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Abstract

We consider electricity pool markets in radial electricity transmission networks in which the lines have

no transmission losses, but have transmission capacities. At each node there is a strategic generator

submitting generation quantities to the pool. Prices are determined by a linear competitive fringe at

each node. We derive necessary and sufficient conditions on the line capacities that ensure that the

unconstrained one-shot Cournot equilibrium remains an equilibrium in the constrained network. These

conditions are characterized by a convex polyhedral set.

1 Introduction

There has been much interest in recent years in extending the classical Nash-Cournot equilibrium for
oligopolistic competition to the setting of nodal electricity pool markets. In the Cournot setting, strate-
gic generators inject fixed quantities of power at nodes of a transmission network, and receive nodal prices
at these nodes that are determined by elastic demand functions at the nodes. In most wholesale electricity
markets, demand is inelastic in the short term, at least for residential consumers, and so demand elasticity
is interpreted liberally in this setting. It can correspond to industrial load shedding or the generation of a
competitive fringe, who offer fixed increasing supply curves at some nodes.

As outlined by Yao et al [5], the different classes of equilibrium models one can derive depend on the
assumptions made about the rationality of the players. The most comprehensive and arguably realistic is the
full-rationality assumption. In the transmission congestion setting this assumes that generators anticipate
the effect of their generation decisions on the congestion in the network, and therefore on the payments that
must be paid as rentals to the system operator. In a full-rationality model, each generator acts as a leader
choosing their generation quantity simultaneously, assuming that other generation quantities are fixed, but
anticipating a follower stage in which the system operator computes clearing prices that maximize the welfare
of the system. These prices are the nodal prices from an appropriate dispatch model, and the gross revenue
(ignoring contracts and costs) earned by a generator at a node is the product of its injection quantity and
the nodal price.

The development of algorithms for computing Nash-Cournot equilibria in congested electricity transmis-
sion networks is an active area of research. A fundamental contribution in the understanding of this field
was provided by the paper of Borenstein et al [1], which showed, in a two-node symmetric setting, that a
Nash-Cournot equilibrium in pure strategies might not exist if the transmission capacity of the line joining
the nodes was not sufficiently large. Borenstein et al also show that transmission losses affect the nature of
the equilibrium in this model. In equilibrium, symmetric generators will offer less generation than they would
under the unconstrained Cournot solution that pertains if the line had no losses. In asymmetric situations
with congestion, full-rationality models may result in either no equilibrium, a unique equilibrium, or more
than one equilibrium.

The essential difficulty in modelling this situation is the assumption that generators will act strategically
to exploit congestion in the line. If this is the case then we seek an equilibrium in a generalized Nash game,
(see e.g. [4]) in which agents can affect the feasible strategies of other agents by exploiting their ability to
contribute to congestion. It is known that solutions to generalized Nash games are not guaranteed to exist, or
be unique (see e.g. [5] for a discussion of this issue in an electricity market setting). This has been illustrated
in models of the European market by Neuhoff et al [3], and in a model of the New Zealand electricity market
by Downward [2].
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Since the lack of existence or non-uniqueness of Nash equilibria is a serious impediment to economic
analysis of electricity markets with transmission systems, most authors seeking to quantify the effects of
market power in transmission networks have chosen to relax the full-rationality assumption to so-called
bounded rationality. Here it is assumed that the system operator is itself a player in the game who makes
decisions simultaneously with the generators choosing their levels of generation. Observe that this is in
contrast to the more realistic full-rationality model, in which the system operator determines the optimal
transmission flows after the generators have chosen their generation levels in a Stackelberg-type game where
the system operator’s response is taken account of in the generators’ choices of strategies.

One may interpret bounded rationality as an assumption that generators will act as price-takers with
respect to transmission, but price-setters at their own node. Within this framework, there are several common
variations, which are explored in [5] for example. In one variation, generators assume that competitors
injections and all transmission flows are fixed, and then optimize their injection. Simultaneous optimization
of injections gives an equilibrium. Unfortunately, in some circumstances, this approach can give solutions
that are not valid. For example, when applied to the Borenstein et al example of symmetric generators at
opposite ends of an uncongested line, the bounded rationality approach would yield two local monopolies as
opposed to the symmetric Cournot duopoly solution. Alternative approaches (in which generators assume
nodal price premiums are fixed rather than transmission quantities) will overcome this problem, but have
other limitations, such as yielding the symmetric Cournot duopoly solution for the example in [1] when the
line is congested.

In this paper we take a slightly different approach to previous work. We retain the full rationality
assumption, but seek to derive conditions on the capacities of the transmission lines (assuming no losses)
that will ensure that the unconstrained Nash-Cournot equilibrium is also a generalized Nash equilibrium for
these capacities. For linear demand curves and constant marginal generation costs, we show in the case that
the network has a radial structure that the set of arc capacities supporting an unconstrained Nash-Cournot
equilibrium is a convex polyhedral set, which we call the competitive capacity set.

This result is significant for several reasons. Primarily, electricity transmission grid owners are concerned
with providing grid capacity to enable competition between geographically separate agents. As demonstrated
by [1], these transmission lines can have a beneficial effect even if they contain no flow in equilibrium. The
results in this paper provide explicit bounds on the capacities of the lines so as to yield the maximum benefit
in this respect. In other words, if the line capacities lie in the competitive capacity set then expanding any
of them will yield no further competitive benefits. Moreover, as electricity demand and generation grow,
the competitive capacity set will change. Since there are many capacity vectors that lie in the competitive
capacity set, it makes sense to seek a plan of capacity expansion comprising a sequence of such vectors (ideally
one that maximizes the welfare of the plan). Finally, an understanding of the boundary of the competitive
capacity set enables us to shed some light on the circumstances in which bounded rationality models yield
the correct answers when applied to full rationality settings.

The paper is laid out as follows. In the next section, we formulate the version of the economic dispatch
problem we work with and give its optimality conditions. We then use these conditions in section 3 to
establish a key property of the residual demand curve faced by a generator at a given node. In section 4, this
property is used to derive conditions on the line capacities that guarantee an unconstrained Nash-Cournot
equilibrium.

2 The Economic dispatch problem

We shall consider a radial (tree) network of nodes i ∈ N , and directed lossless links denoted ij ∈ A, where
i is the tail node and j is the head node. The flow on link ij is denoted fij and the capacity of link ij is
denoted Kij . At each node i there is a known demand di and a competitive fringe defined by a linear supply
function Si(p) = aip. Observe that this is equivalent to assuming a linear demand function of the form

Di(p) = di − aip.

2



We assume at each node, i, that there is a single generator with marginal cost ci which injects power qi. We
denote by xi the dispatch of the competitive fringe. The economic dispatch problem is then

P (q) := min
∑

i∈N

1

2ai
xi

2

s.t. −xi +
∑

j,ij∈A
fij −

∑

j,ji∈A
fji = qi − di [πi] ∀i ∈ N

−Kij ≤ fij ≤ Kij

[

η1

ij , η
2

ij

]

∀ij ∈ A

The optimality conditions of the above dispatch is given by the following:

−xi +
∑

j,ij∈A
fij −

∑

j,ji∈A
fji = qi − di ∀i ∈ N

1

ai
xi − πi = 0 ∀i ∈ N

πi − πj + η1

ij − η2

ij = 0 ∀ij ∈ A
η1

ij (fij − Kij) = 0 ∀ij ∈ A
η2

ij (fij + Kij) = 0 ∀ij ∈ A
η1

ij , η
2

ij ≥ 0 ∀ij ∈ A
−Kij ≤ fij ≤ Kij ∀ij ∈ A

(1)

The following lemmas are simple consequences of these optimality conditions.

Lemma 2.1. Suppose that for a set of vectors x, f and π, we have that:

1. the node balance equations of P (q) are satisfied by x and f ,

2. |f | ≤ K,

3. and πi = 1

ai
xi ∀i ∈ N .

Then (x, f, π) is a solution of the economic dispatch problem if f and π satisfy:

4. if |fij | < Kij, then πi = πj,

5. if fij = Kij, then πi ≤ πj,

6. and if −fij = Kij, then πi ≥ πj.

Furthermore, if (x, f, π) satisfy

7. πi < πj then fij = Kij,

8. πi > πj then fij = −Kij,

9. πi = πj then |fij | ≤ Kij

then (x, f, π) is a solution to P (q).

Proof. From the optimality conditions, it can be shown that:

4. if |fij | < Kij , then from (1) we have that the associated multipliers η1

ij and η2

ij must be zero. This
yields πi = πj ,

5. if fij = Kij , then η2

ij = 0 and πi − πj + η1

ij = 0, where η1

ij ≥ 0, hence πi ≤ πj ,

6. similarly, if −fij = Kij , then from (1) πi − πj − η2

ij = 0, where η2

ij ≥ 0 yielding πi ≥ πj .
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Furthermore, suppose that f and π satisfy conditions (7-9) from the lemma statement. for each arc ij, let

η1

ij =

{

πj − πi if fij = Kij

0 otherwise

and let

η2

ij =

{

πi − πj if fij = −Kij

0 otherwise.

Now (x, f, π, η) (1) and we have a solution by construction.

Lemma 2.2. Suppose that problem P (q) is solved to optimality for injections q. Suppose fij = Kij, ij ∈ F ,

and fij = −Kij, ij ∈ G. Now let q̂ be a new set of injections, augmented by fixed flows fij , ij ∈ F ∪ G . If the

optimal solution to P (q̂) for each connected component of T \ (F ∪ G) gives π with πi ≤ πj , ij ∈ F , πi ≥ πj,

ij ∈ G, then these solutions together with fij, ij ∈ F ∪ G solve P (q) for injections q̂.

Proof. By construction the solution is easily shown to satisfy the optimality conditions for each link in
T \ (F ∪ G). The remaining optimality conditions pertain to links in F ∪ G, which hold by assumption.

3 Residual demand curves in radial networks

In this section, we establish some properties of the residual demand curve faced by a generator at some
arbitrary but fixed node, n. To do this, it is convenient to adopt the convention throughout this section that
all arcs in the radial network are directed towards n. We first establish that the residual demand curve faced
by each generator is piecewise linear. Furthermore, if qU is the vector of injections at the unconstrained
Nash-Cournot equilibrium (where the flows resulting from qU are feasible for the network), then the residual
demand curve faced by the generator at n is convex for all qn < qU

n (and concave for all qn > qU
n ). (See

Figure 2.)
To establish this result, we consider a “decomposition scheme” for the network. A decomposition δ for

node n is determined by choosing a subtree Tδ of the network rooted at n. We denote the nodes within Tδ

by Nδ. The network is therefore decomposed into Tδ and several other subtrees, each rooted at the tail node
of an arc with its head node in Nδ. We denote by Bδ the set of arcs that link these subtrees. (See Figure 1.)

1 2 3

4 5 6

7 8 9

Tδ

Figure 1: An example of a decomposition. Note that Nδ = {2, 5, 6}

For each node n, we denote by Dn the set of all decompositions pertaining to n. Given a decomposition
δ ∈ Dn and a vector of injections q, we compute nodal prices πδ by setting fij = Kij for arcs ij ∈ Bδ,
and solving the dispatch problem for Tδ, including these flows but ignoring arc capacity constraints for the
arcs within Tδ. (Note that the prices computed this way will not necessarily result in a corresponding set of
feasible flows.)
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qU
n injection

price

Figure 2: Residual Demand Curve for Player n

Lemma 3.1. Given decomposition δ ∈ Dn, the nodal price at all nodes in Nδ, is given by:

πδ =

∑

i∈Nδ

di −
∑

i∈Nδ

qi −
∑

ij∈Bδ

Kij

∑

i∈Nδ

ai

.

Proof. The dispatch problem for Tδ defined by the decomposition δ ∈ Dn is

min
∑

i∈Nδ

1

2ai
x2

i

s.t. −
∑

i∈Nδ

xi =
∑

i∈Nδ

qi −
∑

i∈Nδ

di +
∑

ij∈Bδ

Kij

[

πδ
]

Note that at optimality we must have,

1

ai

xi − πδ = 0 ∀i ∈ Nδ. (2)

If we sum over the equation group (2) we obtain

∑

i∈Nδ

xi − πδ
∑

i∈Nδ

ai = 0,

whereby

πδ =

∑

i∈Nδ

xi

∑

i∈Nδ

ai

=

∑

i∈Nδ

di −
∑

i∈Nδ

qi −
∑

ij∈Bδ

Kij

∑

i∈Nδ

ai

as required.

Corollary 3.2. Suppose two distinct radial networks with node sets N1 and N2 have optimal dispatches with

no congested lines, and node i ∈ N1 has demand d and price πi while node j ∈ N2 has demand −d and price

πj < πi. Then connecting N1 and N2 with a line of infinite capacity gives a new price π′
j > πj.
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Proof. To simplify notation let

Di =
∑

k∈N1\{i}

dk −
∑

k∈N1

qk,

and
Dj =

∑

k∈N2\{j}

dk −
∑

k∈N2

qk.

Since πi > πj we have
Di + d
∑

k∈N1

ak

>
Dj − d
∑

k∈N2

ak

.

Thus

(
∑

k∈N2

ak)(Di + Dj) − (
∑

k∈N2

ak)(Dj − d) = (
∑

k∈N2

ak)(Di + d)

> (
∑

k∈N1

ak)(Dj − d),

yielding

(
∑

k∈N2

ak)(Di + Dj) > (
∑

k∈N1

ak)(Dj − d) + (
∑

k∈N2

ak)(Dj − d).

Dividing by
∑

k∈N1

ak and
∑

k∈N1∪N2

ak gives

π′
j =

Di + Dj
∑

k∈N1∪N2

ak

>
Dj − d
∑

k∈N1

ak

as required.

As the injection qn decreases from qU
n , we show that arcs only ever congest towards node n. Therefore

one of the decompositions, above, will provide the optimal solution to the economic dispatch problem. We
prove in Theorem 3.4 that this decomposition is one with price maxδ∈Dn

πδ
n where πδ

n is the price at node n
with injection qn under the decomposition scheme δ ∈ Dn. Therefore the convex part of the residual demand
curve faced by generator n is the upper envelope of a finite number of linear curves.

Lemma 3.3. Suppose for some vector qU that no line is congested at the optimal solution to problem P (q).
Suppose now that for some node n, qn is decreased. Then as qn decreases the flow in every line is non-

decreasing in the direction of node n.

Proof. Note that initially the network contains no congested lines. The price at node n is a decreasing
function of the injection at node n. Therefore, at least until any flows reach their bounds, as qn decreases
the nodal prices at every node increase uniformly. Since at optimality

πi =
1

ai

xi

each fringe dispatch xi increases as qn decreases, by a total amount that equals the change in qn. Because
the network has a radial structure the change in line flows are unique and non-decreasing.

If any flow fij hits a bound Kij then this defines a decomposition δ ∈ Dn with ij ∈ Bδ. For j /∈ Nδ, we
fix πj at its current value. As qn decreases further, then πj increases to πδ, for j ∈ Nδ. It is easy to see from
Lemma 2.2 that this process yields an optimal solution to the dispatch problem for every qn < qU

n for which
it is feasible, and that the flow in every line is non-increasing as qn decreases.

The results above show that the price at node n is a non-increasing piecewise linear function of qn. We
now show that this is convex in the region qn < qU

n and concave in the region qn > qU
n .
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Theorem 3.4. Suppose that for some vector of injections q that all lines are uncongested at the optimal

dispatch. Suppose now that qn, the injection at node n, is decreased. Then the nodal price at node n, for any

value of qn is given by π∗
n = maxδ∈Dn

πδ
n, where πδ is defined by Lemma 3.1.

Proof. As there are only a finite number of decompositions of the type described in Dn, we know that the
maximum nodal price π∗

n is attained for some decomposition. Furthermore since the economic dispatch
problem is a strictly convex quadratic program it has a unique optimal primal solution, and so there is a
unique solution π satisfying (1). We will proceed by demonstrating that any decomposition δ ∈ D with
πδ

n = π∗
n satisfies (1). We will therefore have that the (unique) solution to (1) will satisfy πn = π∗

n.
Suppose that we have a decomposition δ ∈ Dn with πδ

n = π∗
n. By construction, we know that within each

subtree of Dn, the conditions (1) are satisfied. Therefore if the solution defined by δ does not satisfy (1) then
it must be the case that either

1. an arc capacity connecting 2 nodes in Nδ is exceeded, or

2. there is a congested arc ij ∈ Bδ where πi > πj .

For (1), suppose that flm > Klm where lm ∈ Tδ. Removing lm from Tδ creates a new decomposition
δ′ with Nδ′ consisting of the node set containing n, and setting flm = Klm. The net flow into Nδ′ is thus
smaller than it was for decomposition δ, and so the price at n in the new decomposition is greater than πδ

n

which violates the assumption that πδ
n is maximal over all decompositions.

Now consider case (2). Here again we will create a new decomposition where the price at node n will
increase from πδ

n. Define Ñi by the set of nodes in T \ Nδ that are connected to node i via an uncongested
path, and construct the decomposition γ with Nγ = Ñj ∪Nδ. Since πi > πj , is easy to show from Corollary
3.2 that πγ

n > πδ
n, which violates the assumption that πδ

n is maximal over all decompositions.

Theorem 3.5. Suppose that for some vector of injections qU , the arcs are uncongested at the optimal dispatch

for the economic dispatch problem. The residual demand curve faced by the generator at node i is a convex

piecewise linear function.

Proof. The proof is a direct consequence of Theorem 3.4, and the fact that the upper envelope of a set a
linear functions is a convex function.

Note that so far we have established that the residual demand curve, faced by the generator located at
node n, for any n in our radial network, is a convex, piecewise linear curve in all quantities qn ≤ qU

n . The
analogs of all of the above technical arguments will hold by symmetry and we can obtain that for all qn > qU

n ,
the residual demand curve, faced by the generator located at node n, is piecewise linear and concave (see
Figure 2).

4 Competitive play

4.1 Uncongested Cournot Equilibrium

In absence of arc capacities in the network a unique Nash-Cournot equilibrium will exist. This is found when
each player’s optimality conditions hold simultaneously, with respect to their own injection. Recall that we
assumed the constant marginal cost of cn for each generator. The profit, ρn, of an arbitrary player, n, is
given by

ρn = qn (π − cn) .

Recall that π =

P

i∈N

di−
P

i∈N

qi

P

i∈N

ai
. Then

ρn = qn





∑

i∈N
di −

∑

i∈N
qi

∑

i∈N
ai

− cn



 (3)
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Note that ρn, above, is a concave function of qn, therefore q∗n, the maximizer of the profit is found from
solving ∂ρn

∂qn
= 0;

∂ρn

∂qn

(q∗n) =

∑

i∈N
di − 2q∗n −

∑

i∈N ,i6=n

qi

∑

i∈N

ai

− cn = 0

q∗n =
1

2





∑

i∈N

di −
∑

i∈N ,i6=n

qi − cn

∑

i∈N

ai



 (4)

To find the Nash-Cournot equilibrium, all players must be simultaneously maximizing their own profit, i.e.
qn = q∗n ∀n ∈ N . We now sum over the above equation for all n, to give

∑

i∈N

q∗i =
1

2

(

|N |
∑

i∈N

di − (|N | − 1)
∑

i∈N

q∗i −
∑

i∈N

ci

∑

i∈N

ai

)

.

Thus
(|N | + 1)

∑

i∈N

q∗i = |N |
∑

i∈N

di −
∑

i∈N

ci

∑

i∈N

ai,

whereby

∑

i∈N

q∗i =

|N |
∑

i∈N
di −

∑

i∈N
ci

∑

i∈N
ai

|N | + 1
. (5)

Solving for a specific player n’s injection, we obtain the (uncongested) Nash-Cournot equilibrium injection
qU
n . Thus

∂ρn

∂qn

(q∗n) =

∑

i∈N

di − q∗n −
∑

i∈N

q∗i
∑

i∈N
ai

− cn = 0,

whereby

qU
n = q∗n =

∑

i∈N

di −

|N |
∑

i∈N
di −

∑

i∈N
ci

∑

i∈N
ai

|N | + 1
−
∑

i∈N

aicn

=

∑

i∈N
di +

∑

i∈N
ci

∑

i∈N
ai

|N | + 1
− cn

∑

i∈N

ai. (6)

The uncongested Nash-Cournot equilibrium (6) is the most competitive equilibrium for this type of game.

4.2 Existence of Uncongested Nash Cournot

In a game with strategic generators choosing quantities, and competing over a network, a set of conditions,
ensuring the existence of the uncongested Nash-Cournot equilibrium can be found. Recall that we denote the
price associated with the uncongested Nash-Cournot equilibrium by πU and we denote player n’s equilibrium
injection quantity by qU

n .
There is incentive to deviate from the Nash-Cournot equilibrium if there exists any player, n, which can

increase its profit by changing only its own injection. First, note that because of the shape of the residual
demand curve faced by the player (see Figure 2,) there is no incentive to deviate to a quantity higher than
qU
n . Therefore we only need to consider qn < qU

n .
To this end, we impose constraints (on the line capacities,) that ensure that the profit obtained from

the uncongested Cournot quantity is greater than (or equal to,) profits obtained from any other quantity by
considering all decompositions δ ∈ Dn. Each decomposition δ, has an associated residual demand curve. We
consider the residual demand curve associated to δ and find the point (qδ

n

∗
, πδ

n

∗
) that maximizes the profit
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ρδ
n, for the generator at node n. If we now impose conditions that guarantee ρδ

n ≤ ρU
n , then there will be no

incentive for generator n to deviate from the Cournot equilibrium. We impose these conditions considering
all decompositions and all generators.

Deviation to decomposition δ gives the the following profit function.

ρδ
n = qn

(

πδ − cn

)

= qn







∑

i∈Nδ

di −
∑

i∈Nδ

qU
i −

∑

ij∈Bδ

Kij

∑

i∈Nδ

ai

− cn






.

Maximizing this profit with respect to qn gives

∂ρδ
n

∂qn

(

qδ
n

∗
)

=

∑

i∈Nδ

di − 2qδ
n

∗
−

∑

i∈Nδ,i6=n

qU
i −

∑

ij∈Bδ

Kij

∑

i∈Nδ

ai

− cn = 0,

implying that

qδ
n

∗
=

1

2





∑

i∈Nδ

di −
∑

i∈Nδ,i6=n

qU
i −

∑

ij∈Bδ

Kij − cn

∑

i∈Nδ

ai



 . (7)

Solving for πδ
n

∗
gives

πδ
n

∗
=

∑

i∈Nδ

di − q∗n −
∑

i∈Nδ ,i6=n

qU
i −

∑

ij∈Bδ

Kij

∑

i∈Nδ

ai

=
qδ
n

∗

∑

i∈Nδ

ai

+ cn. (8)

Solving for the deviation profit gives

ρδ
n

∗
=

qδ
n

∗2

∑

i∈Nδ

ai

. (9)

There is no incentive to deviate if
ρU

n ≥ ρδ
n

∗

whereby by (9)

ρU
n ≥

qδ
n

∗2

∑

i∈Nδ

ai

.

With (7) this gives

√

ρU
∑

i∈Nδ

ai ≥
1

2





∑

i∈Nδ

di −
∑

i∈Nδ,i6=n

qU
i −

∑

ij∈Bδ

Kij − cn

∑

i∈Nδ

ai



 .

This yields the following inequality on the line capacities Kij ,

∑

ij∈Bδ

Kij ≥
∑

i∈Nδ

di −
∑

i∈Nδ,i6=n

qU
i − cn

∑

i∈Nδ

ai − 2

√

ρU
∑

i∈Nδ

ai. (10)

If we impose inequalities analogous to (10) for all nodes n and for all possible decompositions δ ∈ Dn, we have
a set of sufficient conditions that guarantee the existence of the unconstrained Nash-Cournot equilibrium.
We term the set of arc capacities that satisfy these inequalities the competitive capacity set.
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This set of constraints is also necessary. That is, for any combination of arc capacities {Kij}ij∈A that
lie outside the competitive capacity set, there exists a generator n who has an incentive to deviate from the
uncongested Cournot equilibrium. To see this, observe that if any inequality in (10) is violated, then there
is a generator n and a decomposition δ ∈ Dn giving

ρδ
n = qδ∗

n

(

πδ
n − cn

)

> ρU
n .

Now by Theorem 3.4 an injection of qδ
n < qU

n yields a price

π∗
n = max

δ∈Dn

πδ
n,

and so the profit actually made by generator n injecting qδ
n (while others inject qU

i ) is

ρn = qδ∗

n (π∗
n − cn) ≥ ρδ

n > ρU
n ,

showing that generator n can deviate profitably from qU
n .

Hence (10) gives an explicit description of the set of line capacities that support an uncongested Cournot
equilibrium. Some open questions remain to be resolved, for example when generators are subject to capacity
constraints and more general cost functions, or the competitive fringe is nonlinear. It is worth noting in the
current case that since it is described by a system of linear inequalities in the arc capacities our competitive
capacity set is a convex set. This makes it attractive to use in optimization models. For example, one might
seek an optimal transmission capacity expansion plan to cater for supporting competitive equilibria when
faced with growth in demand.
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