such that there is at most one data point in the interior of
the support of each Ni�k+1 for all i ∈ �−k� � � � � 3�.

By Proposition 1 it is enough to show that if a knot
vector 2 satisfies N1, then there exists a *̂ such thatN̄k+1Lk*̂= Y �

*̂′ � 0�
(A2)

with Y = �y1� � � � � yn�
T and N̄k+1 as in Equation (A1). This

solution can be constructed as follows. First, examine the
matrix N̄k+1Lk: because Nk+1 forms a basis that partitions
unity on 	a� b
, i.e., Nk+1�1� � � � �1�

T = 1	a� b
, each row of
N̄k+1Lk has a structure similar to a cumulative distribution
function, except that it starts from 1 and decreases to 0,
i.e.,

N̄k+1Lk =


1 × · · · × 0 0 · · ·
1 · · · 1 1 × · · · × 0 · · ·

· · ·


where × denotes entries between 0 and 1, decreasing from
left to right. The first relation in Equation (A2) becomes,
therefore,
1 × · · · × 0 0 · · ·
1 · · · 1 1 × · · · × 0 · · ·

· · ·



*̂−k
���

*̂3



=


y1

���

yn

 � (A3)

If we set *̂−k = y1, then *̂i � 0 for i ∈ �−k + 1� � � � � 3�
(obtained from the second relation in Equation (A2))
implies that *̂i = 0 whenever Ni�k+1�x1� �= 0. By suppress-
ing the columns corresponding to *̂−k and the zero *̂is
and then subtracting �y1� y1� � � � � y1�

T from both sides, we
obtain (dropping the first row) an equation of exactly the
same structure as Equation (A3). We can therefore repeat
this procedure, similar to Gauss elimination, and thus deter-
mine all components of *̂. Note that the right-hand side
of Equation (A3) after any step is nonnegative as a conse-
quence of M̂1. This in turn implies that *̂′ � 0, so that a
solution to Equation (A2) has been obtained. �
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Proof of Proposition 5

Analogous to the proof of Proposition 4, we can, with-
out any loss in generality, assume that the sample z =
��xj� yj��

n
j=1 satisfies the sample monotonicity conditions

M̂1 and M̂2. Furthermore, we assume that #2 = 1. For
#2 = 0, the result specializes to Proposition 4. The proof
proceeds symmetrically for #2 =−1. Note first that in the
following construction condition M̂1 implies condition M1,
provided that M2 holds. Therefore, we need only to show
that there exists 2 ∈�a�b such that the systemN̄k+1Lk*̂= Y �

Ik�06
′
k*̂

′ � 0�
(A4)

where Y = �y1� � � � � yn�
T and N̄k+1 as in Equation (A1), pos-

sesses a solution. Without loss of generality, we assume
that n is odd,26 x1 ∈ 	20� 21�, and �x0� y0� with x0 < 20 is
such that the augmented sample ẑ = ��xj� yj��

n
j=0 satisfies

M̂1 and M̂2. Furthermore, for all j ∈ �1� � � � � �n/2�� we
denote the intersection point of the straight line through the
points �x2�j−1�� y2�j−1�� and �x2j−1� y2j−1� with the straight
line through the points �x2j � y2j � and �x2j+1� y2j+1�, by
��xj� ŷj �. First, we show that there exists 2 ∈ �a�b such
that Equation (A4) has a solution for k= 1, i.e., there exists
a piecewise-linear function, s1�x) *�, with breakpoints in
�a= 20� 21� � � � � 23� 23+1 = b�, that passes through �xj� yj�,
j ∈ �1� � � � � n� and is consistent with M1 and M2. Then we
derive a sufficient condition over 2 that makes it possible
to smooth the piecewise-linear function s1�x) *� to obtain
an element of �k�2�. Consider the case where k= 1.
N1. The knot vector 2 = �20� 21� � � � � 23+1� ∈�a�b satis-

fies the following two conditions:
(i) k+1 (or more) knots are placed between x2j−1 and

x2j for all j ∈ �1� � � � � �n/2��; and
(ii) ��xj� ŷj � is between 2<j and 2uj , where <j =

min2i�x2j−1
i and uj =max2i�x2j i.

Under condition N1, the parameter vector *, specified
hereafter, defines a piecewise-linear function, s1�x) *� =
N2�x�*, that satisfies Equation (A4),

*i =
y2�j−1�− y2j−1

x2�j−1�− x2j−1

�2i+1− x2�j−1��+ y2�j−1��

where �xj−1 � 2i � �xj for �i� j� ∈ �−1� � � � � 3� ×
�1� � � � � �n/2� + 1�, setting �x0 = a and �x�n/2�+1 = b. The
intuition behind this construction is shown in Figure A.1
(for n= 5).

Now let k > 1; we show that there exists a spline
sk�x)0� ∈ �k�2� that is comprised of the line segments
connecting �x2�j−1�� y2�j−1�� with �x2j−1� y2j−1�, for all j ∈
�1� � � � � �n/2� + 1�. Hence, we need only to show that
there is a spline in �k�2̂j � with 2̂j = �2<j � � � � � 2uj � for
j ∈ �1� � � � � �n/2�� satisfying the following requirements.
First, it connects the line segments s1�x) *��	2uj−1

� 2<j 

and

Figure A.1. Construction in the proof of Proposition 5.

s1�x) *��	2uj � 2<j+1

, where 2u0 = 20, and 2<�n/2�+1

= 23+1. Sec-
ond, it has k − 1 continuous derivatives at the points 2<j
and 2uj .

Using the B-spline representation of the second deriva-
tive of sk�x)0� in �k−2�2̂j �, the above two requirements
become∫ 2uj

2<j

s
�2�
k �J)0�dJ = y2j+1− y2j

x2j+1− x2j
− y2j−1− y2�j−1�

x2j−1− x2�j−1�

� (A5)

∫ 2uj

2<j

(∫ x

2<j

s
�2�
k �J)0�dJ

)
dx

= s1�2uj ) *�− s1�2<j ) *�−
y2j−1− y2�j−1�

x2j−1− x2�j−1�

�2uj − 2<j �� (A6)

di

dxi
s
�2�
k �x)0��2<j = 0� and

di

dxi
s
�2�
k �x)0��2uj = 0�

0� i < k− 2� (A7)

s
�2�
k �x)0�� 0� ∀x ∈ 	2<j � 2uj 
� (A8)

where s
�2�
k �x)0� = ∑k−1

l=−k+2Nl�k−1�x�0l. Equation (A7)
forces 0−k+2� � � � �0−1 and 02� � � � �0k−1 to zero. Therefore,
s
�2�
k �x)0� can be written in the form

s
�2�
k �x)0�=N0�k−1�x�00+N1� k−1�x�01�

Using the basic properties of B-splines (cf. Appendix B),
we can write Equations (A5) and (A6) as

2uj−1− 2<j
k− 1

00+
2uj − 2j<+1

k− 1
01 = :2j �z�− :2�j−1��z�� (A9)

and

2uj−1− 2j<
k− 1

A00+
2uj − 2j<+1

k− 1
B01

=

≡:uj � <j �s1�︷ ︸︸ ︷
s1�2uj ) *�− s1�2<j ) *�

2uj − 2<j
−:2�j−1��z�� (A10)
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where

A=
k−2∑
m=0

(
1

k− 1−m
(

1
k−m

k−1−m∑
i=0

2<j+m+i− 2<j+m
2uj − 2<j

))
+ 2uj − 2uj−1

2uj − 2<j
�

and

B=
k−2∑
m=0

(
1

k− 1−m
(

1
k−m

k−1−m∑
i=0

2<j+m+i+1− 2<j+m+1

2uj − 2<j

))
�

Note that 0 � :uj � <j �s1� − :2�j−1��z� � :2j �z� − :2�j−1��z�,
because s1 is convex. Furthermore, there always exists a
knot vector 2 that satisfies N1 and the following condition.
N2. The knot vector 2 = �20� � � � � 23+1� ∈ �a�b is such

that

B�
:uj � <j �s1�− :2�j−1��z�

:2j �z�− :2�j−1��z�
�A� j ∈ �1� � � � � �n/2���

This guarantees the existence of a nonnegative solu-
tion �00�01� to Equations (A9)–(A10) and completes our
proof. �

Appendix B. Basic Properties of
B-Splines
For a more complete list of properties, see, e.g.,
Dierckx (1993).

1. Positivity:

Ni�k+1�x�� 0 for all x.

2. Local support:

Ni�k+1�x�= 0 if x  	2i� 2i+k+1
�

3. Boundary values:

N
�l�
i� k+1�2i�=N

�l�
i� k+1�2i+k+1�= 0� l ∈ �0� � � � � k− 1��

4. Derivative of a B-spline:

N ′
i� k+1�x�= k

{
Ni�k�x�

2i+k− 2i
− Ni+1� k�x�

2i+k+1− 2i+1

}
�

Endnotes
1. For a general discussion of semiparametric models and
their identification, see, e.g., Powell (1994). The standard
econometric approach revolves around estimation, whereas
our method is fundamentally aimed at solving decision
problems robustly.

2. Constraints on the sign of higher-order derivatives can
be imposed in a similar manner.
3. This work is preceded by Wolibner (1951), who
establishes the existence of monotonic interpolating
polynomials.
4. The definition of B-splines dates back to Curry and
Schoenberg (1947).
5. From a technical perspective, we relax the almost ubiq-
uitous assumption in extant results on shape-preserving
spline approximation that the knots be located at the data
points. The restriction of intersample behavior implied by
this assumption artificially constrains the space of feasi-
ble models. In view of achieving robustness, being able to
place knots at any location in the choice set is key.
6. See, e.g., Judd (1999, Chapters 6 and 12) for a brief
overview of shape-preserving numerical methods in eco-
nomics.
7. See, e.g., Härdle and Linton (1994) and Pagan and Ullah
(1999) for surveys of nonparametric estimation techniques.
8. The B-spline approximation method presented in this
paper can, in the limit, be interpreted as an orthogonal-series
method, for the B-spline polynomials defined on an interval
	a� b
 form an orthogonal basis of �0	a� b
 when the max-
imum distance between two knots tends to zero and/or the
degree of the B-splines tends to infinity. However, it allows
for shape constraints and does not suffer from most other
drawbacks of truncated orthogonal series.
9. Kernel-based estimation was introduced by Rosenblatt
(1956) and refined by Nadaraya (1964) and Watson (1964).
10. Due to the distortion caused by each sample on its
neighborhood in kernel-based estimation, there is a signif-
icant error in the spin at the sample points.
11. This holds, no matter from which distributions the
yj�ms are obtained, as long as Lindeberg’s condition (which
guarantees that no one yj�m outweighs the other samples)
is satisfied.
12. The results in this paper can be transferred to other
error norms. By the well-known norm-equivalence on �n,
for any (weighted) error ê�* � z� = �̂�w1�s�x1) *� − y1��

� � � �wn�s�xn) *�− yn���̂, which uses the norm �̂ · �̂ instead
of the maximum-norm � · ��, there exist positive constants
F
¯
� F̄ such that F

¯
e�* � z�� ê�* � z�� F̄e�* � z� for any admis-

sible * and z.
13. Because by assumption A1 the structural objective
function is Lipschitz, an allowable error on the objective
function implies a maximum acceptable error for the com-
ponent function.
14. Remark 12 in §4.1 provides several ways for obtaining
such beliefs.
15. By the maximum theorem (Berge 1959) the set �X�z�
is compact as long as �̄ is finite, which by the Weierstrass
theorem (Bertsekas 1995) guarantees that (8) has a solution.
16. Unsurprisingly, the ostrich bias becomes stronger if we
allow the decision maker to first observe the data and then
to choose �̄. For example, if, in the setting of Remark 5, it
is impossible that * is greater than some given upper bound
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*0 > 0, and the decision maker observes the single data
point �x�2*0− x�, then it is best for him to choose �̄= 0,
effectively ignoring the fact that with probability one the
actual * is smaller than *0.
17. On the relevant interval 	a� b
, the splines generated by
Ni�k+1� i ∈ �−k� � � � � 3� are independent of the choice of
the additional knots 2−k� � � � � 2−1 and 23+2� � � � � 23+k+1, as
long as they are such that 2−k � 2−k+1 � · · ·� 2−1 � 20 = a
and b= 23+1 � 23+2 � · · ·� 23+k � 23+k+1.
18. The proof of this result follows from Theorem 6 of
De Boor (1978/2001, p. 149).
19. To ensure that all terms in Equation (17) are well
defined, we adopt the convention that 0 · � = � · 0 = 0.
Such expressions may occur if we have coinciding knots,
as, for example, at the boundary of 	a� b
.
20. As De Boor (1978/2001) points out, increasing the
number of knots is a desirable substitute for increasing
the degree k of an approximating polynomial, especially
because the computational complexity increases sharply
in k (creating substantial difficulties for k� 20).
21. Given the sample z, the constant �

¯#
�z� in Equa-

tion (25) always exists as a finite nonnegative number.
Indeed, it is sufficient to approximate the data by a con-
stant spline, e.g., equal to ȳ = �y1 + � � � + yn�/n, and set
�=maxj∈�1� ���� n� �ȳ− yj �.
22. If *  ?��#�z�, then @�* � �� z� = 0. If ?��#�z� = �,
then @� · � �� z�= 0.
23. A charge-card balance becomes payable in full at the
end of a payment period, contrary to a lending card, which
allows for partial repayment at the due date and a debt
rollover to the next payment period.
24. Based on the sample variances, for Segment 1 we
choose W = diag���0�4714�1�0�5�, and for Segment 2 it
is W = diag���0�7071�1�0�7071�. Note that the variance
for the first (trivial) data point �0�1� vanishes, because all
accounts accept zero repayment; this point is imposed as
an interpolation constraint on the response curve.
25. This statement requires that despite the significant
intersample belief uncertainty the decision maker is not
subject to “ambiguity aversion” (Ellsberg 1961). The plau-
sibility of this assumption is strengthened by the fact
that the simple, one-dimensional settlement-rate decision
is usually taken in a “noncomparative context” (Fox and
Tversky 1995).
26. If n is even, one can extend the sample by an arbitrary
data point consistent with M̂1 and M̂2.
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