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This work examines the impact of discharge decisions under uncertainty in a capacity-constrained high-risk setting: the
intensive care unit (ICU). New arrivals to an ICU are typically very high-priority patients and, should the ICU be full
upon their arrival, discharging a patient currently residing in the ICU may be required to accommodate a newly admitted
patient. Patients so discharged risk physiologic deterioration, which might ultimately require readmission; models of these
risks are currently unavailable to providers. These readmissions in turn impose an additional load on the capacity-limited
ICU resources.

We study the impact of several different ICU discharge strategies on patient mortality and total readmission load. We
focus on discharge rules that prioritize patients based on some measure of criticality assuming the availability of a model
of readmission risk. We use empirical data from over 5,000 actual ICU patient flows to calibrate our model. The empirical
study suggests that a predictive model of the readmission risks associated with discharge decisions, in tandem with simple
index policies of the type proposed, can provide very meaningful throughput gains in actual ICUs while at the same time
maintaining, or even improving upon, mortality rates. We explicitly provide a discharge policy that accomplishes this.
In addition to our empirical work, we conduct a rigorous performance analysis for the family of discharge policies we
consider. We show that our policy is optimal in certain regimes, and is otherwise guaranteed to incur readmission related
costs no larger than a factor of (p + 1) of an optimal discharge strategy, where p is a certain natural measure of system

utilization.
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1. Introduction

The intensive care unit (ICU) is the designated location for
the care of the sickest and most unstable patients in a given
hospital. These units are among the most richly staffed in
the hospital: for example, in California, licensed ICUs must
maintain a minimum nurse-to-patient ratio of one-to-two.
Critically ill patients, who may be admitted to a hospital
because of multiple illnesses, including trauma, need urgent
admission to the ICU. Although it is possible to hold these
patients in other areas (e.g., the emergency department)
pending bed availability, this is quite undesirable, because
delays in providing intensive care are associated with worse
outcomes (Chalfin et al. 2007). Consequently, in such situ-
ations, clinicians may elect to discharge a patient currently
in the ICU to make room for a more acute patient. For the
sake of precision, we will refer to this as a demand-driven
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discharge. In theory, the patient selected for such discharge
would be one who was sufficiently stable to be transferred
to a less richly staffed setting (such as the transitional care
unit (TCU) or medical surgical floor), and, ideally, the term
“stable” would be one based on ample clinical data. In
practice, because predictive models of patient dynamics are
not readily available, clinicians must make these transfer
decisions based entirely on clinical judgment. It is natu-
ral to conjecture that demand-driven discharges might be
associated with costs; namely, the following:

e Patient Health Related Costs. Patients subject to a
demand-driven discharge could potentially face additional
risks of physiological deterioration. Such deterioration
might ultimately require readmission. Even worse, readmit-
ted patients tend to require longer stays in the ICU and have
a higher mortality rate than first-time patients (see Snow
et al. 1985, Durbin and Kopel 1993).
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o System Related Costs. Readmitted patients impose an
additional load on capacity-limited ICU resources. Ulti-
mately this hampers access to the ICU for other patients.

Thus motivated, the present work examines the poten-
tial benefits of a quantitative decision support system for
clinicians when faced with the requirement to identify a
patient for discharge in order to make room for a more
acute patient. The hope is that the availability of such
a system could lead to both better patient outcomes and
simultaneously increase efficiencies in the use of scarce
ICU resources. More formally, associating a demand-driven
discharge with some cost that depends on the physiolog-
ical characteristics of the patient discharged, our goal is
to “optimally” discharge patients so as to minimize total
expected costs associated with demand-driven discharges
over time. One example of such a cost may be the increase
in mortality risk because of a demand-driven discharge.
As a second example, one might consider the increase in
expected readmission load associated with the increased
likelihood of readmission because of a demand-driven dis-
charge. We will eventually estimate and test several such
cost metrics.

Our analysis will consider a stylized model of an actual
ICU where the number of ICU beds is fixed.! Patients
arrive to the ICU at random times; patients are categorized
into a finite number of classes based on their physiolog-
ical characteristics upon admission. There exist a number
of proprietary classification systems based on a patient’s
physiological characteristics. All new arrivals must be given
an ICU bed immediately; they cannot queue up and wait
for a bed to become available. This models the aforemen-
tioned fact that new ICU patients are typically extremely
high priority. If no beds are vacant upon the arrival of a
new patient, a current patient will have to be discharged
in order to accommodate the newly arriving patient.> The
demand-driven discharge of a patient will incur a cost that
depends on that patient’s class; this cost is modeled to
reflect the impact of the demand-driven discharge on the
patient as well as the system as described above. Our goal
will be to minimize the expected costs incurred because of
demand-driven discharges over some finite horizon. This is
a difficult problem, and our analysis of this stylized model
will suggest simple policies for which we will develop per-
formance guarantees. More interestingly, we will conduct
a detailed simulation study based on real data to examine
our recommendations.

1.1. Our Contributions

We make the following key contributions:

o [nterpretability. We show that a myopic policy is
a potentially good approximation to an optimal policy.
This corresponds to an index policy wherein every patient
class is associated with a class specific index. The index
for a given class can be computed from historical patient
flow data in a robust fashion. Depending on the cost metric
under consideration, we will demonstrate that these indices

can serve as natural measures for patient criticality that
have both clinical as well as operational merit. The index
policy then has an appealing clinical interpretation: when a
patient must be discharged in order to accommodate new
patients, one simply discharges an existing patient of the
lowest possible criticality index.

e Robustness. Our index policy is “robust”. In particu-
lar the indices we compute are oblivious to patient traffic
intensities that are highly variable and difficult to estimate.
Rather, they rely on quantities relevant to specific classes
of patients that are typically far simpler to estimate from
data. For the data set under consideration, relative changes
of estimated parameters greater than 50% were typically
required to induce a change in the associated indices.

e Performance Guarantees and Operational Relevance.
We demonstrate via a theoretical analysis that our index
policy is, for a certain class of problems, optimal and in
general incurs total expected cost that is no more than
1+ p times that incurred under an optimal discharge rule,
where p is a certain natural measure of ICU utilization. We
identify a cost metric—the increase in expected readmis-
sion load because of a demand-driven discharge—that in
addition to enjoying a clinical interpretation as a measure
of criticality, can be shown to capture a notion of through-
put optimality.

e Empirical Validation. Most importantly, we calibrate
our model to empirical data from over 5,000 patient flows
at a large privately owned partnership of hospitals and
identify parameters for patient dynamics. We consider a
variety of cost metrics, including several natural metrics
motivated by existing clinical literature and modifications
of these cost metrics such as the operationally relevant met-
ric alluded to above. We measure the impact of these dis-
charge policies along two dimensions. First, to understand
impact at the individual patient level, we measure mortality
rates under the various policies. Second, to understand sys-
tem level impact we measure the readmission load incurred
under the various policies. In doing so, we identify a pol-
icy that, in addition to fitting within the ethos of ordering
patients by a measure of criticality, has substantive benefits
over other, perhaps more “obvious” policies: Under modest
assumptions on patient traffic, it incurs a 30% reduction in
readmission load at no cost to mortality rate.

As such, this study provides a framework for the design
of demand-driven discharge policies and in doing so iden-
tifies a policy that allows us to utilize available ICU
resources as effectively as possible while not sacrificing the
quality of patient outcomes. At a high level, our analysis
suggests that investments in providing clinicians with more
decision support (e.g., severity of illness scores and the
associated risks of physiological deterioration) could trans-
late into tangible benefits both in terms of improved patient
outcomes, increased efficiency, and decreased costs.

1.2. Related Literature

The use of critical care is increasing, which is making
already limited resources even more scarce (Halpern and
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Pastores 2010). In fact, it was shown that 90% of ICUs
will not have the capacity to provide beds when needed
(Green 2003). As such, it is the case that some patients
may require premature discharges in order to accommo-
date new, more critical patients. In a recent econometric
study (Kc and Terwiesch 2012), these types of patient dis-
charges were shown to be a legitimate cause of patient
readmissions thereby effectively reducing peak ICU capac-
ity because of the additional load the readmitted patients
bring. The empirical data we have analyzed in calibrating
our ICU model corroborates this fact.

There has been a significant body of research in the med-
ical literature that has looked at the effects of patient read-
missions. In Chrusch et al. (2009), high occupancy levels
were shown to increase the rate of readmission and the risk
of death. Unfortunately, readmitted patients typically have
higher mortality rates and longer hospital lengths of stay
(see Franklin and Jackson 1983, Chen et al. 1998, Chalfin
2005, Durbin and Kopel 1993 and related works).

When a new patient arrives to the ICU, either after expe-
riencing some trauma or completing surgery, he must be
admitted. If there are not enough beds available, space must
be allocated by transferring current patients to units with
lower levels of staffing and care. In Swenson (1992) and
related works, the authors examine how to allocate ICU
beds from a qualitative perspective that is not based on
analysis of patient data but rather on philosophical notions
of “fairness.” The authors propose a five-class ranking sys-
tem for patients based on the amount of care required
by the patient as well as his risk of complications. Our
approach may be seen as a quantitative perspective on
the same problem wherein decisions are motivated by the
analysis of relevant quantitative patient data. To date, the
work (particularly in the medical community) on how to
determine discharge decisions has been rather subjective
because of the lack of information-rich models that attempt
to capture patient dynamics. Thus, these works (see for
instance Bone et al. 1993 and a study by the American Tho-
racic Society 1997) have not considered that discharging a
patient from the ICU in order to accommodate new patients
may result in readmission, further increasing demand for
the limited number of beds and ultimately compromis-
ing the quality of care for all patients involved. We not
only propose such a model, but also show the efficacy of
discharge policies that utilize this previously unavailable
information.

Dobson et al. (2010) consider a setup quite similar
to ours but ignore the readmission phenomenon; rather
they simply seek to quantify the total expected number of
patients discharged in order to accommodate new, more
critical patients. To this end, they analyze a policy that
chooses to discharge patients with the shortest remaining
service time (which are modeled as deterministic quanti-
ties). As will be seen in §5, which presents an empirical
performance evaluation using a real patient flow data set,

a distinct heuristic is desirable when one does account for
patient readmission.

A number of modeling approaches have been used to
make capacity, staffing, and other tactical decisions in
the healthcare arena (see for instance Huang 1995, Kwak
and Lee 1997, Green et al. 2006a). Queueing theory has
been particularly useful to study the question of necessary
staffing levels in hospitals. As examples of this work, Green
et al. (2006b) and Yankovic and Green (2011) consider
a number of staffing decisions from a queueing perspec-
tive. The goal is to provide patients with a particular ser-
vice level (in terms of timeliness, and also nurse-to-patient
ratio) while at the same time addressing issues such as
temporal variations in arrival rates of patients of different
types. See also Green (2006) for an overview of the use
of operations research models for capacity planning in hos-
pitals. Murray et al. (2007) consider different factor such
as age, gender, physician availability, and number of visits
per patient per year to determine the largest patient panel
size that may be supported by available resources. In Green
and Savin (2008), the authors consider how to reduce delay
in primary care settings by varying the number of patients
served by the particular primary care office. When a patient
wishes to make an appointment, he may be delayed before
the physician is able to see him. Two significant differ-
ences separate the problem we consider from those consid-
ered in the above streams of work: arriving patients to an
ICU must receive service immediately (which thus necessi-
tates discharging current patients). This in turn requires that
we consider individual patient dynamics and in particular
model the impact of discharging a patient to accommodate
new ones on the discharged patient’s likelihood of revisit-
ing the ICU. We can then make staffing decisions in much
the same way as the aforementioned work.

In a related paper on ICU patient flow (Shmueli et al.
2003), the authors examine the affect of ICU admission
strategies on the distribution of ICU bed occupancy. The
authors assume it is possible for patients to wait for an ICU
bed, regardless of their criticality. For the specific ICUs we
consider, waiting is highly undesirable (thereby necessitat-
ing our modeling decisions that arriving patients be given a
bed immediately). An interesting direction for future work
would be to consider an intermediate scenario, where some
patients may be delayed, whereas others must be given a
bed immediately.

Finally, relative to recent work by Chan and Farias
(2009), we note that the present paper considers a class
of models entirely distinct from the “depletion problems”
studied there and succeeds in establishing relative approx-
imation guarantees for a class of models left unaddressed
by that past work. The properties we exploit in our analysis
are new and it would be interesting to understand whether
the techniques introduced here have application to the more
natural cost-minimization variants of the queueing prob-
lems introduced in Chan and Farias (2009).
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The rest of the paper proceeds as follows. Section 2 for-
mally introduces the queueing model and patient dynamics
we study. In §3, we analyze the performance of an index
policy that selects patients to discharge in a greedy manner
based on their expected costs incurred because of demand-
driven discharges. We explore a scenario where the pro-
posed greedy policy (based on an information-rich model)
is, in fact, optimal. Furthermore, in a more general setting,
we show that the greedy policy is guaranteed to be within
a factor of (p+ 1) of optimal, where p is a measure of sys-
tem utilization. In §4, we discuss various measures of criti-
cality that constitute clinically relevant cost metrics. These
measures include an important refinement to a criticality
measure that has received some attention in the critical care
literature. In §5, we discuss the calibration of our model
using a proprietary ICU patient flow data set from a group
of private hospitals. Having calibrated our model, we show
in §6 that our primary proposal outperforms a number of
benchmarks of interest. We conclude in §7.

2. Model

We begin by proposing a stylized model of the patient flow
dynamics in a hospital ICU and account for the fact that
discharging a current ICU patient in order to accommo-
date a new one is undesirable for the discharged patient
and comes at a “cost.” At a high level, our model captures
the fact that a newly admitted patient must receive ICU
resources and that this requirement in turn could necessitate
the discharge of an existing ICU patient. Such a discharged
patient may suffer physiologic deterioration because of the
demand-driven discharge. Because arriving patients cannot
be queued or blocked, the model we consider is distinct
from a typical queueing model. Presuming a measure of
cost associated with a demand-driven discharged patient, a
natural goal is to find a patient discharge policy that mini-
mizes this cost.

Preliminaries. We consider time to be discrete and
indexed by ¢ € [0, T]. In each time slot, we must determine
if a patient must be discharged and, if so, which one. If
there are enough available beds to accommodate all current
and arriving patients, discharge of current patients is not
required.

We assume that patients may be classified into one
of M classes, each potentially corresponding to the partic-
ular ailment/health condition of the ICU patient. Let m €
M=A{1,2,..., M} denote the type of a particular patient.
Patients from a given class are assumed to have identical
statistics for their initial lengths of stay and identical costs
associated with a demand-driven discharge. Specifically, we
assume that the initial length of stay for a patient of class m
is a geometric random variable with mean 1/u?. If such a
patient is discharged prior to completing treatment because
of the arrival of a more acute patient, a cost, ¢,, = 0, is
incurred. Although the patient length of stay distribution
is assumed to be memoryless for the purposes of analysis,

our empirical study assumes log-normal distributions for
length of stay that are fit to the empirical data (see §5).
Finally, in §3.3, we discuss an extension to our model that
is able to capture a patient’s evolution and changing condi-
tion during his ICU stay by using a phase-type length-of-
stay distribution.

At most one new patient can arrive in each time slot
and an arrival occurs with probability A. We define p =
A/min,, u® as a measure of the utilization of the ICU:
a higher p implies a more stressed ICU and a lower value
implies more able bed resources. Notice that this measure
does not rely on the relative arrival intensities of various
patient types. We let a, , denote the probability that a
newly arriving patient at time ¢ is of type m. These proba-
bilities are deterministic and known a priori to the optimal
discharge policy; the policy we study will require neither
knowledge of A nor the probabilities a ,,.

We assume that the ICU has B beds. If all B beds are full
and a new patient arrives, then a patient must be discharged
prior to completing service in order to accommodate the
newly arrived patient. We let x, , € {0, 1,..., B} denote
the number of class m patients currently in the ICU at
the beginning of time slot # and let y, , € {0,1} be an
indicator for the arrival of a type m patient at the start of the
tth epoch. Note that because at most one new patient can
arrive in each time slot, }¥_, Y.m <1 forall . A current
patient must be discharged if >"V_ Xt > Yim =B+
1; we refer to this type of discharge as a demand-driven
discharge. The natural departure (or service completion) of
patient type m occurs at the end of the rth time slot with
probability u’ after any demand-driven discharge and/or
admission occurs.

State and action space. The dynamic optimization prob-
lem we will propose is conveniently studied in a “state
space” model. We define our state-space as the set

M
F = {(x,y,t): xe{0,1,....B}", Y x,<B,yef{0,1}",
m=1

M
Zymgl,OSIST}.
m=1

In particular, the state of the system is completely described
by the number of patients of each type currently in the ICU,
the type of the arriving patient at that state if any, and the
epoch in question. We denote by x(s) the projection of s
onto its first coordinate and similarly employ the notation
y(s) and #(s). We let the random variable s, € & denote the
state in the rth epoch. Note that because the {a, ,} process
is assumed to be deterministic and given a priori, the cur-
rent time slot ¢ completely specifies the arrival probabilities
for each patient class.

For each state s, let 9{(s) C / denote the set of fea-
sible actions that can be taken in time slot #(s). For
states wherein a demand-driven discharge is required,
i.e., states s for which Y, x(s), + y(s),, > B, we have
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A(s) ={m: x(s),, >0}. At all other states s, H(s) =
{m: x(s),, > 0} U {0}. Thus, an action A € 3(s) specifies
the class of the patient, if any, to be discharged in time slot
t(s); because only one patient can arrive in each time slot,
at most one demand-driven patient discharge is required to
accommodate a new patient. We will henceforth suppress
the dependency of the set of feasible actions, $/(s), on s.
Dynamics. Let s’ = S(s, A) denote the random next state
encountered upon employing action A (demand-driven dis-
charge of patient type A) in state s. A random num-
ber, X, ,,, of class m patients will complete treatment
and depart naturally, where X, ,, is a binomial-(x(s),, +
¥(5),y — Ljs_pny» mo,) random variable. Let Hence, R, be
independent random variables, defined for each z, indi-
cating the type of an arriving patient at the start of the
tth epoch. Hence, R, takes values in {1,2,..., M} U {0};
R, = m with probability Aa, ,, for m e {1,2,..., M} and
R, =0 with the remaining probability. The vector denoting
arrivals at the next state, Y, ., is then given by Yy, , =
Lk, =m)- Thus, s"=S(s, A) is defined as

X(S/)m = X(S)m + y(s)m - I{A:m} - Xl(x),m’
y(s,)m = Lys)+1,m>
t(s")y=1t(s)+ 1.

Cost function. The cost incurred for taking action A is
defined by a cost function C: & x s{ — R_. Such a cost
function might capture a number of quality metrics. For
instance, the cost function might reflect the net decrease
in quality-adjusted life years (QALYs) as a result of a
demand-driven discharge. Our discussion is able to cap-
ture any such cost function. We take C(s, A) = ¢, for A €
{1,2,..., M}, and C(s,0) =0. In §4, we discuss clinically
relevant cost metrics.

Objective. Let 11 denote the set of feasible discharge
policies, 7w which map the state space & to the set of fea-
sible actions . Define the expected total cost-to-go under
policy m as

T—1
jw(s) = E|: Z C(St/, 77(51’)) Si(s) = Si|'
t'=t(s)

We let J*(s) = min,.; J7(s) denote the minimum expected
total cost-to-go under any policy. We denote by 7* a cor-
responding optimal policy, i.e., w*(s) € argmin_;; J7(s).

The optimal cost-to-go function (or value function) J*
and the optimal discharge policy #* can in principle
be computed numerically via dynamic programming; in
particular, define the dynamic programming operator #
according to

(#J)(s) =min E[C(s, A) +J(S(s, A))] )

for all s € ¥ with #(s) < T — 1. The optimal value func-
tion J* may then be found as the solution to the Bellman

equation #J = J, with the boundary condition J(s") =0
for all s’ with #(s") = T. The optimal policy 7* may be
found as the greedy minimizer with respect to J* in (1).
The minimization takes into consideration the current state
s, the distribution of future patient arrivals, as well as the
impact of the current decision on future states. References
to an optimal policy in subsequent sections will refer to
precisely this policy. The size of & precludes this straight-
forward dynamic programming approach. Moreover, even
if an optimal solution were possible, the robustness of such
an approach and its implementability remain in question
because it relies on detailed patient arrival statistics that are
typically not stationary and difficult to estimate. As such,
our goal will be to design simple, robust heuristics for the
load minimization problem at hand.

In addition to the above objective, one may also consider
the task of finding an average-cost optimal policy; i.e., the
task of finding a stationary policy 7 (a policy that satisfies
(s) = w(s") for all s, s with x(s) = x(s"), and y(s) =
v(s")), that solves

K*(s) = m;n K™ (s),

where k7(s) = limsup,_ (1/T)E[ IT,;;(S) C(sy,m(s,)) |
S5y = 8] is the average-cost to go (i.e., the long-run
costs incurred because of demand-driven discharges) under
policy . .

It is not difficult to see that the Markov chain on &
(the projection of & on its x and y coordinates) induced
under any stationary policy 7 is irreducible, so that in fact,
the above problem is solved simultaneously for all s by a
common stationary policy 7*, and k™ (s) = k™ for all s € &
and a stationary policy 7. Finally, the ergodic theorem for
Markov chains implies (with some abuse of notation), that

K™= v.(s)C(s, m(s)),

sed

where v, is the stationary distribution induced by 7 on 2.

3. A Priority-Based Policy

This section introduces an index policy for the dynamic
optimization problem proposed. Under such a policy, the
patient selected for a demand-driven discharge is simply
chosen from a patient class that would incur the mini-
mal cost. In particular, such a policy states that the patient
(class) 7#(s) chosen for discharge satisfies

78(s) € argmin C(s, A) = argmin ¢,,. 2)
Aedi(s) medi(s)

It is easy to see that the policy specified by (2) has a natu-
ral implementation as an “index” policy. It is interesting to
note that implementing such a policy requires data about
particular patient classes but does not require the estimation
of arrival rates of the various classes. This latter informa-
tion is highly dynamic and difficult to estimate.
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Because the policy we have proposed ignores the effect
of future arrivals and the expected length of stay of the
current occupants, it is natural to expect such a policy to
be suboptimal. In the appendix, example A shows what can
g0 wrong.

In light of the suboptimality of our proposed priority
based policy, the remainder of this section is devoted to
establishing performance guarantees for this policy. In par-
ticular, we identify a setting where the greedy policy is, in
fact, optimal. More generally we establish that the greedy
policy incurs expected costs that are at most a factor of
(p+1) times the expected costs incurred by an optimal pol-
icy (i.e., the greedy policy is a “(p + 1)-approximation™),
where p = A/ul, (here u°, =min,u’) is a measure of
the utilization of the ICU defined in §2: a higher p implies
a more stressed ICU and a lower value implies more able
bed resources. This latter bound is independent of all other
system parameters.

3.1. Greedy Optimality

In this section, we consider a special case of the general
model presented in §2 for which a greedy discharge rule
is optimal. The proof of this result can be found in the
appendix. In particular we have the following theorem:

THEOREM 1 (GREEDY OPTIMALITY). Assume that for any
two patient classes i, j with ¢; < ¢; we also have 1/l >
1/ [L?. Then, we have that the greedy policy is optimal, i.e.,
JE(s)=J*(s), Vsef.

Theorem 1 considers problems for which patients with
lower cost also have higher nominal lengths of stay. In this
case, because eliminating a low-cost patient also frees up
capacity that would have otherwise been occupied for a
relatively longer time, it is intuitive to expect the greedy
policy to be optimal. However, the assumptions of the the-
orem are likely to be restrictive in practice. In the next

section, we consider the performance of the greedy policy
without any assumptions on problem primitives.

3.2. A General Performance Guarantee

Our objective in this section is to demonstrate that the
greedy heuristic incurs expected costs that are within p+ 1
times that incurred by an optimal policy as discussed in
§2. In particular, we will show that for any state s € &,
JE(s) < (p+ 1)J*(s), where p = A/ul. is a utilization
ratio defined in §2.

To show the desired bound, we begin with a few prelim-
inary results for the optimal value function J*. The proofs
of these results can be found in the appendix. The first
result is a natural monotonicity result that says that having
an ICU with higher occupancy levels is less desirable than
having lower occupancy levels. In particular,

LEMMA 1 (VALUE FuncTioN MoNOTONICITY). For all
states s, s' € F satisfying x(s) = x(s), y(s) = y(s'), t(s) =
t(s"), we have

J(s) = J*(s).

In words, the Lemma 1 states that all else being equal,
it is advantageous to start at a state with a fewer number
of patients occupying the ICU. Now suppose in state s we
chose to take the greedy action as opposed to the optimal
action (assuming of course that the two are distinct). It must
be that the former leads to a higher cost state than does the
optimal action. The following result places a bound on this
cost increase. In particular, we have

LEMMA 2 (ONE STEP SUBOPTIMALITY). For any state s €
and a=p/(p+1),

E[J(S(s, m ()] < aC(s, 7(s)) + E[J*(S(s, 77(5)))].

In words, Lemma 2 tells us that if we were to deviate
from the optimal policy for a single epoch (say, in state s),
the impact on long-term costs is bounded by the quantity
aC(s,m*(s)). We now use this bound on the cost of a
single period deviation in an inductive proof to establish
performance loss incurred in using the greedy policy; we
show that the greedy heuristic is guaranteed to be within a
factor of p+ 1 of optimal, where p = A/u®. is the utiliza-
tion ratio of the ICU defined in §2.

THEOREM 2. For all s € &, J4(s) < (p+ 1)J*(s).

Proor. The proof proceeds by induction on the number of
time steps that remain in the horizon, T — #(s). The claim
is trivially true if #(s) = T — 1 because both the myopic
and optimal policies coincide in this case. Consider a state
s with ¢(s) < T — 1 and assume the claim true for all states
s with #(s") > #(s).

Now if 7*(s) = w¢(s) then the next states encoun-
tered in both systems are identically distributed so that
the induction hypothesis immediately yields the result for
state 5. Consider the case where 7*(s) # 7¢(s). Defining
a=p/(p+1), we have

J*(s) = C(s, 7(s)) + E[J*(S(s, 7"(5)))]
2 (1 =a)C(s, m(s)) + E[J7(S(s, m(s)))]
2 (1—a)C(s, m(s)) + E[J*(S(s, 7% (5)))]
> (1 —a)C(s, m(s)) + E[(1 — a)J*(S(s, m(5)))]
=1 —-a)J(s)

JE(s). (€)

The first equality comes from the definition of the optimal
policy. The first inequality comes from Lemma 2. The sec-

ond inequality comes from the definition of the greedy pol-
icy that minimizes single period costs. The third inequality
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comes from the induction hypothesis. The second equality
comes from the definition of the greedy value function.
This concludes the proof.

Our guarantee on performance loss suggests that in
regimes where ICU utilization is low, the greedy policy is
guaranteed to be close to optimal. At some level, this is
an intuitive result—Ilow levels of utilization should imply
infrequent demand-driven discharges as there are likely to
be available beds when new patients arrive; Theorem 2
makes this intuition precise by demonstrating a bound on
how performance loss scales with utilization levels. Our
guarantees are worst case; later in this section we will con-
sider a generative family of problems for which the per-
formance loss is a lot smaller than predicted, even at high
utilization levels. Moreover, we will demonstrate via an
empirical study using patient flow data, that the greedy pol-
icy is superior to a number of benchmarks that resemble
current practice. Before we continue, we briefly discuss
extensions to the model presented in §2 and how the pre-
sented results can be applied.

3.3. Patient Evolution During ICU Stay

Thus far, we have assumed the distribution for the length of
stay of each patient is memoryless. Because the health of a
patient will vary over the course of his stay, one may wish
to employ a length-of-stay distribution that does not have a
constant hazard rate. We now consider how to incorporate
this more realistic scenario.

For each patient class m, consider a random progres-
sion of the state of their health condition. Let A" €
{hg, hy, ..., h::‘} denote the set of health condition states
patient class m can achieve. Whenever a new patient of
type m arrives, it begins with a health state of Af'. Assum-
ing that a patient is in health state A in some epoch, the
patient departs with probability u’ (k™). If he does not
depart, he evolves to health state A, with probability v,
and remains in state /&)’ with probability 1 — y*. Should a
patient in health state )’ be demand-driven discharged, the
cost he introduces is ¢, (h"'). The different health condi-
tion states and corresponding departure probabilities enable
us to capture the changes (improvement or deterioration)
in patient health as a patient spends time in the ICU. Note
that there are no constraints on the relationship between the
w2 (k™) so that the patient does not necessarily improve
with time. Indeed, there have been studies that show that
patients likelihood of departure decreases the longer they
have spent in the hospital (Chalfin 2005).

The state space now needs to be expanded to incorporate
the different health states each patient class can achieve.
To do this, we can redefine x(s) to be a two-dimensional
array, where x,, ,(s) denotes the number of class m patients
in health condition state /)'. We consider using the natural
analogue to the greedy policy discussed thus far:
¢, (hy)-

7é(s) € argmin

(m, n): X, n (5)>0

Now, Lemma 1 can be established exactly as before for
this new system, with the understanding that we will say
x(s) = x(s') iff x, ,(s) > x,, ,(s") for all m, n. Further,
the analysis used in the proof of Lemma 2 also applies
identically as in the case of that result to show that for

a=p/(p+1),
E[J(S(s, T ()] < aC(s, 7(s)) + E[J(S(s, 7 (5)))],

where we now define

A

P~ min,,_, w8, (k)
With these results, the proof of Theorem 2 applies verbatim
to yield the following:

THEOREM 3. For all s € &, J™ (s) < (p+ 1)J*(s).

3.4. Patient Diversions

Throughout our discussion we have assumed that all new
patients must be given a bed immediately. In some cases,
high occupancy levels in an ICU can lead to congestion in
other areas of the hospitals, such as the Emergency Depart-
ment (ED), because patients cannot be transferred across
hospitals units. In Allon et al. (2012) and McConnell et al.
(2005), it is shown that when ICU occupancy levels are
high, ambulance diversions increase. Because of the inabil-
ity to move patients from the ED to ICU, patients are
blocked from the ED and ambulances must be diverted to
other hospitals. In de Bruin et al. (2007), the authors exam-
ine the case of bed allocation given a maximum allowable
number of patient diversions in the case of cardiac intensive
care units. The authors identify scenarios where achieving
the target number of patient diversions is possible, but they
do not consider how to make admission and discharge deci-
sions. Ambulance diversion comes at a cost—for both the
hospital and patient. The hospital loses the revenue gener-
ated for treatment (McConnell et al. 2006, Melnick et al.
2004, Merrill and Elixhauser 2005), and delays because of
transportation time may result in worse outcomes for the
diverted patient (Schull et al. 2004). On the other hand,
diversions can sometimes alleviate overcrowding (Scheulen
et al. 2001).

Typically, diverted ambulance patients are not the ones
who require ICU care (Scheulen et al. 2001). However,
within a hospital it may still be possible to block new ICU
patients admissions, either by diverting them to another
unit (i.e., a TCU or general floor) within the same hos-
pital or transferring them to an ICU in a different hos-
pital (because of the integrated nature of the hospital
system we study, such intrahospital transfers do occur).
Blocking new patients may reduce the number of demand-
driven discharges. Note that these new patients are often
being transferred from a different hospital unit (emergency
department, operation room, general ward, etc.) rather than
being brought in by ambulances, which is the case of the
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extensive body of literature on ambulance diversions. Given
the ability to divert patients, we consider how to incorpo-
rate patient diversions into our model and decision anal-
ysis. We extend our model to allow new ICU patients to
be diverted to another hospital ICU or unit of lesser care.
Hence, when an ICU is full the hospital administrator must
decide whether to block the new patient or to make a
demand-driven discharge of a current patient in order to
admit the new patient.

To formalize the above decision making, we consider
the following extension of our model: in a given state s,
we permit an additional action corresponding to diversion,
which we denote by D; we let C(s, D) denote the cost
associated with a diversion in state s; as per our discus-
sion above, this cost must capture the increased risks to the
patient being diverted in state s (i.e., the arriving patient in
that state) as also potential revenue losses to the hospital.
We then consider employing the following policy: for states
s & P 1-€., states where the ICU has available capacity,
no action is necessary. Otherwise, we follow the following
diversion/discharge policy:

. w8(s), if C(s, D)= C(s, m(s));

7(s) = .
D, otherwise.

Now, Lemma 1 can be established exactly as before for this

new system, and the analysis used in the proof of Lemma 2

also applies identically as in the case of that result to show
that for a =p/(p+ 1),

E[J*(S(s, A())] < aC(s, 7 (5)) + E[J*(S(s, 7 (5)))]-

Given these properties, the proof of Theorem 2 applies ver-
batim to yield

THEOREM 4. For all s€ &, J7(s) < (p+ 1)J*(s).

3.5. Comparison to Optimal

This section is devoted to examining the performance loss
of the greedy policy via numerical studies. We compare the
greedy and optimal policies for a set of smaller problems
for which the optimal policy is actually computable. In the
following section, we examine larger problem instances cal-
ibrated to empirical data and compare the performance of
the greedy policy to a number of benchmark policies.

In §3.2, we have shown that the greedy performance is
an (p + 1)-approximation algorithm to optimal. To enable
computation of the optimal policy, we consider a small sce-
nario with B = 10 beds, M =2 patient types, and a time
horizon of 240 time slots (assuming admission and dis-
charge decisions are made every six minutes, or 10 times
an hour, this corresponds to a time horizon of 24 hours).
For each data point, we fix the probability of arrival of each
patient type. We consider 100 different realizations for the
nominal length of stay and cost of demand-driven discharge
of each patient type, which we vary uniformly at random

Figure 1.

Performance of greedy policy compared to
optimal for varying arrival rates.
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with mean 25 hours and 2.5 units of cost, respectively. For
each fixed set of parameters—a; ,, u?, and ¢,—we calculate
the optimal policy using dynamic programming. We com-
pare the average performance of this optimal policy to the
performance of the greedy policy over 100 sample paths.

Figure 1 shows the ratio of the greedy performance to
the optimal performance (J¢(s)/J*(s)) for a range of dif-
ferent arrival rates. As from §2, the probability of a patient
arrival is given by A and the probability an arrival is of
patient type 1 is given by a,. Values above one show the
loss in performance because of using the greedy policy.
We can see that the greedy policy performs within 3% of
optimal, which is substantially superior to what the bound
in §3.2 suggests. In fact, for reasonable arrival rates (A <
0.05 means one patient arrives every two hours) the per-
formance loss of the greedy policy is less than 1% of opti-
mal. These differences are so small they can essentially be
ignored because of possible numerical errors. The greedy
policy does not require arrival rate information and is much
simpler to compute than optimal. These simulation results
suggest that using the greedy policy results in little per-
formance loss while significantly reducing the computa-
tional complexity. In fact, whereas the complexity of the
greedy policy grows linearly in the time horizon, T, and
logarithmically in the number of patient types (log M), the
complexity of the optimal policy grows exponentially in
a number of problem parameters despite only resulting in
slightly higher performance. The simplicity and good per-
formance of the greedy policy, which simply prioritizes
different patient types, makes it desirable for real-world
implementation.

4. Clinical Relevance

Our exposition thus far has treated the problem of prioritiz-
ing patients for demand-driven discharges as a purely oper-
ational problem. In a nutshell, we have shown that if one
desires to minimize some long-run cost metric impacted
by demand-driven discharge decisions, then a priority rule
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that is “greedy” with respect to the cost metric serves as
a reasonable and operationally viable approximation to an
optimal policy.

This section considers clinical issues relevant to the
problem at hand. In particular, the clinical viability of a
discharge policy is of paramount importance. In particu-
lar, what remains to be specified are clinically relevant cost
metrics and priority rules that capture factors physicians
would like to account for in making discharge decisions.
Certainly, the general consensus of the medical commu-
nity is that patients should be discharged in order of least
critical first (see, for instance, Swenson 1992). However,
what determines criticality is left wide open to interpreta-
tion and is highly dependent on the experience and train-
ing of an individual physician. In fact, disagreements on
which patient should be discharged arise frequently and in
an effort to building a process around this critical deci-
sion, many hospitals are adopting an intensivist-managed
system that makes triage decisions for all patients in the
ICU (Franklin et al. 1990, Task Force of the American
College of Critical Care Medicine 1999). Although such
a process will remain necessarily subjective, there is a
strong desire that the process be informed by quantitatively
designed best-practice recommendations. In this sprit, we
consider several policies that fall within the ethos of a pri-
ority rule based on measures of patient criticality that have
been broached in the extant medical literature.

Mortality risk. A natural measure of patient “criticality” is
mortality risk. In fact, the commonly used APACHE (acute
physiology and chronic health evaluation) and SAPS (sim-
plified acute physiology score) severity scores are based on
mortality predictions for ICU patients (Zimmerman et al.
2006, Moreno et al. 2005). Although it is obvious that
patients with high mortality risk are “critical” and should
not be demand-driven discharged, intensivists are likely to
find this measure of criticality too crude to be of value in
practical scenarios. To be more precise, one typically needs
to be able to distinguish among patients all with relatively
low mortality risk but variedly long and complex recov-
eries. In addition, a metric based solely on mortality risk
will fail to capture a system-wide view of the ICU and
in particular, the impact a discharge decision for a given
patient might have on the ability to provide timely and qual-
ity care for other patients. Specifically, such a metric fails
to account for the impact a discharge decision has on ICU
congestion—congestion in the ICU can result in postpon-
ing surgeries, delaying admissions, and/or rerouting patients
to other units—all of which are associated with worse out-
comes (Metcalfe et al. 1997, Mitchell et al. 1995, Smith
et al. 1995, Chalfin et al. 2007, Renaud et al. 2009, Rincon
et al. 2010). As such, it is ethically important to consider
factors related to congestion in making such decisions.

Readmission risk. A potential refinement on using simply
mortality risk as a measure of patient criticality is account-
ing for readmission risk. In fact, measures related to read-
mission risk have been gaining attention and credibility in

the medical community motivated primarily by two fac-
tors: medical outcomes and payment structures. In terms of
medical outcomes, readmitted patients have been shown to
be worse off, with higher mortality and longer length of
stay (Chen et al. 1998, Durbin and Kopel 1993, Rosenberg
and Watts 2000). Recognizing the clinical risks associated
with readmissions, many hospitals are adopting discharge
strategies that account for patient readmissions (Franklin
and Jackson 1983, Yoon et al. 2004). In terms of mon-
etary incentives, readmissions can also increase costs by
over 25% (Naylor et al. 2004). Acknowledging the detri-
mental impact of readmissions on patient outcomes and
the extraordinarily high costs associated with the care of
readmitted patients, the Patient Protection and Affordable
Care Act (2010) requires Medicare to begin reducing read-
missions in 2013. Although physiology-based probabilistic
models for assisting ICU physicians in making discharge
decisions are not widely available, there has been recent
interest in developing risk scores to assess readmission
risks, similar to what the APACHE and SAPS scores do
for mortality (Gajic et al. 2008). In this spirit, one may
consider several concrete metrics.

A crude metric. As a concrete measure of readmission
risk, one might consider the likelihood of readmission. One
expects that such a measure will be fairly correlated with a
measure of mortality risk. At the same time, such a measure
will move toward addressing some of the pitfalls of using
mortality risk alone. That said, such a measure remains
somewhat coarse in two regards: First, it fails to account
for the actual impact of the demand-driven discharge deci-
sion itself on readmission risk; because readmissions might
arise because of a multitude of other factors, this is crucial.
Second, it fails to account for the diversity in complications
that might occur upon a readmission.

A refinement (our proposed policy). We consider a mild
refinement to the above measure of readmission risk: we
consider the increase in readmission load attributable to a
demand-driven discharge. Roughly speaking, we can think
of this refinement as accounting not only for readmissions,
but in addition, the typical length of stay upon such a read-
mission. More precisely, let p" and 1/u® " be the probabil-
ity of readmission and expected readmission LOS of patient
class m given he is naturally discharged. Similarly, let p”
and 1/uX-? be the probability of readmission and expected
readmission LOS of patient class m given he is demand-
driven discharged. By Chen et al. (1998), we expect to
have pY < p2 and p®V > pR-P Then the increase in read-
mission load attributable to the demand-driven discharge is
precisely

pRD pRN
ol _ Fm _ Pm

A-readmission load = D -
Mom Mom

We will in the subsequent sections consider a priority rule
that measures patient criticality via theA-readmission load
score. In addition to fitting in with the ethos of a prior-
ity rule that can be interpreted as a criticality measure,
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we see that this rule is consistent with assuming, in the
notation of the previous sections, a one period cost func-
tion C(s, A) that corresponds to the increase in readmis-
sion load because of the demand-driven discharge decision.
In the appendix, we show that such a cost metric is also
explicitly aligned with the desire to avoid a loss of through-
put because of congestion effects.

Other measures of criticality. Although we have outlined
the two broad criticality measures one might consider in
the medical community, yet other measures have been pro-
posed in the operations research community. In particular,
Dobson et al. (2010) consider prioritizing patients based
on a patients expected length of remaining stay. Unfortu-
nately, this is a fairly difficult quantity to estimate and as
such models to predict this quantity are also unavailable.
For completeness, we will also consider this measure in our
empirical investigation.

5. Empirical Data

The goal of this section is to calibrate a model from real
data that will permit us to compare the clinically relevant
policies discussed in the preceding section. We analyze
patient data from seven different private hospitals for a total
of 5,398 patients who completed at least one ICU visit.
Patient classes. Our first goal is to classify patients into
a small number of groups, each of which is defined on the
basis of physiological variables. There are many ways of
doing this, and we chose a method that is aligned with the
current process design philosophy of the hospital system
from which the data for this study was obtained. In partic-
ular, we classified patients into five different classes based
on the Kaiser Permanente Inpatient Risk Adjustment Score
(see Escobar et al. 2008), which is a severity score used
to predict the likelihood of death. These severity scores
are based on a number of different factors including age;
primary condition (cardiac, pneumonia, GI bleed, seizure,
cancer, etc.); lab results obtained 72 hours prior to hospital
admission; and chronic ailments (diabetes, kidney failure,
etc.), and others. They are quite similar to the well-studied
APACHE and SAPS scoring systems (for instance, the
¢ statistic for this score is in the 0.88 range) with the impor-
tant addition that they incorporate additional physiological
information obtained for patients in this particular hospital
system within a short time prior to their being admitted
to the hospital (that APACHE or SAPS scores would not
assume available). Like scoring rules of this type, the sever-
ity scores we use to classify patients may be interpreted as
a mortality risk figure. This severity score is used in the
hospital system we study, although the APACHE and SAPS
scores are not available to us. We quantize these severity
scores into one of five different bins of equal size. Table 1
summarizes the severity scores for the five patient classes
as well as the percentage of survivors. It is important to
note that we only use these scores as a convenient and clin-
ically interpretable way of classifying patients. We do not

Table 1. Patient classes.

Patient Range for

class predicted mortality  No. of data points % survivors
1 [0,0.0048) 1,089 99.5

2 [0.0048,0.0148) 1,084 97.0

3 [0.0148,0.039) 1,097 94.7

4 [0.039,0.1025) 1,067 91.8

5 [0.1025,1) 1,061 85.4

use the severity score of a patient for the purposes of pre-
dicting mortality, length of stay, probability of readmission,
and so-forth; rather, we directly estimate all of these factors
from data.

ICU occupancy levels. Our data set indicates the uti-
lization of the ICU upon patient discharge. We define the
“near capacity” or “full” state as when the ICU occupancy
level is at least 75% of its maximum. If the ICU occu-
pancy is less than 75% of maximum, we say the ICU is in
the “low” state. This characterization is similar to that in
Kc and Terwiesch (2012) and acceptable from a medical
perspective.

Sampling bias. Our study rests on the assumption that the
statistics governing a patient’s length of stay in the ICU, the
likelihood of their death, the likelihood of their readmis-
sion, and the lengths of any subsequent visits depend solely
on their health condition as summarized by their Kaiser
Permanente Inpatient Risk Adjustment Score and whether
or not they were discharged from a full ICU. Because
we are interested in isolating the impact of demand-driven
discharge to accommodate new patients on patient length-
of-stay statistics and the likelihood of readmission, it is
important to check that the distribution of severity scores
for patients in the group of patients discharged from a full
ICU is close to that of patients discharged from an ICU in
the low state. To this end, we use the Kolmogorov-Smirnov
two-sample test (see Smirnov 1939 and related references),
which is the continuous version of the chi-squared test. For
each pair of ICU occupancy levels (full versus low), we
compare the empirical distributions of severity using the
Kolmogorov-Smirnov test to see if the samples come from
the same distribution. We find that with significance level
of 1%, the samples do come from the same distribution.
Hence, we conclude with high probability, that the ICU
occupancy level parameter and the severity scores of data
points in our data set are independently distributed.

To summarize, a data point in our data set can
be expressed as a tuple of the form (S,D, (L, F)),
(L,, F)), ..., (L, F)), where S is a severity score, D is
an indicator of patient death during hospital stay, L, is the
patient length of stay on his nth visit to the ICU in the
episode, and F, is an indicator for whether the ICU was
full upon his nth discharge.

5.1. Estimation

We first estimate the probability of death for patients dis-
charged from a low versus full ICU. We estimate the
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nominal probability of death, P(D | Low),,, using the
fraction of patients who were discharged from a low occu-
pancy ICU and died during the same hospital stay:

Zi l{szl}l{FI":O}l{stm}
Zi 1{Fl[:0}1{5i6n1} |

P(D |Low),, =

where {F] =0} is the event that the ICU occupancy level
was low upon discharge of patient i from his first ICU
discharge and {S’ € m} is the event that the severity score of
patient i defines him as class m. Similarly, we can calculate
the probability of death when discharged from a full ICU:

Zi l{D":l}l(F,izl}l{s"em}
Zi I{F{:l}l{s"sm}

P(D | Full),, =

Table 2 summarizes the estimated probabilities of death for
each patient class along with the 95% confidence interval
for these estimates.

We notice that it is difficult to discern any substantial
impact of a demand-driven discharge on mortality. This is
not particularly surprising: although there exist studies that
suggest that demand-driven discharges increase mortality
rates (for example Chrusch et al. 2009), there are others
that find that mortality risks are not predicted by occupancy
levels (Iwashyna et al. 2000).

Our estimator for the nominal length of stay (LOS) for
patient type m, is simply the empirical average

2 Lil 1{F{=0} l{siem} 1{Di=0}

Zi l{ﬂf=0}1{sfem}1{0f=0}

p(LOSY),, =

low

where {F] =0} is the event that the ICU occupancy level
was low upon discharge of patient i from his first ICU dis-
charge and {S’ € m} is the event that the severity score of
patient i defines him as class m. Similarly o(LOS;,,),, is
an empirical standard deviation. Note that when calculat-
ing LOS, we exclude patients who died. This is common
practice in the medical community because various factors,
such as do-not-resuscitate orders can skew LOS estimates
for patients who die (Norton et al. 2007, Rapoport et al.
1996).

We also calculate the fraction of these patients who
return to the ICU during the same hospital stay to calculate
a nominal probability of readmission, P(R | Low),,. These
readmitted patients relapse because of numerous medical
reasons unrelated to being discharged; the discharge is

likely to be a natural departure as there is no need to
discharge patients in order to accommodate new ones when
the ICU occupancy level is low and there are available beds.
Thus,
P(R | LOW)m _ Zi 1{L§>O}1{F]’=0}1{S"Em} ’

Zi I{F{:O}l{siem}
where {L) > 0} denotes the event that patient i was
readmitted.

Finally, of patients readmitted to the ICU from among
those initially discharged from a nonfull ICU, we compute
an estimate of their expected length of stay upon readmis-
sion, according to

,LL(LOSR ), = 2 Lél{F{:O}1{L§>0}1{sfem}1{F2":0}1{Df:0}

low

ZiI{F{:O}1{L§>0}1{s1em}1{FZf:O}I{szo} ’
where {Fj = 0} denotes the event that patient i was dis-
charged from a low occupancy ICU upon his second ICU
discharge. Again, we exclude patients who died in this esti-
mation. Notice that u(LOS ), is an estimate of patient
length of stay upon readmission when the readmission is
due to medical factors unrelated to demand-driven dis-
charge. Table 3 states the values of the estimates for our
data set including information about the relevant number of
data points.

We compute similar estimates for patients discharged
from a full ICU; we assume these discharges are demand
driven. Of particular interest is the probability of patient
readmission when a patient is discharged from a full ICU,
P(R | Full),,. We estimate this probability according to
Zi 1{17]/:1}1{L£>0}1{Si€m}

Zi l{Fl":l}l{sfem}

We have seen that patients who are not discharged in
order to accommodate new patients may require readmis-
sion (Table 3); we expect that patients who are discharged
from a full ICU may require readmission for those same
reasons in addition to complications that arise because of
being demand-driven discharged. Therefore, we expect the
probability of readmission when discharged from a full ICU
to be higher than when discharged from a low ICU. We
also estimate the expected length of stay of such readmitted
patients according to

P(R | Full), =

R 2 Lél{F{=l}1{L§>0] 1{Si€m} 1[F2i=0} 1{Df'=0}
w(LOS; ), = .
Zi I{F{:l] 1{L§>0} l{Siem}l{FZ’:O}l{Di:O]

Table 4 states the values of these estimates for our data
set including information about the relevant number of data

points.

Table 2. Mortality: Probability of death when patients naturally depart and when patients are demand-driven discharged.
Patient class No. of data points P(D | Low) [95% CI] No. of data points P(D | Full) [95% CI]
739 0.005 0.000,0.010 350 0.003 0.000, 0.009

682 0.022

669 0.079
621 0.167

(O N US I R

[ | [ ]
[0.011,0.033] [ ]
679 0.059 [0.041,0.077) 418 0.043 [0.024,0.062]
[0.059,0.099] [ ]
[0.138,0.196] [ ]

402 0.017 0.004,0.030

398 0.088
440 0.116

0.060,0.116
0.086,0.146
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Table 3. Nominal patient parameters: Operational parameters when patients naturally depart and are not discharged in

order to accommodate new patients.

Patient ~ No. of data  w(LOS? ) No. of data ~ u(LOSE))

class points (hours) a(LOSY ) P(R | Low) [95% C1] points (hours) a(LOSR )
1 735 45.7 134.2 0.073 [0.054,0.092] 34 36.1 40.5

2 667 46.7 50.8 0.095 [0.073,0.117] 46 66.0 118.1

3 639 59.7 98.4 0.102 [0.079,0.125] 39 106.9 212.5

4 616 78.1 201.8 0.115 [0.091,0.139] 45 110.5 289.3

5 517 89.6 116.7 0.119 [0.094,0.115] 34 161.4 365.5

Notes. Average initial length of stay (LOS?

low

from a “low” occupancy ICU. Length of stay is given in hours.

Contrasting the results in Tables 3 and 4 we see that
patients discharged during times of heavy ICU utilization
are markedly more likely to be readmitted, all else being the
same. In the following section, we will use the estimates we
have computed here to construct and simulate the clinically
relevant policies discussed in the previous section.

6. Performance Evaluation

The goal of this section is to explicitly construct the clin-
ically relevant policies discussed in §4 using the estimates
of the previous section. For each of the policies we con-
struct, we will primarily be interested in characterizing two
things.

Mortality. This is a first order measure of the clinical
impact of any demand-driven discharge practice. Given our
discussion in §4, one would hope that any of the clinically
relevant discharge policies considered there results in effec-
tively equivalent mortality rates. If this were not the case,
this would be cause to question the clinical viability of the
policies.

Measures of access. Assuming that two given policies
possess similar mortality rates, one may be concerned about
finer grained measures of performance. An important issue
raised in §4—and indeed a focus of this paper and recent
healthcare reform—was that of access. It is crucial that the
demand-driven discharge policies employed ensure equi-
table and maximal access to ICU resources while of course,
ensuring no sacrifice in terms of mortality rates. In fact, it
is entirely within reason that these two goals are aligned as
opposed to being at odds with each other.

), readmission probability P(R | Low) and readmission length of stay (LOS?

) when discharged

low

We next specify each of the policies discussed qualita-
tively in §4.

Mortality risk “P(D)”. Under this policy, if a demand-
driven discharge is called for, one selects a patient from
the class with the smallest probability of death, P(D), of
the patients currently in the ICU. Table 2 calibrates these
figures for patients in our data set. This translates to the
order 1, 2, 3, 4, 5.

Readmission risk I “P(R)”. Under this policy, one
selects a patient from the class with the smallest nominal
probability of readmission, P(R), of the patients currently
in the ICU. In particular, given the estimates from our data
set reported in Table 3, this translates to the order 1, 2,
3,4,5.

Readmission risk II “A-load”. This policy, which as dis-
cussed earlier, is a refinement of the readmission risk metric
above, has been a focal point of our study. We can estimate
the increase in readmission load for a given patient class,
m, as the quantity

P(R | Full), u(LOSE,),, — P(R| Low), u(LOSE,),,.

low

Using the data from Tables 3 and 4, this translates to the
priority order 3, 1, 2, 4, 5.

Remaining length of stay “LOS”. Under this policy, one
selects a patient from that class with the smallest remaining
length of stay. As such this is not a static index rule. In
particular, one needs to compute, for a patient of class m
that has been in the ICU for time ¢, the quantity E[LOS _ |
LOS?Ow > t], and prioritize patients in increasing order of
this quantity. In our simulations, we give this policy more
power and assume the realization for ICU LOS is known as

Table 4. Demand-driven discharged patient parameters: Operational parameters when patients are discharged in order to
accommodate new patients.

Patient No. of data w(LOSY, No. of data m(LOSE,

type points (hours) a(LOSY, P(R | Full) [95% CI] points (hours) a(LOSE )
1 349 54.3 138.9 0.086 [0.057,0.115] 9 61.4 71.8

2 395 51.7 54.1 0.109 [0.079,0.140] 16 112.0 200.2

3 400 59.4 79.3 0.120 [0.089,0.151] 17 99.6 86.8

4 363 62.8 68.1 0.136 [0.102,0.170] 17 175.7 375.1

5 389 92.7 138.2 0.132 [0.100,0.164] 17 237.1 577.8

Notes. Average initial length of stay (LOSY,), readmission probability P(R | Full), and readmission length of stay (LOS{,) when discharged
from a “full” ICU. Length of stay is given in hours.
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Table 5. Estimated parameters for discharge policies.
Patient Nominal Nominal A-readmission
type P(D) P(R) load (hours)
1 0.005 0.073 2.65

2 0.022 0.095 5.94

3 0.059 0.102 1.05

4 0.079 0.115 11.19

5 0.167 0.119 12.09

soon as a patient begins ICU care. This policy is analyzed
in Dobson et al. (2010) albeit for a model that is agnostic
to readmission loads.

Table 5 summarizes the patient parameters for the first
three policies. It is interesting to note that of the first three
policies, all three policies choose to protect patients of
types 4 and 5 from a demand-driven discharge. These are
patients with relatively higher mortality risk, and as such
this is a desirable feature. Interestingly, the A-load policy
differs from the first two in how it prioritizes the first three
patient classes that have low mortality risk. This allows for
the following interpretation of the A-load policy: it ensures
that patients with high mortality risk are the least likely to
be subject to a demand-driven discharge while carefully pri-
oritizing among patients with low mortality risk to account
not only for the likelihood they would have to be readmit-
ted as a consequence of the discharge, but also the extent
of the care they might require if such a readmission were
to occur.

We consider the following simulation setup: We assume
a time horizon of one week where admission and discharge
decisions are made every six minutes, or 10 times within
an hour, and consider an ICU with B = 10 beds. Although
these decisions may in reality occur on a continuous basis,
patient transfers are not instantaneous and the granularity
of six minutes per hour is fine enough to emulate an actual
ICU. Discharge policy simulations are over 1,000 sample
paths each. We use the parameters estimated in Table 5 for
nominal length of stay, probability of death, probability of
readmission, and change in expected readmission load. A
patient’s nominal length of stay is log-normally distributed.
We vary the probability of an arrival, A between 0 and
0.021 (i.e., between zero and five arrivals on average every
24 hours). An arrival rate A = 0.021 corresponds to five
patient per day, i.e., a turnover of 1/2 the beds in the ICU
each day, which is about the highest load seen in the ICU.
We use a uniform traffic mix across patient classes, which
is consistent with the empirical data. We note that in this
numerical study, we do not include diversions and disease
progression as patient data required to develop these mod-
els is fairly limited. For instance, Gajic et al. (2008) is one
of the few existing works that try to predict readmission
risks, and it is a static model. We leave such studies for
future research as more patient data becomes available. We
now report on the two issues we set out to examine, namely,
mortality and patient access.

6.1. Mortality Rates

We compare the number of deaths per week under the
various discharge policies. We consider an arrival rate of
2.5 patients per day, which corresponds to the load an aver-
age hospital could expect to a 10 bed ICU. In column (a) of
Table 6 we compare the number of deaths per week using
the point estimates of P(D | full) and P(D | low) given in
Table 2. We also consider the following robustness check
using the confidence intervals computed for our class spe-
cific mortality rate estimates: we consider that the various
probabilities (namely, P(D | full),, and P(D | low),,) each
take on one of their upper or lower confidence limits, and
consider all the 2'° resulting parameter combinations. We
conduct a separate simulation for each of these parame-
ter combinations and report for each discharge policy the
lowest and highest mortality rates across parameter com-
binations. The results are summarized in Table 6. We can
see that using both the point estimates, as well as under
our robustness check, all three policies are remarkably
similar.

We next consider a further robustness check assuming
that, in fact, the probability of death upon being demand-
driven discharged is substantially increased (beyond the
value estimated in the data)—we set the probability of
death for a demand-driven discharged patient 10%, 20%,
30%, 40%, and 50% higher than the estimated probabil-
ity of death for that patient class given in Table 2. We
compare the relative increase (decrease) in the number of
deaths compared to the proposed A-readmission load pol-
icy. Table 7 summarizes these results. Again, the table
reveals that the three policies continue to remain essentially
identical across the range of perturbations with no single
policy dominating.

From these experiments, we conclude that in as much as
mortality rates are concerned all four policies are viable and
result in essentially identical mortality rates. In spite of the
fact that the policies differ from each other, this reaffirms
our earlier assertion that all four of the policies will protect
patients with high mortality rates from a demand-driven
discharge.

Table 6.  Weekly mortality rate using (a) point esti-
mates, (b) the combination over the 95% con-
fidence intervals with the lowest rate, and
(c) the combination over the 95% confidence
intervals with the highest rate.

(@) (b) (©
No. of  Min. no. of  Max. no. of

Policy deaths deaths deaths

A-readmission load 1.014 0.751 1.325

P(death) and 1.004 0.764 1.332

P(readmission)
Shortest remaining LOS 1.022 0.740 1.303
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Table 7. Percentage increase over A-readmission load
policy in weekly mortality rate when artifi-
cially inflating P(death | full).

Inflation Shortest remaining P(death) and

factor (%) LOS (%) P(readmission) (%)

0 -0.9 0.9

10 0.0 0.5

20 0.8 0.1

30 1.5 -04

40 2.2 —-0.7

50 2.6 —-1.2

6.2. Patient Access

We measure access via the following proxy: Because
demand-driven discharges result in an increase in the
expected critical care requirements for the discharged
patient down the road, we measure the expected increase
in these requirements, measured in hours of ICU care. In
particular, we measure the expected increase in readmission
load incurred because of demand-driven discharges under
all four policies. Figure 2 shows the expected increased
readmission load in hours for the four discharge policies.
We can see that the proposed A-load policy outperforms
each of the benchmarks—in some cases by nearly 30%.
The next best policy in this regard is the one based on
(unadjusted) readmission and mortality risks, i.e., the P(R)
and P(D) index policy. Thus, although the problem of
minimizing readmission load because of required demand-
driven discharges is a hard one, the proposed A-load policy
appears to substantially outperform the benchmarks studied
here. As the arrival rate increases, more patients will need

Figure 2. Performance of proposed index policy com-
pared to benchmarks for various arrival rates
and distribution across patient types accord-
ing to the proportions seen in the empirical
data.
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to be demand-driven discharged in order to accommodate
the high influx of new patients. Consequently, the expected
readmission load increases significantly.

To appreciate the physical meaning of the costs estimated
in these experiments, we note that with 24 hours in a day,
an additional cost of 24 x 7 = 168 hours corresponds to
the loss of an entire bed for one week because it will be
occupied by readmitted patients. What we see is that for
five patient arrivals per day, the A-load policy incurs read-
mission load that is 13.5 hours lower than the next best
policy (the P(D) and P(R) policy), which corresponds to the
loss of a single ICU bed (in a 10 bed ICU) for a little more
than half a day per week. Over the course of a year this
corresponds to a free ICU bed for nearly a whole month.
The savings relative to the LOS index policy are higher.
Finally, in light of our study on mortality rates, these differ-
ences in performance do not come at the cost of increased
mortality.

In conclusion, we have observed the following:

Mortality. All four policies we considered at the outset
in §4 result in essentially identical mortality rates. We have
verified this fact across multiple “robustness” checks. We
attribute this to an attractive feature common to the first
three policies, namely, the fact that patients with high mor-
tality risk are protected from a demand-driven discharge.

Access. In terms of access (or equivalently, increase in
ICU load incurred because of demand-driven discharges)
the policies are quite dissimilar. The A-load policy (that
has been a focal point in this paper) provides the greatest
access. We attribute this to the fact that the policy carefully
prioritizes among patients with low mortality risk.

As such, we believe that the A-load policy might serve
as a useful guide to intensivists prioritizing demand-
driven discharge decisions among patients medically fit for
discharge.

7. Conclusion

Faced with the need to accommodate an acute, newly
admitted patient, a clinician may select from among
patients currently in the ICU, a relatively “stable” patient
for transfer to a less richly staffed hospital unit. A patient
so discharged from the ICU faces risks of physiological
deterioration that may ultimately require readmission to the
ICU. This is, of course, not an ideal situation either from an
efficiency standpoint or the standpoint of ideal patient out-
comes. The present work studied the feasibility of develop-
ing a decision support tool to aid clinicians in these difficult
decisions. We have attempted to gauge the value of such a
support tool using a large patient flow data set and quanti-
fied this value in terms of potential reductions in readmitted
patient load.

The model we have developed revolves around sim-
ple estimates of the cost associated with a demand-driven
patient discharge. We examine a number of clinically rel-
evant cost metrics including mortality and readmission
risks. We focus on a measure of readmission risk that
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incorporates the likelihood of readmission in addition to
the complexity of the readmission: change in readmission
load. We estimated our model from actual patient-flow data.
Given our model, we developed a simple index based policy
to serve as a decision support tool to a physician making the
aforementioned discharge decisions. Our support tool is, by
its structure, easy to implement from a clinical standpoint,
and highly robust to estimation errors. The latter point is
well reflected in our empirical study. Our study suggests
that implementation of our support tool could result in sub-
stantial reductions in readmitted patient load without sacri-
ficing mortality even under modest assumptions on patient
traffic, at least in the context of the hospital system from
which we collected the data for the study. Although the
Kaiser Permanente Inpatient Risk Adjustment Score has
been shown to have similar predictive power as the widely
used SAPS and APACHE scores (Escobar et al. 2008), the
value of our approach has not been established for these
other severity scores. This represents an interesting avenue
for future empirical investigation. It is remarkable that our
model demonstrates benefits despite (from a clinical stand-
point) being relatively simple—for example, it does not
include diagnostic or physiologic data available at the time
that a patient was discharged the following:

This work suggests several future potential research
directions, including the following:

1. Developing more complex predictive models of
patient dynamics that recognize the evolution of patients
over the course of their stay. We believe that the present
study is sufficient motivation to collect data that would
allow us to identify such a model. Such data could be
employed to assign patients a “readiness for discharge”
severity score similar in concept to other existing severity
of illness scores. This is also key to practical deployment
of a decision support tool.

2. It would be interesting to understand the impact of
a demand-driven discharge on other quantities of interest,
particularly metrics measuring quality of life impact.

3. Theoretically, we have shown that our index pol-
icy is optimal in certain regimes and guaranteed to incur
readmission loads of no greater that a factor of (p + 1)
of an optimal policy in general. It would be interesting
to understand traffic regimes where this bound could be
made tighter—this is, of course, a somewhat secondary
pursuit but nonetheless very interesting from a theoretical
perspective.

4. It would be interesting to initiate a study of ICU
admissions so as to move toward a more holistic view of
equitable and optimal allocation of hospital resources.

Appendix A. Greedy Suboptimality

Consider the case with B =2 beds and a time horizon of 7 =2.
There are two patient types, i € {1,2}. The parameters for each
patient type are as follows for some small € > 0:

fori=1: ul=1/2, ¢, =1

fori=2:uy=1, ¢,=1—¢.

Therefore, patient type 1 has nominal expected length of stay
of 2 and cost of 1. Similarly, patient type 2 has nominal expected
length of stay of 1 and cost of 1 —e.

Consider an initial state at t = 0 such that there exists two ICU
patients: one of each type. Hence, x, ; =1 and x, , = 1. Also, a
new patient of type 1 arrivesatt=0and t=1,i.e.,yy =y, =1
and yp , =y, ,=0.

At t =0, there are already two patients in the ICU, and a new
patient arrives. Therefore, a current patient must be discharged
in order to accommodate the new patient. The greedy policy dis-
charges patient type 2 at t = 0 because its cost is less than that
of patient type 1. This comes at a cost of 1 — e. Now, with this
demand-driven discharge and the admission of the new patient
there are two type 1 patients occupying the ICU. With probability
1/4 neither type 1 patient completes service and departs by 7 =1
and with the second new arrival, a patient must be discharged to
accommodate this new arrival at a cost of 1. With probability 3/4
at least one of the type 1 patients completes service prior to the
second new arrival and no demand-driven discharge is required at
t = 1. Hence, the expected cost of the greedy policy is 1 — € +
1/4=5/4—¢€.

On the other hand, the optimal policy recognizes that patient
type 2 has a very short length of stay and decides not to discharge
this patient at r = 0. Instead the optimal policy discharges patient
type 1 to accommodate the new patient, incurring a cost of 1.
Now with this demand-driven discharge and the admission of the
new patient, there is one type 1 patient and one type 2 patient
occupying the ICU. At the end of time slot r = 0, the type 2
patient completes service and departs naturally with probability 1.
Regardless of whether the type 1 patient departs naturally, when
the second new arrival comes at ¢ = 1, it can immediately be
accommodated without requiring a demand-driven discharge of a
current patient. Hence, the expected cost of the optimal policy is 1.

Taking € — 0 we see that J*(sy) < (4/5)J%(s,) here.

Appendix B. A Connection with Throughput

Here we make precise the connection with throughput maximiza-
tion when the cost metric of interest is the A-readmission load
associated with a demand-driven discharge. We consider a styl-
ized model of the ICU that accounts for patient readmissions.
Patients who are naturally discharged require ICU readmission
with probability 0. Patients who are demand-driven discharged are
readmitted to the ICU with probability p,, and have readmission
LOS that is exponentially distributed with mean 1/uf. Hence, the
cost associated with a demand-driven discharge of patient type m,
is the A-readmission load:

C(s,m)= p—?.

m

Consider an ICU with C beds. We consider the following setup:

1. There are B beds reserved for first-time arrivals with C —
B = B’ beds reserved for readmissions. Any reference to “state”
will be understood to correspond to the occupants of these B beds
and we will consequently employ the notation in §2.

2. The readmission queue is served according to a first-in-first-
out discipline.

3. In the event that B beds are occupied by first-time visitors, a
new arrival will prompt a demand-driven discharge according to a
stationary policy 7 that monitors the state of the B beds reserved
for first-time arrivals.
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Note that readmitted patients cannot be demand-driven dis-
charged. The rationale for this is natural: readmitted patients are
typically much worse off and have higher mortality rates and
longer lengths of stay. This is well established in the medical
literature (see Chen et al. 1998, Durbin and Kopel 1993, Snow
et al. 1985 among others). As such, subjecting such patients to a
demand-driven discharge is likely to be highly undesirable from
a practitioners perspective. In addition, the policy that prioritizes
patients should a demand-driven discharge be required may only
consider the state of the B beds reserved for first time arrivals;
one may dispense with this restriction but doing so is beyond our
scope here.

Given a vector A € [0, 1]¥ defined so that Aa,,, = A, for all
m (assuming time homogenous rates), we will refer to a policy
as stabilizing for A if under this policy the readmission queue is
stable. More precisely, we require the sequence of waiting times
{W,} experienced by patients in the readmission queue (a wait-
ing time is defined in the usual sense as the time between entry
into the readmission queue and the time before service begins),
has a sub-sequence that converges to a random variable W that
is a.e. finite.

Now, let us denote by the sequence 7, the interarrival time
between the nth and (n+ 1)st entry to the readmission queue, and
by S,, the service time required by the nth patient. Assume more-
over that no demand-driven discharges occur in the absence of a
need for one, i.e., w(s)=0if s & {(x,y): >, x(s),, + y(s),, =
B+1, Y, y(s), =1} = iAffu“ (recall again, that s here corre-
sponds to the state of the B beds reserved for first-time admis-
sions). Then, 7, is simply the time between the nth and (n+ 1)st
visit to a state in the set F}fu“ while S, is a geometric (uf (sn))
random variable with probability p , (Where s, corresponds to
the state of the B beds for first-time arrivals upon the nth dis-
charge) and zero with the remaining probability. Now, if s, ~ v,
then it is not hard to see that {7,,S,} is a stationary process.
The process is also ergodic; a consequence of the ergodicity of
the Markov chain induced by 7. A classical result of Loynes
(Theorem 8 of Loynes 1963) then establishes that the readmis-
sion queue is stable if E[T,] > E[S,]/(C — B), and unstable if
E[T,] < E[S,]/(C — B). Now, elementary arguments (see Durrett
1996) can be used to show that E[Ty] =1/3 4  V.(s) and
E[So] = sy Vo (9)C (s, T(8))/ Xseryy V(s)- In other words,
we have that the readmission queue is stable if

k™" <C—B,

and unstable if k™ > C — B, so that minimizing k™ maximizes
throughput, which motivates the problem that is the focus of
our study.

In addition, the following theorem shows that heuristics for the
problem of minimizing long-run readmission costs incur a propor-
tionate “dilation” of the set of arrival rate profiles that will result
in stable readmission queues. In particular, let A be a vector of
arrival rates that is in the interior of the throughput region for our
model. By this we understand that there exists a demand-driven
discharge policy 7} under which the readmission queue is stable
when the arrival rate vector is A, and moreover there exists an
€ > 0 such that the arrival rate vector A(1 + €) can also be stabi-
lized. Let us denote by 7, a policy minimizing k™ for the arrival
rate vector aA, where « € (0, 1]. Finally, let 7., be a possibly
suboptimal demand-driven discharge policy for the arrival rate aA
satisfying k7 /k™ax < 1/a. We have the following:

THEOREM 5. Assuming an arrival rate vector o, the readmission
queue is stable under the demand-driven discharge policy 1 ,,.

PrROOF. Let us denote by 7, (respectively, 7y) a policy min-
imizing k™ in a system with arrival rate vector aA (respec-
tively, A). Now consider the following suboptimal policy for an
arrival rate aA: we simulate arrivals of “fictitious” patients, so that
the net stream of patients (both actual and fictitious) has arrival
rate A. To this system we apply policy ;. Now by construction,
a discharge under this policy will correspond to the discharge of
an actual patient with probability «; with the remaining probabil-
ity, the discharge will be one of a fictitious patient and incur no
costs. It thus follows that this suboptimal policy incurs a cost of
precisely ak™ . Moreover, because it is suboptimal for the arrival
rate vector aA, it must be that

It follows that
Ko < (1/a)k™n < KA.

But given the fact that A was in the interior of the stability region,
it must be (by our earlier argument that showed k™an < ak™)
that k™ < C — B*, so that k™« < C — B*, from which the claim
follows. 0O

We have demonstrated a stationary policy 7¢ satisfying, for a
given arrival rate vector A, k™ /k™ < 1/(1 + p), where p was
a measure of utilization. It follows that should the readmission
queue be unstable under ¢, then it will remain unstable for
any arrival rate vector that strictly dominates (1 + p)A under any
stationary discharge policy. In other words, the use of the ¢
policy will correspond to a dilation of the throughput region by
a factor corresponding to the approximation guarantee we have
established.

Appendix C. Miscellaneous Technical Proofs

Proor oF THEOREM 1. We will, without loss, consider states s
at which all feasible actions require the demand-driven discharge
of a current patient (who has not yet completed treatment);
ie., >, x(s),, =B and y(s) # 0. For the sake of a contradic-
tion, we will assume that under any optimal policy 7*, 7*(s) &
argmin,,, ) ~o @, i.e., the patient selected for the demand-
driven discharge under any optimal policy is not among the set
of patient types that minimizes one-period costs at state s. For
notational convenience, we take 7*(s) = j, and i = 74(s) €
argmin,,,. () o @,,- Thus, by assumption we have that

J*(s) = C(s, j) + E[J*(S(s, /)]
< C(s, i)+ E[J*(S(s, )] (1)

Now, let 5, = S(s, j), and 5; = S(s5,i). We may assume that
x(s;)g = x(s;), Yk # i, j. Moreover, because C(s,i) < C(s, j),
we have 1/u) > 1/p) so that we may couple sample paths in
the system that used the optimal policy in state s (demand-driven
discharged patient j) with the system that used the greedy pol-
icy at state s (demand-driven discharged patient i) so that patient
i finishes service and departs in the epoch subsequent to #(s)
in the former system only if j finishes service and departs nat-
urally in that same epoch in the latter system. Thus, in time
slot t(s) + 1 we have either that (i) x(s;); — x(s;); = 1 and
x(s;); —x(s;); =0, (ii) x(s;); — x(s;); =0 and x(s;); — x(s;); =0,
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or (iii) x(s;); —x(s;); = 1 and x(s;); — x(s;); = 1. In case (i),
Lemma 1 implies that J*(s;) = J*(s;). In case (ii), we clearly
have J*(s;) = J*(s;) because s; =s;.

Let us consider case (iii), which says that neither patient i nor
J have departed by time slot #(s) + 1. We couple the systems
starting at states s; and s; so that they see identical arrivals and
identical service times (departures) for the patients they have in
common. Moreover, we couple the service times of the additional
type i patient in the s; system and the additional type j patient
in the s; system as follows: If after any required demand-driven
discharges in a particular time step, patient i and j both remain in
their respective systems, patient j will complete/depart with prob-
ability p,‘;. If patient j departs, patient i will depart in the same
time step with probability u?/ ,u,?; if patient j does not complete,
then neither will patient i. If only one of i or j are present, they
will complete with probability u? and ,u?, respectively.

Now let us consider using the following suboptimal policy
for the system starting at state s;: we assume that the additional
type j patient is in fact a type i patient, and apply the opti-
mal policy for this transformed state. If at some point the type j
patient completes service naturally, we choose to register this
departure with probability uf/u?, and with the remaining proba-
bility assume a “virtual” additional type i patient that will com-
plete service in subsequent periods with probability u?. If at some
point the discharge policy chooses the additional type j patient
(which it regards as a type i patient) for the demand-driven dis-
charge, we charge ourselves C(s, j) (notice that this may occur
after the actual patient has already departed and correspond to the
demand-driven discharge of the virtual patient), so that the costs
incurred here are certainly higher than under an optimal policy
for the s; system. Call this policy 7'. We use the optimal policy
in the s; system.

Let p; be the probability that the additional type i patient will
have to be demand-driven discharged in the s; system. Now we
have that J*(s;) = C + p,C(s, i), where C is the total readmis-
sion costs incurred for patients excluding the additional type i
patient. Notice that under our coupling, J™ (s;)= C+p,C(s, j)=
J*(s;)+p;[C(s, j)—C(s, )]. Consequently, we have that J*(s;) —
J*(5;) < pi(C(s, j) = C(s,0)).

Cases (i)-(iii) together yield E[J*(S(s,i)) — J*(S(s, j))] <
C(s, j) — C(s,i), which contradicts (Cl) (because C(s,i) #
C(s, j)) and yields our result. [

PrOOF OF LEMMA 1. Consider a coupling of the systems starting
at state s and s’ wherein both systems witness identical sam-
ple paths for patient arrivals and identical service times for the
patients they have in common. More precisely, assuming that at
time ¢, the systems are in states s, and s;, respectively, the patients
who arrive in both systems are coupled so that y(s,) = y(s;). Let
z(s,) and z(s]), be the patient vectors in both systems after these
arrivals and any potential demand-driven discharges. Then the
number of service completions in both systems over the remainder
of the rth epoch are coupled as follows: If z(s,),, > z(s]),,, then
the number of patients of type m that finish service and depart
naturally from the s" system is given by the binomial-(z(s}),,, 1%)
random variable X, ,, and the number of patients of type m that
finish service and depart naturally from the s system is given by
X, .+Z,,, where Z, . is a binomial-(z(s,),, — z(s}),,, u3,) ran-
dom variable. A symmetric situation must hold if z(s}),, > z(s,),,-

Now assume that the system starting at s uses an optimal pol-
icy, whereas the system starting at state s’ “mimics” the actions of

the s system (call this policy 77), so that if the s system chooses
to demand-driven discharge a patient of a particular type, the s’
system will also choose to discharge a patient of that type should
such a patient be available, whether or not this demand-driven dis-
charge is called for (i.e., whether or not a new patient has arrived
and there are no available beds). In the event that the s’ system
needs to make a demand-driven patient discharge and the s system
either does not need to make a demand-driven discharge or else
selects to demand-driven discharge a patient of a class not avail-
able in the s’ system, the s’ system discharges a randomly chosen
patient from among those available. It is easy to see that 7 is an
admissible randomized nonanticipatory policy: starting at state s’
one adds “virtual” patients so that the total number of patients
(real and virtual) of a given type in the s” system are identical to
the number in the s system. One then employs an optimal pol-
icy, and simulates service completion for virtual patients. We now
show that under our coupling, x(s,) > x(s;) for all 7.

The proof is based on induction in time. The base case follows
from our assumption that x(s) > x(s"). We assume that for all
t <k, x(s,) = x(s;) and will show this implies the same is true
for t =k+1. Let A, = m*(s;) and A} be the patient discharged at
time k under the 7 policy. Note that A} | < A, ,, by our definition
of 77 and the induction hypothesis. We have

X(8ps)m — X (S ) = [(X(5) 0 +(5) — Ak,m)Jr = Xt m]
— [ (s)m+ (5 = Al )" = X
2 x(5) = X(5) 0 + Xi = Xi
=X(5)m = XS )m — Zim

= 0.

The first inequality comes from our coupling and the definition of
the two policies. The second inequality follows from the definition
of Z, s Z,  <x(8,), — X(87) -

We may thus establish that for all #(s) <7< T, A, > A}, so that
C(s,, m(s,)) = C(s,, 7 (s;)) for all such ¢. Taking expectations
over the random patient arrivals and departures, we have J*(s) >
J7(s") = J*(s'), which is the result. O

PrROOF OF LEMMA 2. Without loss, we assume 7*(s) # 72(s)
(else, there is nothing to prove). By definition, we must have
X(8) 7e(s5)> X(8) r(s) > 0. Let S(s, *(s)) be the next state obtained
if one discharged both 7*(s) and $(s) in state s. In particular,
we define S(s, m*(s)) = § according to

X(8) () = X(8) rs) T V() ey — 1= Xy, m(s)»
X(8) () = X(S) s (5) + Y (o) = 1= Kooy, ma o)
X(5) =x(8) + () — Xy mF 7 (s), 7E(s)
Y& =Yiy41.m>

t(5) =t(s)+1,

where analogous to our earlier description of S(s, a), we define
X,(s),n+(s) (respectively, X,(S),Wg(x)) as a binomial (x(s)w*(x) +
V() mry — L [,L?TS(S)) (respectively, binomial (x(s)e(,) +
V() mey — L /u,grg(s))) random variable. For m # w*(s),
m(s), we define X, ,, as a binomial (x(s), + y(s),. &)
random variable; Y, +om is defined as before for all m.
Now, by construction, x(S(s, 7*(s))) < x(S(s, 7*(s))), while
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y(S(S,jT*(S))) =y(S(s, 7*(s)), so that by Lemma 1, we have that
E[T*(S(s, m*(s)D] < E[J*(S(s, m*(s5)))].

Now, let us consider the following suboptimal policy 7" for
the system in which the greedy action is taken at state s. Define
T=min{T >t > t(s): >, Y, , =1};ie., 7 is the first time after
the current time step #(s) that an arrival occurs (or infinite if no
arrival occurs prior to time T'). Then on the event that x(s,) ;+(,) =
X(8) (s + Ye(s), mo(sy — 1, 7" simply takes the optimal action for
t > 7 (so that, in fact 77’ coincides with 77* on this event). On the
event that x(s,) () = X(X) () + Vi(s),me(s) T (87) = 7*(s), and
7’ takes actions according to the optimal policy 7* for t > 7. The
probability that an eviction occurs under 7’ at 7 is simply the
probability that no patient of type 7*(s) has departed prior to the
next arrival; an event whose probability is at most A/(A + ,LL?],*(S)).
Observe moreover that we may couple the systems starting at state
S(s, w4(s)) and S(s,7*(s)) so that under the 7 policy in the
former system and the optimal policy in the latter, both state pro-
cesses agree on ¢ > 7, and moreover, no eviction will be required
at times # < 7 in the latter system. It follows that

E[J™ (S(s, m(s))]

S X, COm @) +EI G 7 )]

Because E[J*(S(s, m8(s))] = E[J™ (S(s, m¢(s))] and as estab-
lished earlier, E[J*(S(s, m¢(s))] < E[J*(S(s, 74(s))], the result
follows. [

Endnotes

1. Because a strict (one-to-two in California) nurse-to-patient
ratio must be maintained, it is often the size of the nursing staff
that determines the number of available ICU beds rather than the
actual number of physical beds that are available.

2. We later consider an extension of our model that includes the
additional option of blocking new patients.
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