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We analytically study optimal capacity and flexible technology selection in parallel queuing systems. We consider N
stochastic arrival streams that may wait in N queues before being processed by one of many resources (technologies) that
differ in their flexibility. A resource’s ability to process k different arrival types or classes is referred to as level-k flexibility.
We determine the capacity portfolio (consisting of all resources at all levels of flexibility) that minimizes linear capacity and
linear holding costs in high-volume systems where the arrival rate �→ �. We prove that “a little flexibility is all you need”:
the optimal portfolio invests O4�5 in specialized resources and only O4

√
�5 in flexible resources and these optimal capacity

choices bring the system into heavy traffic. Further, considering symmetric systems (with type-independent parameters),
a novel “folding” methodology allows the specification of the asymptotic queue count process for any capacity portfolio
under longest-queue scheduling in closed form that is amenable to optimization. This allows us to sharpen “a little flexibility
is all you need”: the asymptotically optimal flexibility configuration for symmetric systems with mild economies of scope
invests a lot in specialized resources but only a little in flexible resources and only in level-2 flexibility, but effectively
nothing (o4

√
�5) in level-k > 2 flexibility. We characterize “tailored pairing” as the theoretical benchmark configuration

that maximizes the value of flexibility when demand and service uncertainty are the main concerns.
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1. Introduction
Deciding on the appropriate amount and configuration of
flexibility is a classic management problem: should dif-
ferent types of products or customers be processed or
served with specialized or flexible capacity? And how
much flexibility is needed to effectively match demand and
supply? The extant literature on flexibility refers to the
ability of a resource to process multiple types of prod-
ucts as mix- (Chod et al. 2010), process- (Sethi and Sethi
1990), product- (Fine and Freund 1990) or scope-flexibility
(Van Mieghem 2008). Substantial progress has been made
in our understanding of flexibility over the last 20 years.
One important insight is that the choice between special-
ization and flexibility is not an “all-or-nothing” proposition.
The literature has advanced two different interpretations of
this insight that are most relevant to our paper: tailoring
and chaining.

Van Mieghem (1998) showed that it is typically optimal
to invest in a portfolio of two specialized and one flexi-
ble resource in a two-product newsvendor network with a
linear cost structure. The dedicated resources act as base
capacity and the flexible resource serves as an optimal
cost/benefit response to demand variability. We will refer
to such a portfolio approach of fitting or optimizing the
amounts and levels of flexibility to demand profiles as tai-
lored flexibility. While tailored flexibility is well under-
stood in a two-product setting, finding desirable flexible
processing systems for N > 2 products is much more dif-
ficult because the capacity portfolio can now consist of
2N − 1 different resources, and hence grows exponentially
in N . Recently, Bassamboo et al. (2010) analyzed such
a system in a newsvendor setting. To describe their key
result, let “level-k flexibility” refer to the ability to pro-
cess k ∈ 81121 0 0 0 1N 9 different product types. Then there
are

(

N

k

)

=N !/44N − k5!k!5 different resources with level-k
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flexibility, including N dedicated or specialized resources
with k = 1 and one fully flexible resource with k = N .
Bassamboo et al. (2010) shows that, if the flexibility pre-
miums are linear in the flexibility level, then the optimal
capacity portfolio invests in at most two adjacent levels of
flexibility. In this paper, we expand this result in a parallel
queuing network and show that, with mild economies of
scope (i.e., as long as capacity costs are not too concave in
flexibility), the investment is in levels 1 and 2.

In their seminal paper, Jordan and Graves (1995) showed
that “a little flexibility can achieve almost all the benefits
of total flexibility” by using only level-2 flexible resources
in a special configuration called chaining. Imagine a graph
where product types are represented by rectangles and
resources by circles, such as in Figure 1 for N = 3 prod-
uct types. An arc from a rectangle to a circle then rep-
resents a possible product-resource assignment and thus
that resource’s flexibility. Chaining represents any flexibil-
ity configuration of N level-2 flexible resources that are
connected, directly or indirectly, to all N product types by
product-resource assignments. Chaining allows for shifting
capacity from products with lower-than-expected demand to
those with higher-than-expected demand. Jordan and Graves
consider a single-period newsvendor network model where
random demand is allocated ex post to prefixed capacity.
Excess demand is assumed lost and the allocation objective
is to minimize the corresponding shortfall. Using simula-
tion and providing some analytical justification, Jordan and
Graves (1995) demonstrated that the expected shortfall and
capacity utilization of chained level-2 flexible resources is
close to the expected shortfall and utilization of fully flexi-
ble resources with the same capacity. In other words, “a little

Figure 1. Flexibility configurations for N = 3 product types.
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flexibility goes a long way.” Graves and Tomlin (2003)
showed that similar chaining benefits extend to multistage
systems. Hopp et al. (2004) generalized these chaining con-
figurations that utilize level-2 flexible resources to D-skilled
chains that consist of level-D flexible resources and showed
that these configurations perform well in serial production
lines. In recent work, Chou et al. (2008) used the concept
of graph expansion to construct flexible configurations that
work well in newsvendor networks.

In this paper, we consider a processing system with N

stochastic arrival streams, each requiring a different type
of stochastic service. Type i arrivals wait in buffer i before
processing and incur holding costs. The system manager
can invest in a portfolio of 2N − 1 different resources that
differ in their flexibility. The trade-off is simple: higher lev-
els of flexibility reduce holding costs more but come at a
higher investment cost. Indeed, in addition to the holding
costs, the system incurs a capacity cost rate that is linear in
capacity size and depends on the flexibility level. Although
our system is not amenable to exact analysis, we character-
ize analytically the optimal amount, level, and configuration
of flexibility for high-volume systems where the arrival rate
�→�. The key contributions of this paper are:

1. We prove that the optimal portfolio invests O��� in
specialized resources and only O�

√
�� in flexible resources

when costs are linear in the flexibility level. In other words,
“a little flexibility is all you need” in any high-volume, par-
allel queuing system. We also show that economic capacity
optimization brings the queuing system in heavy traffic.

2. For symmetric systems1 with mild economies of
scope,2 we prove that level-2 flexibility is all that is needed.
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Specifically, the asymptotically optimal flexibility configu-
ration invests O4�5 or a lot in dedicated resources, O4

√
�5

or a little in level-2 flexibility, but o4
√
�5 or effectively

nothing in level-k > 2 flexibility. This sharpens “a little
flexibility is all you need”—not only the amount but, also
the level of flexibility is small—and refines the findings in
Bassamboo et al. (2010).

3. We provide analytical expressions for the symmetric
capacity portfolio for N = 2 and N = 3 and for the maximal
asymptotic value of flexibility. This expression corresponds
to the performance of the asymptotically optimal symmet-
ric configuration called “tailored pairing” (cf. Bassamboo
et al. 2010). Tailored pairing uses a dedicated resource for
each arrival stream to serve the base demand, and a level-2
flexible resource for each pair of arrival streams to serve the
variable demand. Dedicated capacity is sized proportional
to expected demand, whereas level-2 flexible capacity is
proportional to the square root of demand. Because pair-
ing requires too many (N4N − 15/2) servers, its practical
appeal diminishes quickly as N grows. However, it serves
two important purposes: (i) it provides an upper bound on
the value of flexibility against which other configurations
can be “benchmarked”; (ii) it allows us to provide the first
analytic proof that tailored chaining is asymptotically opti-
mal for N = 3 in a queuing setting, which differs from the
newsvendor setting studied by Jordan and Graves (1995).
Indeed, tailored chaining and tailored pairing are identical
configurations for N = 3 and thus dominate dedicated or
fully flexible configurations, as shown in Figure 1.

4. The above analytic characterizations follow from two
methodological novelties:

• Our “folding” methodology allows us to specify
the asymptotic queue count process for symmetric systems
with a general capacity portfolio under dynamic longest-
queue scheduling in closed form that is amenable to opti-
mization. This technique involves folding the state-space
and studying the order statistics of the limiting queue-
length. This ordered queue-length process behaves as a
reflected Brownian motion in a wedge. For symmetric sys-
tems, we can then use the results in Williams (1987) to
specify the stationary distribution and expected holding
costs and optimize capacity analytically. To our knowledge,
we present the first closed-form analytical expressions
for the stationary queue-length distribution and asymptot-
ically optimal capacities for symmetric parallel queueing
networks.

• We also show that it is not economical to invest
in the sufficient amount of flexibility that leads to so-
called complete resource pooling (CRP). CRP amounts to
assuming that the resources have sufficiently overlapping
flexibility and that they work collectively to the extent
that they act as a single “super-server” in the heavy traf-
fic limit. That is, processing capacities of the various
resources are completely exchangeable in the heavy traf-
fic limit and single-dimensional dynamics result. Com-
plete resource pooling as introduced in Harrison and López

(1999) has been the natural assumption in the growing
literature on flexible queuing networks in heavy traffic
and obviously leads to excellent waiting time performance.
In contrast, CRP is suboptimal in our setting, given that
we prove the optimal amount of level-2 flexibility to be
O4

√
�5, which results in a truly multidimensional reflected

Brownian motion with state-dependent drift (arising from
the longest-queue scheduling). In other words, although
CRP could be obtained using level-2 flexibility only, it
would require more capacity than is optimal.

2. Model Primitives and Basic
Setup for Flexibility

We denote types by i = 1121 0 0 0 1N and the number of
type i customer or job arrivals by time t by A�

i 4t5. We
assume that all arrival processes are independent renewal
processes with common rate � > 0. A general model is
presented in Appendix EC.2. An electronic companion
to this paper is available as part of the online version
at http://dx.doi.org/10.1287/opre.1120.1107. Let ��

a denote
the standard deviation of the interarrival times. Each arriv-
ing job has a service requirement that is independent and
identically distributed across all the customers with mean
m and variance �2

s . The coefficient of variation of service
times is denoted by cs = �s/m, whereas that of the inter-
arrival times is ca = ���

a . We assume that ca is a constant,
independent of the rate �, and will henceforth denote �2 =

4c2
a + c2

s 5/2.
Unless we explicitly mention otherwise, we will assume

that our system is completely symmetric (i.e., all model
parameters are type independent), and we consider only
symmetric capacity assignments. That is, we assume that
each type has a dedicated resource assigned to it that oper-
ates at a fixed deterministic rate ��

1 that is the same for
each type. Further, note that each level-k flexible resource
can handle precisely one of

(

N

k

)

different subsets of types.
(We use the notation

(

p

q

)

= p!/44p− q5!q!5 if p ¾ q, and
0 otherwise.) Thus, there are a total of

∑N
k=1

(

N

k

)

= 2N − 1
different resources in the system. Due to the symmetry in
the system, each of the

(

N

k

)

level-k flexible resources are
assumed to have the same capacity, which we will denote
by ��

k . (Note that capacities scale the actual average ser-
vice time, i.e., if a service rate of � is allocated to a job,
its average service time is m/� and its variance is �2

s /�
2.)

Note that we assume that capacity can be sized continu-
ously by varying the service rate of a given portfolio of
resources.

The system incurs two types of costs: a holding cost h
that is incurred per job per unit of time spent in the system
(waiting and service) and a capacity cost rate that depends
on capacity size and flexibility level. We assume that capac-
ity costs are linear in size. The cost rate of capacity size �k

of a level-k flexible resource is ck�
�
k , where ck = c41+ãk5,

with ãk denoting the flexibility premium for level-k flexible
resources and we have ãk ¾ãk−1 and ãk > 0 for k¾ 2 and
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ã1 = 0. Notice that this includes concave flexibility costs
or economies of scope.

Let Q�
i 4t5 denote the number of customers of type i in

the system at time t and ƐQ�
i 4�5 its steady-state expected

value. Using the holding cost of h per job per unit time, we
obtain the total cost rate of a symmetric capacity portfolio
�� = 4��

1 1�
�
2 1 0 0 0 1�

�
N 5 as

ç�4��5=

N
∑

i=1

hƐQ�
i 4�5+

N
∑

k=1

(

N

k

)

ck�
�
k 0

Given that optimal capacities will lead to a stable system
where all jobs eventually get served, expected steady-state
revenues are independent of ��, and we seek the capacity
portfolio ��∗ that minimizes costs:

ç�∗
=ç�4��∗5= min

�¾0
ç�4�50 (1)

Given that our system involves GI/G/1 queue dynam-
ics, its stationary queue-length distribution cannot be
solved analytically in general. We can, however, obtain
a useful upper bound on the optimal cost as follows.
Observe that the optimal cost is bounded by the mini-
mal cost when using only dedicated servers: ç�4��∗5 ¶
min��

1¾0 ç
�4��

1 101 0 0 0 105. Using only dedicated servers
results in N independent GI/G/1 queues so that

ç�4��
1 101 0 0 0 105=N4hƐQ�

1 + c��
15

¶N

(

h

[

�2 ��
1

��
1 −m�

+ 1
]

+ c��
1

)

1

using Kingman’s bound (cf. Kingman 1962).3 The right-
hand side is convex in ��

1 and reaches a minimum at �̃�
1 =

m� + �
√

4h/c5m�, which yields an exact upper bound:
ç�4��∗5 ¶ min��

1¾0 ç
�4��

1 101 0 0 0 105 ¶ ç̄� + Nh4�2 + 15,
where

ç̄�
= Ncm�+ 2N�

√
chm�0 (2)

The upper bound also bounds the capacity cost and directly
shows how the optimal capacities depend on the volume �,
which is key to our analysis: ��∗ cannot be larger than a
term proportional to � plus a term that is O4�1/25, which is
exactly the condition to bring the system into heavy traffic.

A lower bound stems from considering a system where
all customer types are pooled into a single queue served by
a single server that costs only c. This lower bound is similar
to having a fully flexible server at the cost of a dedicated
server. Such a totally pooled system never experiences any
server idleness while jobs are waiting and thus dominates
the original multiqueue, multiserver system. In heavy traf-
fic, the Kingman’s bound is tight and, using (2) for a single
queue with arrival rate N�, yields as an asymptotic lower
bound ç�∗ ¾ç� + o4

√
�5, where

ç�
= Ncm�+ 2�

√
chm�N 0 (3)

The following result summarizes these results and is the
justification for solving this optimization problem asymp-
totically when � is large.

Theorem 1. The optimal cost ç�4��∗5 is bounded:

ç�
+ o4

√
�5¶ç�4��∗5¶ ç̄�

+ o4
√
�51 (4)

and any optimal solution 4��∗
1 1 0 0 0 1��∗

N 5 to the optimization
problem (1) satisfies ��∗ = �̃� + o4

√
�5, where

�̃�∗

1 =m�+ �̂1

√
�1 and (5)

�̃�∗

k = �̂k

√
� for k¾ 21 (6)

for some �̂11 0 0 0 1 �̂N ∈ � with �̂k ¾ 0 for k ¾ 2 and
∑N

k=1

(

N

k

)

�̂k > 0.

We call �̃� the “prescription” for a system with arrival
rate �. This theorem, which holds for asymmetric systems
as well (see Appendix EC.2 for details), has two impor-
tant implications. First, the optimal dedicated resources are
sized on the order of the mean demand or the arrival rate
and will serve the majority of the jobs. In contrast, the
flexible capacities are much smaller and only proportional
to the standard deviation of the demand, which is O4

√
�5.

Additional insight is found by considering a single class
system for which ç� = ç̄� and the asymptotically optimal
capacity and cost are:

��∗

1 = �̃�
1 + o4

√
�5=m�+�

√

h

c
m�+ o4

√
�51

ç�∗
= ç�

+ o4
√
�5= cm�+ 2�

√
chm�+ o4

√
�50

The asymptotically optimal capacity prescription �̃�
1 is the

sum of two parts: base capacity �m that matches the aver-
age arriving workload plus safety capacity �

√

4hm�5/c
that accommodates variability in the arriving workload.
The optimal safety capacity increases linearly with standard
deviation �

√
�1 as earlier observed (e.g., Kleinrock 1976,

p. 331), and exhibits economies of scale. Indeed, the capac-
ity per unit of demand rate is m + �

√

4hm5/4c�5, where
the safety capacity per unit decreases in �, as does the opti-
mal cost per unit. Notice that these expressions are similar
to results for capacity sizing in a newsvendor setting with
normal demand.

Second, the theorem proves that economic optimization
naturally brings the system into a parameter regime called
“heavy traffic.” (Loosely speaking, this means that the ded-
icated resources are heavily utilized. Indeed, the optimal
dedicated utilization ��∗

1 /�' 1− �̂1/
√
� tends to 100% as

�→ �.) The theoretical significance of the theorem is that
heavy traffic is not assumed, but the proved result of capac-
ity optimization. It also proves that configurations that sat-
isfy the so-called CRP condition, which are widely studied
in literature, are suboptimal. Under CRP, for all practical
purposes the capacities of all resources can be thought of as
being pooled together into one super-server that can process
all types. CRP leads to state-space collapse and results in
a single-dimensional limiting system. In contrast, we shall
prove that the optimal capacity configuration only exhibits
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partial resource pooling and results in an N -dimensional
limiting system. In other words, the optimal flexible capac-
ity is too small to lead to CRP.

Diffusion-scale optimization problem. Theorem 1 guar-
antees that we need only consider capacity portfolios of
the form 4m�+ �̂1

√
�1 �̂2

√
�1 0 0 0 1 �̂N

√
�5 to characterize

an approximate solution to (1) for large-volume systems,
where �̂ ∈M 2= 8�̂2 �̂k ¾ 0 for k¾ 2 and

∑N
k=1

(

N

k

)

�̂k > 09.
The latter condition is essential for stability as it ensures
that the total demand rate N� does not exceed total capacity
of the portfolio ��, i.e., N� <

∑N
k=1

(

N

k

)

4��
k/m5. Equiva-

lently, stability requires that we have positive safety capac-
ity

∑N
k=1

(

N

k

)

�̂k > 0. The corresponding resource cost is
Nc14m� + �̂�

1

√
�5 +

∑N
k=2 ck

(

N

k

)

�̂k

√
�. Focusing on this

regime, we can rewrite the optimization problem (1) as

min
�̂∈M

Ncm�+
√
�

(

h
N
∑

i=1

ƐQ�
i 4�5/

√
�+

N
∑

k=1

ck

(

N

k

)

�̂k

)

0

This optimization problem is equivalent to the following
optimization problem that we refer to as the diffusion-scale
optimization problem:4

min
�̂∈M

{

ç̂�4�̂5 2= h
N
∑

i=1

ƐQ�
i 4�5/

√
�+

N
∑

k=1

ck

(

N

k

)

�̂k

}

0 (7)

Although we can solve this optimization problem for any
finite � through simulation, to derive structural insights,
we will consider an analytical asymptotic analysis that
is accurate when the arrival rate � → �. Indeed, we
shall prove that the function ç̂�4�̂5 converges to the lim-
iting function ç̂4�̂5, which we will be able to spec-
ify in closed form. Moreover, we will characterize the
optimal scaled capacity �̂∗ that minimizes the limiting
cost ç̂ and use that solution to construct the prescription
4m�+ �̂∗

1

√
�1 �̂∗

2

√
�1 0 0 0 1 �̂∗

N

√
�5 as our approximate solu-

tion to (1) for a system with (finite) arrival rate �.
To illustrate our mode of analysis, we begin by consid-

ering the N = 2 type setting. In particular, we will demon-
strate the folding approach that allows tractability, and even
closed-form solutions. The general N case will be analyzed
in a similar manner and the detailed treatment is presented
in §4.

To formalize the mode of analysis, the following termi-
nology will be useful. All random elements in this paper
are defined on the probability space 4ì1F1�5. Further, we
assume all stochastic processes to lie in the space of func-
tions that are right continuous and possess left limits. For
a collection of probability measures P n and P defined on
4A1A5, where A is a general metric space and A its Borel
�-field, we use the notation P n ⇒ P as n → � to denote
the weak convergence of P n to P (cf. Whitt 2002).

A note on the use of symmetric capacity portfolios.
To characterize the asymptotically optimal capacity invest-
ments, we restrict attention to symmetric capacity portfo-
lios that invest equally in all resources at the same level of
flexibility. Given the symmetry in the problem parameters,

one expects such a symmetric portfolio to be optimal. This
optimality follows if the objective function is convex in the
capacity levels. Such a convexity is straightforward to show
in the newsvendor setting of Jordan and Graves (1995)
(see Van Mieghem 1998 and Bassamboo et al. 2010). In a
queueing setting, however, this amounts to showing that
the sum of the N queue-lengths is convex in the entire
2N − 1-dimensional capacity portfolio. Proving such con-
vexity statements in queueing systems is not easy and, to
the best of our knowledge, has only been done for single-
class systems and for parallel server systems with queue-
length independent routing (see, for example, Neely and
Modiano 2005). Although these results suggest that convex-
ity should extend to our setting, we have not been able to
prove this conjecture in general. Hence, we focus on sym-
metric capacity portfolios that were shown to be optimal in
flexible newsvendor systems (cf. Bassamboo et al. 2010).
These portfolios were also found to be optimal in numer-
ical experiments that we conducted (see §5 for details).
We would like to point out that we are able to prove our
first result that the asymptotically optimal capacity portfolio
invests O4�5 in dedicated resources and O4

√
�5 in flexible

resources without the symmetry assumption, that is, for any
number of resources at each level of flexibility with poten-
tially different capacity investments (see Appendix EC.2
for details).

3. A Two-Type Symmetric Model:
Asymptotically Optimal Flexibility

In this section, we analyze the optimal system configura-
tion in a symmetric system with two types of incoming
jobs. Such systems can use two dedicated resources and
one flexible resource that can serve either type. We will
restrict attention to “longest-queue (LQ)” policies with a
preemptive feature described as follows: When a dedicated
resource completes a service request, it next processes any
job in the system of its own type; if there is no such job,
it idles. Each flexible resource serves the type with the
longer queue preemptively, where the remainder of the ser-
vice time of the preempted job is taken up by the server,
which resumes processing this job. This method of preemp-
tion and the use of longest queue in symmetric system has
been studied in Zipkin (1995). LQ policies have also been
studied in Zheng and Zipkin (1990), Menich and Serfozo
(1991), and Van Mieghem (2003), and shown to be opti-
mal in specific settings. We expect this policy to be optimal
in our setting. However, proving this claim is beyond the
scope of the current treatment.5 In numerical and simula-
tion studies, Sheikhzadeh et al. (1998) and Jordan et al.
(2004) compare the LQ policy with other reasonable poli-
cies and find that it always outperforms these policies, even
for asymmetric systems.

3.1. The Folding Method

Asymptotically, we expect the scaled queue-length pro-
cesses to behave as diffusions. Much of the literature has
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shown that flexibility in such systems can result in complete
resource pooling where the multidimensional state-space
collapses in the limit to a single-dimensional state-space.
Such collapse requires more flexible capacity (i.e., at a
scale greater than O�

√
��) that is optimal for our system.

Indeed, we now show that the limiting system behavior
remains a bona fide two-dimensional diffusion process:

Lemma 1. As � → �, if Q��0�/
√
� ⇒ Q̂�0�, then

Q�� · �/
√
�⇒ Q̂� · �, where

Q̂1�t� = Q̂1�0�−
1
m

∫ t

0
��̂1 + 1�Q̂1�s�� Q̂2�s���̂2�ds

+�
√

2B1�t�+L1�t�

Q̂2�t� = Q̂2�0�−
1
m

∫ t

0
��̂1 + 1�Q̂2�s� > Q̂1�s���̂2�ds

+�
√

2B2�t�+L2�t�


(8)

where B1 and B2 are two standard independent Brownian
motions, Li are nondecreasing, continuous processes
such that L1�0� = L2�0� = 0, and Q̂i�t� � 0 and
∫ t

0 Q̂i�s�dLi�s�= 0 for all t � 0.

The limiting diffusion characterized in (8) is not directly
amenable to analysis because the drift of the reflected
Brownian motion �Q̂1
 Q̂2� is not continuous. This discon-
tinuity stems from the LQ routing policy under which the
flexible resource serves the longer queue in a preemptive
fashion. This causes the drift of the diffusion to change
when a queue switches from being the longer to shorter, or
vice versa, as depicted in Figure 2(a).

Luckily, we can transform the diffusion Q̂ into one with
constant drift and recover analytic tractability by monitor-
ing the order statistics of the queue-length processes and
“folding” the state-space. Given that we consider symmet-
ric systems, we only need Q̂1�t� + Q̂2�t�, which equals

Figure 2. A pictorial representation of the drifts of the limiting queueing dynamics Q̂ (left). The order statistics
�Q̂min
 Q̂max� live in the folded state space with constant drift (right).

(a) The original two-dimensional diffusion Q

Q1

Q2

Qmax

Qmin

(b) The diffusion Q after folding

�1

�1

�1

�1 + �2

�1 + �2

�1 + �2

Q̂max�t�+ Q̂min�t�, where Q̂max�t�= max�Q̂1�t�
 Q̂2�t�� and
Q̂min�t� = min�Q̂1�t�
 Q̂2�t��. The benefit of considering
the maximum and minimum queue-lengths is that the drifts
of these ordered queues are constant, which allows the sim-
pler dynamics of Proposition 1.

Proposition 1. As � → �, if Q��0�/
√
� ⇒ Q̂�0�, then

�Q�
max� · �/

√
�
Q�

min� · �/
√
��⇒ Q̂� · �, where

Q̂max�t�= Q̂max�0�−
�̂1 + �̂2

m
t+�

√
2B1�t�+ Y1�t�

Q̂min�t�= Q̂min�0�−
�̂1

m
t+�

√
2B2�t�− Y1�t�+ Y2�t�


(9)

where B1 and B2 are two standard independent Brownian
motions, Y1, Y2 are two nondecreasing continuous pro-
cesses such that Y1�0� = Y2�0� = 0, and Qmax�t� �
Qmin�t� � 0,

∫ t

0 �Q̂max�s� − Q̂min�s��dY1�s� = 0 and
∫ t

0 Q̂min�s�dY2�s�= 0 for all t � 0.

We can now compute the steady-state distribution of the
process �Q̂max
 Q̂min� by “unfolding” the state-space and
considering the process with constant drift on the entire
positive quadrant. Given that this process then simplifies
to two independent Brownian motions in a quadrant, its
steady-state distribution is a simple product form of expo-
nentials. When “folding” the state-space into the upper
triangle (or wedge) in Figure 2(b), owing to the normal
reflection, we still obtain a product form of exponentials.
Defining G2 = ��x
 y� ∈ �2

+
� x � y�, we characterize the

steady-state distribution of the process �Q̂max
 Q̂min� in the
following result.

Proposition 2. The steady-state distribution of the process
�Q̂max
 Q̂min� on G2 has the density

��x
 y�= � exp
(

−

(

�̂1 + �̂2

�2m

)

x−
�̂1

�2m
y

)
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where

�=

(

∫

G2

exp
(

−

(

�̂1 + �̂2

m�2

)

x−
�̂1

m�2
y

)

dxdy

)−1

is a normalizing constant. Further, the corresponding
expected queue-lengths are

Ɛ Q̂min4�5=
1

2�̂1 + �̂2

�2m

and Ɛ Q̂max4�5= Ɛ Q̂min4�5+ 41/4�̂1 + �̂255�
2m.

Using this steady-state characterization, we can com-
pute the diffusion-scale cost ç̂ and characterize its optimal
capacities �̂∗ by solving the diffusion-scale optimization
problem (7):

min
84�̂11 �̂252 �̂2¾012�̂1+�̂2>09

ç̂4�̂11 �̂25

≡

(

2
2�̂1 +�̂2

+
1

�̂1 +�̂2

)

�2hm+42c�̂1 +c41+ã25�̂250

(10)

The following proposition presents the results.

Proposition 3. For N = 2, the optimal safety capacity that
solves (10) is

4�̂∗

11 �̂
∗

25

=



































































�

√

hm

c
4−�∗1−�∗�∗5 if 0 ¶ã2 < 002,

�

√

hm

c

(

01

√

3
41 +ã25

)

if ã2 = 002,

�

√

hm

c
4�∗1 �∗�∗5 if 002 <ã2 < 005,

�

√

hm

c
41105 if 005 ¶ã2,

(11)

where �∗ =
√

43 + 1/41 +�∗55/442 +�∗542 +�∗41 +ã2555
and �∗ is defined as follows:

�∗
=































2
41 − 3ã2 +

√

ã241 −ã255

5ã2 − 1

if 0 ¶ã2 < 005, ã2 6= 002,

0 if 005 ¶ã2.

(12)

Notice that 4�̂∗
11 �̂

∗
2541/�5

√

c/4hm5 depends only on
the flexibility premium ã2. Hence, for a fixed ã2 value,
the optimal safety capacities scale with the standard devi-
ation as expected. At the optimal solution, the safety
capacity cost c�̂∗

1 + c41 + ã25�̂
∗
2 equals the holding cost

hƐ6Q̂14�5+Q̂24�57 (this is similar to the properties of the
classical Economic Order Quantity (EOQ) model). Using
the solution to the limiting problem, we can construct a
capacity prescription for a system with finite arrival rate �
that is asymptotically optimal.

Proposition 4. The capacity portfolio 4m� + �̂∗
1

√
�1

�̂∗
2

√
�5, with �̂∗

1, �̂∗
2 given by (11), is asymptotically opti-

mal for the optimization problem (1) in the sense that

lim
�→�

ç�4m�+ �̂∗
1

√
�1 �̂∗

2

√
�5−ç�∗

√
�

= 00 (13)

This result states that the loss in optimality incurred by
using the prescription 4m�+ �̂∗

1

√
�1 �̂∗

2

√
�5 is negligible at

the O4
√
�5 scale.

3.2. Discussion of Results: Amount and
Level of Flexibility

All graphs and numerical results in this paper will normal-
ize the scale factor �

√

4hm5/c = 1 and the cost of the ded-
icated resource c = 1. The explicit characterization of the
asymptotic solution yields some interesting insights. Fig-
ure 3(a) depicts the optimal safety capacities. Proposition 3
prescribes that it is never optimal to use any flexibility if
the flexibility premium exceeds 50%, i.e., ã2 ¾ 005. As the
flexibility premium decreases, it becomes optimal to use
flexibility, and the corresponding flexible capacity increases
as expected. When the premium falls below 20%, we obtain
�̂∗

1 < 0, which implies that the optimal dedicated capacity
is less than the nominal level �, and thus the flexibility is
used for maintaining the stability of the system as well.

Figure 3(b) shows how the investment cost in flexi-
ble and total capacity varies with the flexibility cost pre-
mium ã2. As expected, an increase in the premium leads
to an increase in the total capacity cost and a decrease in
the investment in flexible capacity. The latter entails lesser
pooling benefits, and hence an increase in the total safety
capacity needed as depicted in Figure 3(a). We observe that
as the flexibility premium increases, the optimal flexible
capacity decreases and is substituted by dedicated capacity.
However, this substitution is not perfect: as shown in the
figure, we oversubstitute and the total safety and, hence,
the total capacity, increases as a function of ã2. Though
similar sizing substitution effects have been observed (see,
for example, Van Mieghem 1998), the benefit of our anal-
ysis is that we find these sizing results analytically, which
cannot be done in newsvendor models.

The dependence of the prescription on the variability
and holding cost is also worth pointing out. We can think
of the solution 4m� + �̂∗

1

√
�1 �̂∗

2

√
�5 as the analog of a

safety capacity refinement around the mean demand in a
standard newsvendor problem with normal demand. Our
safety capacity 4�̂∗

1

√
�1 �̂∗

2

√
�5 is also proportional to the

underlying standard deviation �
√
�. As the safety capac-

ity cost is equal to the holding cost similar to the eco-
nomic order quantity (EOQ) model, we also obtain that the
safety capacities are proportional to �

√

4hm5/c, in partic-
ular to the square root of the holding cost. Thus, as the
variability in the system (or the holding cost) increases,
one requires higher dedicated safety capacity �̂1 and higher
flexible capacity �̂2.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Bassamboo, Randhawa and Van Mieghem: A Little Flexibility Is All You Need
1430 Operations Research 60(6), pp. 1423–1435, © 2012 INFORMS

Figure 3. The optimal capacity portfolio (top) and
investment cost (bottom) as a function of the
flexibility premium �2.
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4. Generalization to N Types
In this section, we generalize our analysis to symmetric
processing systems of N customer types. As described
in §2, the system can invest in a portfolio of level-k flex-
ible resources (1 � k � N ). As before, such systems are
intractable, so we resort to an approximate analysis for
large arrival rates � that is asymptotically correct when
� → �. We assume that an LQ policy is used to route
jobs to different servers. Specifically, any flexible resource
serves the type with the largest number of customers in the
system among the types it can serve.

Let Q�
� ��t� �= �Q�

�1��t�
 � � � 
Q
�
�N ��t�� be the order statis-

tics for the number of customers of various types, where
Q�

�1��t��Q�
�2��t�� · · ·�Q�

�N��t�. Under the LQ policy, the
longest queue Q�

�1� is served by all resources that can pro-
cess it, and hence is processed at rate �1 + �N − 1��2 +

· · ·+ �N −1��N−1 +�N . Note that this rate is feasible only
if the number of jobs in this queue exceeds the number
of resources that can process it. Because our goal is an
asymptotic analysis, the likelihood that the number of jobs
is less than the number of resources is so small that we
can ignore it. Now, consider type �i� with i > 1. We can
compute the number of level-k flexible resources that will

serve this type in the following manner. A level-k flexi-
ble resource will serve type �i� only if it has the longest
queue-length among all types than can be handled by the
resource. Thus, a level-k flexible resource will not serve
type �i� if k > N − i + 1. However, if k � N − i + 1, the
level-k flexible resources for which type �i� is the longest
queue will serve it. This is simply the number obtained by
selecting k− 1 types from the N types removing the top
i ranked types, i.e.,

(

N−i

k−1

)

. Hence, the total processing rate

for type �i� equals
∑N−i+1

k=1

(

N−i

k−1

)

�k.

Proposition 5. As � → �, if Q��0�/
√
� ⇒ Q̂�0�, then

Q�
� �� · �/

√
�⇒ Q̂� · �, where Q̂ is given by

Q̂�i��t�= Q̂�i��0�−
1
m

N−i+1
∑

k=1

(

N − i

k− 1

)

�̂kt+�
√

2Bi�t�

− Yi−1�t�+ Yi�t�
 (14)

for i = 1
 � � � 
N , where Bi are N standard independent
Brownian motions, Y0 ≡ 0, Yi are nondecreasing continu-
ous processes such that Yi�0�= 0, and Q̂�1��t�� Q̂�2��t��
· · · � Q̂�N ��t� � 0,

∫ t

0 �Q̂�i��s� − Q̂�i+1��s��dYi�s� = 0, and
∫ t

0 Q̂�N ��s�dYN �s�= 0 for all t � 0.

Defining GN = �x ∈ �N
+
� x1 � x2 � · · · � xN �, we can

characterize the steady-state distribution of the Q̂� � process
as follows.

Proposition 6. The steady-state distribution of the process
Q̂� �� · � on GN has density

��x�= �
N
∏

i=1

exp
(

−

(

∑N−i+1
k=1

(

N−i

k−1

)

�̂k

�2m

)

xi

)




where

�=

(

∫

GN

N
∏

i=1

exp
(

−

(

∑N−i+1
k=1

(

N−i

k−1

)

�̂k

�2m

)

xi

)

dx

)−1

is the normalizing constant. Further, for i = 1
 � � � 
N , we
have

Ɛ Q̂�i����=
N − i+ 1

∑N
k=1

∑N−1
j=max�i−1
 k−1�

(

j

k−1

)

�̂k

�2m�

Proposition 6 allows us to express the diffusion-scale
cost as a function of dedicated and flexible resources as

�̂��̂�=
N
∑

i=1

N − i+ 1
∑N

k=1

∑N−1
j=max�i−1
 k−1�

(

j

k−1

)

�̂k

�2hm

+

N
∑

k=1

(

N

k

)

�̂kc�1+�k�� (15)

The diffusion-scale optimization problem is then

min
��̂�

∑

k �Nk��̂k>0
 �̂k�0 ∀k�2�
�̂��̂�� (16)

The formal optimality property similar to that in Proposi-
tion 4 then follows.
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Theorem 2. The capacity portfolio �∗ = �m�
0
 � � � 
0�+
�̂∗

√
�, where �̂∗ denotes an optimizer of (16), is asymptot-

ically optimal for the optimization problem (1) in the sense
that

lim
�→�

����∗�−��∗

√
�

= 0� (17)

The first-order conditions that characterize the optimal
solution to the diffusion-scale optimization problem entail
solving a polynomial of order N + 1. Therefore, it follows
that there is an explicit closed-form solution for the capac-
ity portfolio only when the number of types N � 3. (Obvi-
ously, these conditions are easily solved numerically for
any parameter values.) However, we can obtain following
property of the solution �̂∗ to the diffusion-scale optimiza-
tion problem.

Theorem 3 (Asymptotic Optimality of Investing
Only in Levels 1 and 2). If the flexibility premiums sat-
isfy �k/�2 � ∑k

j=2 2/j for k � 3, then any solution to
the asymptotic optimization problem min�̂ �̂��̂� has �̂∗

k = 0
for 2 < k � N , that is, investing only in levels 1 and 2
is asymptotically optimal for such symmetric queueing
systems.

This result provides sufficient conditions on the flexi-
bility premiums for the asymptotic optimality of investing
only in levels 1 and 2. These conditions are only sufficient
to ensure this optimality, and there may be other parame-
ters at which investing only in levels 1 and 2 is asymptot-
ically optimal. The necessary and sufficient conditions for
this optimality can be computed analytically (as in Propo-
sition EC.1), but are intricate and depend on N . Although
Theorem 3 is a relaxation of these conditions, it provides a
simple sufficient condition that is independent of N .

Figure 4 illustrates Theorem 3. If the flexibility premi-
ums for level-k > 2 resources are above the threshold, then
investing only in levels 1 and 2 is asymptotically opti-
mal. However, if the flexibility premiums are below this
threshold, then it may be optimal to invest in higher lev-
els of flexibility. The figure also plots the linear flexibility
premium curve, in which each level of flexibility incurs
the same additional premium, to illustrate that this thresh-
old is quite concave so that even with strong economies
of scope it is sufficient to only use level-1 and level-2
flexible resources regardless of the number of customer
types.

Further, we can characterize the maximum flexibility
premium beyond which it is never optimal to invest in flex-
ible resources for any N :

Proposition 7. For flexibility premiums �k �
∑k

j=2 1/j for
k � 2, it is asymptotically optimal to only use dedicated
capacity, i.e., �̂∗

k = 0 for all 2 � k�N .

Explicit solution for a three-type system. A three-
type system has the following resources: three dedicated

Figure 4. Investing in levels 1 and 2 only is asymptot-
ically optimal for flexibility premiums above
the thresholds computed in Theorem 3.
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Note. This figure is derived from the diffusion limit and is independent
of all system parameters.

resources (level-1), three level-2 resources that can pro-
cess any pair of types, and one fully flexible resource
(level-3) that can process any type. Proposition EC.1 in
Appendix EC.3 characterizes the exact asymptotically opti-
mal capacity portfolio, and Figure 5 depicts the structure of
this portfolio as a function of the flexibility premiums �2

and �3 −�2 (the incremental premium of level-3 resources
as compared with level-2 resources). The regions depicted
in the figure do not depend on any other primitive data, and
thus this figure is representative of the solution for any set
of parameters.

Notice that among all the flexible portfolios, investing in
levels 1 and 2 is asymptotically optimal for the largest set

Figure 5. The optimal capacity portfolio as a function
of the flexibility premium.
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Note. This characterization depends only on the flexibility premiums and
is independent of all other system parameters.
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of parameters. In this region, the proposition proves that
the firm can achieve asymptotically optimal performance by
using only dedicated and level-2 flexible resources and not
using the fully flexible resource at all. This implies that the
marginal benefit from having a fully flexible resource is less
than its marginal cost when the firm can invest in level-2
flexible resources. Thus, this result proves that for suitable
flexibility premiums, a tailored chaining configuration that
utilizes dedicated and level-2 resources is asymptotically
optimal for symmetric queueing systems with N = 3. Theo-
rem 3 provides the following simple sufficient condition on
the flexibility premiums for tailored chaining to be asymp-
totically optimal for this setting.

Corollary 1 (Asymptotic Optimality of Tailored
Chaining). If the flexibility premiums are such that ã3 ¾
5ã2/3, then the asymptotically optimal flexibility portfolio
with N = 3 never invests in the fully flexible resource, that
is, tailored chaining is asymptotically optimal.

As the flexibility premium ã3 −ã2 decreases to a level
lower than ã2, the marginal cost of the fully flexible
resource decreases, and the optimal portfolio invests in all
three types of resources. This extreme capacity portfolio is
optimal only for a small set of parameters and, as ã3 −ã2

decreases further, it becomes optimal to not invest in level-2
resources at all, and the optimal portfolio consists only of
three dedicated and one fully flexible resources. Finally,
note that for high-flexibility premiums, as expected, invest-
ing in flexibility is suboptimal. Specifically, if ã3 > 5/6 and
ã2 > 1/2, investing in dedicated resources alone is asymp-
totically optimal.

5. Accuracy and Robustness of Results
In this section, we investigate the robustness of our results.
In §5.1, we numerically investigate the accuracy of the
asymptotically optimal flexibility portfolio over a wide
range of arrival rates. In §5.2, we analytically compute the
worst-case performance of tailored pairing when the flexi-
bility premiums are below the thresholds of Theorem 3.

5.1. Accuracy of Capacity Prescriptions

To study the accuracy of the asymptotically optimal capac-
ity prescriptions derived in the paper, we consider the case
of N = 2 types and compare the capacity prescription pre-
sented in Proposition 4 with the optimal capacities derived
via simulation and discrete search for a given arrival rate.
Specifically, we consider Poisson arrivals with rates �= 1,
5, 10, 25, 100, 400 and mean service time m = 1, unit
dedicated capacity cost c = 1, and holding cost h= 1. Fur-
ther, we implement the longest-queue-first policy in a non-
preemptive manner. To study the effect of variability in
service-times, we study three different service-time distri-
butions: deterministic, normal (standard deviation = 0025,
truncated), and exponential. In each case, we compare the
optimal cost with the expected total cost of the system

when operating with our capacity prescription. The optimal
cost is derived via simulation and discrete search over a
capacity grid for 4�11�25. For each capacity level in this
grid, we used a simulation run length of 1001000 time units
to estimate the expected queue length of the system. A grid
search then allows us to compute the optimal total expected
cost for ã2 ∈ 4010057.

Figures 6(a)–6(c) show the diffusion-scale cost as a func-
tion of flexibility premium ã2. The markers depict the cost
using the capacity prescription while the solid lines repre-
sent the optimal cost obtained via simulation. Observe three
facts: First, the cost when using the capacity prescription
is quite close to the optimal cost for all cases considered.
Second, as expected, all simulated costs (both the optimal
and the cost when using the prescription) converge to the
asymptote ç̂∗ = ç̂4�̂∗5, which we have characterized ana-
lytically. Finally, total costs increase as variability increases
from (a) to (b) to (c).

For normally distributed service times, Figure 7 plots the
proportion of flexible capacity installed in the prescribed
portfolio for the arrival rates � = 1151101151251100
and 400. Note that as flexibility becomes costless, i.e.,
ã2 approaches 0, the prescribed portfolio invests only in
flexible capacity. Further, the proportion of flexible capac-
ity decreases as the arrival rate increases, which is consis-
tent with our main result that the optimal capacity portfolio
invests O4�5 in dedicated resources and O4

√
�5 in flexi-

ble capacity (notice that for � = 1 both are of the same
order).

5.2. Worst-Case Suboptimality of Investing in
Level-1 and Level-2 Flexible Resources

Theorem 3 gives us sufficient conditions for the optimal-
ity of investing in level-1 and level-2 flexible resources.
Clearly, if higher levels of flexibility are cheap, it would
be optimal to invest in them. In this section, we inves-
tigate the maximal suboptimality that can be incurred by
investing only in level-1 and level-2 flexible resources. To
do this, using the analytical expressions for the steady-
state of the diffusion limit, we numerically compare the
optimal tailored pairing configuration with the optimal tai-
lored fully flexible solution (investing in level-1 and level-
N ) under the conservative assumption that the cost of the
fully flexible resource is identical to that of the level-2
resource, i.e., ãN = ã2. This assumption yields the maxi-
mal suboptimality possible of the tailored pairing configu-
ration. Figure 8 plots this optimality gap on the diffusion
scale in percentage versus the number of types, N . For
each N , the optimality gap is maximized over ã2, so that
the plot is independent of all system parameters. We note
that for small values of N , the optimality gap is very small
and increases as N increases. However, the gap seems to
asymptote below 20%. Thus, in the worst case, investing
in level-1 and level-2 flexible resources would lead to a
suboptimality of 20% on the diffusion scale. This analyt-
ical optimality gap is consistent with the observations in
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Figure 6. The accuracy of the capacity prescriptions
was investigated by comparing its simulated
scaled cost (markers) to the optimal cost
(solid lines) found through optimization by
simulation using Poisson arrivals.

(a) Deterministic service times (cs = 0)
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(b) Normally distributed service times (cs = 0.25)
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(c) Exponentially distributed service times (cs = 1)
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Sheikhzadeh et al. (1998), Jordan et al. (2004), Chou et al.
(2010a,b). Noting that higher levels of flexibility indeed
entail some premium, the actual suboptimality would typi-
cally be much lower.6

Figure 7. Proportion of flexible capacity in the pre-
scribed portfolio as a function of the flexibil-
ity cost premium for different arrival rates.
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Figure 8. The worst-case suboptimality on the diffu-
sion scale of investing in level-1 and level-2
flexible resources.
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Note. The horizontal axis is plotted on a logarithmic scale.

6. Conclusion, Limitations,
and Extensions

This paper studies the asymptotically optimal amount,
level, and configuration of flexibility for symmetric queue-
ing systems. Focusing on symmetric systems with linear
costs, we analytically prove that the asymptotically optimal
flexibility configuration invests a lot in dedicated resources,
and a little in flexible resources. The literature has indicated
that “a little flexibility can achieve almost all benefits of
total flexibility” (Jordan and Graves 1995) in the sense that
chained configurations of only level-2 flexible resources
perform quite well. We find sufficient conditions on the
cost of flexibility for the asymptotic optimality of invest-
ing in level-1 and level-2 flexible resources in symmetric
queueing systems. We prove that these configurations are
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asymptotically optimal even for fairly high economies of
scope. Further, in the extreme case where additional lev-
els of flexibility are costless, the maximum drop in perfor-
mance (at the diffusion scale) in using these configurations
is 20%.

To the best of our knowledge, this is the first analytic
proof that a mix of dedicated resources with chained level-2
flexible resources is asymptotically optimal for symmet-
ric queueing systems with N ¶ 3. The main limitation of
our analysis, however, is the assumption that capacity costs
are linear in size. It is obvious that our results will break
down with strong scale economies for which it is optimal to
have fewer resources and often higher levels of flexibility
(potentially even total flexibility) than our results predict.
Investigating robustness to economies of scale requires a
substantially different setup and is a future research topic.

From a methodological perspective, our analysis is
based on Brownian approximations of a queueing sys-
tem where the so-called complete resource-pooling con-
dition is not satisfied at optimality. This leaves us with
a multidimensional Brownian motion with discontinuous
drifts. We analyze this process using a novel folding tech-
nique that studies the order statistics of the queue-length
process and allows us to derive closed-form expressions
for the expected queue-lengths, which in turn gives us
a closed-form asymptotic characterization of the optimal
resource capacities. Up until now, no closed-form expres-
sions seem to exist, not even for simple static newsvendor
models.

In this paper, we have assumed that capacity can be
sized continuously by varying the service rate of a given
portfolio of resources, which is the typical approach in
capacity investment models. When capacity is indivisible or
lumpy, however, capacity sizing is accomplished by vary-
ing the number of resources (each one with a fixed service
rate) of a given level of flexibility. Our analysis does not
apply to these settings and should be replaced by a many-
server regime (see, for example, Halfin and Whitt 1981).
This includes staffing in call centers, where, in addition to
capacity being lumpy, multiple resources cannot pool their
capacities to process an individual job. Here, the multiplic-
ity of servers introduces other issues as well; for example,
one needs to keep track of the type of each customer being
processed by each server of each resource. This adds sub-
stantial complexity to the analysis and is left for potential
future work. The following are two relevant papers that
consider the problem of capacity planning in call centers
to satisfy quality-of-service constraints: Wallace and Whitt
(2005) develops a simulation-based iterative algorithm
for staffing, and Gurvich and Whitt (2010) analytically
derives asymptotically optimal capacity levels for a related
problem.

Also note that we do not consider any constraints on the
capacity portfolio. In practice, one might encounter con-
straints that prevent investing in a symmetric portfolio. For
such configurations, the LQ policy may not perform well

and alternate control policies may need to be considered.
Such a situation may also occur even if there are no con-
straints on the capacity portfolio, but rather different classes
have different holding costs (see, for instance, Saghafian
et al. 2011).

Finally, whereas our model uses a holding cost criterion,
it would be interesting to investigate a setup that minimizes
capacity investment costs subject to quality-of-service con-
straints. Our characterization of the steady-state distribution
of the queue-lengths allows us to compute the delay dis-
tribution (using a heavy-traffic version of Little’s law) as a
function of capacity. This is easily seen for the single-type
system and may extend to N types. Another measure that
would be worth investigating would be throughput (see,
for instance, Ostolaza et al. 1990, Zavadlav et al. 1996,
Andradóttir et al. 2001, Van Oyen et al. 2001, Hopp and
Oyen 2004). Another alternative to our cost-based approach
is in Iravani et al. (2005, 2011) which use structural and
capacity flexibility methods, respectively, to rank different
flexibility configurations.

Electronic Companion
An electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1120.1107.

Endnotes
1. In symmetric systems all model parameters are type indepen-
dent: the arrival rates of all types are equal, and the capacity
invested in resources at the same level of flexibility are equal.
Hence, capacity decisions can only vary by flexibility level so that
determining the capacity investment in 2N − 1 different resources
reduces to optimizing N decision variables, one for each level of
flexibility, to minimize the average holding and capacity cost rate.
2. We analytically derive the (almost logarithmic) sufficient flex-
ibility cost frontier.
3. Kingman’s bound implies that the expected steady-state
time in queue is bounded above by the term 4c2

a/�
2 +

4c2
sm

25/4��
15

2544���
15/424�

�
1 −m�555, which is further bounded

by �24��
1/4�4�

�
1 −m�555. Thus, the expected steady-state

number of jobs in the system is bounded above by
4�24��

1/4�
�
1 −m�55+ 15.

4. Note that in this case, the first-order optimization, also known
as fluid-scale optimization, is trivial and amounts to handling the
base demand by the dedicated resources. However, this optimiza-
tion ignores any queueing considerations, and thus we focus on
the diffusion-scale optimization problem as is standard in asymp-
totic analysis of queueing systems (see, for instance, Chen and
Yao 2001 and Whitt 2002 and references therein for more details).
5. The intuition behind this claim is as follows. The overall
rate of departures from the system at any time t is given by
∑

F �F 	4
∑

i∈F Q
�
i 4t5 > 050 Serving the longest queue first maxi-

mizes 	4
∑

i∈F Q
�
i 4t5 > 05 for all t ¾ 0 over all scheduling poli-

cies. The number of departures from the system by time t equal
∫ t

0

∑

F �F 	4
∑

i∈F Q
�
j 4t5 > 05dNs , where Ns is a unit rate Pois-

son process. Noting that this term is maximized by the LQ rule,
using standard arguments to pass to the steady-state and taking
expectations, it follows that the LQ has the highest aggregate
departures among all scheduling policies. This translates to the
LQ rule having the shortest aggregate queue-length. Thus, the LQ
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rule should be optimal in our queuing system for any capacity
portfolio.
6. Note that the unscaled costs would exhibit lesser suboptimality
as compared with the diffusion-scale costs.
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