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When decisions are made in the presence of large-scale stochastic data, it is common to pay more attention
to the easy-to-see statistics (e.g., mean) instead of the underlying correlations. One reason is that it is often
much easier to solve a stochastic optimization problem by assuming independence across the random data. In
this paper, we study the possible loss incurred by ignoring these correlations through a distributionally-robust
stochastic programming model, and propose a new concept called Price of Correlations (POC) to quantify
that loss. We show that the POC has a small upper bound for a wide class of cost functions, including
uncapacitated facility location, Steiner tree and submodular functions, suggesting that the intuitive approach
of assuming independent distribution may actually work well for these stochastic optimization problems.
On the other hand, we demonstrate that for some cost functions, POC can be particularly large, e.g., the
supermodular functions. We propose alternative ways to solve the corresponding distributionally robust
models for these functions. As a byproduct, our analysis yields new results on social welfare maximization
and the existence of Walrasian equilibria, which may be of independent interest.

1. Introduction

In many planning problems, the correlations among individual events contain crucial information.
For example, the emergency service (medical services, fire rescue, etc) planner needs to carefully
locate emergency service stations and determine the number of emergency vehicles in order to
dispatch vehicles to the call points in time. If the planner assumes emergency calls rare and inde-
pendent events, he simply needs to make sure that every potential call point is in the service range
of at least one station; however, there might exist certain kinds of correlations between those rare
events, so that the planner cannot ignore the chance of simultaneous occurrences of those emer-
gency events. The underlying correlations, possibly caused by some common trigger factors (e.g.,
weather, festivals), are often difficult to predict or analyze, which makes the planning problem com-
plicated. Other examples include the portfolio selection problem, in which the risk averse investor
has to take into account the correlations among various risky assets as well as their individual
performances, and the stochastic facility location problem, in which the supplier wants to learn
more about the correlations between demands from different retailers.

As these examples illustrate, correlation information can be crucial for operational planning,
especially for large system planning. However, estimating the correlations is usually much harder
than, for example, estimating mean. Reasons for this include the huge sample size required to
characterize joint distribution, and the practical difficulty of retrieving centralized information,
e.g., the retailers may only provide some basic statistics about the demand for their own products.
The question then arises how should one make decisions in the presence of a large amount of
uncertain data, when the correlations are not known?

Decision making with uncertain data is usually investigated in the context of Stochastic Program-
ming (SP) (Ruszczynski and Shapiro (2003)). In SP, the decision maker optimizes expected value
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of an objective function that involves stochastic variables. In general, such a stochastic program
can be expressed as

min,ec E[f(z,€)], (1)

where x is the decision variable which lies in a constrained set ', and the random variable ¢ cannot
be observed before the decisions = is made. f(x,&) is a cost function which depends on both the
decision x and the random scenario £. Throughout this paper, we assume the cost functions are
non-negative. If the underlying distribution of the random variable is unknown, then the decision
maker needs to estimate it either via a parametric approach, which assumes the distribution with a
certain closed form and fits its parameters by empirical data, or via a non-parametric approach, e.g.,
the Sample Average Approximation (SAA) method (e.g., Ahmed et al. (2002), Ruszczynski and
Shapiro (2003), Swamy and Shmoys (2005), Charikar et al. (2005)), which optimizes the average
objective value over a set of sampled data. However, these models are suitable only when one
has access to a significant amount of reliable time-invariant statistical information. If the samples
are insufficient to fit the parameters or to approximate the distribution, then SP fails to address
the problem. In this case, one may instead consider optimizing the worst-case outcome, which is
usually easier to characterize than estimating the joint distribution. That is,

minzec maxe f(x7§)a (2)

Such a method is termed Robust Optimization (RO), following the recent literature (e.g., Ben-
Tal and Nemirovski (1998), Ben-tal and Nemirovski (2000), Ben-Tal (2001)). However, the robust
solution is sometimes too pessimistic compared with SP(e.g., see Ben-tal and Nemirovski (2000),
Bertsimas and Sim (2004), Chen et al. (2007)), because the worst-case scenario can be very unlikely
and sometimes even not representable.

An intermediate approach that may address the limitations of SP and RO is distributionally-
robust stochastic programming (DRSP). In this approach one minimizes the maximum expected
cost over a collection of possible probability distributions:

min,ec maxpep Ep[f (2, §)], (3)

where D is a collection of possible probability distributions of ¢, and Ep[f(x,&)] denotes the
expected value of f(z,£) over a distribution D in the collection D. The decision maker chooses a
decision z hoping to minimize the expected cost, while the nature adversarily chooses a distribution
from the set D to maximize the expected cost of the decision.

The DRSP model was proposed by Scarf as early as the 1950s (Scarf (1958)), but it has not
received much attention until recently (Popescu (2007), Delage and Ye (2008), Goh and Sim (2009)).
The DRSP model accurately characterizes the challenge of making decisions with limited infor-
mation about the distribution. Our model for characterizing price of correlations is based on this
distributionally robust model of optimization. Because our main intention is to overcome the chal-
lenges involved in making decisions without correlation information, we will simplify the statistics
of a single event. We assume that each event i of the ground set V is in a binary form that takes
a value of 1 with a probability p;. Even with such an assumption, we will show that our model
covers many real-life planning problems. The marginal probability p; reflects the chance that a
particular event i occuring in the realized scenario S, and we assume that (p;);cyv, as the decentral-
ized information, are known by the centralized planner. The planning problem is then to choose a
decision z that minimizes the expected cost E[f(x,S)] under the worst possible distribution with
these marginal probabilities. This is formulated as the following in the DRSP model:

min,cc g(z), (4)
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where g(z) is the expected cost under worst-case distribution when decision z has been made,
given by
g(z) :=maxpep  Eplf(z,S9)]
’ (5)
5.t Y gies Pp(S)=pi. Vie V.

Here, D is a collection of all probability distributions with a domain 2" that satisfy the marginal
probability constraint for each event i. For any distribution D € D, the terms Ep[f(x,S)] and
Pp(S) denote expectation and probability, respectively, when random variable S has distribution
D. We refer to this distributionally robust formulation of our problem as the “correlation robust
model”.

We believe that the correlation robust model (4)-(5) is very useful because it takes advantage of
the stochasticity of the input, and at the same time efficiently utilizes the available information.
On the other hand, it defines an exponential-size (exponential number of scenario S) linear
program which makes the problem potentially difficult to solve. A common strategy for such linear
programs is to solve the corresponding dual LP with exponential number of constraints, using
the separation hyperplane approach. However, for the above model, approximating the separating
hyperplane problem can be shown to be harder than the max-cut problem even for the special
case, when the function f is submodular in S.

A natural question is how much risk it involves to simply ignore the correlations and minimize
the expected cost of independent Bernoulli distribution (also known as product distribution) with
marginals (p;) instead of the worst case distribution. Or, in other words, how well the stochastic
optimization model with independent distribution approximates the above correlation robust
model. The focus of this paper is to study this ‘price of correlations’ incurred by the assumption
of independence. For a particular problem instance (f,V,{p;}) of stochastic optimization, let z;,
be the optimal decision assuming independent distribution, and xy is the optimal decision for the
correlation robust model. Then, price of correlations (POC) compares the performance of x; to
rr. That is,

poc = 91)

9(zr)

A small POC indicates that the decision maker can take the product distribution as an approxi-
mation of the worst case distribution without involving much risk. And a stochastic optimization
problem with product distribution is often more easy to solve either by sampling or by other algo-
rithmic techniques (e.g., Kleinberg et al. (1997), Mohring et al. (1999)). Further, in many real data
collection scenarios, practical constraints can make it very difficult (or costly) to learn the complete
information about correlations in data. In those cases, POC can provides a guideline to deciding
how much resource should be spent on learning these correlations.

Our main result is to characterize a wide class of cost functions that have small POC. We define
this class using concepts of cost-sharing from game theory. This novel application of cost-sharing
schemes may be interesting in its own respect. We also provide counter-examples that demonstrate
a large lower bound on POC for various other classes of functions.

Below, we summarize our key results:

e A new approach for discrete stochastic optimization: As a novel application of distributionally
robust framework, we study this model for stochastic optimization when the random variables in
question are binary random variables, i.e. form subsets of a ground set. Further, we introduce a
new concept of Price of Correlations (POC) to compare the worst case distribution under given
marginals to the independent Bernoulli distribution. By taking advantage of the richness of struc-
ture in these problems, we obtain many non-trivial bounds on POC, thus illustrating that the
intuitive and efficient approach of assuming independent distribution may actually work well for
many of these stochastic optimization problems.
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e A class of functions with nicely bounded POC: For functions f(x,S) that are non-decreasing
in S and have a cross-monotone, §-budget balanced , n-summable cost-sharing scheme in S for all

e
e—1

POC <e/(e—1) for problems with submodular cost functions, POC < 6 for uncapacitated facility
location, and POC < 4 for the Steiner tree cost function *.

e Hardness results: We provide examples that prove POC can be as large as ©(2") for functions
f(z,S) that are supermodular in S, and Q(y/nloglogn/logn) for monotone (fractionally) subad-
ditive functions. Further, we show examples with POC > 3 for stochastic uncapacitated facility
location, POC > 2 for stochastic Steiner tree, and POC > e/(e —1) for submodular functions, thus
demonstrating the tightness of our upper bounds for these functions.

e Polynomial-time algorithm for supermodular functions: We analytically characterize the worst
case distribution when function f(zx,S) is supermodular in S for all z, and consequently give a
polynomial-time algorithm for the correlation robust model provided f is convex in .

e New results for welfare maximization problems: As a byproduct, our result provides a
max{ 55, ,5(1 — ¢)}-approximation algorithm for the well-studied problem of social welfare maxi-
mization in combinatorial auctions, for identical utility functions that admit a (7, 3)-budget bal-
anced cross-monotonic cost-sharing scheme. Notably, this result implies (1 — 1/e)-approximation
for identical submodular utility functions, matching the best approximation factor (Vondrak, 2008
Vondrak (2008)) for this case.

We also provide a simple counterexample for the conjecture by Bikhchandani and Mamer
(1997) that markets that have buyers with identical submodular utilities admit a Walrasian price
equilibria.

x, we show that POC is upper bounded by min {2@7]5 ( } Using this result, we prove that

The rest of the paper is organized as follows. To begin, Section 2 will provide a mathematical
definition of POC, and examples that illustrate a large POC for certain classes of cost functions.
Here, we will introduce a secondary concept of correlation gap, and that an upper bound on POC
can be obtained by upper bounding the correlation gap of the cost function for every decision. In
Section 3, we present our main technical theorem that upper bounds the correlation gap for a wide
class of cost functions, and discuss its implications on POC for various stochastic optimization
problems and the welfare maximization problem. The proof of this theorem is presented in Section
4. Finally, in Section 5, we end with a direct solution of a correlation robust model for supermodular
functions.

2. Price of Correlation (POC) and correlation gap

Let x; be the optimal solution to the stochastic optimization problem (1) with independent
Bernoulli distribution, and xy be the optimal solution to the correlation robust problem (4). Then,
we defined POC as the ratio of expected cost when using x; versus using zg, i.e.,

_ g(xp)
PoC= g(fUR)'

For a problem instance (f,V,{p;}) and at any given decision =, we define correlation gap k(zx) as
the ratio between the expected cost of the worst case distribution and that of the independent

distribution, i.e., E [f(x,9)]
e COL VAN
k() = Ept[f(2,S)] Y

where D’ is the independent Bernoulli distribution with marginals {p;}, and D®(z) is the
worst-case distribution (as given by (5)) for decision z.
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Figure 1 An example with exponential correlation gap

An upper bound on correlation gap has interesting implications on the POC of corresponding
decision problem. Suppose that for particular cost function f, the correlation gap is upper bounded
above by % for all z, i.e. & =max, x(x). Then, POC will be upper bounded by . More precisely,

since
g(xf) - EDR(II)[f(‘TI7S)]7 and

9(xr) = Epr(ey [f (@, S)] > Epi[f(zr, S)] (7)
> EDI[f(xI7S)]’

by (7) and the definition of %, we have

o 9(301) E’DR(CEI)[f(mI7S):I
POC= () = Eorf(@1.9)

Hence, a uniform upper bound on correlation gap gives an upper bound on the POC for correspond-
ing decision problem. Analyzing the correlation gap presents a relatively simpler challenge than
directly analyzing POC, since the former assumes a fixed decision x. Therefore, most of our tech-
nical discussion will be concentrated around bounding the correlation gap, which will subsequently
imply corresponding bounds on POC.

Unfortunately, for general cost functions, the correlation gap and hence the POC for corre-
sponding decision problem can be large in order of n, as demonstrated by the following examples.

<EK.

EXAMPLE 1. (Minimum cost flow: An instance with POC = Q(2") for supermodular functions)
Consider a two-stage minimum cost flow problem as in Figure 1. There is a single source s, and n
sinks t1,t,,...,t,. Each sink ¢; has a probability p; = % to request a demand, and then a unit flow
has to be sent from s to t;. Each edge (u,t;) has a fixed capacity 1, but the capacity of edge (s,u)
needs to be purchased. The cost of capacity x on edge (s,u) is ¢/ (z) in the first stage, and ¢!’ (z)
in the second stage after the set of demand requests is revealed, defined as:

IoN_J o r<n-1 II( .\ _ on
C<$)_{n+2,x:n ¢ (z)=2"x.

Given the first stage decision z, the cost of edges that need to be bought in the second stage to
serve a set S of requests is given by: f(x,9) =c!(x) + 1 ((|S] —2)*) = (z) +2"(|S| —z)T. Tt is
easy to check that f(x,S) is supermodular in S for any given x, i.e. f(z,SUi)— f(x,S) > f(z,TU
i) — f(z,T) for any S D T. The objective is to minimize the total expected cost ¢’ (z) +E[f(z, S)].
If the decision maker assumes independent demands from the sinks, then x; =n — 1 minimizes the



Agrawal et al.: Price of Correlations in Stochastic Optimization
6 Operations Research 00(0), pp. 000-000, © 0000 INFORMS

expected cost, and the expected cost is n; however, for the worst case distribution the expected
cost of this decision will be g(z;) =2""'+n—1 (when Pr(V)=Pr() =1/2 and all other scenario
have zero probability).

Hence, the correlation gap at x; is exponentially high. A risk-averse strategy is to use the robust
solution zr =n, which leads to a cost g(zr) =n+ 1. Thus,

POC =g(x1)/g(zr) = Q(2").

O

EXAMPLE 2. (Stochastic set cover: An instance with POC = Q(\/ﬁ%) for subadditive func-
tions)

Consider a set cover problem with elements V' ={1,...,n}. Each item j € V' has a marginal prob-
ability of 1/K to appear in the random set S. The covering sets are defined as follows. Consider
a partition of V into K = /n sets Aj,..., Ax each containing K elements. The covering sets are
all the sets in the cartesian product A; x --- x Ax. Each set has unit cost. Then, cost of covering
a set S is given by subadditive (infact, fractionally subadditive) function

c(S) = g{laXK]SﬂAi\ VS CV.

The worst case distribution with marginal probabilities p; = 1/ K is one where probabilities Pr(S) =
1/K for S=A;,i=1,2,...,K, and Pr(S) = 0 otherwise. The expected value of ¢(S) under this
distribution is K = /n. For independent distribution, ¢(S) =max;—;__x (;, where (; =[SN A4,| are
independent (K, 1/K)-binomially distributed random variables.

As K approaches oo, since expected value remains fixed at 1, the Binomial(X, 1/K) random
variable approaches the Poisson distribution with expected value 1. Using some known results
on maxima of independent poisson random variables in Kimber (1983), it can be shown that for
large K, the expected value of the maximum of K i.i.d. poisson random variables is bounded by
O(log K/loglog K) (refer to Appendix A for a detailed proof). This implies that Elmax;_; _ m{¢}]
is bounded by O(logn/loglogn) for large n. So the correlation gap of cost function ¢(S) is bounded
below by Q(y/nloglogn/logn).

To obtain a lower bound on POC for a two-stage stochastic set cover (refer Swamy and Shmoys
(2005) for details on this problem) instance, extend the above instance as follows. For ease of
notation, let L(n) = dlogn/loglogn, where d is a constant such that E[max;{(;}] < L(n) . Let the
first stage cost of a covering set to be w! = (1+¢)L(n)/\/n for some small € > 0, and the second
stage cost to be w!! = 1. For a given first stage cover z, let B(z) be the set of elements covered by
x, then total cost of covering elements in S is given by f(x,S) =w!|z|+ c¢(S — B(x)). Using above
analysis for function ¢(.S), the optimal solution for independent distribution will be to buy no (or
very few) sets in the first stage giving E[f(x,S)] < L(n) for independent distribution, but ©(y/n)
cost for worst case distribution. On the other hand, the optimal robust solution considering worst
case distribution is to cover all the elements in the first stage giving O (L(n)) cost in the worst
case. Thus,

POC =Q(yv/nloglogn/logn).

O

These examples indicate that price of ignoring correlations and assuming independent distribu-

tion can be very high in many cases. However, below we identify a wide class of functions for which

the correlation gap, and hence POC is well-bounded, indicating that independent distribution does
give a close approximation to the worst-case distribution.
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3. A class of functions with low POC

A key contribution of our paper is to identify a class of cost functions for which the correlation
gap, and hence POC is well bounded. To our interest, many popular cost functions including
submodular functions, facility location, Steiner forest, etc. belong to this class.

We derive our characterization using concepts of cost-sharing. A cost-sharing scheme is a function
defining how to share the cost of a service among the serviced customers. A cost-sharing scheme is
cross-monotonic if it satisfies the property that everyone is better off when the set of people who
receive the service expands (e.g., see Nisan et al. (2007)). We consider the class of cost functions f
such that for every feasible x, there exists some cost-sharing scheme for allocating the cost f(z,.S)
among members of set S with (a) 5-budget balance and (b) cross-monotonicity. Below we precisely
state these properties. Since we assume that x can take any fixed value, we will abbreviate f(z,.S5)
as f(.9) for simplicity when clear from the context.

Define a cost-sharing scheme for function f(S) as a function x(¢,.5) that, for each element i € S
specifies the share of ¢ in S. Then, the scheme Yy is S-budget balanced and cross-monotonic iff it
satisfies the following conditions.

e [-budget balance: For all S,

e (Cross-monotonicity: For all i€ S, SCT,

x(4,8) = x(i,T)

Let us call a cost-sharing scheme satisfying the above two properties a ‘(-cost-sharing scheme’.
Also, we say that a function f(x,5) is non-decreasing in S if for every x and every S C T, f(z,S) <
f(x,T). Our main result is the following theorem, which we will prove in the next section:

THEOREM 1. For any instance (f,V,{p:}), for any fixed x, if the cost function f(z,S) is non-
decreasing in S and has a (3-cost-sharing scheme for elements in S, then the correlation gap k(x)
s upper-bounded by 2.

In Agrawal et al. (2010), we considered an additional property of weak n-summability for the
cost-sharing schemes, derived from the concept of summable cost-sharing schemes by Roughgarden
and Sundararajan (2006):

o Weak n-summability: A cost-sharing scheme x(i,5) is weakly n-summable if for all S, and any
pre-specified order og on the elements of S,

S|

ZX(% Se) <nf(S)

{=1

where i, is the /' element and S, is the set of the first £ members of S according to the ordering
gg.

Let us call an n-summable, S-budget balanced, cross-monotonic cost-sharing scheme as an ‘(n, 3)-
cost-sharing scheme’. The following result was proved in Agrawal et al. (2010):

THEOREM 2. (Agrawal et al. (2010)) For any instance (f,V.{p;}), for any fized z, if the cost
function f(x,S) is non-decreasing in S and has an (n,3)-cost-sharing scheme for elements in S,

e
e—1 )"

then the correlation gap k(z) is upper-bounded by nB
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Combining the two results, we obtain the following corollary:

COROLLARY 1. For any instance (f,V,{p:}), for any fixed x, if the cost function f(x,S) is non-
decreasing in S and has an (n,3)-cost-sharing scheme for elements in S, then the correlation gap

k(z) is upper-bounded by min {25,776 <

e—1
As described in Section 2, this gives following corollary for upper bounding POC:

COROLLARY 2. For instances (f,V,{p:}) such that for all z, the cost function f(z,S) is non-
decreasing in S and has an (n, 3)-cost-sharing scheme for elements in S, then POC' is upper bounded

by min {2@775 (eil) }

We may point out that neither of Theorem 1 or Theorem 2 subsumes the other. As we will
illustrate in the applications using example of submodular functions, in some cases there may exist
a summable, budget-balanced cost-sharing scheme with particularly small 1 (close to 1), so that
the bound of nfe/(e — 1) may turn out to be smaller than 2. Otherwise, typically the bound of
23 given by Theorem 1 will be smaller and easier to use, since it does not require the additional
property of summability.

Theorem 1 will be proved in the next section. Theorem 2 was proved in Agrawal et al. (2010). We
have included its proof in Appendix D for completion. Before moving on to the technical proofs of
these results, let us briefly discuss their implications for various stochastic optimization problems,
and for a seemingly unrelated problem of welfare maximization in combinatorial auctions:

3.1. Stochastic optimization with submodular functions

A function h:2Y — R is submodular if h(SU7) — h(S) <h(T'Ui) —h(T) for all SO T, and i € V.
These cost functions are characterized by diminishing marginal costs, which is common for resource
allocation problems where a resource can be shared by multiple users and thereby the marginal
cost decreases as number of users increases. It is easy to verify that the following incremental cost-
sharing scheme is 1-budget-balance and 1-weak-summable and cross-monotonic for any submodular
function h(S):

x(4,8) = h(S;) — h(Si-1)

where 5; is the set of the first ¢ members of S according to the fixed pre-specified ordering. There-

fore, Corollary 2 gives an nﬁﬁ = ﬁ upper bound on POC for stochastic decision problems
with cost function f(z,.S) that is submodular in S at all z. Moreover, the following example shows

that the e/(e — 1) bound is tight for submodular functions.

EXAMPLE 3. (Tightness) Let V :={1,2,...,n}, define submodular function h(S) =1 if S # 0,
and h() = 0. Let each item has a probability p = +. The worst case distribution that maximizes
E[R(S)] is Pr({i})=1/n for each i € V, with expected value 1. The independent distribution with
the same marginals has an expected cost 1 — (1 —2)" —1—1/e as n — cc.

Extend this example to a stochastic decision problem with two possible decisions x1, x5 as follows.
Define f(x1,5) = h(S5),VS, and f(x3,5) =1— 1 +¢€VS for some arbitrarily small e > 0. Then,
on assuming independent distribution, x; seems to be the optimal decision, however it will have
expected cost 1 on the worst case distribution. On the other hand decision, x5 would cost 1 — % +e€

in the worst case, giving POC = (efl) — €. O

COROLLARY 3. For stochastic problems with cost function f(x,S) non-decreasing and submodular
in S for all feasible v, POC = ==

(e=1)"
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3.2. Stochastic Uncapacitated Facility Location (SUFL)

In two-stage stochastic facility location problem, any facility j € F' can be bought at a low cost
w! in the first stage, and higher cost wj’ >w] in the second stage, that is, after the random set
S CV of cities to be served is revealed. The decision maker’s problem is to decide z € {0,1}/¥], the
facilities to be build in the first stage so that the total expected cost E[f(x,S)] of facility location
is minimized (refer to Swamy and Shmoys (2005) for further details on the problem definition).

Given a first stage decision z, the cost function f(x,S)=w’ -z +c(z,S), where c(z,S) is the cost
of deterministic UFL for set S C V of customers and set F' of facilities such that the facilities x
already bought in first stage are available freely at no cost, while any other facility j costs w§ I For
deterministic metric UFL there exists a cross-monotonic, 3-budget balanced, cost-sharing scheme
(P4l and Tardos (2003)). Therefore, using Corollary 2, we know that the POC for stochastic metric
UFL has an upper bound of 23 = 6. This observation reduces our robust facility location problem
to the well-studied stochastic UFL problem under known (independent Bernoulli) distribution
(Swamy and Shmoys (2005)) at the expense of a 6-approximation factor.

The next example shows POC > 3 for the stochastic metric UFL problem 2.

ExXAMPLE 4. (Lower bound) Consider the following instance of two-stage metric facility location
problem with n cities. Consider a partition of the n cities into y/n disjoint sets Ai,..., A 5 of \/n
cities each. Corresponding to each set B in the cartesian product B= A; x --- x A 5, there is a
facility F'z with connection cost 1 to each city in B. The remaining connection costs are defined
by extending the metric, that is, the cost of connecting any city j to facility Fiz such that j ¢ B is
3. Assume that each city has a marginal probability of ﬁ to appear in the demand set S. Each
facility costs w! = 31?%" in the first stage, and w!! =3 in the second stage.

Then the worst case distribution is Pr(A4;) = ﬁ,i =1,...,4/n. The optimal solution for the
worst-case distribution is to build /n facilities in the first stage, corresponding to any +/n disjoint
sets in the collection B. These facilities will cover every city with a connection cost of 1. Thus, the
expected cost for the optimal robust solution is g(zr) = v/n+3logn. Now consider the independent
distribution case. Regardless of how many facilities are opened in the first stage, the expected
cost in the second stage will be no more than 3E[max;|A; N S|] + v/n. Using the analysis from
Example 2, E[max; |A; N S|] asymptotically reaches O(blgol%) = o(log(n)) for large n. Therefore,
for any € > 0, for large enough n, E[max;|A4; N S]] < elog(n). As a result, if the decision maker
assumes independent distribution, she will never buy more than \/ne facilities in the first stage
which would cost her 3elog(n). However, if the distribution turns out to be that of the worst case,
such a strategy induces an expected cost g(x;) > 3(1—¢€)y/n+ 3elog(n), which shows j((%;)) >(3—¢)
for any € > 0.

O
With this example, we conclude:

COROLLARY 4. For the stochastic uncapacitated facility location (metric) problem, 3 <POC <6.

3.3. Stochastic Steiner Tree (SST)

In the two-stage stochastic Steiner tree problem, we are given a graph G = (V, E). An edge e€ FE
can be bought at cost w! in the first stage. The random set S of terminals to be connected are
revealed in the second stage. More edges may be bought at a higher cost w!’ e € E in the second
stage after observing the actual set of terminals. Here, decision variable x is the edges to be bought
in the first stage, and cost function f(z,S)=w’ -z +c(z,S), where c¢(z,S) is the Steiner tree cost
for set .S given that the edges in x are already bought. Since a § = 2-budget balanced cost-sharing
scheme is known for deterministic Steiner tree (Kénemann et al. (2005)), we can use Corollary 2
to conclude that for this problem POC <23 = 4. This observation reduces our robust problem to
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the well-studied (for example see Gupta et al. (2004)) SST problem under known (independent
Bernoulli) distribution at the expense of a 4-approximation factor.

The following example shows that POC' > 2 for two stage stochastic Steiner tree. The construc-
tion of this example is very similar to Example 4 used to show lower bound for stochastic facility
location.

EXAMPLE 5. (Lower bound of 2) Consider the following instance of two-stage stochastic Steiner
tree problem with n terminal nodes. Consider a partition of the n terminal nodes into y/n disjoint
sets Ay,..., A m of \/n nodes each. Corresponding to each set B in the cartesian product B =
Ay X ---xX A s, there is a (non-terminal) node vp in the graph which is connected directly via an
edge to each terminal node in B. Assume that each terminal node has a marginal probability of
ﬁ to appear in the demand set S. Each edge costs w! = k\’%l in the first stage, and w!/ =1 in the
second stage.

Then the worst case distribution is Pr(A4;) = ﬁ,i =1,...,4/n. The optimal solution for the
worst-case distribution is to buy enough edges in the first stage so that a set of \/n non-terminal
nodes {vp} corresponding to any /n disjoint sets in B are connected to each other. By construction,
any two non-terminal nodes are connected by a path of length atmost 3 to each other, therefore this
requires buying atmost 3,/n edges in the first stage costing atmost 3log(n). Also, for any i, each
node in A; is connected directly to exactly one of these non-terminal nodes. Therefore, expected
cost for this solution is g(xg) = 3log(n) + y/n. On the other hand, for independent distribution,
using arguments similar to Example 4 atmost e\/n edges will be bought in the first stage, which
can make available atmost ey/n non-terminal nodes. Since no two nodes in any A; are directly
connected to each other or to any common non-terminal node, these ey/n non-terminal nodes are
directly connected to atmost €y/n nodes in a set A;. Also, each of the remaining node in A; will
require atleast two edges in order to be connected to the Steiner tree. Therefore, in the worst
case, the expected cost of this decision will be at least g(x;) > 2v/n(1 — €) + elog(n), which shows

;’((j;)) > (2 —¢) for any € > 0. O

COROLLARY 5. For the stochastic Steiner tree problem, 2 <POC < 4.

3.4. Welfare Maximization Problem and An Example of Non-existence of Walrasian
Equilibrium

Finally, our results on correlation gap extend some existing results for social welfare maximization

in combinatorial auctions. Consider the problem of maximizing total utility achieved by partitioning

n goods among K players each with utility function f(S) for subset S of goods ®. The optimal

welfare OPT is obtained by following integer program:

max, y_gasf(S)

s.t. Zsﬁesaszl, YieV
dsas=K
0656{0,1}, VSQV

(8)

Observe that on relaxing the integrality constraints on « and scaling it by 1/K, the above problem
reduces to that of finding the worst-case distribution a* (i.e. one that maximizes expected value
> osasf(S) of function f) such that the marginal probability >4, s of each element is 1/K.
Therefore:

OPT <E[K f(S)]

Consequently, the correlation gap bounds in Theorem 1 and Theorem 2 lead to the following
corollary for welfare maximization problems:
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COROLLARY 6. For welfare maximization problems with n goods and K players with identical
utility functions f, the randomized algorithm that assigns goods independently to each of the K
players with probability 1/ K gives max{%, %(1 — 1)} approzimation to the optimal partition; given
that function f is non-decreasing and admits an (n, 3)-cost-sharing scheme.

Since n =1, 5 =1 for submodular functions, the above result matches the 1 —1/e approximation
factor that was proven earlier in the literature (Calinescu et al. (2007), Vondrak (2008)) for the
case of identical monotone submodular functions. Also, it extends the result to problems with
non-submodular functions not previously studied in the literature.

The reader may observe that even though approximating the worst case distribution directly pro-
vides a matching approximation for the corresponding welfare maximization problem, the converse
is not true. In addition to having uniform probabilities p; = 1/ K, solutions for welfare maximiza-
tion approximate the integer program (8), where as the worst case distribution requires solving the
corresponding LP relaxation. The latter is a strictly harder problem unless the integrality gap is 0.
A notable example is the above-mentioned case of identical submodular functions. This case was
studied by Bikhchandani and Mamer (1997) in context of Walrasian equilibria who conjectured
a 0 integrality gap for this problem implying the existence of Walrasian equilibria. However, in
appendix C , we show a simple counter-example with non-zero integrality gap (11/12) for this
problem. As a byproduct, this counter-example proves that even for identical submodular valuation
functions, Walrasian equilibria may not exist.

4. Proof of Theorem 1

For a problem instance (f,V,{p;}) and fixed z, use L(f,V,{p;}) and Z (f,V,{p;}) to denote the
expected cost of worst-case distribution and independent Bernoulli distribution with marginals
{p:}, respectively. In this section, we prove our main technical result that the correlation gap

L (f7 V7 {pz})
Z(f.V.{pi})

when f is non-decreasing and admits S-budget balanced cross-monotonic cost-sharing in S. As
before, we will abbreviate f(z,S) as f(S) for simplicity.

The proof is structured as follows. We first focus on special instances of the problem in which
all p;’s are equal to 1/K for some integer K, and the worst case distribution is a “K-partition-
type” distribution. That is, the worst case distribution divides the elements of V into K disjoint
sets {Ay,...,Ax}, and each A, occurs with probability 1/K. Observe that for such instances,
the expected value under worst case distribution is £(f,V,{p;}) = = >_, f(Ax). In Lemma 1, we
show that for such “nice” instances the correlation gap is bounded by 23. Then, we use a “split”
operation to reduce any given instance of our problem to a “nice”’ instance such that the reduction
can only increase the correlation gap. This will show that the bound 23 for nice instances is an
upper bound for any instance of the problem, thus concluding the proof of the theorem.

<23

LEMMA 1. For instances (f,V,{p:}) such that (a) f(S) is non-decreasing and admits a [3-cost-
sharing scheme (b) marginal probabilities p; are all equal to 1/K for some integer K, and (c) the
worst case distribution is a K -partition-type distribution, the correlation gap is bounded as:

CUVURY 1
TR S A

K
Proof. Let the optimal K-partition corresponding to the worst case distribution is
{41, As, ..., Ak} For any set S, denote S; =SNA;,and S_;=5—A;, for j=1,..., K. Let x
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is the [ cost-sharing scheme for function f, as per the assumptions of the lemma. Also, for any
subset T of S, denote x(7',S) := >, x(,S). Then, by the budget balance property of x:

I(f.VAY/K}) = Es[f(S)] = Es[ 2 x(Sow, 5)] (9)

where the expected value is taken over independent distribution on V' with marginal probabilities
1/K.

Note that the marginal probability of each element i € A, to appear in random set Sqj is
1/K. Using this observation along with cross-monotonicity of x and properties of independent
distribution, we can derive that for any k:

Ex(Sak,S)] = E[x(Snk, SU Ay)]
= ES[ZiGAk I(i € Sri)x (i, S_xr U AL)]

= ESLk [ZiGAk ESmk [I(Z S Snk)X(i7 S_rU Ak)’S_kH (10)
= % E[Xica, X(i: SUAD)]
= L E[x(A, SUAL)]

Here, I(-) denotes the indicator function. Apply the above inequality to v = m fraction of each
term x(Sng,S) in (9) to obtain:

Es[f(S)] = [Zk L (=) xSy S) + v =X (A, SUAR)]
s[Xi (% 1) o X(505,8)) +vEx(Ar, SUAL)]

(2K71 ES[Zk:l(EJ;ék X(Sn;,9)) + x (A, SU Ak)]

R Es [ 220t (00 X(Sris S U AW)) + x(Ar, SUAL)]

s [ L f(SUAY)]

(using monotonicity of f) > =75 (% S f(Ak)>

(using cross-monotonicity of x) >
(using [-budget balance) >

O
Next, we reduce a general problem instance to an instance satisfying the properties required in
Lemma 1. We use the following split operation.

Split: Given a problem instance (f,V,{p;}), and integers {n; > 1,i € V'}, define a new instance
(f", V', {p}}) as follows: split each item i € V" into n,; copies C},C3,...,C} , and assign a marginal

n?
ipz

probability of p/ o = - to each copy. Let V'’ denote the new ground set containing all the duplicates.

Define the new cost functlon [ 2V SR as:
11(S") = f(11(5")), for all " C V', (11)

where II(S”) C V is the original subset of elements whose duplicates appear in S’, i.e. II(S") ={i €
VICi e S for some ke {1,2,...,n,;}}.
The split operation has following properties. Their proofs will be given in Appendix B .

PROPERTY 1 If f(S) is a non-decreasing function in S that admits a [(-budget balanced cross-
monotonic cost sharing scheme, then so is f'.

PROPERTY 2 If f(S) is non-decreasing in S, then splitting does not change the worst case expected
value, that is:

L VApi}) =LV APSH
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PROPERTY 3 If f(S) is non-decreasing in S, then splitting can only decrease the expected value
over independent distribution:

I(f? V7 {pz}) ZI(f/,V/, {p;})

The remaining proof tries to use these properties of split operation for reducing any given
instance to a “nice” instance so that Lemma 1 can be invoked for proving the correlation gap
bound.

Proof of Theorem 1. Suppose that the worst case distribution for instance (f,V,{p;}) is not a
partition-type distribution. Then, split any element i that appears in two different sets. Simulta-
neously, split the distribution by assigning probability ag = aui(s/y to the each set S’ that contains
exactly one copy of ¢. Repeat until the distribution becomes a partition. Since each new set in
the new distribution contains exactly one copy of i, by definition of function f’, this splitting does
not change the expected function value. By Property 2 of Split operation, the worst case expected
values for the two instances (before and after splitting) must be the same, so this partition forms
a worst case distribution for the new instance. Then, we further split each element (and simulta-
neously the distribution) until such that the marginal probability of each new element is 1/K for
some large enough integer K 4. This reduces the worst case distribution to a partition A,,..., Ax
such that each set A, has probability 1/K. By construction, the conditions (b) and (c) of Lemma
1 are satisfied by the reduced instance (f’,V’,{p.}). Also, by Property 1, the cost function f’
obtained by splitting is non-decreasing and admits a (-cost-sharing scheme. Therefore, Lemma 1
can be invoked to bound the correlation gap by 25 for the new instance.

Now, by Property 2 and Property 3 of Split operation, the correlation gap can only become
larger on splitting. Therefore, the correlation gap for the new instance bounds the correlation gap
for the original instance. This completes the proof. U

5. Supermodular functions

In the end, we directly consider the correlation robust model for cost functions f(z,S) which are
supermodular in S. As shown in Section 2, the correlation gap for these cost functions can be
exponentially high, so independent distribution does not give a good approximation to the worst
case distribution. However, it is easy to characterize the worst case distribution and directly solve
the correlation robust model in this case.

LEMMA 2. Given that function f:2V — R is supermodular, the worst case distribution over S with
marginals {p; },cv has the following closed form

Pi—pit1 f S=5,1<i<n-1

0 o0.w.

Pr(S) =

where n = |V|; i is the i'"" member of V' and S; is the set of first i members of V', both with
respect to a specific ordering over V such that p1 > ...>p,.

The lemma is simple to prove, a proof appears in appendix E . Lemma 2 implies following
corollary for solving the correlation robust problem.



Agrawal et al.: Price of Correlations in Stochastic Optimization
14 Operations Research 00(0), pp. 000-000, © 0000 INFORMS

COROLLARY 7. For cost functions f(x,S) that are supermodular in S for any feasible x, the cor-
relation robust problem with marginals py > po ... > p, is simply formulated as:

Iwneigpnf(x, S™) + Z(pz —pi1)f(2,5°) + (1 —p1) f(, )

Thus, if f(x,S) is convex in x and C'is a convex set, then it is a convex optimization problem and
can be solved efficiently.

6. Discussion

We have focused our discussion on the stochastic optimization problems where each random vari-
able takes value either 1 or 0. This typically models stochastic counterparts of discrete optimization
problems. Our motivation is to simplify the individual statistics and focus on modeling the correla-
tion information. Our bounds on POC characterize the suitability of ignoring correlations for these
problems. We classify the functions as supermodular functions, sub-additive functions, functions
with (-budget balance cost sharing, and submodular functions. We estimate the corresponding
POC for problems associated with these functions are respectively Q(2"), Q(y/n), 28, -4, which
reflects a gradual change of POC with the properties of these functions. Possible progress remains
in studying POC for continuous distributions case.

The reader may note that we have not compared our solutions with that obtained from other
solution models for SP e.g. SAA. The reason is that we have completely different assumptions
and motivations: we assume that the distribution information in unknown and we are looking
for a conservative strategy to minimize the worst-case expected cost. The approximation ratio
(POC) we obtained are also in terms of our DRSP model, which can not be compared with the
approximation ratio for the corresponding SP problems.

Acknowledgements The authors would like to thank Ashish Goel and Mukund Sundarajan for
many useful insights on the problem.

Endnotes

1. Here e is the mathematical constant e =2.71828...

2. The construction of this example is inspired by the example presented in Immorlica et al. (2008)
for lower bounding the budget-balance factor of any cross-monotonic cost-sharing scheme for metric
uncapacitated facility location.

3. A more general formulation of this problem that is often considered in the literature allows
non-identical utility functions for various players.

4. Such an integer K can always be reached assuming p;s are rational.
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Appendix A: Maximum of Poisson Random Variables

In this section, we show that the expected value of the maximum of a set of M independent
identically distributed poisson random variables can be bounded as O(log M /loglog M) for large
M.

Let A denote the mean, and F' denote the distribution of i.i.d. poisson variables X;. Define
G =1— F. Also define continuous extension of G:

Go(z) =exp(=A) > A T(z+j+1)
j=1
Note that G(k) = G.(k) for any non-negative integer k. Let {A;}2°, is defined by G.(Ay) =1/k.
Define continuous function L(z)=log(z)/loglog(x). Then, in Kimber (1983), it is shown that for
large k, Ay, ~ L(k).
We use these asymptotic results to derive a bound on expectation of Z = max;_;
M.

u X; for large

.....

E[Z] = iPr(Z > k)

[L(M?)) o0

= > Pr(Z>k)+ )  PrZ>k)
k=0 k=[L(M?2)]+1

< L(M?*)+1 +/ Pr(Z > x)dx (12)
x=L(M?)

Next, we show that the integral term on the right hand side is bounded by a constant for large M.

Substituting = L(y) in the integration on the right hand side, we get

/ Pr(Z > z)dx

=L(M?)

::Am Pr(Z > L(y)) L (y)dy

(y)=L(M?)
& 1
g/‘ Pr(Z > L(y))~dy
y:M2 y

L'(y) denotes the derivative of function L(y). The last step follows because L'(y) < i for large

Pr(Z>L(k))
k

enough y (i.e. if loglogy > 1). Further, since is a decreasing function in k, it follows that:

* Pr(Z>L(y)) <. Pr(Z > L(k))
/y_MQ —, s Y.

k=M?2

Now, for large k, L(k) ~ Ay, and

Pr(Z > Ap) <1—(1— Gu(A)M =1 — (1— ;)M

Therefore, for large M,

iPr(Z>L(k:)) il_; 1 M
k = ko k k
k=02 k=M?2
= 2M
<2

IN
—_
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This proves that the integral term on the right hand side of (12) is bounded by a constant, and
thus, for large M:
E[Z] < L(M?) +2 = O(log M /loglog M)

Appendix B: Properties of Split Operation

Property 1. If f(.5) is a non-decreasing function in S that admits a (3-cost sharing scheme, then
so is f.
Proof. Monotonicity holds since for any S’ C 7" C V', II(S") CII(T"):

f1(8") = fI(S") < fAKT)) = f'(T")

Given a (-cost-sharing scheme x for f, construct cost-sharing scheme x’ for f’ as follows. Consider
an arbitrary but fixed ordering on elements of V. Cost-share x’ coincides with the original scheme
x for the sets without duplicates, but for a set with duplicates, it assigns the cost-share solely to
the copy with smallest index (as per the ordering). That is, any S’ C V', and item C; (j-th copy
of item 4) in S’, allocate cost-shares as follows:

x(4,S), k=min{h: C} € S},

/ 7 !/

v@s)={ 30 (13)
where S =1I(S"), and min computes the lowest index with respect to the fixed ordering on elements.
It is easy to see that the property of B-budget-balance carries through to the new cost sharing
scheme. For cross-monotonicity, consider S’ CT”. Now, for any i’ € S’, if i’ is not a lowest indexed
copy in T’ then x(¢/,T7") =0, so that the condition is automatically satisfied. Let i’ is one of the
lowest indexed copies in T”, then it must have been a lowest indexed copy in S’, since S’ is a subset
of T". Then, by cross-monotonicity of x:

X(i/7T/> - X(i,T) < X(i,S) - X(i/7S,)

where S =1I(S"), T =II(T"). O
Property 2. If the cost function f(-) is non-decreasing in S, then the splitting procedure does
not change the worst-case expected value. That is:

L(S,Vidpid) =L,V AP}

Proof. For any fixed x, the worst case expected cost is the optimal value of following linear
program, where {ags}scy represents a distribution over subsets of set V:

L(f;ViApi}) = maxa g asf(z,5)

St Y g jes¥s=Di, Vi€V
H 14
Doss =1 14)
04520, VSQV

Suppose item 1 is split into n; pieces, and each piece is assigned a probability % Let {ag} denote
the optimal solution for the instance (f,V,{p;}), then we can construct a solution for the new
instance (f’,V’,{p}}) which has the same objective value by assigning non-zero probabilities to
only those sets which have no duplicates.

arysry, if S’ contains no copies of item 1
VS CV!, oy = %an(s/), if S’ contains exactly one copy of item 1
0, otherwise
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One can verify that {a%, } is a feasible distribution (i.e., feasible to the linear program (14)) for the
new instance (f', V', {p}}), and has the same objective value as L (f,V,{p;}). Hence, L(f,V,{p:}) <
LV,

For the other direction, consider an optimal solution {a’, } of the new instance. It is easy to see
that there exists an optimal solution {a/, } that oy, =0 for all S that contain more than one copy
of item 1. To see this, assume for contradiction that some set with non-zero probability has two
copies of item 1. By definition of f’, removing one copy will not decrease the function value. Then,
because of monotonicity of f/, we can move out one copy to another set 1" that has no copy of
item 1. Such T" always exists since the probabilities of copies of item 1 must sum up to p; <1. So,
we can assume that in the optimal solution a/y, =0 for any set S’ containing more than one copy.
Thus, we can set ag =) STI(S)=S oy, where S is the corresponding original set for any S C V.
That forms a feasible solution for original instance with same objective value as L (f',V’,{p}}).
We can apply the argument recursively for all the items to prove the lemma. O

Next, we prove that the expected cost under independent Bernoulli distribution can only decrease
by the split operation.

Property 3. If f(-) is non-decreasing, then after splitting

I VAP <Z(f,VApi}).
Proof.  Let (f',V',{p}}) denote the new instance by splitting item 1 into n, pieces. Denote
A:={S"CV'|S’ contains at least one copy of 1},

and denote m = Pr(S” € A). Consider the expected cost under independent Bernoulli distribution,
by independence,

Z(f, V' AP} = Es [f(S) I(S" € )] +Eg [f'(S') 1(S" ¢ A)]
=7 Escv\ iy [f(SU{1})]+ (1 = 7) Escv\ (13 [f(5)]
< p1 Escovvpy [f(SU{IH]+ (1 = p1) Escv\y [f(S)]
= I(f? V7 {pz})

The second last inequality holds because 7 =1— (1 — 2L)" <p,, and f(5) < f(SU{1}) by mono-
tonicity. 0

Appendix C: 1 Integrality gap for SWM with identical submodular valuations

Let V ={1,2,3,4,5,6}, K =3, and construct a monotone submodular value function as
0if S=0
£(S) = 2if |S|=1
) 3if|Sn{1,2,3}|=1and [SN{4,5,6}|=1
4if |SN{1,2,3}| >2 or |SN{4,5,6}| >2
Then the optimal fractional solution to the LP relaxation of (8) is given by

Qif1,2) = Qq23} = ({1 3} = 0.5, Qg 5y = Q56} = {46} = 0.5,

with an optimal value 12; but the optimal integer solution will have an optimal value 11. So there
is an 11/12 integrality gap.
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Appendix D: Proof of Theorem 2

The proof of this theorem is along the similar lines as Theorem 1. We assume that function f(S)
has a cost-sharing scheme as a function x(i,5,05) that, for each element i € S and ordering og
on S, specifies the share of 7 in S. And, x satisfies three properties of budget-balance, weak cross-
monotonicity and weak summability stated as follows:

1. B-budget balance: For all S, and orderings o5 on S:

2. Cross-monotonicity: For allie€ S, SCT, o5 C orp:

X(i7S7 US) > X(i,T, UT)

Here , 05 C o means that the ordering og is a restriction of ordering o7 to subset S.
3. Weak n-summability: For all S, and orderings og:

S|

ZX(% Se,05,) <nf(S)
=1

where i, is the ¢** element and S, is the set of the first £ members of S according to ordering og.
And, og, is the restriction of og on 5.

Note that these conditions are weaker than those stated earlier in Section 3. We call such a cost-
sharing scheme an (7, 3)-cost-sharing scheme. Given, these conditions, we will first prove the result
for a simpler case.

LEMMA 3. For instances (f,V,{p:}) such that (a) f(S) is non-decreasing and admits an (n,[3)-
cost-sharing scheme (b) marginal probabilities p; are all equal to 1/K for some integer K, and (c)
the worst case distribution is a K-partition-type distribution, the correlation gap is bounded as:

L V1KY e
TG V./ED ="

Proof. Let the optimal K-partition corresponding to the worst case distribution is
{A1, Ay, ..., Ax}. Assume w.lo.g that f(A;) > f(A2) >...> f(Ak). Fix an order o on elements
of V such that for all k, the elements in A; come before A,_;. For every set S, let o5 be the restric-
tion of ordering o on set elements of set S. Let x is the (n,3) cost-sharing scheme for function f,
as per the assumptions of the lemma. Then by weak n-summability of x:

I(f,V,{1/K}) = Escv[£(S)] > £ Escv [ S0 x(ir, Si, 05,)] (15)

where the expected value is taken over independent distribution.
Denote ¢(V) :=Egcy [Z}ill x(i1,S1,05,)]. Let p=1/K. We will show that

6(V) > (1 - p)p(V\Ay) + ;fuh)

Recursively using this inequality will prove the result. To prove this inequality, denote S_; =
SN (V\A;), S;=SnNA,, for any S CV. Since elements in A; come after the elements in V\A4; in
ordering g, note that for any £ <|S_;|, S, CS_;, and for £ > |S_4|, i, € S;.

$(V) = Es[ 50" x(i,81,05)] + Bs[ X2l 0 X(it, S1y05))] (16)
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Since S, C SU A;, using cross-monotonicity of x, the second term above can be bounded as:

Es[Y s 1o X S05)] > Es[S 4 x (i, S U AL osua,)] (17)

Because S_; and S; are mutually independent, for any fixed S_;, each ¢ € A; will have the same
conditional probability p=1/K of appearing in S;. Therefore,

ES[ZQSHS 1|+1X(Zl75UA1)USUA1)] =Eg_ 1[Esl [Zz [S_q|+1 X(il,S—1 UAhffs,luAl)\S—ﬂ] (18)
= pE571[ZleAl (Z 571UA17O-S',1UA1)]

Again, using independence and cross-monotonicity, analyze the first term in the right hand side

of (16),

Es[S50 v (i, Si,05)] = Es [0 x(ir, 1, 0s,)]
> (1-p) Es, [3)57" (ZhSlaUSl)]ﬂU Es (S X (i, S U AL 05 0a,)]

= (1-p) (V\Al) +P Es [0 X(i, S U AL, 05 10a,)] 19)

19

Based on (16), (18) and (19), and the fact that the cost-sharing scheme x is 8-budget balanced,
we deduce

= (1 p) (V\Al) +p ES 1[ I _1‘ (’Llﬂs’ UA17US 1UA1) +Zz€A X(Z S_ UAlvaS 1UA1)}
> (1-p) o(V\AL) + 5p Es,l[f(S U A
> (1=p) o(V\A) + 5p f(A1),

(20)
The last inequality follows from monotonicity of f. Expanding the above recursive inequality for
Ay, ..., Ak, we get
1

B kZl pklfAk) (21)

Since f(Ay) is decreasing in k, and p=1/K by simple arithmetic one can show
K K k-1
S pf(Ar)- MK})))

(1= 1) 2 pf(A)

o(V)

Vv

Y
= =

By definition of ¢(V'), this gives:

1
TV AYRD 2 o (1= D) £V (1/K))

O
Now, we can prove Theorem 2, by reducing any general problem instance to an instance
satisfying the properties required in Lemma 3 using Split operation.

Proof of Theorem 2. As in the proof of Theorem 1, we can reduce any instance {f,V,{p;}}
to an instance {f’,V’,{1/K}} by splitting so that the worst case distribution for new instance is
K-partition type, and the correlation gap of the new instance is atleast as large as the original
instance. Also, f’ is non-decreasing, if f is. The only property we need to prove is that given the
original (7, 3) cost-sharing method y for f, there exists a (7, 3)-cost-sharing method x’ for f’.
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Given cost-sharing scheme y, construct x’ as follows: Cost-share x’ coincides with the original
scheme y for the sets without duplicates, but for a set with duplicates, it assigns the cost-share
solely to the copy with smallest index (as per the input ordering). That is, any S’ C V', ordering
0%, and item C} (j-th copy of item i) in ', allocate cost-shares as follows:

; x(i,5,05), j=min{h: C} €S},
X(C}. 8y = { {6 Shos) I minh: Cie 51 (22)
where S =1I(S"), o is the ordering of lowest index copies in o%,, and min is taken with respect
to the ordering o7,.

It is easy to see that the property of 3-budget-balance carries through to the new cost sharing
scheme. Weak n-summability holds since

5| S|

ZX/(7’27 2705’4) = ZX(ija‘S’jaUSj) < ﬁf(s) :nfl(S/)

=1 j=1

where S =1I(S"), 0 is the ordering of lowest index copies in o%,. Also, the scheme is cross monotone
in following weaker sense. x’ is cross-monotone for any S’ CT",0¢5 C o7/ such that og/, 07 respect
the partial order Ag,...,A; of elements, and S’ is a partial-prefiz of T”, that is, for some k €
{1,....,K}, S"CAgU---UA,, and T"\S" C A, U---UA;. To prove this weaker cross-monotonicity,
consider S’ C T’ 05 C o such that S’ is a “partial prefix” of T’. Now, for any i’ € S’, if ¢ is not
a lowest indexed copy in 7", then x(i',7",07.,) =0, so that the condition is automatically satisfied.
Let ¢’ is one of the lowest indexed copies in 7", then it must have been a lowest indexed copy in
S’ since S’ is a subset of 7', and og C ops. Thus,

X(/i/)Tlao-’ll‘/) - X(Z7T7 UT) S X(Zu S7 US) = X(ilvsl)aé/)

where S =T1I(S"), T =1I(T"), 05, 0r are the orderings of lowest indexed copies in S’,T" respectively.
Note that the inequality in above uses cross-monotonicity of x, which is satisfied only if in addition
to S C T, we have that g C op. That is, if the ordering of elements of S is same in og and or. We
show that this is true given the assumption that og/, 07 respect the partial ordering Ag,..., A,
and S’ is a “partial prefix” of T". To see this, observe that the splitting was performed in a manner
so that atmost one copy of any element appears in each A,. So, among the items 7"\S’, any copy
of an element of S can occur only in 7"N{A;_1,...,A;}. Since S C Ax U---U Ay, this means that
for any element i € S, its copies in 7"\\S” can occur only later in the ordering than those in S’. So,
elements of 7'\S” cannot alter the order of lowest indexed copies of elements in S’. This proves
that og C o7p.

Thus, all the conditions in Lemma 1 are satisfied by the new instance except for the cross-
monotonicity. The weaker cross-monotonicity that the new instance satisfies is actually sufficient
to prove Lemma 1. To see this, observe that cross monotonicity is used only in Equation 17 and
19, and at both of these places, the required prefix condition is satisfied. Thus, Lemma 1 can be
invoked to bound the correlation gap for the new instance, thereby completing the proof. ]

Appendix E: Proof of Lemma 2

For any fixed z, the worst case expected cost is the optimal value of following linear program,
where {as}scy represents a distribution over subsets of set V:

L(f.V{p:}) = max, Y gasf(z,S5)
St D g jegs=p;, VieV
Zsagzl (23)
Qg Z O, VS Q V.
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It is easy to verify that
Dn ifS=25,
; (pi—piv1) i S=8,1<i<n-1
1—p if S=10

0 o0.W.

is a feasible solution to (23). Next we show that it is actually the optimal solution. The dual of
linear program (23) is:

min, y v+ p’A

st. f(S) =g Ni <, VS
Consider the problem in A for a given value of «. This problem is to minimize a linear function with
positive coefficients (p;) over the supermodular polyhedron (of supermodular function f(S)— 7).
Minimizing a linear function over a supermodular polyhedron can be solved by a greedy procedure
Edmonds (2003), with the optimal value given by > " p:(f(S;) — f(Si-1)).

Then (24) can be rewritten as

(24)

n—1

min, v+ p, f(S™) + Z(pz —pit1) f(S") = pLf(0)
s.t. (D) <~. -

The optimal solution for above is v = f(0), therefore optimal value:

Puf(S™) + 200 (i = piya) F(SY) + (1= p1) f(0)
=2_s55f(S)

This proves the lemma.



