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Abstract

We analyze the structure and pricing of option contracts for an industrial good in the presence of spot

trading. We combine the analysis of spot trading and buyers’ disparate private valuations for different

suppliers’ products, and jointly endogenize the determination of three major dimensions in contract
design: (i) sales contracts versus options contracts; (ii) flat-price versus volume-dependent contracts;

(iii) volume discounts versus volume premia. We build a model where a supplier of an industrial good

transacts with a manufacturer who uses the supplier’s product to produce an end good with an uncertain

demand. We show that, consistent with industry observations, volume-dependent optimal sales contracts

always demonstrate volume discounts (i.e., involve concave pricing). However, options are more complex

agreements, and optimal option contracts can involve both volume discounts and volume premia. Three

major contract structures commonly emerge in optimality. First, if the seller has a high discount rate

relative to the buyer and the seller’s production costs or the production capacity is low, the optimal

contracts tend to be flat-price sales contracts. Second, when the seller has a relatively high discount rate
compared to the buyer but production costs or production capacity is high, the optimal contracts are

sales contracts with volume discounts. Third, if the buyer’s discount rate is high relative to the seller’s,

then the optimal contracts tend to be volume-dependent options contracts and can involve both volume

discounts and volume premia. However, when the seller’s production capacity is sufficiently low, it is

possible to observe flat price option contracts. We further provide links between production and spot

market characteristics, contract design, and efficiency.
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1 Introduction

As globalization of economies and advances in technology and communications increase the competitiveness

of industries, companies find themselves increasingly under pressure to respond to ever faster changes in

demand and supply. This stringent business environment forces companies to employ more flexible forms of

procurement strategies and tools over and beyond the traditional, long-term, often close-relationship-based

and rigid delivery agreements that historically dominated industrial procurement. As a consequence, there

has been a rapid growth in the employment of two forms of procurement strategies in recent years: option

contracts, and the utilization of spot trading to supplement existing contracts according to the resolution

of uncertainties.

The first one of these two strategies, the use of flexible option contracts in industrial procurement,

has drawn significant attention. In traditional sales contracts, a supplier of an industrial good agrees to

deliver the procured goods to the buyer at the specified future date. On the other hand, option contracts

in this context are agreements between a supplier and a buyer, where the buyer purchases the right to

receive the delivery of the good from the supplier at a specified date at a predetermined exercise price.

At the contract time, the buyer pays a reservation fee to purchase this right. At the time of delivery,

depending on the resolution of uncertainties (such as the spot market price and consumer demand for the

end product), the buyer decides the number of options to exercise up to the number reserved according to

the contract agreement. Upon delivery by the supplier, the buyer pays an additional fee for the exercise of

the options to the seller for only the exercised units. This provides flexibility and increased efficiency in risk

sharing between the supply chain partners. Such contracts now have been used in a variety of industries

and product categories, ranging from electricity, tools, and heavy equipment to specialized optical and

electronic components.

Recent efforts, together with advancements in technology have also increased opportunities for utilizing

industrial spot markets to complement existing contracts by allowing companies to connect with new

trading partners and adjust to changing market conditions. In fact, today, in many industries in the

United States and around the world, procurement is carried out as a mix of long-term agreements between

suppliers and buyers, and spot purchases (see, e.g., Robertson 2002, Grey et al. 2005). However, there

are significant downsides of spot trading industrial goods compared to procuring through contracts with

known partners. First, there is naturally a spread between the buy and sell prices in these venues. That

is, if one wants to sell a product, she has to accept a reduction in price compared to the price she would

pay to buy the product. Second, and importantly, not all products are the same. Industrial goods from

different suppliers have varying characteristics over a number of dimensions. As a consequence, an industrial

buyer usually has different willingness-to-pay for different suppliers’ products, valuing the products of their

preferred suppliers, who are often their long term partners, at a premium. Such valuation differences stem

from many dimensions such as compatibility, reliability, and match (see e.g., Donohue 2000, Levi et al.

2003). This means that spot purchases come with value losses due to product differences and transaction,
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adaptation, and compatibility costs (Williamson, 1981a,b, Malone et al. 1987, Baker et al. 2002). These

inefficiencies create incentives to reduce reliance on spot markets for procurement and shift purchasing

towards contracts with existing partners. Thus, the ability to adapt to trading with new suppliers becomes

an important distinguishing characteristic. If a manufacturer is sufficiently flexible in product substitution,

then his reliance on a given supplier is low, and he can switch between the products of long-term partners

and new suppliers found on the spot market with relatively low value loss. In such a case, when signing

long-term agreements, the buyer will have a strong position compared to the supplier. On the other hand,

if a manufacturer’s production process is not very flexible in terms of product substitution, procuring from

new suppliers brings lower overall value, and hence he is highly reliant on his existing business partners.

As a result, the flexibility of a given manufacturer’s production process becomes an important individual

characteristic that determines the outside option of a manufacturer, and hence it is an important factor in

the pricing of a procurement contract. As such, it is natural that the prices for sales or option contracts

depend on the parties’ respective information on the private valuation of the product of its long-term

supplier compared to that of an outside provider. Therefore, at the contracting stage, a manufacturer

would like to represent himself as minimally reliant on the supplier as possible. As we mentioned above,

many factors combine to form the difference in the buyer’s private valuation for the supplier’s product

compared to what he could buy from the spot, and determine a certain maximum willingness-to-pay (or,

equivalently, cost of acquisition) for the buyer, which is normally private information to the buyer. Thus,

when pricing the option contracts, the supplier has an informational disadvantage. Specifically, she has to

determine the pricing terms for the option contracts without knowing the buyer’s exact valuation for her

product relative to those of other suppliers. The solution to this pricing problem is complex since it not

only involves information asymmetry about the buyer’s valuation, but also a simultaneous consideration of

decision making on several dimensions, including the quantity of contracts to be agreed upon, as well as the

exercising of option contracts based on the realization of uncertainties in spot market price and consumer

demand. Further, the optimal exercise price for the contracts needs to be determined endogenously and

simultaneously with the reservation price scheme. As a consequence, fundamental characteristics of the

optimal contracts, such as volume-dependency structure and pricing, as well as the nature of the contracts

(whether they will be options or sales contracts), are open for the supplier to decide, taking various

components of uncertainty into account.

These observations lead to important research questions: How do non-linear pricing schemes for option

contracts and spot market trading interact? What is the optimal joint option pricing scheme, including

the reservation price schedule and the exercise price, in the presence of spot market trading? When is it

optimal to employ flat (i.e., volume-independent) pricing? Alternatively, when a volume-dependent pricing

scheme is employed, is it always optimal to offer volume discounts? When would a supplier offer options

and when would she offer to simply sell to the buyer? How do market and industry characteristics such

as production costs, production flexibility, spot price distribution, bid-ask spread for the spot price, and

demand distribution affect contract characteristics such as the exercise price, reservation price, and the
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contracted quantity? In this paper, we study the answers to these questions. Specifically, our goal is three-

fold. First, starting with a general contract pricing point of view, we present the solution to the reservation

pricing problem for the supplier for option agreements. In particular, we characterize the optimal general

non-linear pricing scheme for the options on delivery of the industrial good with the presence of spot trading

as an outside alternative for both parties, under information asymmetry on buyer’s production flexibility

and uncertainty on demand and spot price. Second, we determine the conditions under which it is optimal

to sell the capacity or offer options, and the conditions under which it is optimal to offer volume-dependent

pricing instead of flat pricing. Finally, we demonstrate the effects of market and industry characteristics

on the specification of optimal contracts.

We show that, volume-dependent optimal sales contracts demonstrate volume discounts. However

optimal option contracts can involve both volume discounts and volume premia. We show that three major

contract structures commonly emerge in optimality: First, if the seller has a high discount rate relative to

the buyer and the seller’s marginal production cost or the production capacity is low, the optimal contracts

tend to be flat-price sales contracts, i.e. the seller will make an offer to sell her capacity to the buyer at

a lump-sum price. Second, when the seller has a relatively high discount rate compared to the buyer but

production costs or production capacity is high, sales contracts with volume discounts are optimal. Third,

if the buyer’s discount rate is high relative to the seller’s, then volume-dependent options contracts with

both volume discounts and volume premia tend to be optimal. Exploring the effects of the industry and

market characteristics on contracts, we find that increased average spot prices tend to increase the option

exercise price, quantity contracted and reservation prices. Increased spot price variance, on the other hand,

tends to decrease the exercise price and contracted quantity but increases the average reservation price.

Finally, when the bid-ask spread in the spot market or production costs decrease, expected contracted

quantity and average reservation price decrease.

The rest of this paper is organized as follows. Section 2 presents the literature review. Section 3 presents

our model. Section 4 provides an analysis of the benchmark case where the buyer’s preference valuation

for the supplier’s product is known to the supplier. Section 5 presents the design and characteristics of the

optimal contracting schemes for the general case with buyer type uncertainty. Section 6 studies the effects

of the industry and market characteristics on contract design. Section 7 provides a discussion of our model

assumptions and potential extensions. Section 8 offers our concluding remarks. All proofs are given in the

Online Supplement.

2 Literature Review

Supply chain contracting has received a considerable amount of attention in the literature in recent years.

There are a large number of studies that explore a variety of supply chain contracting schemes. Cachon

(2003) and Chen (2003) give comprehensive surveys of the literature in this area. Among many different

contract structures studied in this literature, some examples are buy-back (Donohue 2000), “pay-to-delay”
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(Brown and Lee 1998), quantity flexibility (Tsay 1999), and revenue-sharing contracts (Cachon and Lar-

iviere 2005). Option contracts for procurement are also among contract structures studied in the supply

chain literature. Eppen and Iyer (1997) study option contracts (or “backup agreements”) between catalog

companies and manufacturers in the fashion industry. Examining data from the industry, they find that

backup arrangements can have a substantial effect on expected profits and can increase contracted quantity.

Barnes-Shuster et al. (2002) study channel coordination with option contacts, showing that coordination

can be achieved through piece-wise linear exercise prices. They show, however, that to coordinate the

channel through linear prices the supplier’s individual rationality constraint has to be violated. Martinez-

de-Albeniz and Simchi-Levi (2008) study the bidding behavior in a market for supply option contracts

with multiple suppliers and a single buyer. They show that in the Nash equilibrium of the bidding game,

suppliers show clustering behavior. They also show that the loss of supply chain profit due to competition

is, in general, at most 25% of the centralized supply chain profits.

A second main branch of the supply chain management literature that is closely related to our paper

deals with spot trading in industrial goods. Kleindorfer and Wu (2003) provide a survey of the earlier

literature in this area. Lee and Whang (2002) study the effect of a secondary market for excess inventory

on a supply chain with a large number of buyers and a monopolistic supplier. They demonstrate that

a secondary market increases allocative efficiency but may decrease the supplier’s profits. Peleg et al.

(2002) consider a multi-period setting with both long-term and spot purchases where unmet demand is

carried to the next period. They identify the conditions under which each mode of procurement model

is optimal. Dong and Durbin (2005) study industrial markets for surplus components and identify the

conditions under which such a market would increase or decrease supplier and supply chain profits. Tunca

and Zenios (2006) study the competition between relational contracts and auction markets in the presence

of product quality differentiation among suppliers and determine the conditions under which long-term

relational contracts can eliminate open auction markets and vice versa. Mendelson and Tunca (2007b) study

sequential spot and long-term trading in a two-stage supply chain under asymmetric demand information.

They define a concept for liquidity (or market impact factor) for industrial spot markets and demonstrate

the important role it plays in supply chain efficiency and the generation of value and surplus in the supply

chain. Shin and Tunca (2010) study market-based contracts that can be indexed to spot prices under

diverse demand forecasts for multiple retailers and show that such contracts can aggregate the dispersed

demand information and help coordinate the supply chain.

Wu et al. (2002) examine the interaction between capacity option contracts and spot trading. They

explore a model with a single seller and multiple buyers, where the seller and the buyers first contract for

capacity options and can later trade in the open spot market if it is desirable. They show that the buyers’

optimal reservation level follows an index that combines the seller’s reservation and execution costs. Wu and

Kleindorfer (2005) utilize the same framework to examine a setting with multiple sellers with heterogenous

technologies and a single buyer of the product. They characterize the equilibrium and explore its efficiency

properties. Levi et al. (2003) introduce the notion of codifiability of the product and study the role of
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adaptation costs that an industrial buyer incurs when purchasing from the spot market. They show that

codifiability and spot price distribution have significant effect on options contract pricing. Martinez-de-

Albeniz and Simchi-Levi (2005a,b) employ a portfolio management approach to optimize supply option

contracts in the presence of spot markets. They explore the mean-variance properties of supply option

contract portfolios, and characterize the set of portfolios that a manufacturer must hold in order to achieve

dominating mean-variance pairs. In a multi-period setting they also find the optimal replenishment policy

for a portfolio of options.

In this paper, we aim to analyze the emergence of a variety of contract pricing structures. Earlier

papers in the related literature start with a pre-set contract pricing form. For instance in Wu et al. (2002)

the contracts are set as linear reservation price contracts.1 In contrast, we make the pricing structure

endogenously emerge in optimality within a general class of contracts that encompasses commonly used

contracting structures in practice. We jointly endogenize the determination of multiple dimensions of

procurement contract specifications and find conditions under which the optimal contracts endogenously

become sale contracts rather than option contracts (as suggested by Wu and Kleindorfer 2005 as an

open research question), and under which optimal contracts will be volume-dependent instead of flat

priced. Further, we explore the nature of volume dependency, and identify conditions, under which the

optimal contracts demonstrate volume discounts and volume premia. These issues were not analyzed in

the literature on industrial contracting with spot trading before. In addition, our paper introduces model

features such as the buyer’s true willingness-to-pay as his private information, and explores the role of

difference between the discount rates of the buyer and the seller (which are almost always different in

practice) on the contract structure. Finally, we also seek to understand the role of market and industry

variables, such as spot price distribution and the statistical properties of informational asymmetry on the

determination of contract structure and pricing. We explain the specifics of the interactions between these

elements in detail in the next section, where we describe the model.

3 The Model

We study a two-stage supply chain. The supplier of an industrial intermediate good (“the seller” or “S”)

sells to a manufacturer (“the buyer” or “B”, which can also be a retailer) who uses the intermediate good in

his process to produce an end good.2 The demand for the end good, D, is uncertain and with a continuous

distribution function FD, density function fD, and support [D, D]. The retail price for the end product

is p > 0. There are two time periods in the model. At time t = 1, the buyer may reserve units from the

seller, who is his preferred supplier, by purchasing q ≤ D options, according to a price schedule (R(q), w)

the seller offers. The price schedule consists of a menu, R(q), the reservation fee for q options purchased,

and the per-unit exercise fee, w. Each unit of option purchased gives the buyer the right to buy one unit
1Note that Wu et al. (2002) also focus on other dimensions of the setting such as the seller’s capacity commitment decisions.
2As a language convention, we henceforth refer to the seller as “she” and the buyer as “he”.
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of intermediate good from the seller at time t = 2, at the exercise price w ≥ 0. At time t = 1, the buyer

decides the amount of capacity to reserve, q, with the supplier and pays R(q). The supplier who has a

production capacity K(≥ 0) then decides the number of units to produce y ≤ K at a unit production cost

of β > 0.

At time t = 2, the consumer demand for the buyer’s product, D, and the spot price for the intermediate

good, s, are realized. The spot price, s, is uncertain at time t = 1, with support [s, s], where 0 < s < s.

The distribution function Fs for s is continuous with density fs. For tractability, we assume that s and

D are independently distributed.3 We also assume that s has increasing hazard rate; i.e., fs(s)/F̄s(s) is

increasing, which is a commonly used weak assumption (see, e.g., Porteus 2002), and that (d/ds) log(fs)

is bounded on [s, s], which ensures that s distribution does not explode too fast over its support. As

a regularity condition, we also assume that s > 1/fs(s), which ensures a certain lower bound on the

realization of the spot price. The first two conditions are satisfied by many common distributions on

bounded support such as uniform, truncated normal, and truncated exponential.4 The third condition

is on the support of the distribution and can also easily be simultaneously satisfied with the first two

conditions by many distributions including the ones we mentioned above. For notational convenience,

define gs(s) , F̄s(s)/fs(s), which is decreasing in s. Observing D and s, the buyer can exercise his options

at the strike price w up to the purchased amount, q. When the buyer places an order, exercising his

options, the seller delivers the requested amount of the intermediate good. At the end of period 2, if either

the seller or the buyer has any unused intermediate-good inventory, they can sell it to the spot market at

price (1− φ)s, where 0 < φ < 1 denotes the bid-ask spread at the spot market.

The buyer can also purchase the intermediate good from the spot market. However, normally, an indus-

trial buyer has different valuations, or willingness-to-pay, for the products of different suppliers. Naturally,

his valuation for a preferred supplier would be higher than that for outside suppliers. There are many

reasons for this valuation difference, including such factors as the degree of fit of a given supplier’s prod-

uct, quality or reliability of that product, compatibility and specificity, the state of the buyer’s production

process, and the level and fit and integration of operating processes of the buyer and that supplier (see,

e.g., Williamson 1981b, Malone et al. 1987, Hart and Moore 1988, Levi et al. 2003). Denote the difference

in his willingness to pay for one unit of his preferred supplier’s product and the product he procures from

the open market by θ > 0. That is, every unit the buyer purchases on the spot comes with an additional

reduction of payoff, or cost, of θ. θ is private information to the buyer and a strong determinant of the

buyer’s dependence on his regular supplier, S. The supplier normally would not precisely know θ. For

his part, the buyer would protect information on the maximum extra amount he is willing to pay for

the preferred supplier’s product over that of others, since revealing it to the supplier would give her a

strong advantage in contracting. From the seller’s perspective, θ is a random variable with support [θ, θ],
3See Section B in the Online Supplement, for an analysis with general correlation between the spot price and the demand

realization for a special case of our model where introducing such correlation is tractable.
4Note that, granted that the standard definitions of heavy- and light-tailedness do not apply on bounded support, the

increasing hazard rate condition is satisfied in our case in a wide spectrum of distributions on the support [s, s] including
“light-tailed” ones such as truncated normal, or “heavy-” or “fat-tailed” ones such as uniform.
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continuous distribution function Fθ, and density function fθ. We assume that θ also has an increasing

hazard rate, which means that gθ(θ) , F̄θ(θ)/fθ(θ) is decreasing. As regularity conditions on the s and

θ distributions, we also assume θ ≥ 1
fθ(θ) and fs(s) ∈ [ 1

φs+θ , fθ(θ)]. The former maintains a balance in

the low end of the θ distribution, and, together with the increasing hazard rate condition, can easily be

simultaneously satisfied by many common distributions we mentioned above. The latter assumption is a

technical assumption needed for tractability. It ensures the concavity of the seller’s optimization problem

and, in this sense, plays a similar role to the common single-crossing assumptions pricing and contracting

literatures (see, e.g., Fudenberg and Tirole 1991, Mas-Colell et al. 1995). This assumption can again be

easily satisfied by many common distributions on wide parameter ranges.

The supplier’s discount rate between periods t = 1 and t = 2 is rS > 0; and the buyer’s discount rate is

rB > 0. In general, the two firms’ discount rates would differ. There are a number of factors that determine

a firm’s discount rate. This rate reflects the firm’s cost of capital, or borrowing rate, which, in turn, is

affected by a number of characteristics such as firm size, and industry type and conditions. Usually, the

larger the firm size, the lower its cost of capital and discount rate tend to be. For notational convenience,

define ρ = (1 + rS)/(1 + rB). Finally, for tractability, we also assume p > s + θ, assuring that it is always

profitable for the buyer to sell to the consumer market.

Having laid out the model description, before we move on to the analysis, let us highlight the types

of contracts that can emerge. There are two main dimensions of contract characteristics here. First, the

value of w determines whether the contract is a sales or options contract. If w = 0, the buyer will always

exercise all the options he contracts with the supplier, which means that at t = 1 the two parties are

essentially entering into a sales agreement in which the supplier is effectively required to deliver all q units

to the buyer at time t = 2.5 The same is also true when 0 < w ≤ s(1 − φ), in that the buyer in all cases

will exercise his options, since he can sell them profitably to the spot market. In this case, the contracts

will essentially be sales contracts with part of the payment deferred to t = 2. However, if w > s(1 − φ),

the agreement is a true option contract; i.e., the seller may choose not to exercise the option with strictly

positive probability.6 The second dimension of contract characteristic we will focus on will be volume

dependency, which is captured by the nature of the pricing schedule R(q). If the supplier offers a single

lump-sum quantity to the buyer at a single price, i.e., if R(q) is a single price-quantity point, that contract

will be a flat-price contract. For instance, a contract where the seller offers the buyer a fixed capacity at a
5The sales contracts we have in our analysis can equivalently be called “forward contracts”. In most cases in supplier–

buyer relationships in the industry, however, “sales” or “purchases” are used commonly to refer to such contracts rather than
“forward contracts”. For consistency in terminology and conciseness, we use the term “sales contracts” throughout this paper.

6Forward and option contracts are also studied in the finance literature. From the perspective of that literature, such
contracts are trading instruments that are priced in perfectly competitive markets often through arbitrage arguments. As
such, for risk neutral traders, the expected returns for all such contracts are zero. As financial instruments, they can be
used for a variety of purposes such as hedging, allocating capital across time, or speculative trading. See Duffie (1996) for a
comprehensive treatment of forward and option contracts in the finance literature. In the industrial context we are studying
however, the focus is on the agents who actually produce industrial goods at a certain cost, sell it to consumer markets for
profit, have preferred trading partners whose products they value higher, and other production and supply chain specific
features. In this environment, the supplier prices the forward (or sales) and options contracts to make profits from production
and the value generation through the supply chain, and hence the performance of forward or option contracts take a different
meaning than that in the context of the finance literature.
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fixed price is a flat-price contract. On the other hand, if the seller offers the buyer a pricing schedule that

changes with the quantity contracted, i.e., if R(q) varies with q, the contract is then a volume-dependent

contract. For example, contracts with linear and non-linear R(q), where the total reservation fee R is

monotonically increasing in q are volume-dependent contracts. In our analysis, we will be studying the

conditions for which the resulting contracts fall under each one of these types under the two dimensions of

the characteristics we define above (see Section 5.3).

4 Benchmark Case with Fixed Buyer Type

Before we give the full analysis with random buyer type θ, we first present the case of fixed θ as a simple

benchmark. Here, as we will also do in the full solution, we first derive the optimal contract offer with a

constant w, then optimize over w to obtain the full optimal contract offer.

For optimal options contract design, the seller considers the buyer’s optimal actions throughout the

time horizon, given any feasible contract that she offers. The buyer’s objective is to maximize his expected

profits. Given the contract pricing and the exercise price, (R(q, w), w), the buyer decides on the optimal

capacity to reserve with the supplier, q(R, w), at time t = 1. At t = 2, the buyer can exercise his options

or purchase from the spot market or both. If there is a potential gain and the buyer has remaining options

he does not use to satisfy consumer demand, he can also exercise his options to sell to the spot market.

More specifically, at time t = 2, given the values (R(q, w), w) and q(R, w) (q in short), when the two

uncertain states (s,D) are realized, the buyer optimally decides on three quantities: the number of options

to exercise, the quantity to purchase from the spot market, and the quantity to sell to the spot market.

The optimal decisions of the buyer on these three quantities are summarized in the following table:

Options exercised Units purchased from the spot Units sold to spot

0 ≤ w < s(1− φ) q (D − q)+ (q −D)+

s(1− φ) ≤ w < s + θ min(D, q) (D − q)+ 0

s + θ ≤ w 0 D 0

Define the buyer’s expected discounted profit for given q, w as πB(q, w, θ). Then

πB(q, w, θ) = −R(q, w) +
1

1 + rB

{
(p− Es[min(w, s + θ)])ED[min(D, q)]

+ (p− Es[s]− θ)ED[(D − q)+] + Es[(s(1− φ)− w)+]ED[(q −D)+]
}
. (1)

In (1), the first expression accounts for the reservation cost of q units. The second accounts for the buyer’s

discounted profit from selling up to q units, where the buyer either exercises the options or buys from the

spot market, whichever costs less. The third accounts for the buyer’s discounted profit from selling above q

units, where the only choice for the buyer is to purchase from the spot market. The last expression accounts

for the buyer’s discounted profit from selling to the spot market when there are extra units available and
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the exercise cost is less than the spot’s buy-back price. Note that (1), as the rest of the analysis in this

section, utilizes the assumption of independence between D and s (which is relaxed in Section B in the

online supplement for this benchmark case).

Let π̂B(q, w, θ) denote the buyer’s net benefit from the option contract; i.e., the difference in his expected

profits between the case he buys the option contract and the case he solely relies on spot trading. That is,

π̂B(q, w, θ) = πB(q, w)− 1
1 + rB

ED[D](p− Es[s]− θ) . (2)

Combining (1) and (2), we then have

π̂B(q, w, θ) = −R(q, w) +
1

1 + rB
ED[min(D, q)]

∫ s

w−θ
(s + θ − w) dFs(s)

+
1

1 + rB
ED[(q −D)+]

∫ s

w
1−φ

(s(1− φ)− w) dFs(s) . (3)

For future reference, denote ϕ(q, w, θ) = (1+rB)(π̂B(q, w, θ)+R(q, w)). Next, consider the seller’s problem.

For a given w ≥ 0, the seller’s expected profits can be written as

πS(q, w, θ) = R(q, w) + V (q, w, θ) , (4)

where

V (q, w, θ) =
1

1 + rS

{ ∫ w−θ

s
s(1− φ) dFs(s)q +

∫ w
1−φ

w−θ

(
wED[min(D, q)] + s(1− φ)ED[(q −D)+]

)
dFs(s)

+ wqF̄s

(
w

1− φ

)}
− βq + (

E[s](1− φ)
1 + rS

− β)+(K − q) . (5)

In (5), the first term represents the seller’s discounted expected revenue when the spot price is sufficiently

low that the buyer does not exercise any options, and the seller sells all she produces to the spot market.

The second term in (5) is the seller’s discounted expected revenue for the case where the buyer exercises

some of the options, and the supplier sells the remaining to the spot market. The third term accounts

for the seller’s discounted expected revenue when the buyer exercises all options contracted. The fourth

term represents the production costs for the units produced under the contracts. Finally, the last term is

the seller’s expected discounted profit from producing to directly sell to the spot market, which is positive

only if β < (E[s](1− φ))/(1 + rS). Notice that if the seller does not engage in contracting with the buyer

at all, her expected profit is (E[s](1−φ)
1+rS

− β)+ ·K. Define π̂S(q, w) = πS(q, w) − (E[s](1−φ)
1+rS

− β)+ ·K. The

seller’s problem can then be formulated as

max
R(·,w)

πS(q, w, θ) ≡ R(q, w) + V (q, w, θ) = −π̂B(q, w, θ) +
ϕ(q, w)
1 + rB

+ V (q, w)

subject to q = arg max
ξ≥0

π̂B(ξ, w, θ) ,

π̂B(q, w, θ) ≥ 0 , π̂S(q, w) ≥ 0 . (6)
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In (6), the first constraint is the Incentive Compatibility (IC) constraint for the buyer; i.e., it guarantees

that the buyer chooses the best contract available to him. The second and third constraints are the

Individual Rationality (IR) constraints for the buyer and the seller respectively, guaranteeing that neither

is worse off by entering the contract (note that ξ is a dummy variable for selection of q in the optimization).

The next proposition gives the optimal contract offer for the buyer for a fixed exercise price w.7

Proposition 1

(i) For a given w ≥ 0, define G(w) = Es[(s(1− φ)− w)+]). In the optimal contract, the supplier offers

the quantity

q∗(w, θ) = min

(
K, F̄−1

D

(
((1 + rS)β − E[s](1− φ))+ − (ρ− 1)G(w)∫ s

w−θ(φs + ρθ) dFs(s) + (ρ− 1)E[(s− w)1{s+θ≥w}]− (ρ− 1)G(w)

))
,

(7)

to the buyer at the price

R(q∗(w, θ), w, θ) =
1

1 + rB

(
ED[min(D, q∗(w, θ))]

∫ s

w−θ
(s + θ − w) dFs(s)

+ ED[(q∗(w, θ)−D)+]
∫ s

w
1−φ

(s(1− φ)− w) dFs(s)
)

. (8)

(ii) By the definition given in (4), the supplier’s problem for determining the optimal exercise price w∗

can be written as

max
w≥0

πS(q, w, θ) ≡ max
w≥0

R(q∗(w, θ), w, θ) + V (q∗(w, θ), w, θ) . (9)

Then,

(a) When rB < rS, w∗ = 0.

(b) When rB = rS, there is a continuum of optimal contracts. In particular, any w∗ ∈ [0, s + θ] is

optimal.

(c) When rB > rS, w∗ ∈ [s+θ, s+θ]. Further, there exists a δr > 0 such that when rS < rB < rS +δr,

πS is non-monotonic in w and w∗ < s + θ.

As can be seen in part (i) of Proposition 1, the optimal contract quantity is either K or carries the

characteristics of a critical fractile solution. Specifically, critical fractile solution has the general structure

Optimal Quantity = F̄−1
D

(
Unit Production Cost−Unit Salvage Value

Unit Sales Price−Unit Salvage Value

)
. (10)

Parallel to (10), in the fractile expression in (7), the first term in the numerator ((1+ rS)β−E[s](1−φ))+

is the production cost minus the expected sales price (in future dollars for the seller), provided that this
7The notation 1{}̇ represents the indicator function.
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difference is positive. In other words, it is the amount that the seller needs to be compensated in order

to be coaxed into producing one unit. In the second term, the expression Es[(s(1 − φ) − w)+] captures

the expected salvage value for contracting one additional unit for the buyer. Given that the selling price

s(1 − φ) in the spot market is higher than the exercise price of the options, the buyer can salvage any

unused quantity and obtain an amount s(1−φ)−w per unit. (The multiplier ρ−1 adjusts for the discount

rate difference between the buyer and the seller.) The denominator of the fractile expression also reflects

a parallel to (10). The first term captures the supply chain’s expected savings from each unit contracted

and exercised: When the spot price is high enough for the buyer to exercise options at price w, the unit

loss, φs, from the resale of the good to the spot market due to the bid-ask spread as well as the buyer’s

loss, θ (adjusted for the discount rate difference between the buyer and the seller), due to purchasing from

a non-preferred supplier on the spot market are avoided. In addition, given the spot price is sufficiently

high, by exercising his options, the buyer also avoids spending an excess of s − w in the spot market as

captured by the second term. That is, the first two terms in the denominator combined reflect (discount

adjusted) the expected benefit for the buyer of contracting one unit with the supplier. Finally, the last

term (ρ − 1)G(w) again reflects the buyer’s expected salvage value for the contacted units unsold to the

spot market.

An important observation from part (i) of Proposition 1 is that if θ is fixed, the contract offer is fixed

and is not volume dependent. This is because the supplier knows the buyer’s preferences and offers the

precise bundle that extracts all expected surplus the buyer makes from the contract in terms of reservation

fees: the first term in (8) corresponds to the buyer’s expected discounted savings from exercising his options

instead of buying the intermediate good from the spot; and the second term corresponds to his surplus

from exercising and selling any potential unused option to the spot market provided that the spot selling

price (s(1 − φ)) exceeds the option exercise price (w). As we will see in Section 5, when one takes into

account the uncertainty in the buyer’s preferences, in the optimal contract, in many cases, the buyer will

have to tie the price paid to the quantity of the options purchased, resulting in volume-dependent pricing

as commonly observed in practice. This will also result in the supplier’s leaving positive expected surplus

to the buyer.

When optimizing w, the supplier needs to consider the trade-off between collecting revenues now (in

the form of reservation fees, R(q∗(w, θ), w, θ)) and collecting revenues in the future (in the form of exercise

fees as they affect V (q∗(w, θ), w, θ), where V is as defined in (5)). Therefore, an important factor affecting

the supplier’s decision will be her discount rate. However, the supplier is interacting with the buyer in

signing the contracts, and hence she has to take the buyer’s preferences into account when determining

the optimal exercise price. The final outcome reflects a combination of the preferences of both parties.

In the optimal contracts, the sales versus options decision hinges on the relative magnitudes of the

seller’s and the buyer’s discount rates. As part (ii)(a) of Proposition 1 states, when the seller’s discount

rate is higher than the buyer’s, the seller’s optimal action is to offer a sales contract. Given the seller

has a higher discount rate than the buyer, it becomes an efficient fee collection arrangement to front-
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load the payment from the buyer to the seller by setting the exercise price to zero and maximizing the

reservation fee. That is, the discounted value of the revenue increase from increased exercise price cannot

compensate for the loss in the highest expected reservation price the seller can get in the corresponding

optimal contracts.

For the “knife-edge” case when the seller and the buyer have the same discount rate, there is a continuum

of optimal exercise prices for the supplier as stated in part (ii)(b) of Proposition 1. As long as 0 ≤ w ≤ s+θ,

i.e., as long as it is certain that the buyer will always exercise all units he contracted for, the supplier can

compensate exactly for the expected reduction in the optimal reservation fee resulting from the increased

exercise price she can get from the buyer. This is because the present value of the expected revenue increase

in time t = 2 is equal to the expected minimum reduction in reservation fee each type of buyer requires

for the reduction in the value of option. Thus, in the optimal contracts, for the range 0 ≤ w ≤ s + θ,

increasing w has the effect of transferring revenue from future to present at the same rate, and hence the

supplier’s profit is constant in w over this range. However, when the exercise price increases further, there

will be strictly positive probability that the buyer will not exercise some of the units he contracted for,

and for w > s + θ, the seller’s profit will strictly decrease compared to the optimal level.8

When rB > rS , seller’s profit can be non-monotonic in w. Given the buyer has a higher discount rate

than the seller, in the optimal reservation price scheme, the seller can have a relatively steep increase in

the exercise price with a small decrease in the reservation price. For low w values, the seller can keep

the present value of the difference as her profit, and increase her profits with increased exercise price.

However, as w increases, the value of the options start decreasing rapidly for the buyer. In this case, the

supplier has to offer large discounts in reservation fees in order to sell the options. Consequently, beyond a

certain point, increased exercise price decreases the supplier’s overall profit, and the resulting profit curve

is maximized at an interior unit exercise price, on [s + θ, s + θ], as stated in part (ii)(c) of Proposition 1.

5 Optimal Contract Design and Characteristics with Buyer Type Un-

certainty

We now present the contract solution for the general case with supplier uncertainty on the buyer type. We

again start with the optimal design of the contract offered by the seller to the buyer for a given exercise

price, w. We then provide the solution of the problem of determining the optimal exercise price w∗, deriving
8Note that in Wu et al. (2002), it is stated that the optimal exercise price for the model they examine (in which the buyer

and the seller have equal discount rates) is the marginal production cost for the supplier, while in our model, we find that
there is a continuum of exercise prices that are optimal for the buyer. Keeping in mind that the two models have a number
of differences, it is worth pointing out the optimality of a unique exercise price in Wu et al. (2002) depends on the strict
positivity of the density function of the spot price distribution on the relevant range. For instance, if the lower bound of
support for the spot distribution in Wu et al. (2002) is higher than the marginal cost, a continuum of exercise prices from zero
to the lower bound of the support of the spot price distribution would be optimal in that case as well. The key for both cases
is that (given the buyer and seller discount rates are the same), as long as the seller guarantees that the buyer will exercise all
the options purchased, she only cares about the total payment per option and can freely switch the payment back and forth
between the reservation and exercise fees.
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the full contract characterization.

5.1 Seller’s Optimal Reservation Price Schedule for Fixed Exercise Price

Given the optimal exercise and purchasing strategies of the buyer as discussed in Section 4, for any given

exercise price w ≥ 0, the seller’s problem is to find the optimal reservation price schedule, R(q(w, θ), w),

maximizing her expected profits, πS(w), where q(w, θ) is the reservation quantity for a type θ buyer. Note

that there are two equivalent ways of representing the reservation price schedule. First, one can express the

reservation price as a function of the quantity contracted, i.e., R(q). Equivalently, noticing that each type θ

buyer will pick a certain quantity q, which will correspond to a certain reservation fee R, one can write the

reservation price schedule as (R(θ), q(θ)). As it is usually done in the literature (see, e.g., Myerson 1981)

we will use the latter representation in the derivation of the solution. One can then map the reservation

fee R(θ) with the corresponding quantity q(θ) for each θ to obtain R(q).

We can write

πS(w) = Eθ[R(q(w, θ), w) + V (q(w, θ), w, θ)] , (11)

where V (q, w, θ) is as defined in Section 4. Specifically, the optimal contract has to make sure that the

quantity purchased by a type θ buyer is indeed his optimal quantity given the contract terms. In addition,

no buyer type, nor the seller, should have negative expected gains upon contract agreement. Given this,

the seller’s problem can now be formulated as

max
R(·,w)

∫ θ

θ
[R(q(w, θ), w) + V (q(w, θ), w, θ)] dFθ(θ)

s.t. q(w, θ) = arg max
ξ≥0

[π̂B(ξ, w, θ)] , ∀ θ ,

π̂B(q(w, θ), w, θ) ≥ 0, ∀ θ ,
∫ θ

θ
[R(q(w, θ), w) + V (q(w, θ), w, θ)] dFθ(θ) ≥ (

E[s](1− φ)
1 + rS

− β)+ ·K ,

0 ≤ q(w, θ) ≤ K, ∀ θ . (12)

In (12), parallel to (6) in Section 4, the first constraint is the Incentive Compatibility (IC) constraint for

the buyer, guaranteeing that the quantity purchased by each type of buyer is the best option for that

type, and the second and third constraints are the Individual Rationality (IR) constraints for the buyer

and the seller, respectively, guaranteeing that each one is better off participating in the contract than not

participating. The final constraint states the capacity limit on the seller’s production.

We first start with the case K ≥ D, and later we extend the solution to the case with K < D. Presenting

the solution to (12) for the former case, we first identify a set of conditions that determine whether the

seller chooses a flat-price schedule or a volume-dependent pricing scheme. The following lemma will be

helpful in this characterization.
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Lemma 1 For w ∈ [0, s(1 − φ)], let G(w) be as defined in Proposition 1. If rS > rB, and β ≤ E[s](1 −
φ)(1 + rB)−1, then there exists a unique w̃c ∈ [0, s(1 − φ)] such that G(w̃c) = ((1 + rS)β − E[s](1 −
φ))+/(ρ− 1).

In certain cases, specifically when the number of options contracted exceeds consumer demand, and the

option exercise price is lower than the bid price at the spot market, the buyer can exercise the remaining

options to sell to the spot market. The expected per-unit profit the buyer gets from such a transaction

is G(w) as defined in Lemma (1). In establishing a certain mathematical property of G(w), Lemma 1 is

critical for the conditions that yield to volume-dependent pricing in option contracts, which we give next.

Definition We say the flat-price conditions are satisfied when all of the following three conditions are

satisfied: (i) rS > rB; (ii) β ≤ E[s](1−φ)(1+ rB)−1; and (iii) w ≤ w̃c where w̃c is as defined in Lemma 1.

The flat-price conditions play a critical role in determining the nature of procurement contracts. They

essentially require the supplier discount the future payments more than the buyer and that the unit

production cost and exercise price of the contract are sufficiently low. Specifically, note that for any

w̃c ≥ 0, G(w̃c) = ((1 + rS)β −E[s](1− φ))/(ρ− 1) is equivalent to the condition

G(w̃c)
1 + rB

=
(

β − 1
1 + rS

E[s](1− φ)
)+

− 1
1 + rS

G(w̃c) . (13)

The left-hand side of equation (13) is the buyer’s expected discounted benefit from having one remaining

option, with an exercise price of w̃c, in excess of the consumer demand; i.e., to sell to the spot market.

The right-hand side is the seller’s opportunity cost of committing to one unit of option at exercise price

w̃c. Specifically, it is the present value of cost of producing the unit, less the expected amount she can get

from the spot market for that unit (provided that the former is larger than the latter), adjusted for the

expected exercise price, w̃c, she will get from the buyer for that unit. Combining this intuition with the

fact that G is decreasing in w, the flat price condition (iii) implies gains from trade between the buyer

and the seller from each unit committed at exercise price w, and by Lemma 1, flat price conditions (i) and

(ii) guarantee the existence of such w.

Given this intuition, we can now present the optimal contract offer for a fixed exercise price.

Proposition 2

(i) If the flat price conditions are satisfied, the optimal contracts are not volume-dependent. Rather, in

the optimal offer, the reservation price is constant and given by ϕ(D,w, θ)/(1+rB), and q∗(w, θ) = D

for all θ ∈ [θ, θ].

(ii) Suppose the flat price conditions are not satisfied. Then given 0 < ρ < ρ̄, where ρ̄ , 1+ φ

sups∈[s,s]

∣∣∣ dgs(s)
ds

∣∣∣
,

the optimal reservation price schedule for the seller is volume-dependent. Specifically, the optimal
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quantity ordered for type θ buyer is

q∗(w, θ) = F̄−1
D

(
((1 + rS)β − E[s](1− φ))+ − (ρ− 1)G(w)

η(w, θ)− (ρ− 1)G(w)

)
, (14)

where

η(w, θ) =
∫ s

w−θ
(φs + ρθ − gθ(θ)) dFs(s) + (ρ− 1)

∫ s

w−θ
(s− gθ(θ)− w) dFs(s) , (15)

and G is as defined in Lemma 1. The optimal total reservation fee paid by a type θ buyer is

R(q∗(w, θ), w) =
1

1 + rB

(
ϕ(q∗(w, θ), w, θ)−

∫ θ

θ

∂ϕ(q, w, a)
∂a

∣∣∣∣
q=q∗(w,a)

da

)
. (16)

Further, q∗(w, θ) < D and q∗(w, θ) is monotonically increasing in θ on θ ∈ [θ, θ].

As part (i) of Proposition 2 states, when the seller has a higher discount rate and the production costs

and the option exercise price w are sufficiently low, the seller prefers to offer a flat-price contract and the

buyer, independent of his type, θ, chooses to purchase up to the seller’s production capacity. However,

when any of these three conditions are not satisfied, the seller finds it optimal to employ volume-dependent

pricing. Note that gs(s) is monotonically decreasing in s, finite at s, and d log(fs(s))/ds is bounded on

[s, s]. Therefore
∣∣∣dgs(s)

ds

∣∣∣ < ∞, for all s ∈ [s, s], and hence ρ̄ > 1.9 For conciseness in exposition, in the

remaining propositions, we will assume ρ < ρ̄.

Part (ii) of Proposition 2 gives the optimal contract structure when the optimal contract is volume

dependent. As in the case for fixed θ, which was given in Proposition 1, the quantity for any given

θ ∈ [θ, θ] is a critical fractile solution. The structure of the critical fractile for each θ closely parallels the

structure for the fixed θ case discussed in Section 4, with a difference in the denominator: The upside of

contracting each unit, captured by η(w, θ) in Proposition 2, is modified by the adjustment terms gθ(θ),

due to the supplier’s uncertainty about θ on the contracted quantity. Notice that, since gθ(θ) ≥ 0 for all

θ ∈ [θ, θ], the net effect of the information asymmetry is reduced quantity contracted for each buyer type,

θ.

We next extend the result of Proposition 2 to the low capacity (K ≤ D) case. Note that in this

case three possible general reservation price schedules may emerge. R(q(θ, w), w) can be (i) flat, i.e., non-

dependent on θ; (ii) fully volume dependent, i.e., monotonically increasing on the entire range of θ; (iii)

mixed-menu, i.e., first monotonically increasing then flat on [θ, θ].

Proposition 3 Suppose K < D. The optimal reservation quantity schedule satisfies q∗(w, θ, K) =
9The proposition is valid for ρ < ρ̄ only, and tractability is lost for higher ρ values. However, the region ρ < ρ̄, for ρ̄ as

given in the proposition normally covers the practically relevant range. First, ρ is normally around (but almost never equal
to) one since rS and rB , the discount rates for the two agents tend to be relatively close and between 0 to 10%, meaning ρ
is often less than 1.1. This is because firms can typically borrow from banks at the ongoing “Bank Prime Loan Rate” plus a
few percentage points, and large firms can even often borrow at rates under the prime loan rate (Berk and DeMarzo 2007).
The historical prime rates (with exceptions for brief periods) tend to be under 10% (see, e.g., U.S.F.R.B. 2008).
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min{K, q∗(w, θ)}, where q∗(w, θ) is as defined in (14). The optimal price schedule can be obtained by

plugging q∗(w, θ, K) in (16). Further,

(i) If η(w, θ)F̄D(K) ≥ ((1 + rS)β −E[s](1− φ))+ − (ρ− 1)FD(K)G(w), the contract is a flat price offer

at q∗(w, θ) = K.

(ii) If η(w, θ)F̄D(K) ≤ ((1+ rS)β−E[s](1−φ))+− (ρ− 1)FD(K)G(w), the contract offer is fully volume

dependent, and q∗(w, θ) is increasing for the entire support [θ, θ].

(iii) Otherwise, there exists θc(w) ∈ [θ, θ] such that η(w, θc(w))F̄D(K) = ((1 + rS)β − E[s](1 − φ))+

−(ρ− 1)FD(K)G(w), and the reservation quantity is increasing in θ for θ ≤ θ < θc(w), and flat and

equal to K for θ ≥ θc(w).

When the supplier’s production capacity is not always sufficient to meet the consumer demand, the buyer

makes his plans on the possibility of purchasing from the spot. In certain cases, especially when capacity is

low and production costs are low, the buyer types with high marginal willingness to pay for the supplier’s

product over that of other suppliers’ (i.e., types with high θ) prefer to purchase the entire capacity of the

supplier. This means that when the buyer type spectrum [θ, θ] is sufficiently wide, there will be “mixed

menus”, in which at the lower end of the θ spectrum, each buyer type will have a different quantity to

purchase, while at the higher end a group of buyer types will be bunched up, all buying the entire capacity,

K, of the supplier. Low production costs also have implications on the contract and production plans.

When β < E[s](1 − φ)/(1 + rS), the supplier always produces up to capacity, K, since even if the buyer

does not purchase all units produced, the supplier makes positive expected profits by selling K − q∗(w, θ)

units directly to the spot market.

From Propositions 2 and 3 we can obtain the following corollary:

Corollary 1 If rS increases or there is an increase in s in the sense of first-order stochastic dominance

of distribution, the contract structure is more likely to be fully flat-price than mixed-menu, and more likely

to be mixed-menu than fully volume dependent. Higher K, rB, w, β, favor a volume-dependent reservation

pricing scheme in the same sense.

As an agreement between the buyer and the seller, the contract reflects the incentives, preferences, and

outside options of both the buyer and the supplier. Although the supplier determines the pricing of the

goods she offers, she also needs to consider the buyer’s incentives. As Corollary 1 indicates, a higher seller

discount rate and a lower buyer discount rate move the pricing regime from a volume-dependent scheme

to a flat price. Given rS > rB, i.e., the seller has a higher discount rate than that of the buyer, she has

a higher valuation of payments made in the first period than in the second. Therefore, a higher rS makes

it easier for the seller to commit to a large bundle up front. On the other hand, a higher rB reduces the

buyer’s willingness for commitment; the degree that the buyer wants to reduce the number of options he
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purchases also depends on his type, θ, and consequently, a volume-dependent scheme becomes optimal for

the supplier.

We can also see from Corollary 1 that higher production capacity moves contracting towards volume

dependency rather than flat price. When the supplier has low capacity, an agreement in which the buyer

reserves the entire capacity at a fixed price is more attractive for the parties since the buyer, regardless of

his type, is likely to use a large part of the supplier’s production. On the other hand, when the supplier’s

capacity increases, lower θ type buyers would unlikely be highly willing to buy all the capacity, and hence

the seller would have to significantly reduce her price in order to sell to all types. Instead, she chooses to

differentiate the intended quantities for lower and higher θ type buyers by volume-dependent pricing, and

as a result, in the contract outcome at least some of the different buyer types purchase different quantities

and pay accordingly. A higher exercise price (w) can also switch the pricing regime from a flat-price scheme

to a mixed-menu or volume-dependent scheme. This is because of a fundamental trade-off that the supplier

faces when pricing the options contracts: the seller needs to strike a balance between receiving payments

today in the form of reservation fees (R(q)), and receiving payments in the future in the form of exercise

fees (w). These two factors (imperfectly) substitute for each other in determining the pricing schedule

for the contracts. When w is large, the substantial part of the revenue for the supplier is in the second

period. Given that the supplier has a higher discount rate than the buyer, she is less willing to commit

to large quantities and hence switches to a sliding scale of commitment volume. A similar effect occurs

when production cost (β) is large, a high production cost reduces the supplier’s incentive to commit to

large quantities and shifts the pricing regime to a volume-dependent scheme as stated. Finally, when spot

price is higher, i.e., if s increases in the sense of first order stochastic dominance, it is more desirable for

both the buyer and the seller to commit to a larger amount, and hence the seller is more likely to offer her

entire capacity to the buyer.

The nature of volume dependency of the reservation price on the quantity, as reflected in the shape of

R(q) (e.g., convex or concave) will be discussed in the next section.

5.2 Volume Dependency

An important issue about the structure of the contract offer is the nature of volume dependency in the price

schedule. A very common form of volume dependent pricing employed in practice is volume discounts; i.e.,

a reduction in average pricing with higher purchases. Volume discounts imply a concave total price curve

as a function of quantity purchased. The opposite of volume discounts is volume premia; i.e., increasing

average cost with quantity purchased. This is a reverse form of volume incentive, which can be viewed as

extra incentives given to the seller by the buyer to commit to a high level of production. Conversely, it can

be the case that the seller takes advantage of the premium the buyer puts on the seller’s product by charging

higher average prices to more dependent types of buyers (higher θ types). Contrary to volume discounts,

volume premia imply convex total price curves. Given the complexity of the transaction structure at t = 2
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with options commitments and the resulting complexity of the two-sided determination of options contract

terms, it is an open question whether either or both types of volume-dependent pricing structures can

emerge in the optimal contracts. The following proposition states the conditions under which the optimal

contract offers volume discounts and/or volume premia to the buyer at a given part of the reservation price

curve.

Proposition 4 Suppose, for a given w ≥ 0, the optimal contract is volume dependent.

(i) If w ≤ s(1−φ), then R(q) is globally concave in q; i.e., the optimal contract offers quantity discounts

for the entire reservation price curve, R(q).

(ii) Suppose w = s + θ̃, where θ̃ ∈ [θ, θ]. Then R(q) is locally concave at q(θ) if

ρ ≥ E[(s + θ̃ − s(1− φ)+]

gθ(θ)− dgθ(θ)
dθ (E[s]− s + θ − θ̃) + E[(s(1− φ)− s− θ̃)+]

, (17)

and locally convex at q(θ) otherwise.

Part (i) of Proposition 4 states that for low w values, the optimal contract only takes the shape of volume

discounts. An important implication of this is for the case of w = 0; i.e., when the contract is a “sales”

contract rather than an “option” contract. The following corollary states the result.

Corollary 2 When the contract terms are such that the supplier is selling the intermediate good to the

buyer (i.e., w = 0), volume-dependent pricing, if employed by the seller, always implies volume discounts.

This result is consistent with the widespread use of volume discount schemes for procurement sales contracts

in most every industry and sector from food to chemicals, energy, and electronics (see, e.g., Wilson 1993

and Katz et al. 1994). Compared to options contracts, sales contracts are relatively simpler in that they

do not offer flexibility to the buyer. The buyer commits to receiving all units at the time of the delivery

and pays an upfront price for it. Corollary 2 states that as the level of such fixed commitments increases

with the quantity sold, the seller finds it more profitable to offer incentives to the buyer to purchase more.

These incentives strengthen the buyer’s willingness to commit to larger quantities, increasing the supplier’s

profits.

On the other hand, option contracts are more complex agreements in terms of the possibilities they

imply on the behavior of the involved parties. As a consequence, their volume-dependent pricing schedule

is also more complicated. As part (ii) of Proposition 4 indicates, volume discounts can exist in the optimal

contract for at least part of the offer curve for large option exercise price values as well. However, and

remarkably, part (ii) of Proposition 4 also states that, unlike the reservation price curves for sales contracts,

optimal option reservation price curves can exhibit volume premia instead of volume discounts. Further,

it is possible that the same contract offer can involve volume discounts and volume premia at different
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parts of the pricing curve. So when and at what ranges do the optimal option contracts show concave and

convex pricing characteristics? The following corollary sheds some light on this question.

Corollary 3 Suppose w = s + θ̃, where θ̃ ∈ [θ, θ], and the optimal contract is volume dependent. Given

d2gθ(θ)/dθ2 ≥ 0, (i) if E[(w − s(1 − p))+]/(E[s] + θ − w + E[(s(1 − φ) − w)+]) < ρ < ρ̄, where ρ̄

is as defined in Proposition 2, then optimal contract has quantity discounts for all q ≥ q∗(w, θ̃); and

(ii) if 0 < ρ < E[(w − s(1− p))+]/(gθ(θ̃)− (dgθ(θ̃)/dθ)(E[s]− s) + E[(s(1− φ)− w)+]), then the optimal

contract has quantity premia for all q ≥ q∗(w, θ̃).

Corollary 3 states that both quantity discounts and quantity premia can easily be observed in large segments

of the pricing curve. The condition d2gθ(θ)/dθ2 ≥ 0 is a relatively weak condition, satisfied by many

common distributions such as exponential and uniform. Given these two conditions are satisfied, the high

end of the pricing curve will demonstrate either volume discounts or volume penalties in its entirety. The

former occurs for relatively high levels of supplier discount rates, and the latter is optimal for relatively

low levels of it. To see an example for this corollary, consider a case with θ and s distributions are uniform

with supports [2, 3], and [2, 4] respectively, and w = s + θ = 4. For uniform θ distribution, the two bounds

given in Corollary 3 are equal, because gθ(θ) = θ − θ, and hence dgθ/dθ = −1. That is, for this example,

there is a critical ρ value ((1 + 3φ)/2), above which the entire R(q) curve is concave, and below which the

entire curve is convex. For a range of φ values, from 0.1 to 0.5, for instance, the critical ρ is on the range

0.65 to 1.25.

Another interesting issue is the effect of the exercise price, w, on the expected contracted quantity,

which is presented in the following proposition.

Proposition 5

(i) If rS ≥ rB, expected contracted quantity, E[q∗(w, θ)], decreases in the exercise price w.

(ii) If rS < rB, E[q∗(w, θ)] increases in w for w < s + θ, and can be increasing or decreasing in w for

w ≥ s + θ.

Part (i) of Proposition 5 states that given the seller has a higher discount rate than the buyer, when

the exercise price increases, she does not decrease the reservation price substantially enough to generate

increased buyer demand for the options. As a consequence, the expected total number of option contracts

decreases with increased exercise price, as can also be seen in panel (a) of Figure 1. However, when the

seller has a lower discount rate than the buyer, for low w values, she may find it optimal to decrease the

reservation price significantly in the optimal contracts to increase the quantity contracted. Even then,

beyond a certain threshold value, as w increases, the value of the options diminish sharply, making it

not worthwhile for the seller to reduce the reservation price to keep the contracted quantity high, as also

stated in part (ii) of Proposition 5. Consequently, the number of options sold can be maximized at an
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Figure 1: The effect of the exercise price (w) on the expected contracted quantity (E[q∗(w, θ)]), and the
expected reservation fee collected by the supplier (R(q∗(w, θ), w)). For panel (a) ρ = 1.36, and for panel (b)
ρ = 0.73. For both panels, s, θ and D have truncated normal distributions on [10, 18], [8, 14], and [0, 1200],
means 14, 11 and 600, and standard deviations 5, 4 and 100, respectively. The remaining parameters are
p = 40, β = 8, and φ = 0.65.

intermediate w level, as can also be seen in panel (b) of Figure 1. However, as can further be seen in the

figure, the reservation price decreases with increased exercise price, even though the number of contracts

signed increases sharply, as demonstrated in panel (b). We will further use the results of Proposition 5

when we explore the effects of parameters on optimal contract design in Section 6.1.

5.3 Determination of the Optimal Exercise Price and Contract Structure

Having found the optimal contract structure for a fixed exercise price w, we can now explore the de-

termination of optimal exercise price. Our analysis will parallel the general outline of the exercise price

optimization given in Section 4. The major and consequential difference is the randomness of the buyer

type, θ. By using (11), the supplier’s global optimization problem is now

max
w≥0

πS(w) ≡ max
w≥0

∫ θ

θ
[R(q∗(w, θ), w) + V (q∗(w, θ), w, θ)]dFθ(θ) . (18)

We again start with the case where K ≥ D.

Proposition 6 Suppose K ≥ D, and ρ < ρ̄, where ρ̄ is as defined in Proposition 2.

(i) If rS > rB, w∗ = 0. That is, selling the intermediate good is optimal for the supplier, rather than
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Figure 2: The supplier’s expected profit (πS) curves as a function of the exercise price, w, for the three
main regions stated in Proposition 6. In panel (a), ρ = 1.5, in panel (b) ρ = 1, and in panel (c) ρ = 2/3.
In all panels, s and θ have truncated normal distributions on [10, 18] and [8, 11], means 14 and 9.5, and
standard deviations 5 and 1.5, respectively. Demand distribution is increasing triangular with support
[0, 1200]. The remaining parameters are p = 30, β = 8, and φ = 0.65.

offering options to the buyer.

(ii) If rS = rB, the seller’s profit is maximized by setting any exercise price w∗, where 0 ≤ w∗ ≤ s + θ.

(iii) If rS < rB, s + θ < w∗ ≤ s + θ, i.e., the seller prefers offering options to selling the intermediate

good.

Figure 2 depicts the seller’s expected profit as a function of the exercise price w. As can be seen from

panels (a) and (b) of this figure, similar to the case with fixed θ, for rS > rB, optimal contracts are sales

contracts with w∗ = 0; and for rS = rB, there is a continuum of optimal exercise prices, in this case on

w ∈ [0, s + θ]. For rB > rS , however, the optimal exercise price is increasing in this case all the way up to

and beyond s + θ, as can be seen in panel (c) of Figure 2, and is optimized for a w∗ ∈ (s + θ, s + θ). This

means that the supplier offers true option contracts to the buyer with a non-zero probability that the buyer

will not exercise the options he buys. This is because the seller is facing a trade-off between increasing the

exercise price and increasing the quantity of the options sold, and the increased exercise price pays off by

increasing the expected profits while keeping the number of options sold high.

Combining the results of Proposition 6 with those of Propositions 2 and 4, we can deduce the charac-

terization of full optimal contract structure for K > D and β > E[s](1−φ)(1+rS)−1, which is summarized

in panel (a) of Figure 3. Recall Proposition 2 stated that when the seller has a higher discount rate than

the buyer and production costs are sufficiently low, the optimal contract is a flat-price contract. Thus,
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by Proposition 6, optimal contracts in this region will be flat-price sales contracts. When rS > rB, if the

production costs are beyond the critical threshold, the optimal contracts are volume-dependent. Further,

by Proposition 4 (or more specifically Corollary 2), since these contracts are sales contracts, they will

demonstrate volume discounts as also indicated in panel (a) of Figure 3. On the other hand, if the buyer

has a higher discount rate than the seller (i.e., ρ < 1), then the optimal contract is a volume-dependent

option contract. Further, since by Proposition 6 the optimal exercise price is between s + θ and s + θ, by

part (ii) of Proposition 4 the reservation price curve can have concave and convex parts; i.e., the optimal

contract offer can have volume discounts on the options as well as volume premia or both.

Parallel to our analysis in Section 5, we can also expand the results of Proposition 6 to low capacity

case.

Proposition 7 Suppose K < D, and ρ < ρ̄, where ρ̄ is as defined in Proposition 2.

(i) If rB ≤ rS, then w∗ = 0. That is, sales contracts are optimal for the seller rather than options.

(ii) If rB > rS, then there exists w∗ ∈ [0, s + θ], that optimizes seller’s profit. Moreover,

(a) If E[s]+θ−gθ(θ) > β(1+ rS), then there exists a cutoff value γ, K > 0, such that if rB ≤ rS +γ,

and K < K, then w∗ = 0; i.e., sales contracts are optimal.

(b) There exists a K > 0 such that, if K > K then w∗ ∈ (s + θ, s + θ]. That is, the seller prefers

offering options to selling the intermediate good.

Panel (b) of Figure 3 demonstrates the contract structure in relation to capacity and the relative discount

rates of the buyer and the seller, captured by ρ = (1+rS)/(1+rB). The first thing to notice is that, unlike

the case with K > D, sales contracts can be optimal even when the buyer’s discount rate is higher than

that of the seller’s, provided that the seller’s capacity is sufficiently low. This is because, given the seller’s

capacity is low enough, there is a strong chance that the buyer will use most or all of this capacity at the

time demand is realized. Then, provided that the buyer’s discount rate is not too high compared to that of

the seller, the seller may be better off offering the buyer to pay up front for the entire capacity at a slightly

lower price instead of offering a higher exercise price, volume-dependent contract. As production capacity,

K, increases, or the buyer’s discount rate becomes higher compared to the seller’s (i.e., ρ decreases), the

contract structure moves from flat price to mixed-menu to full volume discount, as was noted by Corollary

1. Note that, given the buyer’s discount rate is higher than the seller’s, once the capacity is large enough

the contract is always fully volume dependent and involves a positive exercise price; i.e., in this case the

contract is always a volume-dependent options contract.

22



¯

0
1 0 1

¯ ·
E[s](1¡ Á)

1 + rB

Option
Contracts
(w¤ > 0)
Volume
Discounts
and/or
Premia

Sales
Contracts
(w¤ = 0)
Volume Discounts

Sales
Contracts
(w¤ = 0)
Flat
Pricing

1 + rS
1 + rB

rB
¯ >

E[s](1¡ Á)

1 +

E[s](1¡ Á)

1 + rB

(a) Contract structure as a function of ¯ for large capacity

1 + rS
1 + rB

(b) Contract structure as a function of K for K · D

D

SALES

Flat-Price Contracts

OPTIONS

K
D

Volume-Dependent
Contracts

Volume
Discounts

Mixed-Menu
Contracts

Volume 
Discounts 
or Premia

Figure 3: Contract structure characterization. Panel (a) illustrates the partition of the parameter space
according to the characterization of contract structures for K ≥ D. The horizontal axis specifies ρ (i.e.,
(1 + rS)/(1 + rB)), and the vertical axis specifies β. Panel (b) illustrates the partition under limited
production capacity, K, with the vertical axis specifying K. The solid line separates sales contracts from
options. The darkest shaded region indicates flat-price contracts, the medium shaded one indicates mixed-
menu contracts, and the unshaded region indicates fully volume-dependent contracts.

6 Contract Characteristics

6.1 The Effects of Parameters on Contract Design

We next examine the effects of buyer, seller, and market characteristics (such as production costs, spot

price distribution, bid-ask spread in the spot market, and information asymmetry between the buyer

and the seller about buyer’s production flexibility) on the optimal contract design, including exercise

price, reservation price, and expected contracted quantity. In the remainder of the paper, for expositional

simplicity, for increases in expected value of a random variable while preserving the shape of the distribution

(θ or s), we will use the term rightward shift in the probability distribution; i.e., fθ(θ + x) in the new

distribution equals fθ(θ) in the old distribution for all θ and a constant x > 0. Similarly, when we talk

about increased variance, we will refer to mean preserving spreads that strictly reduce the infimum of the

support of the distribution.10 Also note that for simplicity, for the entire Section 6, we will focus on the

case of K ≥ D, β ≥ E[s](1− φ)(1 + rS)−1, and ρ < ρ̄, where ρ̄ is as defined in Proposition 2.

We start with the effects on exercise price. The following proposition states the result.

Proposition 8 If rB > rS, then there exists δ1 > 0 such that when 1 − δ1 < ρ < 1, the optimal exercise
10The definition applies as long as the shift reduces the infimum of the distribution’s support whether or not it increases

the supremum of the support.
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price, w∗, increases with a rightward shift in the distribution of θ or s. It decreases with ρ, or if V ar[s] or

V ar[θ] increase with a mean preserving spread that reduces the infimum of the support of the distribution.

As the spot price or the buyer’s sourcing inflexibility (measured by θ) increases, buyer’s alternative sources

of procurement at t = 2 become less attractive. Hence, the seller can charge a higher exercise price for the

options. On the other hand, when ρ increases, the buyer becomes values future payoffs less compared to

the seller. Consequently, the seller can gain by offering contracts that shift the fee collection to t = 1 by

decreasing the exercise price. If the spot price distribution spreads out, then the probability that the buyer

exercises his options decreases since it is more likely that the spot price will be lower than the option’s

exercise price. This decrease forces the supplier to reduce the exercise price to make the options more

attractive to the buyer. Finally, when the uncertainty on the buyer’s type increases, the probability that

the buyer exercises his options decreases, inducing the supplier to reduce the exercise price of the options

in the optimal contracts.

Another important measure is the expected quantity contracted between the buyer and the seller, i.e.,

Eθ[q∗(w, θ)]. The next proposition summarizes the effects of industry and market parameters on expected

contracted quantity.

Proposition 9

(i) If rB < rS, expected contracted quantity, Eθ[q∗(w, θ)], increases with an increase in ρ, or with a

rightward shift in the distribution of θ or s; and it decreases with φ and β.

(ii) If rB ≥ rS, then there exists δ2 > 0 such that when 1 − δ2 < ρ < 1, expected contracted quantity,

Eθ[q∗(w, θ)], increases with an increase in ρ, or with a rightward shift in the distribution of θ or s.

It decreases with φ, β, or if V ar[s] increases with a mean preserving spread that reduces the infimum

of the support of the distribution.

As mentioned above, increased spot price and increased buyer inflexibility increases the attractiveness of

the options to the buyer. This increases the number of contracts purchased for both cases, w∗ = 0 and

w∗ > 0. An increased bid-ask spread reduces the amount the buyer can recoup for the intermediate goods

he cannot use to satisfy consumer demand, making the options less attractive. As a result, the number

of contracts he purchases decreases. An increase in spot price variance increases the probability that the

buyer can supplement his procurement from the spot market at time t = 2. Consequently, when the seller

is offering options, i.e., when w∗ > 0, the options become less crucial for him and the expected contracted

quantity decreases.

Finally, we examine how the expected reservation fee changes with industry and market characteristics.

The following proposition states the result.
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Proposition 10

(i) If rB < rS, expected reservation fee paid, Eθ[R(q∗(w∗, θ), w∗)], increases with ρ, or with a rightward

shift in the distribution of s or θ; and it decreases with φ and β.

(ii) If rB ≥ rS, then there exists δ3 > 0 such that when 1 − δ3 < ρ < 1, expected reservation fee paid,

Eθ[R(q∗(w∗, θ), w∗)], increases with an increase in δ, or with a rightward shift in the distribution of θ

or s, or when V ar[s] increases with a mean preserving spread that reduces the infimum of the support

of the distribution. Further, when 1− δ3 < ρ < 1, expected reservation fee paid, Eθ[R(q∗(w∗, θ), w∗)],

decreases with φ and β.

As before, an increase in the expected spot price or the buyer’s expected inflexibility makes the options

more valuable to the buyer. Consequently, the supplier increases the reservation price in the optimal

contracts for both cases with w∗ = 0 and w∗ > 0. The effects of increase in discount rate differences and

the spot price variance filter through the supplier’s trade-off between the reservation and exercise prices of

the options. As the supplier’s discount rate becomes higher compared to the buyer, she prefers to shift her

revenues to earlier rather than later. Consequently, she decreases the exercise price as stated in Proposition

8 and increases the reservation price. Further, an increase in spot price variance decreases the probability

of the buyer exercising the options for any given fixed w. In response, the supplier finds it optimal to

decrease the exercise price to increase the exercise probability. Part (ii) of Proposition 10 states that in

the optimal contracts, the supplier is able to recuperate some of her losses from this decrease in exercise

price by increasing the reservation fees. Lastly, an increase in the spot market bid-ask spread has a strong

effect in reducing the value of the options. So much so that, even though the seller decreases the exercise

price in the contract offer, she still has to reduce the reservation fees in order to maximize her profits.

6.2 Uncertainty and Efficiency

In this section, we provide a numerical analysis of the determinants of contract characteristics and supply

chain efficiency. Specifically, we focus on the effects of distributions, i.e., mean and variance, of the

buyer’s sourcing flexibility and the spot price, which are two important factors in determining contract

characteristics.

6.2.1 The First-Best Solution

In order to obtain a yardstick for measuring efficiency, we first calculate the first-best supply chain profit.

The supply chain first-best is achieved under the assumption of an integrated channel with centralized

decision making and no information asymmetry. Consider the integrated channel where the downstream

unit has type θ, i.e., purchasing the good from the outside supplier results in a value loss of θ, and the
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production level y(θ) at t = 1 is determined centrally. The corresponding supply chain profit level is then

πSC(y, θ) = −βy +
1

1 + rSC

(
pE[D] + E[s](1− φ)ED[(y −D)+]− (E[s] + θ)ED[(D − y)+]

)
, (19)

where rSC is the discount rate for the integrated supply chain. With this set up, the following proposition

presents the coordinated supply chain’s first-best solution.

Proposition 11 The expected highest attainable profit level for the centralized system is

πFB =
1

1 + rSC

(
(p− E[s]− E[θ])E[D] +

∫ θ

θ
(φE[s] + θ)

∫ y∗(θ)

0
x dFD(x) dFθ(θ)

)
, (20)

where y∗(θ) denotes the optimal production level of the centralized system with a type θ downstream unit

and is given by

y∗(θ) = F̄−1
D

(
(1 + rS)β − E[s](1− φ)

φE[s] + θ

)
. (21)

In general, firm size is inversely related to a firm’s discount factor or cost of capital (see, e.g., Ashbaugh-

Skaife and LaFond 2006, Berk and DeMarzo 2007, Hail and Leuz 2009 among others). Smaller firms

normally borrow at higher interest rates than larger firms. One main reason for that is smaller firms, in

general, are riskier than the larger ones (e.g., higher default rate). Therefore, since the integrated supply

chain combines the supplier and the buyer, the discount rate for the centralized channel rSC should be

considered as lower than both rS and rB; i.e., 0 ≤ rSC ≤ min{rS , rB}. We consider this range in our

numerical analysis for the integrated channel’s discount rate.

Utilizing the first-best solution as described in Proposition 11, we can now calculate the percentage

efficiency of the optimal procurement contracts and the division of the surplus between the supplier and the

buyer. Table 1 provides the contract characteristics as the spot price and buyer flexibility distributions and

the relative discount rates of the seller and the buyer (ρ) vary. Table 2 provides the corresponding efficiency

measures. The tables present three sourcing-flexibility distribution cases to explore the effects of shifts in

the expected value and variance: base (or “standard”) case (θ ∼ U [20, 24], denoted by “ST”), a variance-

preserving case (θ ∼ U [28, 32], denoted by “VP”), and a mean-preserving case (θ ∼ U [15, 29], denoted by

“MP”). In addition to measuring supply chain efficiency with respect to the first-best (πSC/πFB) and the

supplier’s share of the supply chain surplus (πS/πSC), we also measure the percentage gain from employing

an options contract compared to employing a traditional sales contract (i.e., with w∗ = 0) for the supplier

(ΓS = (πS(w∗)− πS(0))/πS(0)) and the supply chain (ΓSC = (πSC(w∗)− πSC(0))/πSC(0)) as a whole.

6.2.2 The effect of the distribution of the buyer’s sourcing flexibility

There are two underlying effects of decreased buyer flexibility (increased θ) on supply chain efficiency and

surplus distribution. First, reduced buyer flexibility reduces the ability of the supply chain as a whole to

respond quickly to spot market and demand realizations, and hence decreases the overall efficiency of the
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Figure 4: Percentage change in the optimal exercise price w∗ (panel (a)), and average reservation price
Eθ[R(q∗(w∗, θ), w∗)/q∗(w∗, θ)] (panel (b)) with increase in expected spot price. For case A, ρ = 0.9, for
cases B and C, ρ = 0.8. The spot price s has a truncated normal distribution with standard deviation 40
and support [E[s]−9.5, E[s]+9.5] for cases A and B, and standard deviation 3 and support [E[s]−4, E[s]+4]
for case C. For all cases, the demand has truncated normal distribution with mean 600, standard deviation
400 with support [0, 1200]; and θ is U [15, 29]. The remaining parameters are p = 100, φ = 0.75, β = 13,
and the initial mean spot price is 30.

supply chain. Second, increased θ increases the dependence of the buyer to the supplier. Increased buyer

dependence shifts surplus from buyer to the seller, but also increases the contracted quantity at t = 1,

moving it closer to the first-best quantity, increasing supply chain efficiency. An increase in θ has inverse

effects for the efficiency of the options and sales contracts. As Table 1 demonstrates, for rS < rB, increased

θ induces the supplier to shift her fee collection from reservation (Eθ[R(q∗(θ))/q∗(θ)]) to exercise (w∗).

This is because, for this range, the supplier has a lower discount rate than the buyer and takes advantage

of the buyer’s increased additional cost of outside procurement, pricing the contracts to delay payments.

As a result, the contracted quantity increases significantly, and the negative effect of decreased production

flexibility is mitigated by reduced exercise price, w∗, resulting in increased supply chain efficiency as can be

observed in Table 2. For rS ≥ rB on the other hand, a decrease in buyer’s sourcing flexibility reduces supply

chain efficiency, as w∗ = 0 in this region; i.e., sales contracts are optimal, and the supplier incorporates

the increased additional cost of the buyer’s outside procurement on the reservation fees, increasing her

expected profits but decreasing the supply chain efficiency overall.

An increase in θ spread, i.e., an increase in V ar[θ], again has two separate effects. First, increased

uncertainty on θ increases the information asymmetry between the buyer and the seller, thereby increasing

the information rent the seller gives to the buyer. Second, an increase in the θ spread increases the
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probability of the buyer to rely on spot purchases when possessing options to the supplier’s capacity. This

is because, under option contracts, for any given spot price realization s, any increase in the probability of

higher θ does not change whether the buyer exercises the options, since he exercises them at the fixed fee w

beyond a certain θ value. On the other hand, an increase in the probability of lower θ values would directly

decrease the probability of the exercise of options and his procurement costs. As can be seen from Table

1, both of these effects force the seller not only to decrease her average unit reservation price but also the

exercise price for the options. Consequently, the buyer’s surplus increases as Table 2 displays. However,

increased information asymmetry between the seller and the buyer reduces the operating efficiency of the

supply chain. Interestingly, the supplier’s relative gains from employing the optimal options contract versus

a traditional sales contract (ΓS) increases with increased variance of flexibility, as the buyer’s willingness-

to-pay for option contracts increases compared to committing to sales contracts. In contrast, the supply

chain’s benefit from employing option contracts decreases, because the total quantity contracted between

the buyer and the seller decreases and moves away from the first-best contract quantity.

6.2.3 The effect of the spot price distribution

As the expected spot price increases, the buyer becomes more dependent on contracts with the supplier.

As a consequence the supplier can increase the fees she charges. However, increased spot price also has

an effect on the shape of the reservation price schedule R(q). Specifically, by inequality (17) given in

Proposition 4, an increase in E[s] increases the concavity of the reservation schedule R(q) at the higher

end of the curve, which flattens the price schedule and reduces the expected unit price. The role of these

two effects on contract characteristics can be observed in Table 1 as well as in Figure 4. As can be seen

in Table 1, for rS ≥ rB, an increase in the expected spot price is reflected as an increase in the average

reservation fee. For rS < rB, the seller’s response to a spot price increase involves increasing the exercise

price, as panel (a) of Figure 4 illustrates. The average unit reservation price, on the other hand, can

increase or decrease with an increase in spot price, as can be seen in panel (b). Specifically, the average

unit reservation fee can increase with E[s] when rS is substantially lower than rB (i.e., when ρ is low) and

at low E[s] values (see cases B and C in the figure). However, as the inequality (17) points out, increased

E[s] tends to flatten the reservation fee schedule and eventually decrease average unit reservation price.

The effect of an expected spot price increase on the relative efficiency of the supply chain depends on the

relative magnitudes of rB and rS . When rS > rB, the supply chain operates under sales contracts that are

more rigid than the option contracts employed when rS < rB. With option contracts, an increase in spot

price can cause an increase in supply chain efficiency, as can be seen in panel (a) of Figure 5, while with

sales contracts, an increase in E[s] reduces the supply chain surplus faster than it reduces the first-best, as

demonstrated in panel (b). Thus, option contracts can serve as a “shock absorbent” for the whole supply

chain against inclines in spot prices. This is also evident in the increase in the value of the options relative

to the sales contracts for the supply chain (ΓSC) with increased expected spot price, as can be seen in

Table 2 for cases with rS < rB.
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truncated normal distribution with standard deviation 3 and support [E[s]− 4, E[s] + 4]; D has truncated
normal distribution with mean 600, standard deviation 400 with support [0, 1200]; and θ is U [20, 24]. The
remaining parameters are p = 100, φ = 0.95, and β=13.

Finally, when spot price variance increases, given the expected spot price stays constant, the relative

surplus distribution with the expected sales contracts (which are optimal for the supplier for rS ≥ rB) do

not change as the contracts are rigid and their use does not depend on the realization of the spot price.

However, for rS < rB, option contracts are optimal and the outcome is sensitive to increased spot variance.

For option contracts, an increase in the spot price variance introduces an asymmetric effect similar to an

increased variance of the buyer’s sourcing flexibility as we discussed above. Specifically increased likelihood

of lower spot price realizations, s, directly increases the buyer’s expected profits, while beyond a certain

point, the increased spread on the higher end has no effect on the outcome, since for large enough s, the

buyer exercises the options at the fixed exercise price. Consequently, increased spot price variance benefits

the buyer and makes the option contracts with the supplier less valuable. To counter this effect, in order

to make the option contracts more attractive at lower spot price realizations, the supplier decreases the

exercise price, but sharply increases the unit reservation price to compensate as can be seen from Table 1.

However, due to the advantage increased spot variance provides to the buyer, the supplier’s share of the

surplus decreases, as Table 2 demonstrates. Further, the expected benefits of employing option contracts

compared to sales contracts for the supplier and the supply chain also decrease. Supply chain efficiency also

suffers from increased uncertainty in the spot market since such an increase in uncertainty substantially

increases per-unit reservation fees and reduces the contracted quantities.
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7 Discussion and Extensions

In this section, we discuss our model’s assumptions and limitations, as well as some related extension

suggestions.

We assumed that the spot price distribution is not affected by the contracting between the buyer

and the seller. This is a common assumption employed by most papers that study the subject in the

literature (see, e.g., Peleg et al. 2002, Wu et al. 2002, as well as the references cited in Kleindorfer and

Wu 2003). One of the main reasons for this is tractability. Making spot price dependent on contracting

outcome significantly increases complexity as one has to model the entire microstructure of spot trading

and incorporate it with the rest of the model, and that severely hurts the tractability of the model.11

In addition, in many cases, with a relatively small number of sellers, many markets may become nearly

competitive or highly liquid (see, e.g., Tunca 2008, which explicitly models endogenous market liquidity).

The specific number of sellers needed for this to happen changes depending on the structure of trading in

the market for instance, with Bertrand style competition, even two sellers is sufficient to make the market

competitive. Also it should be noted that for “spot trading” to take place, there does not need to be a

specifically designed “spot market”. Spot purchases, in fact can be any purchase that is made at or near

the time of demand fulfilment. As such, given that there are multiple suppliers available, the market can

be reasonably liquid.

Again, similar to most studies in the literature, we assumed there is no limit on the quantity of spot

purchases. This assumption also helps with tractability of the model. Further, although there is clearly a

finite amount of supply available in any market, in most cases many companies do not have large enough

demand to exhaust the entire supply in the industry. Finally, the unlimited spot capacity is not a main

driver of our major qualitative results. We believe if one added a finite capacity to the spot market, the

main structure of our results would mostly be preserved. Nevertheless, it can be a worthwhile extension

direction to study the effect of limited supply availability in the spot purchases. One effect this could have

on contracting would be increased overall prices (reservation and/or exercise) for options, and perhaps an

increase in the sales contracts instead of options because of the increased value of commitment for the

buyer.

In our model, we have information asymmetry between the buyer and the supplier on the buyer’s

willingness to pay for the supplier’s product over other suppliers’ products (θ). In contrast, the discount

rates for the buyer and the seller are known to the other party. As we have discussed in Section 3, buyers

are often willing to pay a premium for the parts procured from their preferred supplier(s). This premium

is idiosyncratic and private for each firm and for a given time point, and consequently, it is almost always

private information. The buyer keeps this information to himself and would avoid revealing it to the

supplier. Therefore, there is almost always an information asymmetry between the buyer and the seller

about this premium, which is one of the main driving engines of the price determination in a contracting
11See Mendelson and Tunca (2007a,b) for models that make spot price and contracting endogenous to each other.
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process. On the other hand, there is usually much less information asymmetry on firms’ discount rates

or cost of capital. As we mentioned in Section 5, often, firms can borrow from banks at the ongoing

publicly available common rate called “Bank Prime Loan Rate”, plus/minus a few percentage points, and

the precise rate usually depends on the firm size. Therefore, firms usually have a pretty good idea about

each others’ discount rates when they engage in contracting. Furthermore, for public companies, loan

interest rates can be inferred from quarterly and annual statements. To summarize, firms’ information

about each others’ cost of capital is usually much better than their information on others’ firm-specific

willingness-to-pay for a particular supplier’s product, as the latter information is much more idiosyncratic

and private, and, understandably, much better protected. Further, we believe that with uncertainty on the

discount rates, our main results would be preserved and the insights (as we discussed in detail in Section

5) would continue to hold. Specifically, if the discount rates are uncertain, but the seller’s discount rate is

likely to be higher than that of the buyers’ (i.e., if it is likely that rS ≤ rB), the seller still would prefer to

have sales contracts to maximize her discounted profits by collecting the fees at the time of the contract.

On the flip side, if the buyer’s discount rate is likely to be higher than the seller’s, the seller would prefer to

shift the payments to the future, since that would make the contracts attractive to the buyer and maximize

the seller’s profits. If the two discount rate distributions were somewhere in the middle, an outcome that is

a mixture of these two polar cases would likely emerge. A detailed exploration of the effects of information

asymmetry about discount rates on contract structure could be a potential future research direction as

well.

In the general contract structure we study, the reservation price can be volume-dependent, while the

unit exercise price w is constant. There are several reasons for that. First, this reflects the common

current practice in options contract structure. Highly complex options contract structures that make both

reservation prices and exercise prices volume-dependent are not commonly observed in practice. Second,

making the exercise price volume-dependent would add enormous complexity to the model and make the

analysis intractable. Third, even if one could analyze such contracts, it is unclear how much the extra

complexity given by making the exercise price volume-dependent will add to the efficiency of the contracts

for most cases. The contracts we study, with fully free reservation price functional form (R(·)), and

endogenous exercise price w, have substantial flexibility, and much of the flexibility brought about by

making the exercise price non-linear can be captured by the non-linearity of the reservation prices.

In our analysis we also included separate individual discount rates for the buyer and the seller. The

discount rate for a given company is determined by many factors, including firm size, its credit rating,

riskiness of the firm’s current investments, and the balance of its assets and liabilities. In a general sense,

these rates would be determined by combining market-wide factors with firm-specific factors, and by various

methods including market portfolio-based methods (such as CAPM) and macroeconomic analysis. The

determination of these discount rates are well beyond the scope of our current paper. However, it could be

interesting to explore the links between discount rate determination and contracts in a future study that

particulary focuses on the interaction of market, industry and firm-specific factors.

31



Another extension direction for our model is to study alternative contracting structures. One such

structure that is studied in both economics and operations management literatures for mitigating the

inefficiencies of vertical disintegration is the two-part tariff (see, e.g., Schmalensee 1981, Tirole 1990, Cachon

1998). This structure involves a constant fee charged alongside a constant unit price for variable quantity.

Provided that the setting is sufficiently simple, e.g., when there are no uncertainties, no hidden actions,

or no downstream oligopolistic competition in the supply chain, such contracts can in fact be successful

in coordinating the supply chain or achieving high contract efficiency. However, it is also known that

with additional complexities two-part tariff contracts can prove to be inferior to other contract forms, but

hybrid two-part-tariff-like contract structures can be built into or combined with other contract elements to

improve supply chain efficiency (see, e.g., Dana and Spier 2001 and Cachon and Lariviere 2005). Another

contracting structure that can be explored is Nash Bargaining. Dong and Liu (2007) present the analysis

of forward contracting in the presence of spot markets under Nash bargaining. Extending their analysis to

option contracts could be an interesting avenue for future research.

As in many other studies that analyze pricing and contracting for procurement, our model focuses

on continuously differentiable functions for optimal contracts (see, e.g., Schmalensee and Willig 1989,

Dasgupta and Spulber 1989/90, Tunca and Wu 2009). Naturally, in practice, contracts are implemented in

simpler forms, such as piece-wise linear price schedules. A well-designed piece-wise linear contract would

approximate the globally optimal continuously differentiable contract relatively closely. To that end, the

higher the number of segments in the contract, the better the approximation will be. However, too many

segments would make a contract too complex and less practically employable. Therefore the performance

of such contracts are determined by the number of segments the seller can practically offer to a buyer. The

piece-wise linear approximation of differentiable non-linear contract functions should normally not alter

the main qualitative insights from the analysis.12

Again similar to most related models in the literature, we assumed that the demand and spot price

distributions are independent. This assumption was necessary for the tractability of the general model

with random θ. However, for the benchmark case of fixed θ we studied in Section 4, we can introduce this

correlation without destroying tractability. We provide this analysis in Section B in the Online Supplement.

Further, we also study the special cases of perfect positive and negative correlation in the general model in

Section C in the Online Supplement. A main observation from these analyses is that correlation between

consumer demand and spot price does not significantly affect the nature of the main insights of our study.

The reason for this is that the assumption of independence of s and D distributions is not a main driver

of the results we present in this paper. As we have explained in detail in Section 5, the relationships

among the production cost, expected spot price, and buyer’s and seller’s discount rates determine the

main contract structures. Specifically, if the seller has a higher discount rate than the buyer, it tends to be

optimal for the seller to offer sales contracts that guarantee the payments and shifts them earlier in time.

If the buyer has a higher discount rate, it tends to be optimal for the seller to offer option contracts so
12In certain “knife-edge” cases, in the optimal contracts in our model the reservation price can be linear. Such cases can

emerge for parameter and distribution combinations that solve the differential equation (17) with equality.

32



the buyer can find the contracts attractive as he benefits from controlling the risk by purchasing only the

units he needs and also shifting the payments to the future. If the production costs are low compared to

the expected salvage value of the units at the spot price, then it tends to be optimal for the seller to offer

a large quantity to the buyer at a fixed price. On the other hand, if the production costs are large, it is

best to make the contract offer contingent on the buyer’s (random) valuation of the contract to eliminate

potential excess costly production. A future study that analyzes the general correlation in the full model

with uncertainty of the buyer’s willingness-to-pay for the supplier’s product can be another interesting

extension.

In our model we also assumed that p > s + θ, guaranteeing that it is always profitable to sell to the

consumer market and that the buyer is always better off selling his product to the consumer market rather

than to the spot market (since p > s + θ implies p > s(1 − φ)). Again, one reason for this assumption

is tractability – without this assumption, the analysis becomes very complex and intractable. However,

beyond tractability, in our experience, the situations where the spot wholesale purchases are costlier than

the consumer prices or where it is more profitable to sell to the spot market than to the consumer market

are quite rare and happen only in exceptional cases and circumstances. Such cases often signal flaws

in market design or unusual market manipulation caused by ill-conceived regulatory attempts (see, e.g.,

Wilson 2002 on the design flaws that contributed to the ultimate failure of the now-defunct California

Power Exchange). Crossovers are not normal in the day-to-day operation of healthy markets. Thus, the

assumption that the buyer always prefers to sell to the consumer market instead of to the wholesale spot

market is a reasonable one to make within the scope of our model. Nevertheless, one direction for future

research could be exploring cases where the consumer price can cross-over with the spot wholesale price,

and studying the effects of such potential cross-over.

For tractability, we also assumed a fixed spot bid-ask spread coefficient φ. The spread in spot trading

can in fact depend on a number of market factors such as demand and supply in the spot market. However,

although the existence of a bid-ask spread is necessary for our results, its particular form is not a major

driver of our main qualitative results and insights. Further, the details of how the spread in the spot

market gets determined moves the current model away from its main focus. However, extending the model

to a case where the spread can functionally depend on other model elements and parameters could be an

interesting subject for a future study.

8 Concluding Remarks

In this paper we studied the pricing problem of contracts for a supplier of an industrial good in the presence

of spot trading and under information asymmetry about the buyer’s valuation premium for the supplier’s

product. We jointly studied the questions: (i) When is it optimal to offer sales contracts versus options

contracts? (ii) When is it optimal to offer flat fee versus volume-dependent contracts? and (iii) When

does the optimal contract involve volume discounts and when does it involve volume premia? We derived
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the optimal non-linear pricing of procurement options contracts, derived the structure of the contract

agreements, and studied the determinants of pricing and contract characteristics.

Our goal has been to provide an approach to the design of procurement contracts combining buyers’

private valuations, spot market trading, information asymmetry, and general pricing structures for option

contracts. To this end, we analyzed a solution for a general class of option contracts that encompasses

a broad spectrum of procurement contract structures commonly employed in practice. Our analysis aims

to provide insights for the endogenously determined nature of procurement contracts, and to build links

between variables such as spot price distribution and bid-ask spread of the spot market and procurement

contract characteristics, which were not explored previously in the literature. We hope that these findings

provide a better understanding of complex non-linear procurement contracts and can help contribute to

future studies that continue to build a more generalized theory of procurement agreements.
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A Proofs of Propositions

Proof of Proposition 1: In solving the optimization problem of the supplier, we will eliminate the

buyer’s IR constraint and substitute it into the the seller’s objective function, and solve the seller’s un-

constrained problem. The solution will then unroll by plugging back the unconstrained optimizer into the

seller’s expected profit expression.

First note that since θ is fixed, the seller knows the buyer type perfectly, and hence can extract

the full buyer surplus by offering a single quantity-price combination, which eliminates the buyer’s IC

constraint. That is, in the optimal contract π̂B(q, w, θ) = 0, and πS(q, w) = R(q, w) + V (q, w, θ) =

−π̂B(q, w, θ) + ϕ(q, w, θ) + V (q, w) = 1
1+rB

ϕ(q, w, θ) + V (q, w). Now,

ϕ(q, w)
1 + rB

+ V (q, w) =
1

1 + rB

(
Es

[
(s + θ − w)+

]
ED[min(D, q)] + Es

[
(s(1− φ)− w)+

]
ED[(q −D)+]

)

+
1

1 + rS

((
E[s](1− φ)− (1 + rS)β − Es[(s(1− φ)− w)+]

)
q

+
∫ w

1−φ

w−θ
(w − s(1− φ))ED[min(D, q)] dFs(s)

)
+

(
E[s](1− φ)

1 + rS
− β

)+

· (K − q)

=
1

1 + rS

(
(E[s](1− φ)− (1 + rS))β) q +

∫ s

w−θ
(φs + θ)ED[min(D, q)] dFs(s)

)

+
rS − rB

(1 + rS)(1 + rB)
(
Es

[
(s + θ − w)+

]
ED[min(D, q)]

+Es

[
(s(1− φ)− w)+

]
ED[(q −D)+]

)
+

(
E[s](1− φ)

1 + rS
− β

)+

· (K − q) . (A.1)

Therefore, relaxing the IR constraint for the seller momentarily, writing the first and second derivatives,

d (ϕ(q, w) + V (q, w))
dq

=
1

1 + rS

(
E[s](1− φ)− (1 + rS)β +

∫ s

w−θ
(φs + θ)F̄D(q) dFs(s)

)

+
rS − rB

(1 + rS)(1 + rB)

( ∫ s

w−θ
(s + θ − w)F̄D(q) dFs(s)

+
∫ s

w
1−φ

(s(1− φ)− w)FD(q) dFs(s)
)
−

(
E[s](1− φ)

1 + rS
− β

)+

, (A.2)
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and

d2 (ϕ(q, w) + V (q, w))
dq2

= − 1
1 + rS

∫ s

w−θ
(φs + θ)fD(q) dFs(s)

− rS − rB

(1 + rS)(1 + rB)

(∫ w
1−φ

w−θ
(s + θ − w)fD(q) dFs(s)

+
∫ s

w
1−φ

(φs + θ)fD(q) dFs(s)
)

. (A.3)

Note that (rS − rB)/((1 + rS)(1 + rB)) ≥ −1/(1 + rS). Therefore, by (A.3),

d2 (ϕ(q, w) + V (q, w))
dq2

≤ − 1
1 + rS

∫ w
1−φ

w−θ
(w − s(1− φ))fD(q) dFs(s) ≤ 0. (A.4)

That is, the objective function is concave, and hence in optimality, either the first order condition is

satisfied or q∗(w) = K. Further, since q = 0 is a feasible point, concavity of ϕ(q, w) + V (q, w) in q

implies that the IR constraint for the seller is satisfied as well. Therefore, by equating (A.2) to zero, and

bounding the optimum by K, the optimal reservation quantity q∗(w) is given as in (7). Further, since

π̂B(q∗(w), w, θ) = −R(q∗(w), w) + ϕ(q∗(w), w) = 0, the optimal reservation price R(q∗(w), w) for a given

w ≥ 0 can then be found by plugging (7) in ϕ(q∗(w), w), yielding (8). This completes the proof for part

(i).

The sketch of the proof for part (ii) is as follows: We first calculate the derivative of πS(w, R(q∗(w), w))

with respect to w. Then we evaluate the derivative at relevant regions to derive the shape of the profit

function as a function of w, which brings us to the conclusions.

By (A.1), and plugging in (7), we have

dπS(w)
dw

=
∂πS(w)

∂w
+

dπS(w)
dq∗(w)

· dq∗(w)
dw

= − 1
1 + rS

(φ(w − θ) + θ)ED[min(D, q∗(w))] · fs(w − θ)

− rS − rB

(1 + rS)(1 + rB)

( ∫ s

w−θ
ED[min(D, q∗(w))] dFs(s) +

∫ s

w
1−φ

ED[(q∗(w)−D)+] dFs(s)
)

.(A.5)

First, consider the case where rB < rS . In this case, both terms in (A.5) are negative for all w ≥ 0.

Therefore, the optimal w for the buyer is 0 and optimal contracts are sales contracts. Now suppose

rB = rS . In this case dπS(w)/dw = −1/(1 + rS)(φ(w − θ) + θ)ED[min(D, q∗(w))] · fs(w − θ) < 0 for

s + θ < w < s + θ, and dπS(w)
dw = 0 otherwise. Therefore, there is a continuum of optimal contracts, for

w∗ ∈ [0, s+ θ], and both sales (w∗ = 0) and options contracts (w∗ > 0) can prevail. Finally, when rB > rS ,

on w ∈ [0, s + θ], the second term in (A.5) is strictly positive, while the first term is zero. Therefore πS(w)

is strictly increasing on w ∈ [0, s+θ). Further, for w > s+θ, all terms vanish in (A.5), and dπS(w)/dw = 0.

Therefore, for rB > rS , πS(w) is strictly increasing on [0, s + θ), and constant on w > s + θ. Since πS(w)
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is continuous, it is maximized on w ∈ [s + θ, s + θ]. Finally, for sufficiently small rB − rS ,

1
1 + rS

(φs + θ)ED[min(D, q∗(s + θ))] · fs(s)

>
rB − rS

(1 + rS)(1 + rB)

(∫ s

s
ED[min(D, q∗(w))] dFs(s) +

∫ s

s+θ
1−φ

ED[(q∗(w)−D)+] dFs(s)
)

. (A.6)

Therefore, by (A.5), dπS(w)/dw|w=s+θ < 0. Since for rB sufficiently large πS is monotonically non-

decreasing in w, and πS is continuous in rB, it follows that there exists δr > 0 such that when rS < rB <

rS + rB, πS is non-monotonic in w and w∗ < s + θ. This completes the proof. ¥

Proof of Lemma 1: We will show that G takes values between 0 and ((1+ rS)β−E[s](1−φ))+/(ρ− 1)

on [0, s(1− φ)], and combine it with the fact that it is continuous and monotonically decreasing to derive

the conclusion. First, notice that β ≤ E[s](1−φ)
1+rB

implies ρE[s](1 − φ) ≥ (1 + rS)β, which in turn implies

G(0) ≥ ((1 + rS)β − E[s](1 − φ))+/(ρ − 1), since G(0) = E[s](1 − φ). Further, G(w) = 0 for all

w ≥ s(1 − φ). Combining this with the fact that G is strictly decreasing for 0 ≤ w ≤ s(1 − φ) and

((1 + rS)β − E[s](1− φ))+/(ρ− 1) > 0, the statement follows. ¥

Proof of Proposition 2: The outline of the proof is as follows: We first characterize the solution of

the buyer’s IC constraints, and using that show that all of the buyer’s IR constraints are satisfied if and

only if the IR constraint for the type θ is satisfied. This allows us to eliminate all of the buyer’s IR

constraints except for type θ, which we show must be binding. Next, utilizing the characterization of the

solution of buyer’s IC constraints, we substitute for the value of the seller’s expected revenue implied by

these constraints into the seller’s objective function. This allows us to convert the seller’s optimization

problem to an equivalent one without the buyer’s IC constraints. We next temporarily relax the seller’s

IR constraint, and show that the seller’s problem can be solved pointwise for the quantity chosen for each

type of buyer from the offered menu, q∗(w, θ). We finally prove the conditions for flat-price and volume

dependent contract offers, and calculate the price that corresponds to each quantity, R(q∗(w, θ), w).

First, for a given price–quantity menu R(q(w, θ), w)), in order type θ buyer to indeed choose the

quantity, q(w, θ), meant for him, i.e., in order for the IC constraint to be satisfied, the first order condition

dπ̂B(q, w, θ)/dq|q=q(w,θ) = 0 must hold for all θ ∈ [θ, θ]. By the envelope theorem, we then have

dπ̂B(q, w, θ)
dθ

∣∣∣∣
q=q(w,θ)

=
∂π̂B(q, w, θ)

∂θ

∣∣∣∣
q=q(w,θ)

+
dπ̂B(q, w, θ)

dq

∣∣∣∣
q=q(w,θ)

· dq(w, θ)
dθ

=
∂π̂B(q, w, θ)

∂θ

∣∣∣∣
q=q∗(w,θ)

≥ 0 . (A.7)

Therefore,

π̂B(q, w, θ) =
∫ θ

θ

∂π̂(q, w, a))
∂a

∣∣∣∣
q=q(w,a)

da, (A.8)
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and in any given feasible solution to (12), π̂B(q(w, θ), w, θ) has to be increasing in θ. Therefore, the second

set of conditions in (12) are satisfied if and only if π̂B(q(w, θ), w, θ) ≥ 0. Further, in the optimal schedule,

this constraint should be binding, i.e., π̂B(q(w, θ), w, θ) = 0, since otherwise, the seller can increase the

payment charged to all types without violating their IR constraints.

Now, ∂π̂B(q, w, θ)/∂θ = ∂ (ϕ(q, w, θ)/(1 + rB)−R(q, w)) /∂θ = (∂ϕ(q, w, θ)/∂θ)(1 + rB)−1. Then by

(A.7), and applying integration by parts, we have

∫ θ

θ
R(q(w, θ), w) dFθ(θ) =

∫ θ

θ

(
1

1 + rB
ϕ(q(w, θ), w, θ)− π̂B(q(w, θ), w, θ)

)
dFθ(θ)

=
1

1 + rB

∫ θ

θ
ϕ(q(w, θ), w, θ) dFθ(θ)− π̂B(q(w, θ), w, θ)

− 1
1 + rB

∫ θ

θ

∫ θ

θ

∂ϕ(q, w, a)
∂a

∣∣∣∣
q=q(w,a)

da dFθ(θ)

=
1

1 + rB

{ ∫ θ

θ
ϕ(q(w, θ), w, θ) dFθ(θ)−

(
Fθ(θ)

∫ θ

θ

∂ϕ(q, w, a)
∂a

∣∣∣∣
q=q(w,a)

da

)∣∣∣∣∣
θ

θ

+
∫ θ

θ
Fθ(θ)

∂ϕ(q, w, θ)
∂θ

∣∣∣∣
q=q(w,θ)

dθ

}

=
1

1 + rB

∫ θ

θ

(
ϕ(q(w, θ), w, θ)− F̄θ(θ)

fθ

∂ϕ(q, w, θ)
∂θ

∣∣∣∣
q=q(w,θ)

)
dFθ(θ). (A.9)

Plugging (A.9) in the objective function in (12) we obtain

πS(w) =
∫ θ

θ

(
V (q(w, θ), w, θ) +

1
1 + rB

(
ϕ(q(w, θ), w, θ)− gθ(θ)

∂ϕ(q(w, θ), w, θ)
∂θ

))
dFθ(θ), (A.10)

where gθ(θ) = F̄θ(θ)/fθ(θ). For notational convenience, define H(q, w, θ) as the integrand in (A.10). Notice

that (A.10) can be optimized pointwise. For a constant θ, the first derivative is

dH(q(w, θ), w, θ)
dq(w, θ)

= −((1 + rS)β − E[s](1− φ))+ + (ρ− 1)
∫ s

w
1−φ

(s(1− φ)− w) dFs(s)

+ F̄D(q(w, θ))
{ ∫ s

w−θ
(φs + θ − gθ(θ)) dFs(s)

+ (ρ− 1)
( ∫ s

w−θ
(s + θ − gθ(θ)− w) dFs(s)−

∫ s

w
1−φ

(s(1− φ)− w) dFs(s)
)}

. (A.11)

Equating (A.11) to zero and solving for q(w, θ) yields

q∗(w, θ) = F̄−1
D

(
((1 + rS)β − E[s](1− φ))+ − (ρ− 1)G(w)

η(w, θ)− (ρ− 1)G(w)

)
, (A.12)
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where

η(w, θ) =
∫ s

w−θ
(φs + θ − gθ(θ)) dFs(s) + (ρ− 1)

∫ s

w−θ
(s + θ − gθ(θ)− w) dFs(s) , (A.13)

and G is as defined in Section 5.1. Next we show the concavity of H for the desired range of ρ. From

(A.11), the second derivative of H with respect to q(w, θ) is

d2H(q(w, θ), w, θ)
dq(w, θ)2

= −fD(q(w, θ))(η(w, θ)− (ρ− 1)G(w)) . (A.14)

Now define

%(w, θ) , η(w, θ)− (ρ− 1)G(w)

=
∫ s

w−θ
(φs + θ − gθ(θ)) dFs(s)

+(ρ− 1)

(∫ s

w−θ
(s + θ − gθ(θ)− w) dFs(s)−

∫ s

w
1−φ

(s(1− φ)− w) dFs(s)

)
. (A.15)

Taking the derivative of % with respect to w,

d%(w, θ)
dw

=




−(ρ− 1)F̄s

(
w

1−φ

)
for w < s + θ,

−fs(w − θ)ν(w, θ) for w ≥ s + θ,
(A.16)

where

ν(w, θ) = φ(w − θ) + θ − gθ(θ) + (ρ− 1) (gs(w − θ)− gθ(θ)) , (A.17)

and gs(s) = F̄s(s)/fs(s). Notice that

ν(s + θ, θ) = φs + θ − 1
fθ(θ)

+ (ρ− 1)
(

1
fs(s)

− 1
fθ(θ)

)

≥ φs + θ − 1
fs(s)

> 0 , (A.18)

since ρ > 0, and (φs + θ)−1 < fs(s) ≤ fθ(θ). Now,

dgs(s)
ds

=
d

ds

F̄s(s)
fs(s)

= −1− gs(s)
dfs(s)/ds

fs(s)
. (A.19)

Since gs(s) is monotonically decreasing in s, finite at s, and d log(fs(s))/ds is bounded on [s, s],

∣∣∣∣
dgs(s)

ds

∣∣∣∣ < ∞, for all s ∈ [s, s] . (A.20)

In addition, from (A.17), we also have

dν(w, θ)
dw

= φ + (ρ− 1)
dgs(s)

ds

∣∣∣∣
s=w−θ

, (A.21)
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which is nonnegative for 0 < ρ < 1 + φ

sups∈[s,s]

∣∣∣ dgs(s)
ds

∣∣∣
, ρ̄, since gs(s) is decreasing in s, and where ρ̄ > 1,

by (A.20). Further
dν(w, θ)

dθ
= (1− φ)− ρ

dgθ(θ)
dθ

≥ 0 , (A.22)

since gθ(θ) is decreasing in θ. It follows that ν(w, θ) ≥ 0 for all θ and w ≥ s + θ. Combining this with

(A.16), it follows that, for ρ < ρ̄, d%(w, θ)/dw < 0 for s+θ ≤ w < s+θ, and d%(w, θ)/dw = 0 for w ≥ s+θ,

for all θ ∈ [θ, θ]. From (A.16), it also follows that for 0 ≤ w < s + θ, d%(w, θ)/dw < 0 if and only if ρ < 1.

But

%(0, θ) = ρ (φE[s] + θ − gθ(θ)) > 0 , (A.23)

and

%(w, θ) = 0, ∀w ≥ s + θ . (A.24)

Therefore %(w, θ) > 0 for 0 ≤ w < s + θ. Combining this with (A.14) and (A.15), it follows that H(q, w, θ)

is strictly concave for all q. Further, since H(q, w, θ) is strictly concave and q(w, θ) = 0 is feasible for

all θ, and yields zero profits for the seller, the IR constraint for the seller is satisfied as well. Therefore

q∗(w, θ) as given in (14) is the pointwise optimum quantity for the seller to offer to type θ buyer. Hence,

(q∗(w, θ), θ), [θ, θ] is the optimal quantity menu for the seller’s problem.

We can now derive the conditions for flat price and volume dependent contracts, and calculate the

contract price R(q∗(w, θ), w). By (14), since %(w, θ) > 0, we have q∗(w, θ) = D if and only if (ρ−1)G(w) ≥
(1 + rS)β − E[s](1 − φ). By Lemma 1, given ρ > 1 and β ≤ E[s](1−φ)

1+rB
, there exists a wc such that

(ρ − 1)G(wc) = (1 + rS)β − E[s](1 − φ), and since G is strictly decreasing in w, for 0 ≤ w ≤ wc,

(ρ− 1)G(w) ≥ (1 + rS)β − E[s](1− φ). This means that, when ρ > 1 and β ≤ E[s](1−φ)
1+rB

, q∗(w, θ) = D for

all θ, i.e., the seller offers a constant contract. The price of the contract follows by plugging q∗(w, θ) = D

in π̂(q(w, θ), w, θ) as R(w) = 1
1+rB

ϕ(D,w, θ) as stated. This proves part (i).

For part (ii), similar to above, %(w, θ) ≥ 0 for any (w, θ). The optimal reservation price schedule

is volume-dependent only when the seller is able to differentiate the buyer’s type. By (14), q∗(w, θ) is

dependent on θ if and only if η(w) < (1 + rS)β − E[s](1 − φ), which can only happen if the flat price

conditions are violated. Note that

dη(w, θ)
dθ

=
(
1− ρg′θ(θ)

)
F̄s(w − θ) + fs(w − θ)ν(w, θ), (A.25)

where ν(w, θ) is as defined in (A.17). As we have shown above, ν(w, θ) ≥ 0. Combining this with the fact

that g′θ(θ) ≤ 0, it follows that dη(w, θ)/dθ ≥ 0, and η(w, θ) is increasing in θ. Since η(w, θ) is increasing

in θ for all θ, the denominator of F̄D(q∗(w, θ)) in (14) is increasing in θ, which implies F̄D(q∗(w, θ)) is

decreasing and q∗(w, θ) is monotonically increasing in θ on [θ, θ], thus the seller can differentiate among

the buyer types, and the contract price schedule is volume dependent. By (A.7), the optimal reservation
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price schedule is

R(w, θ) =
1

1 + rB
ϕ(q∗(w, θ), w, θ)− π̂B(q∗(w, θ), w, θ)

=
1

1 + rB
ϕ(q∗(w, θ), w, θ)− π̂B(q∗(w, θ), w, θ)−

∫ θ

θ

dπ̂B(q, w, a)
da

∣∣∣∣
q=q∗(w,a)

da

=
1

1 + rB

(
ϕ(q∗(w, θ), w, θ)−

∫ θ

θ

∂ϕ(q, w, a)
∂a

∣∣∣∣
q=q∗(w,a)

da

)
. (A.26)

Finally, R(q∗(w, θ), w) can be calculated by combining the two maps q∗(w, θ) and R(w, θ) on [θ, θ]. This

completes the proof. ¥

Proof of Proposition 3: The steps of the solution to the seller’s optimization problem follows a sim-

ilar outline as that for Proposition 2. First, with the capacity constraints, again defining V (q, w, θ) =

πS(q, w, θ)−R(w, θ), we can rewrite the seller’s optimization problem as

max
R(·)

∫ θ

θ
(R(w, θ) + V (q(w, θ), w, θ)) dFθ(θ) (A.27)

s.t. q(w, θ) = arg max
ξ

π̂B(ξ, w, θ), ∀θ ∈ [θ, θ]

π̂B(q(w, θ), w, θ) ≥ 0, ∀θ ∈ [θ, θ]
∫ θ

θ
(R(w, θ) + V (q(w, θ), w, θ)) dFθ(θ) ≥ 0,

0 ≤ q(w, θ) ≤ K.

First consider β ≥ E[s](1− φ)/(1 + rS). In this case, in (A.27), relaxing the capacity constraint together

with the seller’s IR constraint, the solution proceeds exactly as given in the proof of Proposition 2, with

the exception that at the final pointwise optimization step, we need to ensure 0 ≤ q(w, θ) ≤ K. But since

H(q, w, θ) given in (A.11) is concave, we conclude

q∗(w, θ, K) = min
{

K, F̄−1
D

(
(1 + rS)β −E[s](1− φ)− (ρ− 1)G(w)

η(w, θ)− (ρ− 1)G(w)

)}
. (A.28)

Note that q∗(w, θ, K) = K if

η(w, θ)F̄D(K) ≥ (1 + rS)β − E[s](1− φ)− (ρ− 1)G(w)FD(K), (A.29)

and q∗(w, θ, K) < K otherwise.

Next consider the case where β < E[s](1 − φ)/(1 + rS). Note that in this case the seller’s optimal

production is K, since every unit unsold to the buyer at t = 1 brings in positive expected net profit to the
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seller through spot sales. Therefore the seller’s expected profit for buyer type θ is

πS(q, w, θ) = R(w, θ) +
(

E[s](1− φ)
1 + rS

− β

)
K +

1
1 + rS

∫ w
1−φ

w−θ
(w − s(1− φ)) dFs(s) · ED[min(D, q)]

+
1

1 + rS

∫ s

w
1−φ

(w − s(1− φ)) dFs(s) · q. (A.30)

In addition, the seller’s IR constraint also changes, as now she can make profit by selling all her capacity

at the spot with no contracting with the buyer. That is, her IR constraint becomes

∫ θ

θ
(R(w, θ) + V (q(w, θ), w, θ)) dFθ(θ) ≥ K ·

(
E[s](1− φ)

1 + rS
− β

)
. (A.31)

Following similar steps to those given in the proof of Proposition 2 to plug in the buyer’s IC constraints

into the seller’s objective function we obtain

πS(w) ≡
∫ θ

θ
H(q, w, θ),

where

H(q, w, θ) =
(
−β +

E[s](1− φ)
1 + rS

)
K +

1
1 + rS

∫ s

w−θ
(φs + θ − gθ(θ)) dFs(s)ED[min(D, q)]

+
rS − rB

(1 + rS)(1 + rB)

(∫ s

w−θ
(s + θ − gθ(θ)− w) dFs(s)ED[min(D, q)]

+
∫ s

w
1−φ

(s(1− φ)− w) dFs(s)ED[(q −D)+]
)

. (A.32)

Again, temporarily relaxing the seller’s IR constraint and the capacity constraint, we can maximize this

objective function pointwise. The first order condition for a given θ is

dH(q, w, θ)
dq

=
1

1 + rS

∫ s

w−θ
(φs + θ − gθ(θ)) dFs(s)F̄D(q)

+
rS − rB

(1 + rS)(1 + rB)

( ∫ s

w−θ
(s + θ − gθ(θ)− w) dFs(s)F̄D(q)

+
∫ s

w
1−φ

(s(1− φ)− w) dFs(s)FD(q)
)

= 0 . (A.33)
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The second derivative of H(q, w, θ) with respect to q is

d2H(q, w, θ)
dq2

= − fD(q)
1 + rS

∫ s

w−θ
(φs + θ − gθ(θ)) dFs(s)

− (rS − rB)fD(q)
(1 + rS)(1 + rB)

( ∫ s

w−θ
(s + θ − gθ(θ)− w) dFs(s)

−
∫ s

w
1−φ

(s(1− φ)− w) dFs(s)
)

. (A.34)

Note that since s(1− φ)− w < 0 for w − θ ≤ s ≤ w/(1− φ), we have

∫ s

w
1−φ

(s(1− φ)− w) dFs(s) ≥
∫ s

w−θ
(s(1− φ)− w) dFs(s), (A.35)

and thus

∫ s

w−θ
(s + θ − gθ(θ)− w) dFs(s)−

∫ s

w
1−φ

(s(1− φ)− w) dFs(s) ≤
∫ s

w−θ
(φs + θ − gθ(θ)) dFs(s) . (A.36)

Plugging (A.36) into (A.34), we then have d2H(q, w, θ)/dq2 ≤ 0, i.e., the pointwise objective function is

weakly concave. Therefore the solution to (A.33) for each θ maximizes the objective function pointwise.

Further, since q = 0 is feasible for each θ and yields an expected profit of E[s](1−φ)(1+rS)−1−β, concavity

of H(q, w, θ) implies that the solution to (A.33) also maximizes the seller’s problem without relaxing her

IR constraint. Now, solving (A.33), combining it with the capacity constraint q(w, θ) ≤ K and concavity

of H(q, w, θ) we obtain

q∗(w, θ,K) = min
{

K, F̄−1
D

( −(ρ− 1)G(w)
η(w, θ)− (ρ− 1)G(w)

)}
. (A.37)

Therefore, q∗(w, θ,K) = K if and only if

−(ρ− 1)G(w) ≤ F̄D(K) (η(w, θ)− (ρ− 1)G(w)) . (A.38)

Combining (A.37) and (A.28) gives us the desired expression. Further, combining (A.38) with (A.29), we

obtain the condition

η(w, θ)F̄D(K) ≥ ((1 + rS)β − E[s](1− φ))+ − (ρ− 1)G(w)FD(K) (A.39)

for q∗(w, θ, K) to equal K. As we have shown in the proof of Proposition 2, η(w, θ) is increasing in

θ. Therefore, if η(w, θ)F̄D(K) ≥ ((1 + rS)β − E[s](1− φ))+ − (ρ − 1)G(w)FD(K), (A.39) is satisfied

by all θ ∈ [θ, θ], i.e., q∗(w, θ, K) = K for all θ ∈ [θ, θ], and there is flat pricing. On the other hand,

if η(w, θ)F̄D(K) ≤ ((1 + rS)β −E[s](1− φ))+ − (ρ − 1)G(w)FD(K), q∗(w, θ,K) ≤ K, for all θ. Since

η(w, θ) is increasing in θ for all θ, the denominator of F̄D(q∗(w, θ)) in (14) is increasing in θ, which implies
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F̄D(q∗(w, θ, K)) is decreasing and q∗(w, θ, K) is increasing in θ on [θ, θ]. Otherwise, there will be a θc ∈ [θ, θ]

such that for θ ≤ θc, q∗(w, θ, K) ≤ K and increasing in θ, while for θ ≥ θc, q∗(w, θ, K) = K. This completes

the proof. ¥

Proof of Corollary 1: For the case K > D and β > E[s](1− φ)(1 + rS)−1, the results can be directly

observed from the flat price conditions. For low K and β cases, we derive the results by exploring the

effects of the parameters on the two sides of the inequality

η(w, θ)F̄D(K) ≥ ((1 + rS)β − E[s](1− φ))+ − (ρ− 1)FD(K)G(w) , (A.40)

which, by Proposition (3) defines the menu structure for θ = θ and θ = θ. We will only show the result

for K. The remaining results will follow similar fashion.

For a given θ, by rearranging (A.40), we obtain

(η(w, θ)− (ρ− 1)G(w))F̄D(K) + (ρ− 1)G(w) ≥ ((1 + rS)β −E[s](1− φ))+ . (A.41)

Since, as we have shown in the proof of Proposition 2, η(w, θ) − (ρ − 1)G(w) ≥ 0 for all w and θ, the

left hand side of (A.41) decreases as K increases. Therefore, when K increases (A.41) is less likely to be

satisfied for both θ = θ and θ = θ, which, by parts (i)-(iii) of Proposition 3 means that the contract is less

likely to be flat price, and more likely to be mixed menu or fully volume dependent. ¥

Proof of Proposition 4: The proof proceeds by applying the chain rule twice with θ as the common

differentiator for taking the second derivative of R(w, θ) with respect to q(θ). We then evaluate the sign of

the obtained second derivative for the w ranges given in parts (i) and (ii) to obtian conditions for concavity

and convexity of R with respect to q.

By Proposition 2, given that the flat price conditions are not satisfied, the optimal reservation fee,

R(w, θ(q)), will depend on θ. Using the implicit function theorem, we then have

dR(w, θ(q))
dq

=
dR(w, θ)

dθ

(
dq∗(w, θ)

dθ

)−1

, (A.42)

and
d2R(w, θ(q))

dq2
=

(
d2R(w, θ)

dθ2

dq∗(w, θ)
dθ

− dR(w, θ)
dθ

d2q∗(w, θ)
dθ2

)
·
(

dq∗(w, θ)
dθ

)−3

. (A.43)

where q∗(w, θ) is given by (A.28). First, differentiating (14) with respect to θ, we have

−fD(q∗(w, θ))
dq∗(w, θ)

dθ
%(w, θ) + F̄D(q∗(w, θ))

d%(w, θ)
dθ

= 0 . (A.44)

for all q∗(w, θ) < min(K, D). As we have shown in the proof of Proposition 2, %(w, θ) ≥ 0, for all (w, θ).
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Further, differentiating (A.15)

d%(w, θ)
dθ

=
(

1− ρ
dgθ(θ)

dθ

)
F̄s(w − θ) + fs(w − θ)ν(w, θ) . (A.45)

where we define ν(w, θ) in (A.17). In the proof of Proposition 2, we showed ν(w, θ) ≥ 0,∀w ≥ s + θ.

Furthermore, the condition dgθ(θ)/dθ ≤ 0 guarantee that d%(w, θ)/dθ ≥ 0. Therefore, by (A.44) it follows

that dq∗(w, θ)/dθ ≥ 0. Now by (16),

dR(w, θ)
dθ

= (1 + rB)−1 dϕ(q, w, θ)
dq

∣∣∣∣
q=q∗(w,θ)

q′(w, θ), (A.46)

and

d2R(w, θ)
dθ2

= (1 + rB)−1

(
dϕ(q, w, θ)

dq

∣∣∣∣
q=q∗(w,θ)

· d2q∗(w, θ)
dθ2

+
∂ϕ(q, w, θ)

∂q

∣∣∣∣
q=q∗(w,θ)

dq∗(w, θ)
dθ

+
d2ϕ(q, w, θ)

dq2

∣∣∣∣
q=q∗(w,θ)

(
dq∗(w, θ)

dθ

)2
)

. (A.47)

Plugging (A.44), (A.46) and (A.47) in (A.43), we obtain

d2R(w, θ(q))
dq2

=
F̄D(q∗(w, θ))

(1 + rB)dq∗(w,θ)
dθ

(
F̄s(w − θ)− d%(w, θ)

dθ

1
%(w, θ)

(
Es[(s + θ − w)+]− Es[(s(1− φ)− w)+]

))
.

(A.48)

Now suppose w ≤ s(1− φ). Then by (A.45),

%(w, θ) = ρ (φE[S] + θ − gθ(θ)) , (A.49)

and
d%(w, θ)

dθ
= ρ

(
1− dgθ(θ)

dθ

)
. (A.50)

Plugging (A.49) and (A.50) in (A.48), it then follows that

d2R(w, θ(q))
dq2

=
1

(1 + rB)dq∗(w,θ)
dθ

· −gθ(θ) + dgθ(θ)
dθ (φE[s] + θ)

φE[s] + θ − gθ(θ)
≤ 0 , (A.51)

which proves part (i).

Now, consider any w = s + θ̃, where θ̃ ∈ [θ, θ], and for any θ ≥ θ̃, using the condition s(1− φ) ≤ s + θ:

%(w, θ) = ρ (φE[s] + θ − gθ(θ))− (ρ− 1)E[(s + θ̃ − s(1− φ))+], (A.52)
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and d%(w, θ)/dθ again satisfies (A.50). Plugging (A.52) and (A.50) in (A.48), we then have

d2R(w, θ(q))
dq2

=
1

(1 + rB)dq∗(w,θ)
dθ

(
1− ρ(1− dgθ(θ)

dθ )(E[s] + θ − s− θ̃)

ρ(φE[s] + θ − gθ(θ))− (ρ− 1)E[(s + θ̃ − s(1− φ))+]

)
. (A.53)

Simplifying (A.53), d2R(w, θ(q))/dq2 ≤ 0 if and only if

ρ ≥ E[(s + θ̃ − s(1− φ))+]

gθ(θ)− dgθ(θ)
dθ (E[s]− s + θ − θ̃) + E[(s(1− φ)− s− θ̃)+]

. (A.54)

This completes the proof. ¥

Proof of Corollary 3: We will first show that if d2gθ

dθ2 ≥ 0, the right hand side of (17) is non-decreasing

for θ > θ̃. Combining this with the condition (17) itself will imply that we can find boundary ρ values

above and below which the reservation price curve as a function of quantity will be concave and convex

for all θ > θ̃ respectively.

Taking the derivative of the denominator in the right hand side of (17) with respect to θ, we obtain

−d2gθ(θ)/(dθ)2(E[s] − s + θ − θ̃), which is negative for θ ≥ θ̃ given d2gθ

dθ2 ≥ 0. Therefore the denominator

is non-increasing and the right hand side of (17) is non-decreasing in θ. Now notice that gθ(θ) = 0 and

dgθ(θ)/dθ = −1. Therefore,

E[(s + θ̃ − s(1− φ))+]

gθ(θ)− dgθ(θ)
dθ (E[s]− s + θ − θ̃) + E[(s(1− φ)− s− θ̃)+]

≤ E[(w − s(1− φ))+]
E[s] + θ − w + E[(s(1− φ)− w)+]

, (A.55)

for all θ ∈ [θ̃, θ], where the right hand side of (A.55) is the right hand side of (17) evaluated at θ. Similarly,

evaluating the right hand side of (17) at θ̃, and since dgθ(θ)/dθ ≤ 0 for all θ, we obtain

E[(s + θ̃ − s(1− φ))+]

gθ(θ̃)− dgθ(θ̃)
dθ (E[s]− s) + E[(s(1− φ)− s− θ̃)+]

. (A.56)

Hence, again by (17) and its monotonicity, it follows that on the range θ ∈ [θ̃, θ], R(w, θ(q)) is concave in

q if ρ is larger than the right hand side of (A.55), and convex in q if ρ is smaller than (A.56). ¥

Proof of Proposition 5: The proof will proceed by taking the total derivative of the optimal contract

quantity for a given θwith respect to w. From the resulting expression, we will isolate dq∗(w, θ)/dw, take

the expectation over [θ, θ] and evaluate its sign for the desired w ranges.

First, applying F̄D to both sides of (14) and subsequently taking the total derivatives with respect to

w, we have

−fD(q∗(w, θ))
dq∗(w, θ)

dw
%(w, θ) + F̄D(q∗(w, θ))

d%(w, θ)
dw

= (ρ− 1)F̄s

(
w

1− φ

)
. (A.57)
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Now, when rS ≥ rB, the right hand side of (A.57) is positive. Further, as we have shown in the proof

of Proposition 2, d%(w,θ)
dw ≤ 0 for all w ≥ 0. It then follows from (A.57) that dq∗(w,θ)

dw ≤ 0. Therefore when

rS ≥ rB, for all w ≥ 0,
dEθ[q∗(w, θ)]

dw
=

∫ θ

θ

dq∗(w, θ)
dw

dFθ(θ) ≤ 0 . (A.58)

This proves part (i). For part (ii), when rS < rB and w < s + θ, by (A.16), d%(w,θ)
dw ≥ 0. Substituting in

(A.57) and noticing that the right hand side is negative, it follows that dq∗(w,θ)
dw ≥ 0 for w < s + θ for all

t. It then follows that for w < s + θ, dEθ[q∗(w,θ)]
dw =

∫ θ
θ

dq∗(w,θ)
dw dFθ(θ) ≥ 0. However, when w > s + θ, as

ρ → 1, the right hand side of (A.57) vanishes, and since d%(w,θ)
dw ≤ 0, dq∗(w,θ)

dw ≤ 0 follows. On the other

hand, when q∗(w, θ) is sufficiently close to D, the second term on the left hand side of (A.57) vanishes,

which implies dq∗(w,θ)
dw ≥ 0. This completes the proof. ¥

Proof of Proposition 6: The sketch of the proof is as follows: First, using the results of Proposition 2,

we calculate π∗S(w). Then taking the total derivative of π∗S(w) with respect to w, we calculate dπ∗S(w)/dw.

Using this expression, we derive the shape of the curve π∗S(w). More specifically, we show that, πS is

strictly monotonically decreasing in w when rS > rB; flat until w = s + θ and monotonically decreasing

afterwards when rS = rB; and peaks on [s + θ, s + θ] when rS < rB.

First, substituting q∗(w, θ) in the seller’s expected profit function, we have

π∗S(w) =
∫ θ

θ
H(q∗(w, θ), w, θ) dFθ(θ), (A.59)

where H(q, w, θ) is the integrand in (A.10). Taking the total derivative with respect to w in (A.59), and

applying the envelope theorem, we have

dπ∗S(w)
dw

=
∫ θ

θ

(
∂H(q∗(w, θ), w, θ)

∂w
+

∂H(q∗(w, θ), w, θ)
∂q

∣∣∣∣
q=q∗(w,θ)

· dq∗(w, θ)
dw

)
dFθ(θ)

=
∫ θ

θ

∂H(q∗(w, θ), w, θ)
∂w

dFθ(θ)

=
∫ θ

θ

{
− (ρ− 1)F̄s

(
w

1− φ

)
q∗(w, θ)− (ρ− 1)

(
Fs

(
w

1− φ

)
− Fs(w − θ)

)
ED[min(D, q∗(w, θ))]

+(ρ− 1)gθ(θ)fs(w − θ)ED[min(D, q∗(w, θ))]

−fs(w − θ) (φ(w − θ) + θ − gθ(θ))ED[min(D, q∗(w, θ))]
}

dFθ(θ) . (A.60)
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By (A.17), for any given θ ∈ [θ, θ],

∂H(q∗(w, θ), w, θ)
∂w

=





−(ρ− 1)
(
q∗(w, θ)− Fs

(
w

1−φ

)
ED[(q∗(w, θ)−D)+]

)
for w < s + θ;

−fs(w − θ)ν(w, θ)ED[min(D, q∗(w, θ))]

−(ρ− 1)F̄s( w
1−φ)ED[(q∗(w, θ)−D)+] for w ∈ [s + θ, s + θ];

0 for w > s + θ .

(A.61)

Substituting (A.61) in (A.60), we then have

dπ∗S(w)
dw

= −(ρ− 1)
∫ θ

θ

(
q∗(w, θ)− Fs

(
w

1− φ

)
ED[(q∗(w, θ)−D)+]

)
dFθ(θ) , (A.62)

for w < s + θ, and

dπ∗S(w)
dw

= −
∫ θ̃

θ
fs(w − θ)ν(w, θ)ED[min(D, q∗(w, θ))] + (ρ− 1)F̄s(

w

1− φ
)ED[(q∗(w, θ)−D)+] dFθ(θ)

− (ρ− 1)
∫ θ

θ̃
(q∗(w, θ)− Fs(

w

1− φ
)ED[(q∗(w, θ)−D)+]) dFθ(θ) , (A.63)

for any w = s + θ̃, where θ̃ ∈ [θ, θ]. Further, as shown in the proof of Proposition 2 that ν(w, θ) ≥ 0, ∀w ≥
s+θ; and by (A.61), dπ∗S(w)/dw ≤ 0 for all w ≥ s+θ. Now, when ρ > 1, since Fs( w

1−φ)ED[(q∗(w, θ)−D)+] <

q∗(w, θ) for all θ, the integrand in (A.62) is positive for all θ. As a consequence, dπ∗S(w)/dw < 0 for

0 ≤ w < s + θ. Similarly, since both terms in (A.63) are negative, dπ∗S(w)/dw < 0 also follows for

s + θ ≤ w ≤ s + θ. Therefore, for ρ > 1, π∗S(w) is maximized at w∗ = 0, which proves part (i). When

ρ = 1, by (A.62), dπ∗S(w)/dw = 0 for 0 ≤ w < s+ θ, and by (A.63), dπ∗S(w)/dw < 0 for s+ θ ≤ w ≤ s+ θ.

Hence π∗S(w) is flat on w ∈ [0, s + θ], strictly decreasing on [s + θ, s + θ], and flat again for w > s + θ,

and thus is maximized for any w ∈ [0, s + θ], as stated in part (ii). Finally, when ρ < 1, by (A.62),

dπ∗S(w)/dw > 0 for 0 ≤ w < s + θ. Further, by (A.63), dπ∗S(w)/dw > 0 for w = s + θ, and π∗S(w) is

non-increasing for w > s+ θ. Since π∗S(w) is continuous in w, it follows that for ρ < 1, π∗S(w) is maximized

at a w∗ ∈ [s + θ, s + θ] as stated in part (iii). This completes the proof. ¥

Proof of Proposition 7: The steps of the proof proceed similar to the proof of Proposition 6, this time

using the contract price and quantity expressions from Proposition 3, highlighting the differences in the

shape of the πS curve as a function of w as given in the proposition statement.

First, writing πS as a function of w, for q∗(w, θ) < K, i.e., θ ≤ θc(w), the price schedule is volume

dependent, i.e., q∗(w, θ) is increasing in θ. On the other hand, for θ ≥ θc(w), q∗(w, θ) = K, the price

schedule is flat, and the seller’s expected profit from any type θ buyer in this region is the sum of the

reservation price she will obtain for contracting K units, R(w, θc(w)), and the profit she will make with K
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contracts sold to type θ buyer, V (K,w, θ). Therefore, we have

πS(w) =
∫ θc(w)

θ
H(q∗(w, θ), w, θ) dFθ(θ) + F̄θ(θc(w))R(w, θc(w)) +

∫ θ

θc(w)
V (K, w, θ) dFθ(θ) , (A.64)

or equivalently,

πS(w) =
∫ θ

θ
πS(w, θ) dFθ(θ) , (A.65)

where

πS(w, θ) =

{
H(q∗(w, θ), w, θ) for θ < θc(w);

R(w, θc(w)) + V (K, w, θ) for θ ≥ θc(w).
(A.66)

Now,
dπS(w)

dw
=

∫ θ

θ

dπS(w, θ)
dw

dFθ(θ). (A.67)

For θ < θc(w), by the envelope theorem, dπS(w, θ)/dw = ∂H(q∗(w, θ), w, θ)/∂w, and hence

∂H(q∗(w, θ), w, θ)
∂w

=





− rS−rB
(1+rS)(1+rB)

(
ED[min(D, q∗(w, θ))]

+F̄s

(
w

1−φ

)
ED[(q∗(w, θ)−D)+]

)
for w < s + θ;

− 1
1+rS

fs(w − θ)ED[min(D, q∗(w, θ))]ν(w, θ) for w ∈ [s + θ, s + θ];

0 otherwise.
(A.68)

where ν(w, θ) = φ(w − θ) + θ − gθ(θ) + (ρ− 1) (gs(w − θ)− gθ(θ)). On the other hand, for θ ≥ θc(w), by

taking the total derivative of πS(w, θ) with respect to w,

dπS(w, θ)
dw

=
∂R(w, θc(w))

∂w
+

∂V (K,w, θ)
∂w

+
∂R(w, θc(w))

∂θc(w)
dθc(w)

dw
. (A.69)

Now, by (A.26),

R(w, θc(w)) =
1

1 + rB

(
ϕ(K,w, θc(w))−

∫ θc(w)

θ

∂ϕ(q, w, a)
∂a

∣∣∣∣
q=q∗(w,a)

da

)
. (A.70)

Thus,
∂R(w, θc(w))

∂θc(w)
=

∂ϕ(K, w, θc(w))
∂θc(w)

− ∂ϕ(K, w, θc(w))
∂θc(w)

= 0 , (A.71)

and

∂R(w, θc(w))
∂w

=
∂ϕ(K, w, θc(w))

∂w
−

∫ θc(w)

θ

∂2ϕ(q, w, a)
∂w∂a

da

=
1

1 + rB

{
− F̄s (w − θc(w))ED [min(D, K)]− F̄s

(
w

1− φ

)
ED

[
(K −D)+

]

+
∫ θc(w)

θ
fs(w − θ)ED [min(D,K)] dθ

}
. (A.72)
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In addition,

∂V (K, w, θ)
∂w

=
1

1 + rS

(
F̄s

(
w

1− φ

)
ED[(K −D)+]− fs(w − θ) (θ + φ(w − θ)− gs(w − θ))ED[min(D,K)]

)
.

(A.73)

Therefore, plugging (A.71)-(A.73) into (A.70), for θ ≥ θc(w) we then have

dπS(w, θ)
dw

=
∂R(w, θc(w))

∂w
+

∂V (K, w, θ)
∂w

= − 1
1 + rB

F̄s(w − θ)ED[min(D, K)]− 1
1 + rS

fs(w − θ) (θ + φ(w − θ)− gs(w − θ))ED[min(D, K)]

− rS − rB

(1 + rB)(1 + rS)
F̄s

(
w

1− φ

)
ED[(K −D)+] . (A.74)

Simplifying (A.74), we obtain

dπS(w, θ)
dw

=





− 1
1+rB

F̄s(w − θ)ED[min(D,K)]− rS−rB
(1+rB)(1+rS) F̄s

(
w

1−φ

)
ED[(K −D)+] for w < s + θ;

− 1
1+rB

F̄s(w − θ)ED[min(D,K)]− rS−rB
(1+rB)(1+rS) F̄s

(
w

1−φ

)
ED[(K −D)+]

− 1
1+rS

fs(w − θ) (θ + φ(w − θ)− gs(w − θ))ED[min(D,K)] for w ∈ [s + θ, s + θ];

0 otherwise ,
(A.75)

for θ > θc(w). By (A.68) and (A.75), dπS(w, θ)/dw ≤ 0 for all w > s + θ. Therefore, πS(w, θ) attains its

optimum on w ∈ [0, s + θ]. Suppose rB ≤ rS . Then, again by (A.68) and (A.75), dπS(w, θ)/dw ≤ 0 for

all w < s + θ as well. Hence, for rB ≤ rS , w∗ = 0, i.e., selling the intermediate good is optimal for the

supplier. This proves part (i).

Now suppose rB > rS . For part (ii)(a), suppose E[s]+θ−gθ(θ) > β(1+rS). If E[s](1−φ) < (1+rS)β,

then φE[s] + θ − gθ(θ) > (β(1 + rS)−E[s](1− φ))+, which is also automatically true when E[s](1− φ) ≥
(1 + rS)β. This means that for small enough ρ− 1 and K, η(0, θ)F̄D(K) > (β(1 + rS)− E[s](1− φ))+ −
(ρ− 1)FD(K)G(0), i.e., in the optimal contract for w = 0, θc(0) < θ. Further, note that for w < s + θ, we

have

dπS(w, θ)
dw

=





− rS−rB
(1+rS)(1+rB)

(
ED[min(D, q∗(w, θ))]

+F̄s

(
w

1−φ

)
ED[(q∗(w, θ)−D)+]

)
for θ < θc(w);

− 1
1+rB

F̄s(w − θ)ED[min(D, K)]− rS−rB
(1+rB)(1+rS) F̄s

(
w

1−φ

)
ED[(K −D)+] for θ ≥ θc(w),

(A.76)

and for w ∈ [s + θ, s + θ], dπS(w, θ)/dw is proportional to rB − rS . As a result, for small enough ρ− 1 and

K, πS(w, θ) is strictly decreasing at w = 0, and never reaches the value attained at w = 0 on (s + θ, s + θ].

That is w∗ = 0, proving part (ii)(a). Finally, for part (ii)(b), for any ρ < 1, notice that for large enough

K,

η(w, θ)F̄D(K) < (β(1 + rS)−E[s](1− φ))+ − (ρ− 1)FD(K)G(w), (A.77)
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for all w ≥ 0, i.e., the optimal contract is fully volume dependent for all w ≥ 0. In this case dπS(w, θ)/dw =

∂H(q∗(w, θ), w, θ)/∂w, and hence, as we have shown in the proof of Proposition 6, πS(w, θ) attains its

maximum on w ∈ (s + θ, s + θ]. This completes the proof. ¥

Proof of Proposition 8: The sketch of the proof is as follows: First, we obtain the total derivative of

the supplier’s profit πS with respect to w. Utilizing the fact that at ρ = 1, w∗ = s + θ, plugging in the

optimal contract quantity, q∗(w, θ) from (14), and having a Taylor expansion on the total derivative of πS

with respect to w at s + θ, we obtain a Taylor expansion for w∗ in powers of ρ− 1. We can then use this

expansion to explore the effects of various parameters on w∗ for small ρ− 1.

Given that rS ≤ rB, by Proposition 6, we know that s + θ ≤ w∗ ≤ s + θ. Defining θ̃(w) , w − s, at

optimality and by (A.63)

dπ∗S(w)
dw

∣∣∣∣
w=w∗

= −
∫ θ̃(w∗)

θ
fs(w − θ)ν(w, θ)ED[min(D, q∗(w, θ))] dFθ(θ)

−(ρ− 1)
∫ θ

θ̃(w∗)
ED[min(D, q∗(w, θ))] dFθ(θ)

= 0 , (A.78)

where ν(w, θ) is defined in (A.17), and q∗(w, θ) is defined in (14). Define q̂(θ) as the optimal reservation

level for a type θ buyer when exercise price is s + θ. By (14), we have

q̂(θ) = q∗(w, θ)|w=s+θ = F̄−1
D

(
(1 + rS)β − E[s](1− φ)

φE[s] + θ − gθ(θ)

)
. (A.79)

By applying the implicit function theorem to (A.78), combining with (A.79) and simplifying, it then follows

that, for ρ < 1,

w∗ = s + θ − (ρ− 1)

∫ θ
θ ED[min(D, q̂(θ))] dFθ(θ)

fθ(θ)fs(s)[φs + θ − gθ(θ)]ED[min(D, q̂(θ))]
+ O((ρ− 1)2). (A.80)

By (A.79) and (A.80), as V ar[s] increases with a mean preserving spread that decreases s, w∗ decreases

for small enough ρ − 1 values. Similarly, when there is a rightward shift for θ or s distributions, s and θ

increase and w∗ increases when ρ is close enough to 1. The remaining comparative statics can be obtained

similarly. ¥

Proof of Proposition 9: For both parts (i) and (ii), the proof proceeds by plugging in the corresponding

w∗ into (14), taking the expectation over θ. For applying Taylor expansion around ρ = 1. The effects of

parameters can then be driven (for small enough ρ− 1 for part (ii)) by using the resulting expression.

To see part (i), first we know that when rS > rB, by Proposition 6 that w∗ = 0. Plugging in (14), and

EC.17



taking expectations over θ, we have

Eθ [q∗(0, θ)] =
∫ θ

θ
F̄−1

D

(
(1 + rS)β − ρE[s](1− φ)

ρ(φE[s] + θ − gθ(θ))

)
dFθ(θ) . (A.81)

By (A.81), when there is a rightward shift in s, the numerator of the argument of F̄−1
D decreases, and

the denominator increases. Hence, the argument decreases and since F̄D is monotonically decreasing, the

integrand and consequently Eθ [q∗(0, θ)] increases. The remaining comparative statics follow similarly. This

completes the proof of part (i).

For part (ii), plugging (A.80) in (14) and (15), and simplifying,

Eθ[q∗(w∗, θ)] =
∫ θ

θ
q̂(θ) dFθ(θ)+(ρ−1)

∫ θ

θ

F̄D(q̂(θ))
fD(q̂(θ))

E[s]− s− θ + θ − gθ(θ)
φE[s] + θ − gθ(θ)

dFθ(θ)+O((ρ−1)2). (A.82)

By (A.79) and (A.82), we can observe the effects of the parameters on Eθ [q∗(w∗, θ)]. When there is a

rightward shift in s, the numerator of the argument of F̄D in (A.79) decreases, and the denominator in the

same expression increases. Hence, the argument decreases and since F̄D is monotonically decreasing, the

integrand, q̂(θ), increases in the constant term in (A.82). Similarly, with a θ rightward shift in θ, the de-

nominator in (A.79) increases, and again the constant term in (A.82) increases. Consequently Eθ [q∗(w∗, θ)]

increases with a rightward shift in s or θ for ρ sufficiently close to 1. The remaining comparative statics

follow similarly. ¥

Proof of Proposition 10: The sketch of the proof is similar to those of Propositions 8 and 9. Specif-

ically, for both parts (i) and (ii), the expressions for w∗ and q∗(w, θ) are plugged in the expression for

R(q∗(w, θ), w∗). Then the expectation of R(q∗(w, θ), w∗) is taken over θ and Taylor expansion around

ρ = 1 is obtained. The effects of the parameters on the expected reservation fee are then derived from the

final expression.

For part (i), by Proposition 6, since rS > rB, w∗ = 0. Plugging w∗ = 0 in (14) and (A.26) and taking

the expectation over θ,

Eθ[R(q∗(0, θ), 0)] =
1

1 + rB

∫ θ

θ

{
(E[s] + θ − gθ(θ))ED

[
min

(
D, F̄−1

D

(
(1 + rS)β − ρE[s](1− φ)

ρ(φE[s] + θ − gθ(θ))

))]

+E[s](1− φ)ED

[(
F̄−1

D

(
(1 + rS)β − ρE[s](1− φ)

ρ(φE[s] + θ − gθ(θ))

)
−D

)+
]}

dFθ(θ) . (A.83)

By (A.83), as ρ increases, the numerator of the argument of F̄D decreases and the denominator increases.

Hence, the argument decreases, and the integrand increases. Therefore, Eθ [R(q∗(0, θ), 0)] increases with

ρ. The remaining comparative statics follow in a similar fashion.
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To see part (ii), plugging (A.80) in (A.26), taking expectations and simplifying, we obtain

Eθ[R(q∗(w∗, θ), w∗)] =
∫ θ

θ
(E[s] + θ − gθ(θ)− s− θ) ED[min(D, q̂(θ))] dFθ(θ)

+(ρ− 1)

(∫ θ

θ
(κ + E[s] + θ − gθ(θ)− s− θ) ED[min(D, q̂(θ))] dFθ(θ)

+
∫ θ

θ

F̄D(q̂(θ))2 [E[s] + θ − gθ(θ)− s− θ]2

fD(q̂(θ)) [φE[s] + θ − gθ(θ)]
dFθ(θ)

)
+ O((ρ− 1)2) , (A.84)

where q̂(θ) is as defined in (A.79), and

κ =

∫ θ
θ ED[min(D, q̂(θ))] dFθ(θ)

fθ(θ)fs(s) [φs + θ − gθ(θ)]ED[min(D, q̂(θ))]
≥ 0. (A.85)

Now, ∫ θ

θ
(E[s] + θ − gθ(θ)− s− θ) dFθ(θ) = E[s]− s ≥ 0 . (A.86)

Note that the integrand in (A.86) and also ED[min(D, q̂(θ))] are both non-decreasing in θ. Further,

ED[min(D, q̂(θ))] ≥ 0 implies that

∫ θ

θ
(E[s] + θ − gθ(θ)− s− θ) ED[min(D, q̂(θ))] dFθ(θ) ≥ 0 . (A.87)

Therefore, the coefficient of ρ − 1 in (A.84) is non-negative, which implies Eθ[R(q∗(w∗, θ), w∗)] increases

with ρ when ρ is sufficiently close to 1. The remaining comparative statics can likewise be obtained. This

completes the proof. ¥

Proof of Proposition 11: The proof will proceed as the optimization of (19), with respect to the

integrated supply chain production quantity y(θ). First, notice that (19) is strictly concave in y(θ).

Hence, by taking the first order condition in (19) for each θ-type, equating to zero and solving for y, the

corresponding optimal production quantity for the supply chain is given as in (21). Substituting (21) into

(19), and taking expectations over θ, the first-best profit level for the centralized system is

πSC = −βEθ[y∗(θ)] +
1

1 + rSC

∫ θ

θ

(
pE[D] + E[s](1− φ)ED[(y∗(θ)−D)+]

−(E[s] + θ)ED[(D − y∗(θ))+]
)

dFθ(θ)

=
1

1 + rSC

(
(p− E[s]− E[θ])E[D] +

∫ θ

θ
(φE[s] + θ)

∫ y∗(θ)

0
x dFD(x) dFθ(θ)

)
, (A.88)

as stated. ¥
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B The Analysis of the Fixed Buyer Type Case with Correlation Be-

tween Demand and Spot Price

In this section, we study the correlation between demand and spot price random variables for the fixed

buyer type case that we presented in Section 4.

Let FD,s, and fD,s denote the c.d.f. and p.d.f. of the joint distribution of D and s respectively, and

FD(·|s) denote the conditional distribution of D given s. The analysis proceeds similar to that in Section

4. We first consider the optimal contracts for fixed exercise price, w, and then proceed with deriving the

optimal w. The following proposition gives the solution for the supplier’s optimal contract offer for fixed

w.

Proposition B.1 For a given w ≥ 0, in the optimal contract, the supplier offers the quantity q∗(w) that

solves the equation

∫ s

w−θ

(
φs + θ +

rS − rB

1 + rB
(s + θ − w)

)
F̄D(q∗(w)|s) dFs(s)

+
rS − rB

1 + rB

∫ s

w
1−φ

(s(1− φ)− w)FD(q∗(w)|s) dFs(s) = (1 + rS)β −E[s](1− φ), (B.1)

to the buyer at the price

R(w) =
1

1 + rB

(
ED,s[(s + θ − w)+ min(D, q∗(w))] + ED,s[(s(1− φ)− w)+(q∗(w)−D)+]

)
. (B.2)

Proof: The proof proceeds similar to that of Proposition 1. The buyer’s expected profit can be written

as

πB(w, θ) = −R(w) +
1

1 + rB

∫ s

s
(p− s− θ)ED[D|s]fs(s) ds

+
1

1 + rB

∫ s

w−θ̂

∫ D

D
(s + θ − w)min(x, q)fD,s(x, s) dx ds

+
1

1 + rB

∫ s

w
1−φ

∫ D

D
(s(1− φ)− w) (q − x)+fD,s(x, s) dx ds (B.3)

As before, we can write the buyer’s net benefit from entering the options contract as

π̂B(q, w) = πB(q, w)− 1
1 + rB

∫ s

s
(p− s− θ)ED[D|s]fs(s) ds . (B.4)
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Therefore,

π̂B(q, w) = −R(w) +
1

1 + rB

∫ s

w−θ

∫ D

D
(s + θ − w) min(x, q)fD,s(x, s) dx ds

+
1

1 + rB

∫ s

w
1−φ

∫ D

D
(s(1− φ)− w)(q − x)+fD,s(x, s) dx ds . (B.5)

Let us again define ϕ(q, w) = π̂B(q, w)+R(w). The seller’s problem formulation is the same as in (6), with

the seller’s expected profit now being

πS(q, w) = R(w) +
1

1 + rS

(
(E[s](1− φ)− (1 + rS)β) q

+
∫ w

1−φ

w−θ

∫ D

D
(w − s(1− φ))min(x, q)fD,s(x, s) dx ds +

∫ s

w
1−φ

(w − s(1− φ))qfs(s) ds

)
. (B.6)

Define V (q, w) = πS(q, w)−R(w) as before. The solution to the supplier’s problem proceeds with identical

steps to that as given in the proof of Proposition 1. Knowing the buyer’s type θ, the seller can charge for

the contract up to the point where the buyer’s IR constraint is binding and satisfy his IC constraint with

a single offer contract. As a consequence in the optimal contract, R(q, w) = ϕ(q, w). Substituting this

into the seller’s objective and temporarily ignoring the seller’s IR constraint, we have the unconstrained

optimization problem maxq{ϕ(q, w) + V (q, w)}, where

ϕ(q, w) + V (q, w) =
1

1 + rB

(
ED,s

[
(s + θ − w)+ min(D, q)

]
+ ED,s

[
(s(1− φ)− w)+(q −D)+

])

+
1

1 + rS

((
E[s](1− φ)− β − Es[(s(1− φ)− w)+]

)
q

+
∫ w

1−φ

w−θ

∫ D

D
(w − s(1− φ)) min(x, q)fD,s(x, s) dx ds

)

=
1

1 + rS

(
(E[s](1− φ)− β) q +

∫ s

w−θ

∫ D

D
(φs + θ)min(x, q)fD,s(x, s) dx ds

+
rS − rB

(1 + rB)
(
ED,s

[
(s + θ − w)+ min(D, q) + (s(1− φ)− w)+(q −D)+

]))
. (B.7)

The first order condition is

d (ϕ(q, w) + V (q, w))
dq

=
1

1 + rS

(
E[s](1− φ)− (1 + rB)β +

∫ s

w−θ
(φs + θ)F̄D(q|s) dFs(s)

)

+
rS − rB

(1 + rS)(1 + rB)

( ∫ s

w−θ
(s + θ − w)F̄D(q|s) dFs(s)

+
∫ s

w
1−φ

(s(1− φ)− w)F̄D(q|s) dFs(s)
)

= 0. (B.8)
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The second derivative is

d2 (ϕ(q, w) + V (q, w))
dq2

= − 1
1 + rS

∫ s

w−θ
(φs + θ)fD|s(q|s) dFs(s)

− rS − rB

(1 + rS)(1 + rB)

( ∫ w
1−φ

w−θ
(s + θ − w)fD|s(q|s) dFs(s)

+
∫ s

w
1−φ

(φs + θ)fD|s(q|s) dFs(s)
)

. (B.9)

Note that since (rS − rB)/(1 + rS)(1 + rB) ≥ −1/(1 + rS), we have

d2 (ϕ(q, w) + V (q, w))
dq2

≤ − 1
1 + rS

∫ w
1−φ

w−θ
(w − s(1− φ))fD|s(q|s) dFs(s) < 0. (B.10)

Therefore, the solution of (B.8) maximizes ϕ(q, w) + V (q, w). Further, since q = 0 is feasible and yields

the seller zero expected profit, and, by (B.10), ϕ(q, w) + V (q, w) is strictly concave, the IR constraint

of the seller is satisfied. Hence q∗ that solves (B.1) is the seller’s optimal contract quantity offer. The

optimal reservation price for this quantity can be calculated by plugging q∗ in ϕ(q, w) since the buyer’s IR

constraint is binding, i.e., R(q∗, w) = ϕ(q∗, w). This completes the proof. ¥

We can now present the solution for the optimization of the exercise price w.

Proposition B.2

(i) When rB < rS, sales contracts are optimal, i.e. w∗ = 0.

(ii) When rB = rS, there is a continuum of optimal contracts. In particular, any w∗ ∈ [0, s+θ] is optimal,

hence, both sales and options contracts can optimally emerge.

(iii) When rB > rS, options contracts are optimal. In particular the optimal exercise price is w∗ ∈
[s + θ, s + θ].

Proof: The proof again proceeds similar to its counterpart in Section 4, i.e., the proof of part (ii) of

Proposition 1. From the proof of Proposition B.1, we know that πS(w) = ϕ(q∗(w), w) + V (q∗(w), w).

Then, by taking the total derivative of (B.7) with respect to w, we have

dπS(w)
dw

=
∂πS(w)

∂w
+

dπS(w)
dq∗(w)

· dq∗(w)
dw

= − 1
1 + rS

(φ(w − θ) + θ)ED[min(D, q∗(w))|s = w − θ] · fs(w − θ)

− rS − rB

(1 + rS)(1 + rB)

( ∫ s

w−θ
ED[min(D, q∗(w))|s] dFs(s)

+
∫ s

w
1−φ

ED[(q∗(w)−D)+|s] dFs(s)
)

, (B.11)
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where q∗(w) is solved by (B.1).

Now, first, consider the case where rB < rS . In this case, all terms in (A.5) are negative for all w ≥ 0.

Therefore, the optimal w for the buyer is 0 and optimal contracts are sales contracts. Now suppose rB = rS .

In this case dπS(w)
dw = − 1

1+rS
(φ(w−θ)+θ)ED[min(D, q∗(w))] ·fs(w−θ) < 0 for all w > s+θ, and dπS(w)

dw = 0

otherwise. Therefore, there is a continuum of optimal contracts, for w∗ ∈ [0, s+θ], and both sales (w∗ = 0)

and options contracts (w∗ > 0) can prevail. Finally, when rB > rS , on w ∈ [0, s + θ], the second term in

(A.5) is strictly positive, while the first term is zero. Therefore πS(w) is strictly increasing on w ∈ [0, s+θ].

Note that for w > s + θ, dπS(w)/dw = 0. Combining these with the continuity of piS(w), it follows that

πS(w) is maximized w ∈ [s + θ, s + θ]. This completes the proof. ¥

C The Analysis of the Case with Perfect Correlation between Spot

Price and Consumer Demand Distributions for Random Buyer Type

In this section, we analyze the case of perfect correlation between the spot price and consumer demand

and demonstrate that the main conclusions and insights are preserved. We start with a perfect positive

correlation case, and then study the perfect negative correlation. We show that in both cases the main

conclusions are preserved. For both the positive and negative correlation cases, we will focus on the analysis

for K ≥ D.

C.1 Perfect Positive Correlation between Spot Price and Demand Distributions

Suppose

D = D +
D −D

s− s
(s− s) . (C.1)

Define α0 = D − ((D −D)/(s − s))s and α1 = ((D −D)/(s − s)). That is D = α0 + α1s. The following

proposition, which is parallel to Proposition 2 in Section 5 gives the optimal contracting outcome for a

given exercise price w ≥ 0.

Proposition C.1

(i) If the flat price conditions as defined in Section 5 are satisfied, the optimal contracts are not volume-

dependent. Rather, in the optimal offer, the reservation price is constant and given by ϕ(K, w, θ)/(1+

rB), and q∗(w, θ) = K for all θ ∈ [θ, θ].

(ii) Suppose the flat price conditions are not satisfied. Then given 0 < ρ < ρ̄, where ρ̄ is as defined in

Proposition 2, the optimal reservation price schedule for the seller is volume-dependent. Specifically,
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the optimal quantity ordered for type θ buyer is

q∗(w, θ) = α0 + α1F̄
−1
s

(
((1 + rS)β − E[s](1− φ))+ − (ρ− 1)G(w)

η(w, θ)− (ρ− 1)G(w)

)
, (C.2)

where η is as defined in Proposition 2 and G is as defined in Lemma 1. The optimal total reservation

fee paid by a type θ buyer is is again as given in (16).

Proof: The proof will follow the parallel steps to Proposition 2. We can write the type θ buyer’s expected

profit from purchasing q options from the seller at exercise price w as

πB(q, w, θ) = −R(w, q) +
1

1 + rB

{ ∫ s

s
(p− s− θ)(α0 + α1s)dFs(s)

+
∫ s

w−θ
(s + θ − w)min{α0 + α1s, q}dFs(s) +

∫ s

w/(1−φ)
(s(1− φ)− w)(q − α0 − α1s)+dFs(s)

}

= −R(w, q) +
1

1 + rB

{
α0(p− θ)− (α0 − α1(p− θ))− (α0 − α1(p− θ))E[s]− α1E[s2]

+
∫ s

w−θ
(s + θ − w)(α0 + α1 min{s, q − α0

α1
})dFs(s)

+
∫ s

w/(1−φ)
(s(1− φ)− w)(q − α0 − α1 min{s, q − α0

α1
})dFs(s)

}
. (C.3)

Similar to Section 4, define

π̂B(q, w, θ) = πB(q, w, θ)− 1
1 + rB

(α0(p− θ)− (α0 − α1(p− θ))E[s]− α1E[s2]) , (C.4)

as the buyer’s net benefit from purchasing option contracts. Then,

π̂B(q, w, θ) = −R(w, q) +
1

1 + rB

∫ s

w−θ
(s + θ − w)(α0 + α1 min{s, q − α0

α1
})dFS(s)

+
1

1 + rB

∫ s

w/(1−φ)
(s(1− φ)− w)(q − α0 − α1 min(s,

q − α0

α1
))dFs(s) . (C.5)

Define ϕ(q, w, θ) = (1 + rB)(π̂B(q, w, θ) + R(w, q)).

The seller’s profit from contracting q options at exercise price w with a type θ buyer can then be written
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as πS(q, w, θ) = R(q, w) + V (q, w, θ), where

V (q, w, θ) = −βq +
1

1 + rS

{ ∫ w−θ

s
s(1− φ)dFs(s)q + wqF̄s(

w

1− φ
)

+
∫ w/(1−φ)

w−θ
(w min{α0 + α1s, q}+ s(1− φ)E[(q − α0 − α1s)+]dFs(s))

}

+
(

E[s](1− φ)
1 + rS

− β

)+

· (K − q)

= −βq +
1

1 + rS

{
(E[s](1− φ)− E[(s(1− φ)− w)+])q

+
∫ w/(1−φ)

w−θ
(w − s(1− φ)(α0 + α1 min(s,

q − α0

α1
))dFs(s)

}

+
(

E[s](1− φ)
1 + rS

− β

)+

· (K − q) . (C.6)

Now, as we have shown in the proof of Proposition 2, the seller’s expected profit can be written as

πS(w) =
∫ θ

θ
H(q(w, θ), w, θ)dFθ(θ), (C.7)

where

H(q(w, θ), w, θ) = V (q(w, θ), w, θ) +
1

1 + rB

{
ϕ(q(w, θ), w, θ)− gθ(θ)

∂ϕ(q(w, θ), w(θ))
∂θ

}
. (C.8)

From (C.5) and (C.6), we have

H(q(w, θ), w, θ) =
1

1 + rS

{
(E[s](1− φ)− (1 + rS)β)q

+
∫ s

w−θ
(φs + θ − gθ(θ))(α0 + α1 min{s, q − α0

α1
}dFs(s)

}

+
rS − rB

(1 + rS)(1 + rB)

{∫ s

w−θ
(s + θ − gθ(θ)− w)(α0 + α1 min{s, q − α0

α1
})dFs(s)

+
∫

w/(1−φ)
(s(1− φ)− w)(q − α0 − α1s)+dFs(s)

}
+

(
E[s](1− φ)

1 + rS
− β

)+

· (K − q) .(C.9)

Again as in the proof of Proposition 2, (C.7) can be optimized pointwise. By (C.9), writing the first and

second derivatives

dH(q(w, θ), w, θ)
dq(w, θ)

=
1

1 + rS

{
((1 + rS)β −E[s](1− φ))+ + F̄s(

q − α0

α1
)
∫ s

w−θ
(φs + θ − gθ(θ))dFs(s)

}

+
rS − rB

(1 + rS)(1 + rB)

{
F̄s(

q − α0

α1
)
∫ s

w−θ
(s + θ − gθ(θ)(θ)− w)dFs(s)

+Fs(
q − α0

α1
)
∫ s

w/(1−φ)
(s(1− φ)− w)dFs(s)

}
, (C.10)
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and
d2H(q(w(θ), w, θ))

dq2(w, θ)
= − fs( q−α0

α1
)

α1(1 + rS)
(η(w, θ)− (ρ− 1)G(w)). (C.11)

As we have shown in the proof of Proposition 2, η(w, θ)− (ρ− 1)G(w) ≥ 0. Therefore

(d2H(q(w(θ), w, θ)))/(dq2(w, θ)) ≤ 0, and the first order condition is sufficient for pointwise optimality of

(C.7) for all θ ∈ [θ, θ]. Hence, equating (C.10) to zero and solving for q, we obtain

q∗(w, θ) = α0 + α1F̄
−1
s

(
((1 + rS)β −E[s](1− φ))+ − (ρ− 1)G(w)

η(w, θ)− (ρ− 1)G(w)

)
. (C.12)

Therefore, similar to Proposition 2, and by Lemma 1, q∗ will be constant if the flat-price conditions are

satisfied, and will be volume dependent otherwise. The rest of the proof follows the same steps in the proof

of Proposition 2. ¥

We next explore the seller’s optimization of the exercise price w. The following proposition presents

the result.

Proposition C.2

(i) If rS > rB, w∗ = 0. That is, selling the intermediate good is optimal for the supplier, rather than

offering options to the buyer.

(ii) If rS = rB, the seller’s profit is maximized by setting any exercise price w∗, where 0 ≤ w∗ ≤ s + θ.

(iii) If rS < rB, s + θ < w∗ ≤ s + θ, i.e., the seller prefers offering options to selling the intermediate

good.

Proof: The proof will proceed following steps parallel to those in the proof of Proposition 6. By (C.7)

and using the envelope theorem,

dΠ∗S(w)
dw

=
∫ θ

θ

∂H(q∗(w, θ), w, θ)
∂w

dFθ(θ) . (C.13)
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Therefore,

dΠ∗S(w)
dw

=
1

1 + rS

∫ θ

θ

{
− (φ(w − θ) + θ − gθ(θ)(t))(α0 + α1 min{w − θ,

q − α0

α1
})fs(w − θ)

− (ρ− 1)
( ∫ s

w−θ
(α0 + α1 min{s, q − α0

α1
})dFs(s)− gθ(θ)(α0 + α1 min{w − θ,

q − α0

α1
})fs(w − θ)

∫ s

w/(1−φ)
(q − α0 − α1s)+dFs(s)

)}
dFθ(θ)

=
∫ θ

θ

{
− (φ(w − θ) + θ − ρgθ(θ))(α0 + α1 min{w − θ,

q − α0

α1
})fs(w − θ)

− (ρ− 1)
( ∫ s

w−θ
(α0 + α1 min{s, q − α0

α1
})dFs(s) +

∫ s

w
1−φ

(q − α0 − α1s)+dFs(s)
)}

dFθ(θ).(C.14)

Now, for any given θ ∈ [θ, θ],

∂H(q∗(w, θ), w, θ)
∂w

=





−(ρ− 1)
(
q∗(w, θ)− ∫ w/(1−φ)

s (q − α0 − α1s)+dFs(s)
)

for w < s + θ;

−fs(w − θ)ν(w, θ)(α0 + α1 min{w − θ, q−α0

α1
})

−(ρ− 1)
(∫ s

w−θ(min{s, q−α0

α1
} −min{w − θ, q−α0

α1
})dFs(s)

+
∫ s

w
1−φ

(q − α0 − α1s)+dFs(s)
)

for w ∈ [s + θ, s + θ];

0 for w > s + θ .

(C.15)

Substituting (C.15) in (C.14), we then have

dπ∗S(w)
dw

= −(ρ− 1)
∫ θ

θ

(
q∗(w, θ)−

∫ w/(1−φ)

s
(q − α0 − α1s)+dFs(s)

)
dFθ(θ) , (C.16)

for w < s + θ, and

dπ∗S(w)
dw

= −
∫ θ̃

θ

{
fs(w − θ)ν(w, θ)(α0 + α1 min{w − θ,

q − α0

α1
})

+(ρ− 1)
( ∫ s

w−θ
(min{s, q − α0

α1
} −min{w − θ,

q − α0

α1
})dFs(s)

+
∫ s

w
1−φ

(q − α0 − α1s)+dFs(s)
)}

dFθ(θ)

−(ρ− 1)
∫ θ

θ

(
q∗(w, θ)−

∫ w/(1−φ)

s
(q − α0 − α1s)+dFs(s)

)
dFθ(θ) , (C.17)

for any w = s+ θ̃, and θ̃ ∈ [θ, θ], and where ν(w, θ) is as defined in the proof of Proposition 2. As shown in

the proof of Proposition 2 ν(w, θ) ≥ 0, ∀w ≥ s + θ; and by (C.15), dπ∗S(w)/dw ≤ 0 for all w ≥ s + θ. When

ρ > 1, since the integrand in (C.16) is positive for all θ, dπ∗S(w)/dw < 0 for 0 ≤ w < s + θ. Similarly,

since both terms in (C.17) are negative, dπ∗S(w)/dw < 0 also follows for s + θ ≤ w ≤ s + θ. Therefore,
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similar to Proposition 6, for ρ > 1, π∗S(w) is maximized at w∗ = 0, which proves part (i). When ρ = 1, by

(C.16), dπ∗S(w)/dw = 0 for 0 ≤ w < s + θ, and by (C.17), dπ∗S(w)/dw < 0 for s + θ ≤ w ≤ s + θ. Hence

π∗S(w) is flat on w ∈ [0, s + θ], strictly decreasing on [s + θ, s + θ], and flat again for w > s + θ, and thus is

again maximized for any w ∈ [0, s + θ], as stated in part (ii). Finally, again similar to Proposition 6, when

ρ < 1, by (C.16), dπ∗S(w)/dw > 0 for 0 ≤ w < s + θ. Further, by (C.17), dπ∗S(w)/dw > 0 for w = s + θ,

and π∗S(w) is non-increasing for w > s+ θ. Since π∗S(w) is continuous in w, it follows that for ρ < 1, π∗S(w)

is maximized at a w∗ ∈ [s + θ, s + θ] as stated in part (iii) of the proposition. This completes the proof. ¥

C.2 Perfect Negative Correlation between Spot Price and Demand Distributions

Now suppose

D = D − D −D

s− s
(s− s) . (C.18)

The analysis will closely follow the analysis for the positive correlation case. Define α0 = D+((D−D)/(s−
s))s and α1 = ((D −D)/(s− s)). That is, D = α0 − α1s.

Proposition C.3

(i) If the flat price conditions as defined in Section 5 are satisfied, the optimal contracts are not volume-

dependent. Rather, in the optimal offer, the reservation price is constant and given by ϕ(K, w, θ)/(1+

rB), and q∗(w, θ) = K for all θ ∈ [θ, θ].

(ii) Suppose the flat price conditions are not satisfied. Then given 0 < ρ < ρ̄, where ρ̄ is as defined in

Proposition 2, the optimal reservation price schedule for the seller is volume-dependent. Specifically,

the optimal quantity ordered for type θ buyer is

q∗(w, θ) = α0 − α1Fs
−1

(
((1 + rS)β − E[s](1− φ))+ − (ρ− 1)G(w)

η(w, θ)− (ρ− 1)G(w)

)
, (C.19)

where η is as defined in Proposition 2 and G is as defined in Lemma 1. The optimal total reservation

fee paid by a type θ buyer is is again as given in (16).

Proof: The proof is very similar to that of Proposition C.1. Therefore, we will just provide a sketch of

it highlighting the differences. Evaluating a type θ buyer’s net profit from purchasing q options at the

exercise price w ≥ 0, we obtain

π̂B(q, w, θ) = −R(w, q) +
1

1 + rB

∫ s

w−θ
(s + θ − w)(α0 − α1 max{s, α0 − q

α1
})dFS(s)

+
1

1 + rB

∫ s

w/(1−φ)
(s(1− φ)− w)(α1s− α0 + q)+dFs(s) , (C.20)
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while the seller’s expected profit from this transaction can be written as πS(q, w, θ) = R(q, w)+V (q, w, θ),

where

V (q, w, θ) = −βq +
1

1 + rS

{
(E[s](1− φ)− E[(s(1− φ)− w)+])q

+
∫ w/(1−φ)

w−θ
(w − s(1− φ)(α0 − α1 max(s,

q − α0

α1
))dFs(s)

}

+
(

E[s](1− φ)
1 + rS

− β

)+

· (K − q) . (C.21)

Once again, the seller’s expected profit can be written as (C.7), where H(q(w, θ), w, θ) is as defined in

(C.8). Substituting D = α0 − α1s, we then obtain

H(q(w, θ), w, θ) =
1

1 + rS

{
(E[s](1− φ)− (1 + rS)β)q

+
∫ s

w−θ
(φs + θ − gθ(θ))(α0 − α1 max{s, q − α0

α1
}dFs(s)

}

+
rS − rB

(1 + rS)(1 + rB)

{ ∫ s

w−θ
(s + θ − gθ(θ)− w)(α0 − α1 max{s, q − α0

α1
})dFs(s)

+
∫

w/(1−φ)
(s(1− φ)− w)(q − α0 + α1s)+dFs(s)

}

+
(

E[s](1− φ)
1 + rS

− β

)+

· (K − q) . (C.22)

Again ΠS(w) can be optimized pointwise. By (C.22), writing the first and second derivatives

dH(q(w, θ), w, θ)
dq(w, θ)

=
1

1 + rS

{
((1 + rS)β −E[s](1− φ))+ + Fs(

α0 − q

α1
)
∫ s

w−θ
(φs + θ − gθ(θ))dFs(s)

}

+
rS − rB

(1 + rS)(1 + rB)

{
Fs(

α0 − q

α1
)
∫ s

w−θ
(s + θ − gθ(θ)(θ)− w)dFs(s)

+F̄s(
α0 − q

α1
)
∫ s

w/(1−φ)
(s(1− φ)− w)dFs(s)

}
, (C.23)

and
d2H(q(w(θ), w, θ))

dq2(w, θ)
= − fs(α0−q

α1
)

α1(1 + rS)
(η(w, θ)− (ρ− 1)G(w)) ≤ 0. (C.24)

Therefore, again the first order condition is sufficient, and the optimal quantity for type θ can be found by

equating (C.23) to zero. The rest of the proof follows similar to the proof of Proposition C.1. ¥

Finally, for the optimization of the exercise price (w), the statement and the results for the perfect

positive correlation case, as stated in Proposition C.2, are identically preserved. The proof proceeds with

closely parallel steps and hence is skipped.
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