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Abstract

Nonstationary infinite-horizon Markov decision processes (MDPs) generalize the most well-
studied class of sequential decision models in operations research, namely, that of stationary
MDPs, by relaxing the restrictive assumption that problem data do not change over time. Linear
programming (LP) has been very successful in obtaining structural insights and devising solution
methods for stationary MDPs. However, an LP approach for nonstationary MDPs is currently
missing. This is because the LP formulation of a nonstationary infinite-horizon MDP includes
countably infinite variables and constraints, and research on such infinite-dimensional LPs has
traditionally faced several hurdles. For instance, duality results may not hold; an extreme
point may not be a basic feasible solution; and in the context of a Simplex algorithm, a pivot
operation may require infinite data and computations, and a sequence of improving extreme
points need not converge in value to optimal. In this paper, we tackle these challenges and
establish (1) weak and strong duality, (2) complementary slackness, (3) a basic feasible solution
characterization of extreme points, (4) a one-to-one correspondence between extreme points and
deterministic Markovian policies, and (5) devise a Simplex algorithm for an infinite-dimensional
LP formulation of nonstationary infinite-horizon MDPs. Pivots in this Simplex algorithm use
finite data, perform finite computations, and generate a sequence of improving extreme points
that converges in value to optimal. Moreover, this sequence of extreme points gets arbitrarily
close to the set of optimal extreme points. We also prove that decisions prescribed by these
extreme points are eventually exactly optimal in all states of the nonstationary infinite-horizon
MDP in early periods.

1 Introduction

Nonstationary infinite-horizon Markov decision processes (MDPs) [13] (henceforth called nonsta-
tionary MDPs) are one of the most general sequential decision models studied in operations re-
search. Nonstationary MDPs extend the more well-studied stationary MDPs [38, 42] by relaxing
the restrictive assumption that problem data do not change over time. From a practical view-
point, nonstationary MDPs incorporate temporal changes in underlying economic and technolog-
ical conditions into the decision-making process, and have been used to model problems such as
asset selling [13] and stochastic inventory control [14]. They can be described as follows. A dy-
namic system is observed at the beginning of periods n = 1, 2, . . . by a decision maker to be in
state s ∈ S, where S , {1, 2, . . . , S} is a finite set. The decision maker then chooses an action
a ∈ A, where A , {1, 2, . . . , A} is also a finite set. Given that action a was chosen in state s
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in period n, the system makes a transition to state s′ with probability pn(s′|s, a), incurring cost
0 ≤ cn(s, a; s′) ≤ c < ∞. This procedure continues ad infinitum. Let cn(s, a) denote the expected
cost incurred on choosing action a in state s in period n. That is, cn(s, a) =

∑
s′∈S

pn(s′|s, a)cn(s, a; s′),

and note that 0 ≤ cn(s, a) ≤ c. The decision maker’s goal is to find a decision rule that minimizes
total infinite-horizon discounted expected cost when the discount factor1 is 0 < α < 1. This is
an infinite-dimensional optimization problem. In fact, owing to infinite data requirements, it is
not in general possible even to completely specify an instance of a truly nonstationary MDP. Thus
the question is whether optimal solutions to a nonstationary MDP can be well-approximated by
forecasting only a finite amount of probability and cost data (see Section 2 in [21] for a rigorous
discussion of this issue). The only existing approach involves approximation by a sequence of longer
and longer finite-horizon MDPs. This “planning horizon” approach is somewhat similar to the value
iteration method [38, 42] for stationary MDPs, and it has been applied to various deterministic and
stochastic sequential decision problems in [7, 8, 9, 11, 13, 14, 19, 20, 24, 25, 26, 27, 30, 29, 43, 45]
and references therein. Reviews of this approach are available in [12, 21].

Success of the linear programming approach to stationary MDPs: Linear programming
(LP) formulations [16, 17, 33] of stationary MDPs have recently been very successful in approximate
solution of large-scale problems that were previously considered intractable [1, 2, 3, 4, 18, 32, 35, 36,
46, 47, 48, 52]. This is partly because the LP approach draws heavily from the power of LP duality,
basic feasible solution characterization of extreme points, and efficient algorithms like the Simplex
method combined with column generation. For instance, deterministic Markovian policies are in
one-to-one correspondence with basic feasible solutions, and hence extreme points, of the dual of the
LP formulation of a stationary MDP [38]. In addition, a violated constraint in this LP formulation
provides an opportunity for policy improvement by pivoting in the corresponding variable in a
Simplex algorithm for the dual problem. This leads to a close connection between Howard’s classic
policy iteration method [31], which updates actions in multiple states simultaneously, and the
Simplex algorithm with so-called block pivots. In fact, the Simplex method has been called simple
policy iteration, which updates an action in only one state at a time [51]. A new result by Ye
[51] shows that Dantzig’s original Simplex method with the most negative reduced cost pivoting
rule [15] is strongly polynomial for solving stationary MDPs. This complexity bound is better
than the polynomial performance of value iteration [49, 51], and in fact, is superior to the only
known strongly polynomial time interior point algorithm [50] for solving stationary MDPs. Also
see Chapter 6 of [38] for several insightful structural results from LP formulations of stationary
MDPs. LP duality results have also been extended to stationary MDPs with uncountable state-
and action-spaces [28]. Unfortunately, such LP-based theoretical and algorithmic advances have
proven elusive for nonstationary MDPs.

Challenges in developing a linear programming approach to nonstationary MDPs:
The major hurdle in developing an LP approach to nonstationary MDPs is that the LP formulation
of a nonstationary MDP includes a countably infinite number of variables and constraints, and hence
belongs to the class of countably infinite linear programs (CILPs) [6, 22]. Research on CILPs has
traditionally faced several mathematical hurdles. For instance, the nonnegative orthant in <∞ has
an empty interior in the product topology and thus standard interior point sufficient conditions
(e.g., Theorem 3.13 in [6]) for strong duality do not hold. It is possible to construct examples

1A nonstationary MDP with time-dependent discount factors 0 < αn < 1 can be converted into a nonstationary
MDP with a constant discount factor 0 < α < 1 if αn are uniformly bounded above by α. To see this, note that
αn = qnα for some 0 < qn ≤ 1 for all n. Then define new cost functions γn(·, ·) by γn(s, a) = qn−1

n cn(s, a) and note
that 0 ≤ γn(s, a) ≤ c for all n ∈ N, s ∈ S, and a ∈ A. Thus we only consider nonstationary MDPs under the standard
assumption of a time-invariant discount factor as in [13].
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where a CILP and its dual possess a duality gap, and in fact, even weak duality can fail [40, 41]
(also see Section 3 for an example). A CILP in the nonnegative orthant in <∞ that has an optimal
solution need not have an extreme point optimal solution (see Section 3.7 in [6]; also recall that this
cannot happen in a finite-dimensional LP by Theorem 2.7 in [10]). An extreme point of a CILP
need not be a basic feasible solution [23, 39]. A pivot operation may require infinite computations
and hence may not be implementable [6, 44]. Finally, a sequence of CILP extreme points with
strictly improving objective function values may not converge in value to optimal [22]. Noticing
such pathologies, Anderson and Nash commented on page 73 in their seminal book [6], “... any
algorithm will be difficult to implement; it is hard even to check feasibility .” Since then, to the best
of our knowledge, only two Simplex-type algorithms have been published on CILPs. Sharkey and
Romeijn [44] presented a Simplex method for minimum cost flow problems in a class of infinite
networks. However, since the CILP formulation of nonstationary MDPs does not belong to this
class, their approach is not applicable here. Ghate et al. [22] presented a Simplex-type method for
a larger class of CILPs that subsumes nonstationary MDPs. That algorithm however was akin to
a planning horizon approach and even though it produced a sequence of adjacent extreme points,
it did not utilize duality and basic feasible solution characterization of extreme points, and in
particular did not guarantee that the sequence was improving in objective values.

Contributions of this paper: Our goal in this paper is to overcome the above hurdles and
develop a comprehensive LP approach to nonstationary MDPs. We first present a CILP formulation
of the above nonstationary MDP and its dual CILP. We note that the dual CILP can be visualized
as a minimum cost flow problem in a staged hypernetwork with infinite stages. We establish that
this dual has an extreme point optimal solution. Then we prove that weak duality, complementary
slackness, and strong duality hold owing to our choice of the variable-space for the primal and the
structure of constraints in the dual. We then provide a definition of basic feasible solutions of the
dual CILP and show that they are equivalent to its extreme points even though a “strictly positive
support” condition that has recently been shown in [23] to be sufficient for such an equivalence
cannot be established directly in our case. A one-to-one correspondence between deterministic
Markovian policies and basic feasible solutions (or equivalently, extreme points) is also established.
Finally, we present a Simplex method to solve the dual CILP. Each iteration of this Simplex method
uses a finite amount of data, can be implemented finitely, and achieves the necessary magnitude
of improvemnt in objective function value so that the sequence of extreme points visited converges
in value to optimal. Similar to Dantzig’s strongly polynomial time Simplex method with the most
negative reduced cost pivot rule for stationary MDPs, our infinite-dimensional Simplex method uses
a most negative approximate reduced cost rule (in the infinite-dimensional case, the most negative
reduced cost cannot be found in finite time). As in stationary MDPs, our Simplex method can
be viewed as simple policy iteration for nonstationary MDPs. The resulting sequence of extreme
points gets arbitrarily close to the set of optimal extreme points. This fact is then used to prove
that decisions prescribed by the Simplex method in early periods in all states of the nonstationary
MDP are eventually exactly optimal.

2 A CILP formulation of nonstationary MDPs

To develop an LP formulation of the above nonstationary MDP, we first observe that it is equivalent
to a stationary MDP with a countable state-space that is constructed by appending states s ∈ S
with time-indices n. The states in this stationary MDP are given by (n, s) ∈ N × S, where
N , {1, 2, . . .}. Consequently, we adapt the CILP formulation for countable-state, finite-action,
stationary MDPs given in [42] to our finite-state, finite-action, nonstationary MDP. In particular,
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let vn(s) be the minimum infinite-horizon expected cost incurred starting time-period n in state s;
vn(·) : S → <, for n ∈ N, are called the optimal cost-to-go functions. Suppose β , {βn} is any
sequence of positive vectors in <S such that

∑
n∈N

∑
s∈S

βn(s) < ∞. Let z , {zn}, with zn ∈ <S for

each n ∈ N, denote sequences in
∞∏
n=1
<S . Also let Z ⊂

∞∏
n=1
<S be the subspace of such sequences

with sup
(n,s)
|zn(s)| < ∞. It follows from arguments in [42] (page 41) that values vn(s) equal the

(unique) optimal values of variables zn(s) in the CILP

max
∑
n∈N

∑
s∈S

βn(s)zn(s) (1)

zn(s)− α
∑
s′∈S

pn(s′|s, a)zn+1(s′) ≤ cn(s, a), for s ∈ S, a ∈ A, n ∈ N, (2)

z ∈ Z. (3)

Owing to this interpretation of optimal values of variables zn(s), 0 ≤ zn(s) ≤ c
1−α for all (n, s)

without loss of optimality in the above CILP.
It will be more convenient to work with an equivalent variant of the above CILP. We rewrite (1)-

(3) by using a variable transformation and by making a specific choice for the sequence {βn(s)}. In
particular, we multiply the inequality constraint (2) by αn−1 and employ the variable transformation

yn(s) = αn−1zn(s) for all (n, s). Let Y ⊂
∞∏
n=1
<S be the subspace of all sequences y , {yn}, with

yn ∈ <S for each n ∈ N, such that |yn(s)| ≤ αn−1τy for all (n, s). Here, τy is some finite constant
that may depend on y. Notice that if we did not allow τy to depend on y, then Y would not
be a linear subspace. We also set βn(s) = αn−1 for all (n, s), and note that for this choice,∑
n∈N

∑
s∈S

βn(s) =
∑
n∈N

∑
s∈S

αn−1 = S
1−α < ∞ as required. This transforms the above CILP into the

equivalent problem

(P ) max g(y) ,
∑
n∈N

∑
s∈S

yn(s) (4)

yn(s)−
∑
s′∈S

pn(s′|s, a)yn+1(s′) ≤ αn−1cn(s, a), for s ∈ S, a ∈ A, n ∈ N, (5)

y ∈ Y. (6)

The infinite series in the objective function of (P ) converges absolutely for each y ∈ Y . To see this,
note that ∑

n∈N

∑
s∈S
|yn(s)| ≤

∑
n∈N

∑
s∈S

αn−1τy = τyS
∑
n∈N

αn−1 =
τyS

1− α
.

We remark that whereas optimal value of variable zn(s) equals the optimal cost-to-go vn(s), the
optimal value of variable yn(s) equals vn(s) discounted back to the first decision epoch. Therefore,
without loss of optimality in (P ), we have that 0 ≤ yn(s) ≤ αn−1 c

1−α for all (n, s).

Let x , {xn}, with xn ∈ <SA for each n ∈ N, denote sequences in
∞∏
n=1
<SA. We define the dual

of (P ) as

(D) min f(x) ,
∑
n∈N

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) (7)
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∑
a∈A

x1(s, a) = 1, for s ∈ S, (8)∑
a∈A

xn(s, a)−
∑
s′∈S

∑
a∈A

pn−1(s|s′, a)xn−1(s′, a) = 1, for s ∈ S, n ∈ N \ {1}, (9)

xn(s, a) ≥ 0, for s ∈ S, a ∈ A, n ∈ N. (10)

Lemma 2.1. Suppose x is feasible to (D). Then, for each n ∈ N,
∑
s∈S

∑
a∈A

xn(s, a) = nS; since

xn(s, a) are nonnegative, this also implies that xn(s, a) ≤ nS.

Proof. In Appendix A.

The infinite series in the objective function in (D) converges for each x that is feasible to (D).
To see this, note that∑

n∈N

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) ≤ c
∑
n∈N

αn−1
∑
s∈S

∑
a∈A

xn(s, a) ≤ cS
∑
n∈N

αn−1n =
cS

(1− α)2
,

because α < 1.
Throughout this paper, we use the product topology. Thus a sequence {yk} converges to y if

and only if {ykn} converges in the usual Euclidean metric2 in <S to yn for every n ∈ N. Similarly, a
sequence {xk} converges to x if and only if {xkn} converges in the usual Euclidean metric3 in <SA
to xn for every n ∈ N. Note that this product topology is a countable product of metrizable (see,

for example, page Theorem 3.36 in [5]). For instance, the product topology on
∞∏
n=1
<S is induced

by the metric

ρ1(y, y′) =
∞∑
n=1

1

2n
d1(yn, y

′
n)

1 + d1(yn, y′n)
, (11)

where y = {yn} and y′ = {y′n} with yn, y
′
n ∈ <S for each n, and d1(·, ·) is the usual Euclidean

metric on <S . Similarly, the product topology on
∞∏
n=1
<SA is induced by the metric

ρ2(x, x′) =
∞∑
n=1

1

2n
d2(xn, x

′
n)

1 + d2(xn, x′n)
, (12)

where x = {xn} and x′ = {x′n} with xn, x
′
n ∈ <SA for each n, and d2(·, ·) is the usual Euclidean

metric on <SA.
It is easy to show (see for example Proposition 2.7 in [22]) that the objective function in (D)

is continuous, and the feasible region is nonempty and compact. Hence it has an optimal solution,
justifying our use of min instead of inf.

It is helpful to visualize (D) as a staged, minimum cost flow problem in a hypernetwork with
infinite stages. Stage n corresponds to the nth period in the nonstationary MDP. Each stage
includes S nodes, each representing one state in S. Each node has a supply of one unit as evident
from the right hand sides of constraints (8)-(9). There are A hyperarcs emanating from each such
node. Hyperarc (n, s, a) corresponds to action a ∈ A in state s ∈ S in stage n. Then xn(s, a) is the
flow in this hyperarc, and αn−1cn(s, a) is the cost of sending unit flow through this hyperarc. For

2This in turn happens if and only if ykn(s) converge as sequences of real numbers to yn(s) for every s ∈ S.
3Again, this happens if and only if xkn(s, a) converge as sequences of real numbers to xn(s, a) for every (s, a) ∈ S×A.
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each (n, s, a), let Jn(s, a) be the set of nodes in stage n+ 1 that are reachable on choosing action
a in node s in stage n. That is,

Jn(s, a) = {s′ ∈ S : pn(s′|s, a) > 0}. (13)

Then, the hyperarc corresponding to action a ∈ A that emanates from the node representing state
s ∈ S in stage n ∈ N has |Jn(s, a)| “heads”. Furthermore, the flow reaching from node s to node
s′ ∈ Jn(s, a) equals pn(s′|s, a)xn(s, a). Constraints (8) and (9) imply that flow is conserved at nodes
(n, s) for all n ∈ N and s ∈ S. For a feasible flow x, flow conservation implies that

∑
a∈A

xn(s, a) > 0

for all n ∈ N and s ∈ S. Figure 1 illustrates the structure of this hypernetwork.

3 Duality results

Challenges in proving duality results for CILPs have been well-documented [6, 40, 41, 44]. Here
we present a motivating example adapted from [44] to illustrate that weak and strong duality can
fail in CILPs. Consider a minimum cost flow problem in an infinite network with nodes numbered
i = 1, 2, . . .. There is a supply of 1 at node 1 and no supply or demand at other nodes. All arcs in
the network are of the form (i, i+ 1) with unit flow cost 1/2i for i = 1, 2, . . .. Using xi,i+1 to denote
the flow in arc (i, i+ 1), this problem is modeled by the CILP

min

∞∑
i=1

1

2i
xi,i+1

x1,2 = 1

xi,i+1 − xi−1,i = 0, i = 2, 3, . . .

xi,i+1 ≥ 0, i = 1, 2, . . . .

Its dual is given by

max y1

yi − yi+1 ≤
1

2i
, i = 1, 2, . . . .

There is only one feasible solution to the primal, namely, the one wherein xi,i+1 = 1 for i = 1, 2, . . ..
Its cost equals 1. Hence this is the optimal primal cost. Moreover, for any number θ, solutions of
the form yi = θ for i = 1, 2, . . . are feasible to the dual. Thus, for any θ > 1, we have a dual feasible
solution with objective value larger than the optimal primal cost. Thus weak duality fails. In fact,
the dual is unbounded and hence strong duality does not hold.

Romeijn et al. [41] and Romeijn and Smith [40] established a condition under which duality
results hold for CILPs where every constraint includes a finite number of variables (as in (P )). This
condition was presented in the context of primal and dual problems that only included inequality
constraints with a lower staircase structure and nonnegative variables. Thus, to use their condition
as is, we would need to convert (D) into that format. Although such a conversion is in principle
possible, it is unnecessary. We instead establish duality results for (P ) and (D) directly, using the
method of proof in [40].

Theorem 3.1. (Weak Duality). Suppose y and x are feasible to (P ) and (D), respectively. Then

f(x) =
∑
n∈N

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) ≥ g(y) =
∑
n∈N

∑
s∈S

yn(s). (14)
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xn (s,b)
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x n(u
,a)
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Figure 1: The picture shows a small piece of two stages in the hypernetwork associated with
problem (D) wherein S = {r, s, t, u} and A = {a, b}. Only state r in stage n − 1 and states s, t, u
in stage n are shown to avoid crowding. A flow supply of [+1] is available at each state. Two
hyperarcs emanating from state r in stage n − 1 are shown. The dotted hyperarc corresponds to
choosing action a in state r in stage n − 1 and has two heads, namely, states s and t. The solid
hyperarc corresponds to choosing action b in state r in stage n − 1 and has three heads, namely,
states s, t, and u. The dotted hyperarc carries flow xn−1(r, a), which is split into two portions:
flow pn−1(s|r, a)xn−1(r, a) reaches state s whereas flow pn−1(t|r, a)xn−1(r, a) reaches state t. The
solid hyperarc carries flow xn−1(r, b), which is split into three portions: flow pn−1(s|r, b)xn−1(r, b)
reaches state s, flow pn−1(t|r, b)xn−1(r, b) reaches state t, and flow pn−1(u|r, b)xn−1(r, b) reaches
state u. Flows in hyperarcs corresponding to actions a and b in states s, t, u in stage n are also
shown so that the reader can visualize flow conservation constraints (9) in (D).
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Proof. In Appendix B.

Corollary 3.2. Suppose y and x are feasible to (P ) and (D), respectively. If equality holds in (14),
then y is optimal to (P ) and x is optimal to (D).

Definition 3.3. Suppose x is feasible to (D) and y ∈ Y . Then we say that x and y satisfy
complementary slackness if

xn(s, a)
[
αn−1cn(s, a)−

(
yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′)
)]

= 0, ∀s ∈ S, a ∈ A, n ∈ N. (15)

Theorem 3.4. (Complementary Slackness Sufficiency). Suppose x is feasible to (D) and
satisfies complementary slackness with some y ∈ Y . Then

f(x) = g(y). (16)

If y is feasible to (P ), then y and x are optimal to (P ) and (D), respectively.

Proof. In Appendix C.

Recall that while stating problem (P ), we had argued, based on [42] that it has an optimal
solution. Also recall from Section 2 that (D) has an optimal solution. The next result establishes
that there is no duality gap between (P ) and (D).

Theorem 3.5. (Strong Duality). Problems (P ) and (D) have optimal solutions and their optimal
objective function values are equal.

Proof. In Appendix D.

Theorem 3.6. (Complementary Slackness Necessity). Suppose y and x are optimal to (P )
and (D), respectively. Then (15) holds.

Proof. In Appendix E.

4 Characterization of extreme points

In finite-dimensional LPs with equality constraints and nonnegative variables, a solution is called
basic if it can be obtained as the unique solution to the system of equations formed by setting
a subset of the variables to zero. If this solution is nonnegative, then it is called a basic feasible
solution. The variables that are selected to set to zero are called nonbasic whereas the remaining
ones are called basic. A feasible solution is called an extreme point if it cannot be expressed as a
strict convex combination of two other distinct, feasible solutions. It is well-known that a feasible
solution is an extreme point if and only if it is a basic solution [10]. This equivalence does not hold
in CILPs — a basic feasible solution is an extreme point but an extreme point need not be a basic
feasible solution [23, 39]. We show that this pathological scenario does not arise in (D).

Definition 4.1. A feasible solution x to (D) is called an extreme point if it cannot be written as
x = λw + (1− λ)z, where λ ∈ (0, 1) and w 6= z are distinct from x and are feasible to (D).

Recall from Section 2 that (D) has an optimal solution. In fact, since the feasible region of
(D) is convex and the objective function is linear, Bauer’s Maximum Principle [5] implies that (D)
has an extreme point optimal solution (also see Proposition 2.7 in [22]). Also recall from Section
2 that, in any feasible solution x to (D), xn(s, a) > 0 for at least one a ∈ A for each n ∈ N and
s ∈ S. We then have
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Definition 4.2. Suppose x is feasible to (D). We call it a basic feasible solution of (D) if, for
every n ∈ N and s ∈ S, there is exactly one action an(s) ∈ A for which xn(s, an(s)) > 0.

The actions (or equivalently, the hyperarcs) an(s) for which xn(s, an(s)) > 0 will be called basic
actions. Other actions will be called nonbasic. Note that any selection of basic hyperarcs an(s) for
all n ∈ N and s ∈ S uniquely determines flows xn(s, an(s)). Specifically, they are given recursively
in the order n = 1, 2, . . . by

xn(s, an(s)) = 1 +
∑

s′∈In−1(s)

pn−1(s|s′, an−1(s′))xn−1(s′, an−1(s′)), (17)

where
In−1(s) = {s′ ∈ S : pn−1(s|s′, an−1(s′)) > 0},

with the convention that I0(s) = ∅ for all s ∈ S. Since xn−1(s′, an−1(s′)) ≥ 0, the above recursion
implies that xn(s, an(s)) ≥ 1 > 0. That is, every basic feasible solution is “nondegenerate.”

We now characterize extreme points of (D) as basic feasible solutions of (D). It is known that
a basic feasible solution of (D) is also an extreme point of (D) [23]. We nevertheless provide a
short proof of this fact here for completeness. But it is not evident at first glance whether every
extreme point x of (D) is also a basic feasible solution. For this to hold, it is sufficient for x to
have a “strictly positive support” [23]; that is, if Ω(x) is the set of hyperarcs (n, s, a) such that

xn(s, a) > 0, then
[

inf
(n,s,a)∈Ω(x)

xn(s, a)
]
> 0. Unfortunately, there is no obvious way to establish

directly that this condition holds at every extreme point of (D). Nevertheless, we show below that
every extreme point of (D) is indeed a basic feasible solution using a more concrete argument that
uses the structure of the hypernetwork underlying (D).

Theorem 4.3. A feasible solution x of (D) is an extreme point if and only if it is a basic feasible
solution.

Proof. In Appendix F.

The “only if” part of the above theorem yields

Corollary 4.4. If x is an extreme point of (D), then xn(s, a) ≥ 1 for all hyperarcs (n, s, a) in the
support set Ω(x). That is, x has strictly positive support.

Since (D) has an extreme point optimal solution, Theorem 4.3 yields

Corollary 4.5. (D) has an optimal solution that is a basic feasible solution.

The term deterministic Markovian policy refers to a decision rule that assigns one action to each
possible state, irrespective of the earlier states visited and of the previous actions taken, over the
infinite-horizon [38, 42]. Under the discounted cost optimality criterion, deterministic Markovian
policies are optimal to countable state stationary MDPs with bounded costs and finite action sets
in each state (see Theorem 2.2 on page 32 in [42]). Consequently, we can also limit attention to
such policies without loss of optimality in our nonstationary MDP. Definition 4.2 establishes a one-
to-one correspondence between basic feasible solutions of (D) and deterministic Markovian policies
for the nonstationary MDP. In particular, if x is a basic feasible solution of (D), then the basic
actions an(s) define a unique deterministic Markovian poclicy. Similarly, if π is a deterministic
Markovian policy, then we can construct a unique basic feasible solution to (D) using the actions
πn(s) prescribed by pocliy π in states (n, s) as the basic actions. Our interest in basic feasible
solutions stems from the following result, which implies that an optimal basic feasible solution to
(D) defines an optimal deterministic Markovian policy for the nonstationary MDP.

9



Theorem 4.6. Suppose x∗ is an optimal basic feasible solution to (D). Then for each n ∈ N and
s ∈ S, the action an(s) with x∗n(s, an(s)) > 0 is optimal for the nonstationary MDP in state s in
period n.

Proof. In Appendix G.

Lemma 4.7. Suppose x is a basic feasible solution of (D). For all n ∈ N and s ∈ S, let yn(s) be the
expected cost-to-go, discounted back to the first period, incurred on implementing the deterministic
Markovian policy defined by x, starting in state s in period n. Then this y is the unique element of
Y that satisfies complementary slackness with x. Note that this y need not be feasible to (P ).

Proof. In Appendix H.

The y defined above will be called the solution complementary to the basic feasible solution
x. Since complementary variables yn(s) equal discounted expected costs-to-go, they satisfy 0 ≤
yn(s) ≤ αn−1 c

1−α because 0 ≤ cn(s, a) ≤ c for all n ∈ N, s ∈ S, and a ∈ A.

5 Simplex algorithm

In finite-dimensional minimization LPs with equality constraints and nonnegative variables, the
Simplex method works as follows. It starts at an initial extreme point, and at each iteration, moves
along an edge of the feasible polytope to a new adjacent extreme point. This geometric notion
can be implemented algebraically by swapping one nonbasic variable in a basic feasible solution
with a basic variable [10]. This is called a pivot operation. The concept of a reduced cost is used
to ensure that the objective function value is improved in each pivot operation. The algorithm
reaches an optimal extreme point after a finite number of iterations and then stops. The difficulties
in replicating this in the context of CILPs, even when duality results and basic feasible solution
characterization of extreme points are available, have been outlined in [6, 22, 44]. Even checking
feasibility of a given solution may in general require infinite data and computations. It is not
possible in general to “store” a solution on a computer. Moving from one extreme point to an
adjacent, improving extreme point may require infinite computations. To make matters worse,
unlike in finite-dimensional LPs, a strictly improving sequence of extreme points may not converge
in value to optimal as demonstrated by example in [22]. Our Simplex method successfully overcomes
these hurdles.

Suppose x is a basic feasible solution of (D) and let y ∈ Y be its complementary solution defined
in Lemma 4.7. For every hyperarc (n, s, a),

γn(s, a) , αn−1cn(s, a) +
∑
s′∈S

pn(s′|s, a)yn+1(s′)− yn(s) (18)

is the slack in the corresponding constraint (5) in (P ). In view of Definition 4.2 and complementary
slackness equations (15), γn(s, a) = 0 if hyperarc (n, s, a) is basic. Moreover, if γn(s, a) ≥ 0 for
all nonbasic hyperarcs (n, s, a), then x is optimal to (D) because y is feasible to (P ). A pivot
operation involves finding a nonbasic hyperarc and adding it to the set of basic hyperarcs. If
nonbasic hyperarc (n, s, a) is chosen for this purpose, then basic hyperarc (n, s, an(s)) must leave
the set of basic arcs according to Definition 4.2. The new values of basic variables are then uniquely
defined by the equality constraints in (D). Let z denote this new basic feasible solution.

10



Proposition 5.1. The difference in objective function values at basic feasible solution x and the
new basic feasible solution z in the aforementioned pivot operation is given by

f(z)− f(x) = (1 + θ)γn(s, a), (19)

where θ > 0 is a constant that depends on x, n and s.

Proof. In Appendix I.

This shows that, similar to finite-dimensional LPs, the slack γn(s, a) can be interpreted as the
reduced cost of hyperarc (n, s, a). In particular, selecting a nonbasic hyperarc with negative reduced
cost guarantees that the pivot operation will improve the objective function value. We thus have

Corollary 5.2. If basic feasible solution x is optimal to (D), then its complementary solution y is
feasible and hence optimal to (P ).

Proof. Since x is optimal, all reduced costs, that is, slacks in constraints (5) in (P ) for the com-
plementary solution y must be nonnegative. That is, y must be feasible to (P ). Consequently, by
Theorem 3.4, y must also be optimal to (P ).

However, as noted above, it is not adequate to simply construct a sequence of improving extreme
points. Intuitively, we need to ensure that “sufficient” improvement is made in each pivot operation.
Although we cannot find the direction of greatest improvement finitely, our goal is to devise a
Simplex algorithm that uses only finite amount of data and finite computations to find a nonbasic
arc with a sufficiently negative reduced cost in each iteration and to move to a new extreme point
so that the resulting sequence of solutions converges in value to optimal. We will show that the
Simplex algorithm below accomplishes this objective.

A Simplex algorithm

1. Initialize: Set iteration counter k = 1. Fix basic actions a1
n(s) for s ∈ S and n ∈ N4. We

denote the corresponding basic feasible solution of (D) by x1.

2. Find a nonbasic hyperarc with the most negative approximate reduced cost:

(a) Set m = 1 and define m(k) ,∞ and γk,∞ , 0.

(b) Let yk,m be the solution of the finite system of equations

yk,mn (s) = αn−1cn(s, akn(s)) +
∑
s′∈S

pn(s′|s, akn(s))yk,mn+1(s′), for s ∈ S, n ≤ m, (20)

yk,mm+1(s) = 0. (21)

(c) Compute approximate nonbasic reduced costs

γk,mn (s, a) = αn−1cn(s, a) +
∑
s′∈S

pn(s′|s, a)yk,mn+1(s′)− yk,mn (s) (22)

for n ≤ m, s ∈ S, a ∈ A such that a 6= akn(s).

4This set of basic actions can be described finitely. For example, since set A is finite, the “first” action from A
can be the basic action for every (n, s).
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(d) Compute the smallest approximate nonbasic reduced cost

γk,m = min
n≤m

s∈S,a∈A
a6=akn(s)

γk,mn (s, a). (23)

(e) If γk,m < −αm c
1−α , setm(k) = m, let (nk, sk, ak) be the argmin in (23), set ak+1

nk (sk) = ak

as the new basic action in state sk in period nk and go to Step 3 below; else set m = m+1
and go to Step 2(b) above.

3. Obtain basic hyperarc flows in the first m(k) periods of xk+1: Compute xk+1
n (s, ak+1

n (s)) for
all s ∈ S using formula (17) in the order n = 1, 2, . . . ,m(k).

4. Set k = k + 1 and go to Step 2.

Let yk be the complementary primal solution of the dual extreme point xk. The yk,m calculated in
Step 2(b) is an approximation of this yk. Although the reduced costs computed are approximate,
we show below that the sequence of objective function values is strictly improving to optimality.
In particular, we emphasize that this Simplex algorithm does not solve to optimality a sequence of
longer and longer finite-horizon LPs. It instead works directly with extreme points xk of (D). To
ensure a finite implementation of pivots using finite data and strictly improving objective function
values, the algorithm uses a good enough approximation of yk for the reduced cost calculation in
Step 2(c). In particular, this is not a planning horizon approach but rather what we call a strategy
horizon approach. As in stationary MDPs, the Simplex algorithm is a simple policy iteration
method because Step 2 of the algorithm finds a period nk, a state sk, and updates the decision in
(nk, sk) from ak−1

nk (sk) to ak. Consistent with this view, it is not necessary to compute the basic

hyperarc flows in xk+1 in Step 3 because these flow values are not used by the algorithm — it
suffices to simply know the set of basic actions. We nevertheless include Step 3 in the algorithm to
emphasize the hypernetwork flow interpretation of our nonstationary MDP.

Let fk , f(xk) be the sequence of objective function values of basic feasible solutions xk of (D)
visited by the above Simplex algorithm. The rest of this section is devoted to proving the following
key theorem.

Theorem 5.3. Let f∗ be the optimal value of (D). Then lim
k→∞

fk = f∗. Moreover, for any ε > 0,

there exists an iteration kε such that ρ2(xk, x∗k) < ε for some optimal basic feasible solution x∗k of
(D) for all k ≥ kε.

The second claim above means that the sequence xk of basic feasible solutions eventually stays
arbitrarily close to some optimal basic feasible solution to (D). The proof of Theorem 5.3 is quite
long so we break it into multiple parts. The first five parts are established in five separate lemmas
below. The last part of the proof uses these five lemmas. The first lemma provides quality-of-
approximation bounds for yk,m.

Lemma 5.4. The approximation yk,m of yk in Step 2(c) of the Simplex algorithm satisfies

yk,mn (s) ≤ ykn(s) ≤ yk,mn (s) + αm
c

1− α
for s ∈ S, n = 1, 2, . . . ,m+ 1. (24)

Proof. By complementary slackness, for each iteration k, yk is the solution of the infinite system

ykn(s) = αn−1cn(s, akn(s)) +
∑
s′∈S

pn(s′|s, akn(s))ykn+1(s′), for s ∈ S, n ∈ N. (25)

12



Since yk,m is the solution of the m-horizon truncation (20)-(21) of this infinite system, and since
ykn(s) ≥ 0 for all n by the discussion following Lemma 4.7, we have that

ykn(s) ≥ yk,mn (s) for n = 1, 2, . . . ,m+ 1. (26)

Moreover, since ykm+1(s) ≤ αm c
1−α and yk,mm+1(s) = 0, equations (20) and (25) imply that

ykm(s) ≤ yk,mm (s) + αm
c

1− α
for s ∈ S. (27)

Using this recursively in (20) and (25), we get

ykn(s) ≤ yk,mn (s) + αm
c

1− α
for s ∈ S, n = 1, 2, . . . ,m+ 1. (28)

Combining this with (26), we get (24).

Lemma 5.5. Step 2 of the Simplex algorithm terminates at a finite value of m if and only if xk is
not optimal to (D).

Proof. Suppose xk is not optimal to (D). Since xk is not optimal, yk must not be feasible to (P )
by Theorem 3.4. Thus there exist a period n, a state s ∈ S, an action a ∈ A, and an ε > 0 such
that

−ε = αn−1cn(s, a) +
∑
s′∈S

pn(s′|s, a)ykn+1(s′)− ykn(s).

Then using (24) from Lemma 5.4 we get

−ε ≥ αn−1cn(s, a) +
∑
s′∈S

pn(s′|s, a)yk,mn+1(s′)− yk,mn (s)− αm c

1− α
, for all m ≥ n.

That is,

−ε+ αm
c

1− α
≥ γk,mn (s, a), for all m ≥ n.

But since αm c
1−α < ε/2 for all sufficiently large m, we have that −ε/2 > γk,mn (s, a) ≥ γk,m for all

m large enough. Here, the last inequality follows from the definition of γk,m in (23). Now notice
that −αm c

1−α > −ε/2 for all such m. Consequently, −αm c
1−α > γk,m for all such m. Thus the

condition in Step 2(e) is eventually met and Step 2 terminates.
Now suppose that xk is optimal to (D). Suppose Step 2 terminates at some m(k). Then

γk,m(k) + αm(k) c
1−α < 0. That is, γ

k,m(k)

nk (sk, ak) + αm(k) c
1−α < 0, where (nk, sk, ak) is the argmin

in (23). Then using (24) from Lemma 5.4 we get

αn
k−1cnk(sk, ak) +

∑
s′∈S

pnk(s′|sk, ak)yknk+1(s′)− yknk(s) < 0.

Thus yk is not feasible to (P ). But this contradicts Corollary 5.2.

The “only if” part of the above lemma implies that Step 2 does not terminate finitely when
xk is an optimal solution. In this sense, the algorithm cannot tell that an optimal solution has
been found. This may, at first sight, appear to be a weakness of our algorithm. However, it is in
fact due to a feature of problem (D) itself, and more generally, of nonstationary infinite-horizon
optimization problems — optimality of a given solution cannot be affirmed with finite computations
(see [13]). Fortunately, this does not undermine the validity of Theorem 5.3 as its conclusions are
trivially true if xk is optimal for some k and we simply repeat this solution for all subsequent k.
The next lemma establishes that the Simplex algorithm produces an improving sequence of basic
feasible solutions.
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Lemma 5.6. If xk is not optimal to (D), then fk+1 < fk. Moreover,
[
αm(k) c

1−α + γk,m(k)
]
→ 0

as k →∞.

Proof. Since xk is not optimal, Step 2 of the algorithm terminates finitely by Lemma 5.5. By
Proposition 5.1, the difference between objective function values of yk+1 and yk, and hence between
fk+1 and fk is given by

δk , fk+1 − fk = (1 + θk)
[
αn

k−1cnk(sk, ak) +
∑
s′∈S

pnk(s′|sk, ak)yknk+1(s′)− yknk(sk)
]

(29)

for some θk > 0. Since nk ≤ m(k) by construction, we can use (24) in Lemma 5.4 to bound δk. In
particular, we have

δk ≤ (1 + θk)
[
αn

k−1cnk(sk, ak) +
∑
s′∈S

pnk(s′|sk, ak)yk,m(k)

nk+1
(s′) + αm(k) c

1− α
− yk,m(k)

nk (s)
]

= (1 + θk)
[
αm(k) c

1− α
+ γk,m(k)

]
< 0,

because γk,m(k) < −αm(k) c
1−α by Step 2(e) of the Simplex algorithm. This shows that fk+1 < fk.

Now, for the second claim, note that if xk is optimal for any k, then Step 2 does not terminate,

and hence
[
αm(k) c

1−α + γk,m(k)
]

= 0. If xk is not optimal for any k, then the algorithm produces a

sequence of basic feasible solutions with θk > 0 and hence fk+1 < fk +
[
αm(k) c

1−α +γk,m(k)
]
. Since

sequence fk is bounded below by zero and f1 <∞, this implies that
[
αm(k) c

1−α + γk,m(k)
]
→ 0 as

k →∞.

Lemma 5.7. The sequence m(k)→∞ as k →∞. Also, γk,m(k) → 0 as k →∞.

Proof. The Lemma holds trivially if xk is optimal for any k. So we focus on the situation where
this is not the case.

For the first claim, we need to show that for every period n, there exists an integer Mn such
that m(k) ≥ n for all k ≥Mn. Suppose not. Then there exists some period n such that m(k) < n
for infinitely many k. As a result, there is an integer M < n such that m(k) = M for infinitely
many k. Let ki, for i = 1, 2, . . ., define the infinite subsequence of iterations in which this occurs.
Let πki,M be the M -horizon deterministic Markovian policy defined by basic actions akin (s), for
n = 1, 2, . . . ,M and s ∈ S, in the basic feasible solution xki to (D) in iteration ki. A close look
at the finite system of equations solved in Step 2(b) of the algorithm affirms that values yki,M

depend only on basic actions in the first M periods, that is, only on πki,M . As a result, the reduced
costs γki,M also depend only on πki,M , and hence we denote them by γ(πki,M ). Note that there
are only a finite number of deterministic Markovian policies for the M -horizon truncation of the
nonstationary MDP. As a result, there must exist an M -horizon deterministic Markovian policy
π∗,M and a corresponding infinite subsequence kij of iterations ki such that πkij ,M = π∗,M . As in

the proof of Lemma 5.6 we have fkij +1 < fkij +
[
αm(kij ) c

1−α + γkij ,m(kij )
]
. But since m(kij ) = M ,

we get

fkij +1 < fkij +
[
αM

c

1− α
+ γkij ,M

]
= fkij +

[
αM

c

1− α
+ γ(πkij ,M )

]
= fkij +

[
αM

c

1− α
+ γ(π∗,M )

]
= fkij − ε,
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where ε = −
[
αM c

1−α + γ(π∗,M )
]
> 0 is a constant that depends only on M and π∗,M . This implies

that the objective value in (D) is reduced by at least ε > 0 in each iteration that belongs to the
infinite sequence of iterations kij . But this is impossible since sequence fk is bounded below by
zero and f1 <∞. This proves the first claim by contradiction.

To prove the second claim, we recall from Lemma 5.6 that αm(k) c
1−α + γk,m(k) → 0 as k →∞.

Moreover, αm(k) c
1−α → 0 as k →∞ because m(k)→∞. Hence we must have that γk,m(k) → 0 as

k →∞.

Lemma 5.8. Let xk be any convergent sequence of basic feasible solutions of (D) and x̄ be its limit.
Then x̄ is also a basic feasible solution of (D).

Proof. Since xk are feasible, it is easy to see, as in the proof of Theorem 5.3 below, that x̄ is feasible.
Suppose it is not basic. That is, there is an n ∈ N and s ∈ S and two distinct actions a, b ∈ A such
that x̄n(s, a) > 0 and x̄n(s, b) > 0. Let δ = min{x̄n(s, a), x̄n(s, b)}. Since xk converges to x̄ in the
product topology, there exists a K such that 0 < x̄n(s, a) − δ/2 < xkn(s, a) < x̄n(s, a) + δ/2 and
0 < x̄n(s, b) − δ/2 < xkn(s, b) < x̄n(s, b) + δ/2. This contradicts the fact that xk is a basic feasible
solution.

Now we are ready to complete the proof of Theorem 5.3. As noted earlier, conclusions of
the theorem are trivially true if xk is optimal to (D) for any k. We therefore assume that xk

is not optimal for any k. Let xki be a convergent subsequence of xk with lim
i→∞

xki = x̄. Such a

sequence exists because the feasible region of (D) is compact in the metrizable product topology by
Lemma 2.1 and Tychonoff’s product theorem (Theorem 37.3 in [34]). Let yki be the corresponding
subsequence of yk. Subsequence yki has a further convergent subsequence because yki belongs to

set C =
{
y : 0 ≤ yn(s) ≤ αn−1 c

1−α , ∀s ∈ S, n ∈ N
}

that is compact in the metrizable product

topology by Tychonoff’s product theorem. We denote this by ykij and let lim
j→∞

ykij = ȳ. We also let

xkij be the corresponding subsequence of xki and note that xkij also must converge to x̄. Similarly,

γkij ,m(kij ) is the corresponding subsequence of γk,m(k) and lim
j→∞

γkij ,m(kij ) = 0. We show that x̄ is

feasible to (D), ȳ is feasible to (P ) and x̄ and ȳ satisfy complementary slackness conditions. This
will imply that x̄ is optimal to (D) by Theorem 3.4.

Since xkij are feasible to (D) for all j, they satisfy (8)-(10). That is,∑
a∈A

x
kij
1 (s, a) = 1, for s ∈ S,

∑
a∈A

x
kij
n (s, a)−

∑
s′∈S

∑
a∈A

pn−1(s|s′, a)x
kij
n−1(s′, a) = 1, for s ∈ S, n ∈ N \ {1},

x
kij
n (s, a) ≥ 0, for s ∈ S, a ∈ A, n ∈ N.

Taking limits as j → ∞ in the above three, it is clear that x̄ also satisfies (8)-(10) and hence is
feasible to (D).

Now suppose that ȳ is not feasible to (P ). This implies that there exist some n ∈ N, s ∈ S,
a ∈ A and ε > 0 such that

ȳn(s)−
∑
s′∈S

pn(s′|s, a)ȳn+1(s′)− αn−1cn(s, a) = ε.
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That is,

lim
k→∞

(
y
kij
n (s)−

∑
s′∈S

pn(s′|s, a)y
kij
n+1(s′)− αn−1cn(s, a)

)
= ε.

Thus there exists a positive integer J such that

−ε
2
≥
[∑
s′∈S

pn(s′|s, a)y
kij
n+1(s′) + αn−1cn(s, a)− y

kij
n (s)

]
≥ −3ε

2

for all j ≥ J . But for all j that are large enough, n ≤ m(kij ), since m(kij ) → ∞ as j → ∞ by
Lemma 5.7. Therefore, for all such j, we have from (24) that∑

s′∈S
pn(s′|s, a)y

kij
n+1(s′) + αn−1cn(s, a)− y

kij
n (s)

≥
∑
s′∈S

pn(s′|s, a)y
kij ,m(kij )

n+1 (s′) + αn−1cn(s, a)− cαm(kij )

1− α
− y

kij ,m(kij )
n (s)

≥ γkij ,m(kij ) − cαm(kij )

1− α
.

Consequently, −ε/2 ≥ γ
kij ,mkij − cα

m(kij
)

1−α for all these j. But this contradicts the fact that both

γ
kij ,mkij and cα

m(kij
)

1−α converge to zero as j →∞ by Lemma 5.7.

Since xkij and ykij satisfy complementary slackness conditions, we have

x
kij
n (s, a)

[
αn−1cn(s, a)−

(
y
kij
n (s)−

∑
s′∈S

pn(s′|s, a)y
kij
n+1(s′)

)]
= 0, for all s ∈ S, a ∈ A, n ∈ N.

Taking limits as j →∞, this implies that

x̄n(s, a)
[
αn−1cn(s, a)−

(
ȳn(s)−

∑
s′∈S

pn(s′|s, a)ȳn+1(s′)
)]

= 0, for all s ∈ S, a ∈ A, n ∈ N.

That is, x̄ and ȳ satisfy complementary slackness conditions. Thus we have shown that x̄ is optimal
to (D) and ȳ is optimal to (P ). By continuity of the objective function in (D), this implies that

lim
i→∞

fki = f∗. (30)

But since fk is a monotone decreasing sequence that is bounded below, it converges, and in fact,
must converge to f∗ because f∗ is the limit of one of its subsequences as stated in (30).

Now suppose that the second claim is not true. Then there exists some ε > 0 and a subsequence
ki such that ρ2(xki , x∗) > ε for all optimal basic feasible solutions x∗ to (D) and all i. But ki must
have a further subsequence kij that converges to some x̄ because xki belongs to a compact set in
the metrizable product topology by Lemma 2.1 and Tychonoff product theorem. Consequently,
there exists a J such that ρ2(xkij , x̄) < ε for all j ≥ J . But as shown above, x̄ must be optimal to
(D), and by Lemma 5.8, x̄ must be a basic feasible solution of (D). Contradiction.

This completes the proof of Theorem 5.3.

Corollary 5.9. If (D) has a unique optimal solution x∗ (this solution must be a basic feasible
solution by Proposition 4.6), then lim

k→∞
xk = x∗.
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Proof. Fix any ε > 0. Since (D) has a unique optimal solution, the second claim in Theorem
5.3 implies that there exists an iteration kε such that ρ2(xk, x∗) < ε for all k ≥ kε. That is,
lim
k→∞

xk = x∗.

Our final result establishes eventual optimality of the decisions prescribed by our Simplex al-
gorithm in all states in early periods.

Theorem 5.10. For any period n, there exists an iteration counter Kn such that for all k ≥ Kn,
actions akm(s) are optimal for the nonstationary MDP in all states s ∈ S and all periods m ≤ n.

Proof. The conclusion trivially holds if xk is optimal for any k. When this is not the case, we claim
that given any ε > 0 and any period n, there exists a Kn such that for all k ≥ Kn, |xkm(s, a) −
x∗km (s, a)| < ε for all m ≤ n, all s ∈ S and all a ∈ A, where x∗k are optimal basic feasible solutions
to (D). Suppose not. Then there exist an m ≤ n, s ∈ S, a ∈ A and a subsequence ki such that
|xkim(s, a) − x∗m(s, a)| > ε for all k for all optimal basic feasible solutions x∗ to (D). But ki has a
further subsequence kij that converges to an optimal basic feasible solution x̄ as in the proof of
Theorem 5.3. This yields a contradiction. Now fix 0 < ε < 1 and a period n and consider any
iteration k ≥ Kn. Then for any m ≤ n and any s ∈ S, |xkm(s, am(s))− x∗km (s, am(s))| < ε for some
optimal basic feasible solution x∗k of (D), where am(s) is the basic action in state s in period m in
x∗k. But we know from Definition 4.2 that x∗km (s, am(s)) ≥ 1. Thus xkm(s, am(s)) > 1 − ε > 0. As
a result, the basic action in state s in period m in xk is also am(s). The conclusion of the theorem
then follows.

This theorem only establishes the existence of iterations Kn with the stated property — we
cannot tell whether we have reached Kn since it is not possible in general to finitely establish
optimality of early decisions in nonstationary MDPs [13].

6 Numerical example

In this section we apply our Simplex algorithm to a nonstationary MDP example and compare it
with an efficient implementation of the Shadow Simplex method [22]. This example has two states
and two actions. That is, S = {1, 2} and A = {1, 2}. Thus the data in each period n is characterized
by four costs: cn(1, 1), cn(1, 2), cn(2, 1), and cn(2, 2), and four transition probabilities: pn(1|1, 1),
pn(1|1, 2), pn(1|2, 1), pn(1|2, 2) (note that transition probabilities pn(2|s, a) equal 1− pn(1|s, a) for
s ∈ {1, 2} and a ∈ {1, 2}).

The Shadow Simplex method for an infinite-horizon time-staged CILP solves to optimality
N -horizon truncations of the CILP, for N = 1, 2, 3, . . .. These truncations are themselves finite-
dimensional LPs, and are solved using the finite-dimensional Simplex method. An optimal basis
for the N -horizon LP is used to construct an initial basic feasible solution for the N + 1-horizon
LP. As N → ∞, the Shadow Simplex method converges in value to the optimal value of the
infinite-horizon CILP (see [22]). When this method is applied to the CILP formulation (D) of a
nonstationary MDP, there is a one-to-one correspondence between basic feasible solutions of the N -
horizon LPs and deterministic policies for the N -horizon stochastic dynamic programs obtained by
truncating the nonstationary MDP. As a result, pivots in the finite-dimensional Simplex method for
the N -horizon LP are equivalent to policy improvement steps in the N -horizon stochastic dynamic
program. This leads to an efficient implementation of the Shadow Simplex method that solves a
sequence of N -horizon stochastic dynamic programs to optimality using backward induction, for
N = 1, 2, . . .. In particular, we start with some initial infinite-horizon policy, and while solving
the N -horizon stochastic dynamic program, if backward induction finds a state s and a period n

17



in which the action prescribed by the current policy is not optimal for the N -horizon stochastic
dynamic program, then the current policy is modified by exchanging the inferior action for the
optimal one. Our goal here is to highlight the difference between pivots, that is, action swaps, in
this implementation of the Shadow Simplex method and pivots in our Simplex method. We achieve
this by starting both methods with the same initial policy and tracking, over pivots, the costs of
the sequences of policies they produce.

We used discount factor α = 0.95. Problem instances were created by drawing cost and transi-
tion probability values from a uniform(0,1) random number generator. This yields 0 ≤ cn(s, a) ≤ 1
for all n, s, a, and hence the cost bound c = 1. Both methods were initialized with the same ran-
domly generated policy. We illustrate results for one representative problem instance in Figure 2
since all problem instances produced a similar qualitative pattern. To plot this figure, the cost5 of
each infinite-horizon policy was approximated with the cost incurred by that policy in the first five
thousand periods. Two hundred iterations of our Simplex method were run. Since one iteration
of our Simplex method performs one pivot, two hundred pivots of both methods are plotted. The
figure illustrates how Simplex pivots uniformly dominated planning horizon pivots in terms of cost.
Simplex pivots also generated a sequence of infinite-horizon policies with monotonically decreas-
ing costs unlike the planning horizon approach in this instance. This cost us some computational
overhead — running the Shadow Simplex method required about 0.6 seconds on average over 100
instances compared with about 6 seconds for the Simplex method. Future research would be to
investigate how to accelerate our Simplex method by a less costly computation of which actions to
swap in and still retain cost improving pivots and convergence to optimal.

7 Conclusions and future work

The contribution of this paper is two-fold. First, it provides a strategy horizon alternative to the
planning horizon approach for solving nonstationary MDPs. Second, it identifies a class of CILPs
to which an implementable Simplex algorithm can be successfully applied.

In this paper, we have laid an LP foundation for nonstationary discounted MDPs. It would be
interesting to investigate whether it naturally leads to an LP-based approximate dynamic program-
ming approach as in stationary MDPs [18] when S and A are themselves very large. One approach
would be to substitute a sequence of lower-dimensional value function approximations in place of
yn(·) for all n ∈ N in (P ) and then design an efficient variant of our algorithm that is rooted in
constraint sampling/column generation.

Analysis of average reward MDPs in the stationary case requires assumptions relating to recur-
rence and communication structures of the Markov chains induced by stationary policies (see Sec-
tion 8.3 in [38]). Analogous recurrence and communication properties for nonhomogenous Markov
chains would likely present significant challenges to formulate and establish. Moreover in the LP
formulation of unichain MDPs (wherein the Markov chain corresponding to every stationary policy
consists of a single recurrent class plus a potentially empty set of transient states), there need not be
a one-to-one correspondence between deterministic policies and basic feasible solutions (Example
8.8.2 in [38]). We believe however that LP formulations of special classes of nonstationary average
reward MDPs would be an interesting and fruitful direction for future research.

Three other extensions of our Simplex algorithm could potentially be fruitfully investigated
in the future. The first one would be for stationary discounted MDPs with a countably infinite
state-space. The challenge there is that the corresponding hypernetwork is not staged and in

5Here we mean the total cost-to-go of all states in all periods discounted back to the first decision epoch; that is,∑
n∈N

∑
s∈S

yn(s), or in other words, fk in the case of our Simplex algorithm by Equation (16).
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Figure 2: An illustration of monotone improvement in cost achieved by Simplex pivots for one test
instance of our example. The graph also shows that Simplex pivots uniformly dominated pivots in
the planning horizon approach in [22] in terms of costs attained for this instance. Graphs for all
test instances were qualitatively similar.

particular includes cycles. Thus a basic feasible solution characterization of extreme points might be
difficult. The second generalization would be to minimum cost flow problems in infinite-dimensional
hypernetworks. Finally, perhaps the most difficult extension involves a subset of CILPs in [22] for
which there exist sequences of adjacent, improving extreme points with strictly positive support
that converge in value to optimal.

More generally, several questions about countably infinite mathematical programs in <∞ remain
unanswered. For instance, the feasible region of (D) is not polyhedral in the traditional sense in
that it cannot be represented using a finite number of inequalities [5]. Note that this standard
definition is too restrictive. According to this definition, even the infinite-dimensional cube [0, 1]∞

is not a polyhedron. However, the feasible region of (D) and the cube [0, 1]∞ do share a key
structural property typical of finite-dimensional polyhedra — it is possible to move along an edge
of the feasible region from one extreme point to an adjacent one. Can this provide an alternative
definition for polyhedra in <∞? We hope that this paper will attract others to study such questions.
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A Proof of Lemma 2.1

The proof uses induction on n and relies on the equality constraints in (D). For n = 1, equality
constraint (8) implies ∑

s∈S

∑
a∈A

x1(s, a) = S

as required. Now suppose, as the inductive hypothesis, that
∑
s∈S

∑
a∈A

xn−1(s, a) = (n− 1)S for some

n ∈ N \ {1}. Then using constraint (9) we get∑
s∈S

∑
a∈A

xn(s, a) =
∑
s∈S

1 +
∑
s∈S

∑
s′∈S

∑
a∈A

pn−1(s|s′, a)xn−1(s′, a)

= S +
∑
s′∈S

∑
a∈A

xn−1(s′, a)
∑
s∈S

pn−1(s|s′, a) = S + (n− 1)S = nS.

This restores the inductive hypothesis.

B Proof of Theorem 3.1

Inequality constraints (5) in (P ) imply that, for any integer N ≥ 1,

N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) ≥
N∑
n=1

∑
s∈S

∑
a∈A

(
yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′)
)
xn(s, a)

=

N∑
n=1

∑
s∈S

∑
a∈A

yn(s)xn(s, a)−
N∑
n=1

∑
s∈S

∑
a∈A

∑
s′∈S

pn(s′|s, a)yn+1(s′)xn(s, a)

=

N∑
n=1

∑
s∈S

yn(s)
∑
a∈A

xn(s, a)−
N∑
n=1

∑
s′∈S

∑
s∈S

∑
a∈A

pn(s′|s, a)yn+1(s′)xn(s, a)

=

N∑
n=1

∑
s∈S

yn(s)
∑
a∈A

xn(s, a)−
N∑
n=1

∑
s′∈S

yn+1(s′)
∑
s∈S

∑
a∈A

pn(s′|s, a)xn(s, a)

=

N∑
n=1

∑
s∈S

yn(s)
∑
a∈A

xn(s, a)−
N∑
n=1

∑
s′∈S

yn+1(s′)
(∑
a∈A

xn+1(s′, a)− 1
)
,

where the last equality follows from equality constraint (9) in (D). The above right hand side in
turn simplifies as

=
N∑
n=1

∑
s∈S

yn(s)
∑
a∈A

xn(s, a)−
N∑
n=1

∑
s′∈S

yn+1(s′)
∑
a∈A

xn+1(s′, a) +
N∑
n=1

∑
s′∈S

yn+1(s′)

=
∑
s∈S

y1(s)
∑
a∈A

x1(s, a) +
N∑
n=2

∑
s∈S

yn(s)
∑
a∈A

xn(s, a)−
N+1∑
n=2

∑
s′∈S

yn(s′)
∑
a∈A

xn(s′, a) +
N+1∑
n=2

∑
s′∈S

yn(s′)

=
∑
s∈S

y1(s) +

N∑
n=2

∑
s∈S

yn(s)
∑
a∈A

xn(s, a)−
N+1∑
n=2

∑
s′∈S

yn(s′)
∑
a∈A

xn(s′, a) +

N+1∑
n=2

∑
s′∈S

yn(s′),
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where the last equality follows from equality constraint (8) in (D). The above right hand side
equals

N+1∑
n=1

∑
s∈S

yn(s)−
∑
s∈S

yN+1(s)
∑
a∈A

xN+1(s, a) =
N∑
n=1

∑
s∈S

yn(s) +
∑
s∈S

yN+1(s)
(

1−
∑
a∈A

xN+1(s, a)
)

=
N∑
n=1

∑
s∈S

yn(s)−
∑
s∈S

yN+1(s)
∑
s′∈S

∑
a∈A

pN (s|s′, a)xN (s′, a),

where the last equality follows from constraint (9) in (D). Thus, we have shown that

N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) ≥
N∑
n=1

∑
s∈S

yn(s)−
∑
s∈S

yN+1(s)
∑
s′∈S

∑
a∈A

pN (s|s′, a)xN (s′, a)︸ ︷︷ ︸
error(N)

. (31)

Now we wish to take limits as N →∞ on both sides to prove (14). Toward that end, we first show
that the limit of the error term as N →∞ is zero6. Since xN+1(s, a) ≥ 0 for all s ∈ S and a ∈ A,
and |yN+1(s)| ≤ αNτy for all s ∈ S because y ∈ Y , the error term is bounded below and above as

−αNτy
∑
s∈S

∑
s′∈S

∑
a∈A

xN (s′, a) ≤ error(N) ≤ αNτy
∑
s∈S

∑
s′∈S

∑
a∈A

xN (s′, a).

Now by Lemma 2.1, the above bounds simplify as

−αNτyNS2 ≤ error(N) ≤ αNτyNS2.

Since lim
N→∞

NαN = 0, the above bounds imply that the limit of the error term is zero. Then taking

limits as N →∞ on both sides of (31) yields (14).

C Proof of Theorem 3.4

From the complementary slackness condition (15), we have

αn−1cn(s, a)xn(s, a) =
(
yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′)
)
xn(s, a), ∀s ∈ S, a ∈ A, n ∈ N.

By adding the above equations over all s ∈ S, a ∈ A, and n = 1, 2, . . . , N for any integer N ≥ 1,
we get

N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) =

N∑
n=1

∑
s∈S

∑
a∈A

(
yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′)
)
xn(s, a).

Then since x is feasible to (D), using algebraic simplifications identical to the proof of Theorem
3.1, we obtain

N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) =
N∑
n=1

∑
s∈S

yn(s)−
∑
s∈S

yN+1(s)
∑
s′∈S

∑
a∈A

pN (s|s′, a)xN (s′, a)︸ ︷︷ ︸
error(N)

.

6This property is called transversality in [40].

24



Then taking limits as N →∞, and noting, from the proof of Theorem 3.1, that lim
N→∞

error(N) = 0

since x is feasible to (D), we get∑
n∈N

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) =
∑
n∈N

∑
s∈S

yn(s).

If y is also feasible to (P ), then Corollary 3.2 implies that y is optimal to (P ) and x is optimal to
(D), respectively.

D Proof of Theorem 3.5

We consider the following N -horizon truncation of (P )

(P (N)) max
∑
n∈N

∑
s∈S

yn(s)

yn(s)−
∑
s′∈S

pn(s′|s, a)yn+1(s′) ≤ αn−1cn(s, a), for s ∈ S, a ∈ A, n = 1, . . . , N − 1, (32)

yN (s) ≤ αN−1cN (s, a), for s ∈ S, a ∈ A, (33)

and its dual

(D(N)) min
∑
n∈N

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a)∑
a∈A

x1(s, a) = 1, for s ∈ S, (34)∑
a∈A

xn(s, a)−
∑
s′∈S

∑
a∈A

pn−1(s|s′, a)xn−1(s′, a) = 1, for s ∈ S, n = 2, . . . , N, (35)

xn(s, a) ≥ 0, for s ∈ S, a ∈ A, n = 1, 2, . . . , N. (36)

Both these are finite-dimensional linear programs. By arguments identical to Lemma 2.1, (D(N))
has a bounded feasible region and hence does have an optimal solution. By strong duality, (P (N))
also has an optimal solution. Let yN and xN denote optimal solutions to (P (N)) and (D(N)),
respectively. It is easy to show that yN satisfies 0 ≤ yNn (s) ≤ αn−1 c

1−α for all s ∈ S and for

n = 1, 2, . . . , N . Similarly, xN satisfies xNn (s, a) ≤ nS for all s ∈ S and for n = 1, 2, . . . , N as in
Lemma 2.1. By appending yN and xN with infinite strings of zeros, we view yN as an element of
the set

C =
{
y : 0 ≤ yn(s) ≤ αn−1 c

1− α
, ∀s ∈ S, n ∈ N

}
, (37)

and xN as an element of the set

K =
{
x : 0 ≤ xn(s, a) ≤ nS, ∀s ∈ S, a ∈ A, n ∈ N

}
. (38)

Now consider the sequence of pairs (yN , xN ) ∈ C ×K. Both C and K are compact in the metrizable
product topology by Tychonoff’s product theorem, and so is C ×K, again by Tychonoff. Therefore,
(yN , xN ) has a convergent subsequence, say (yNk , xNk), with limit (ȳ, x̄) ∈ C ×K as k →∞. Then,
it is easy to show, by taking limits in the constraints of (P (N)) and (D(N)), that ȳ is feasible to
(P ) and x̄ is feasible to (D). Similarly, it is easy to show, by taking a limit of the finite-dimensional
complementary slackness condition, that ȳ and x̄ satisfy the complementary slackness condition
(15). Thus, Theorem 3.4 implies that ȳ and x̄ are optimal to (P ) and (D), respectively, and their
objective function values are equal.
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E Proof of Theorem 3.6

Since y and x are optimal to (P ) and (D), respectively, their objective function values are equal
by Theorem 3.5. That is,

lim
N→∞

N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a) = lim
N→∞

N∑
n=1

∑
s∈S

yn(s).

Recall from the proof of Theorem 3.1 that the limit of
∑
s∈S

yN+1(s)
∑
s′∈S

∑
a∈A

pN (s|s′, a)xN (s′, a) as

N → ∞ is zero. Therefore, subtracting this limit from the right hand side of the above equation
does not alter the equation. Thus we have

lim
N→∞

N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a)

= lim
N→∞

N∑
n=1

∑
s∈S

yn(s)− lim
N→∞

∑
s∈S

yN+1(s)
∑
s′∈S

∑
a∈A

pN (s|s′, a)xN (s′, a)

= lim
N→∞

(
N∑
n=1

∑
s∈S

yn(s)−
∑
s∈S

yN+1(s)
∑
s′∈S

∑
a∈A

pN (s|s′, a)xN (s′, a)

)
.

Then using the algebraic simplification in the proof of Theorem 3.1 we obtain

lim
N→∞

N∑
n=1

∑
s∈S

∑
a∈A

αn−1cn(s, a)xn(s, a)

= lim
N→∞

(
N∑
n=1

∑
s∈S

∑
a∈A

(
yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′)
)
xn(s, a)

)
.

That is,

lim
N→∞

N∑
n=1

∑
s∈S

∑
a∈A

xn(s, a)
[
αn−1cn(s, a)−

(
yn(s)−

∑
s′∈S

pn(s′|s, a)yn+1(s′)
)]

︸ ︷︷ ︸
ψ(n)

= 0.

Since y and x are feasible to (P ) and (D), respectively, we have (i) xn(s, a) ≥ 0 for all s ∈ S
and all a ∈ A, and (ii) αn−1cn(s, a) ≥ yn(s) −

∑
s′∈S

pn(s′|s, a)yn+1(s′) for all s ∈ S and all a ∈ A.

Consequently, ψ(n) ≥ 0 for all n. In fact, since
∑
n∈N

ψ(n) = 0, we have that ψ(n) = 0 for all n. This

implies (15) in light of (i) and (ii) above.

F Proof of Theorem 4.3

Suppose x is a basic feasible solution but not an extreme point. Then there exists a λ ∈ (0, 1)
and w, z ∈ X that are distinct from x and are feasible to (D) such that x = λw + (1− λ)z. Since
w ≥ 0 and z ≥ 0 by constraint (10) in (D), xn(s, a) = 0 for any s ∈ S, a ∈ A and n ∈ N implies
wn(s, a) = zn(s, a) = 0. That is, the sets of basic actions in x, w, and z are identical. Uniqueness
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of flows in basic actions then implies that x = w = z. This contradicts the hypothesis that w and
z are distinct from x.

Suppose x is an extreme point but not a basic feasible solution. Then there exists some n ∈ N
and some s ∈ S and two distinct actions a, b ∈ A such that xn(s, a) = δ > 0 and xn(s, b) = ε > 0. In
fact, let n be the smallest such period. Without loss of generality, we assume that δ > ε. We show
that x is a midpoint of two distinct solutions w and z that are feasible to (D), thus contradicting
that x is an extreme point. For k = n+1, n+2, . . . let Sk(x) ⊆ S be the subset of states that receive
any portion of flow δ originating in hyperarc (n, s, a) in solution x. Moreover, for any sk ∈ Sk(x), let
Ak(sk) be the subset of ak ∈ A such that xk(sk, ak) > 0. Let Fn(x) be the sub-hypernetwork formed

by node s, hyperarc (n, s, a), nodes in
∞⋃

k=n+1

Sk(x) and hyperarcs in
∞⋃

k=n+1

⋃
sk∈Sk

Ak(sk). For any

sk ∈ Sk(x) and ak ∈ Ak(sk), let φk(sk, ak) = xk(sk, ak)/
∑

a∈Ak(sk)

xk(sk, a). Put a supply of ε on node

s and a supply of 0 on all other nodes in sub-hypernetwork Fn(x), and then construct a flow u recur-
sively in periods n, n+1, . . . in this sub-hypernetwork as follows. First set un(s, a) = ε. Then for each
sn+1 ∈ Sn+1 and each an+1 ∈ An+1(sn+1), set un+1(sn+1, an+1) = εpn(sn+1|s, a)φn+1(sn+1, an+1).
More generally, for each sk ∈ Sk and ak ∈ Ak(sk) for k = n+ 2, n+ 3, . . ., set

uk(sk, ak) = φk(sk, ak)
∑

sk−1∈Sk−1

∑
ak−1∈Ak−1(sk−1)

pk−1(sk|sk−1, ak−1)uk−1(sk−1, ak−1).

We claim that xk(sk, ak) ≥ uk(sk, ak) for all hyperarcs (sk, ak) in sub-hypernetwork Fn(x). To see
this, we note that

uk(sk, ak) = φk(sk, ak)
∑

sk−1∈Sk−1

∑
ak−1∈Ak−1(sk−1)

pk−1(sk|sk−1, ak−1)uk−1(sk−1, ak−1)

=
xk(sk, ak)∑

a∈Ak(sk)

xk(sk, a)

∑
sk−1∈Sk−1

∑
ak−1∈Ak−1(sk−1)

pk−1(sk|sk−1, ak−1)uk−1(sk−1, ak−1)

=

xk(sk, ak)
∑

sk−1∈Sk−1

∑
ak−1∈Ak−1(sk−1)

pk−1(sk|sk−1, ak−1)uk−1(sk−1, ak−1)

1 +
∑

sk−1∈S

∑
ak−1∈A

pk−1(sk|s′, a)xk−1(s′, a)

≤
xk(sk, ak)

∑
sk−1∈Sk−1

∑
ak−1∈Ak−1(sk−1)

pk−1(sk|sk−1, ak−1)uk−1(sk−1, ak−1)∑
sk−1∈S

∑
ak−1∈A

pk−1(sk|sk−1, ak−1)xk−1(sk−1, ak−1)

≤
xk(sk, ak)

∑
sk−1∈Sk−1

∑
ak−1∈Ak−1(sk−1)

pk−1(sk|sk−1, ak−1)uk−1(sk−1, ak−1)∑
sk−1∈Sk−1

∑
ak−1∈Ak−1(sk−1)

pk−1(sk|s′, a)xk−1(sk−1, ak−1)
≤ xk(sk, ak).

Similarly, let Tk(x) ⊆ S be the subset of states that receive any portion of flow ε originating in
hyperarc (n, s, b) in solution x. Moreover, for any tk ∈ Tk(x), let Bk(tk) be the subset of bk ∈ A
such that xk(tk, bk) > 0. Let Gn(x) be the sub-hypernetwork formed by node s, hyperarc (n, s, b),

nodes in
∞⋃

k=n+1

Tk(x) and hyperarcs in
∞⋃

k=n+1

⋃
tk∈Tk

Bk(tk). For any tk ∈ Tk(x) and bk ∈ Bk(sk), let

λk(tk, bk) = xk(tk, bk)/
∑

b∈Bk(tk)

xk(tk, b). Put a supply of ε on node s and a supply of 0 on all other
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nodes in sub-hypernetwork Gn(x), and then construct a flow v recursively in periods n, n + 1, . . .
in this sub-hypernetwork as follows. First set vn(s, b) = ε. Then for each tn+1 ∈ Tn+1 and each
bn+1 ∈ Bn+1(tn+1), set

vn+1(tn+1, bn+1) = εpn(tn+1|s, b)λn+1(tn+1, bn+1).

More generally, for each tk ∈ Tk and bk ∈ Bk(tk) for k = n+ 2, n+ 3, . . ., set

vk(tk, bk) = λk(tk, bk)
∑

tk−1∈Tk−1

∑
bk−1∈Bk−1(tk−1)

pk−1(kij |tk−1, bk−1)vk−1(tk−1, bk−1).

Again, we note that vk(tk, bk) ≤ xk(tk, bk) for all hyperarcs (tk, bk) in sub-hypernetwork Gn(x). We
construct a new solution w to (D) from x as follows. Set wk(sk, ak) = xk(sk, ak) for hyperarcs
(sk, ak) that are not in Fn(x) or Gn(x). Then set wk(sk, ak) = xk(sk, ak)− uk(sk, ak) for hyperarcs
(sk, ak) that are in Fn(x), and wk(sk, ak) = xk(sk, ak) + vk(sk, ak) for hyperarcs (sk, ak) that are in
Gn(x). That is, w is constructed from x by rerouting a total flow of ε from sub-hypernetwork Fn(x)
through sub-hypernetwork Gn(x), and hence it is feasible to the flow balance constraints in (D).
Similarly, we construct a new feasible solution z to (D) from x as follows. Set zk(sk, ak) = xk(sk, ak)
for hyperarcs (sk, ak) that are not in Fn(x) or Gn(x). Then set zk(sk, ak) = xk(sk, ak) + uk(sk, ak)
for hyperarcs (sk, ak) that are in Fn(x), and zk(sk, ak) = xk(sk, ak)−vk(sk, ak) for hyperarcs (sk, ak)
that are in Gn(x). That is, z is constructed by rerouting a total flow of ε from sub-hypernetwork
Gn(x) through sub-hypernetwork Fn(x), and hence it is feasible to the flow balance constraints in
(D) Then observe that x = (z + w)/2 contradicting the assumption that x is an extreme point.

G Proof of Proposition 4.6

Suppose that y∗ ∈ Y is optimal to (P ). Then by Theorem 3.6, x∗ and y∗ satisfy complementary
slackness conditions. This implies that, since x∗n(s, an(s)) > 0,

y∗n(s) = αn−1cn(s, an(s)) +
∑
s′∈S

pn(s′|s, an(s))y∗n+1(s′),

which in turn equals

min
a∈A

{
αn−1cn(s, a) +

∑
s′∈S

pn(s′|s, a)y∗n+1(s′)
}

because y∗n(s) ≤ αn−1cn(s, a) +
∑
s′∈S

pn(s′|s, a)y∗n+1(s′) for all a ∈ A by constraints (5) in (P ). Thus

an(s) achieves the minimum in Bellman’s equations of optimality in dynamic programming and
hence is optimal in state s in period n (Theorem 2.2 on page 32 of [42]).

H Proof of Lemma 4.7

Let an(s), for n ∈ N and s ∈ S, be the basic actions in x. Since xn(s, an(s)) > 0 for all n ∈ N
and s ∈ S, Equation (15) in Definition 3.3 implies that any y ∈ Y that satisfies complementary
slackness with x must be a solution of the infinite system of equations

yn(s) = αn−1cn(s, an(s)) +
∑
s′∈S

pn(s′|s, an(s))yn+1(s′), for all n ∈ N, s ∈ S.
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Theorem 6.1.1 in [37] shows7 that this system has a unique bounded solution wherein values yn(s),
for all n ∈ N and s ∈ S, equal the expected cost-to-go, discounted back to the first period, incurred
on implementing the deterministic Markovian policy defined by actions an(s) starting in state s in
period n.

I Proof of Proposition 5.1

Let y be the solution complementary to x and w be the solution complementary to z. Then we
know by Equation (15) in Theorem 3.4 that f(x) = g(y) and f(z) = g(w). Thus, to prove that
f(z)− f(x) = (1 + θ)γn(s, a), we show that g(w)− g(y) = (1 + θ)γn(s, a).

Since basic hyperarcs in periods n+1, n+2, . . . do not change in the pivot operation, wk(s, a) =
yk(s, a) for all s ∈ S and a ∈ A for k = n+ 1, n+ 2, . . .. Since basic hyperarcs in other states t 6= s
in period n do not change in the pivot operation, this also implies that wn(t) = yn(t) for all t 6= s.
Moreover, since (n, s, a) is a basic hyperarc in the new basic feasible solution z, zn(s, a) > 0. Thus

wn(s) = αn−1cn(s, a) +
∑
s′∈S

pn(s′|s, a)yn+1(s′) (39)

by complementary slackness. Now let Sn−1 ⊆ S be the set of states t in period n − 1 such that
s ∈ Jn−1(t, an−1(t)). That is, state s in period n is reachable by choosing basic actions in states in
Sn−1. Thus, for t ∈ Sn−1, we have by complementary slackness that

wn−1(t) = αn−2cn−1(t, an−1(t)) + pn−1(s|t, an−1(t))wn(s) +
∑

s′∈S\{s}

pn−1(s′|t, an−1(t))yn(s′).

Also, by complementary slackness, we have

yn−1(t) = αn−2cn−1(t, an−1(t)) + pn−1(s|t, an−1(t))yn(s) +
∑

s′∈S\{s}

pn−1(s′|t, an−1(t))yn(s′).

Hence, for t ∈ Sn−1, we get

wn−1(t)− yn−1(t) = pn−1(s|t, an−1(t))(wn(s)− yn(s)) , θn−1(s, t)(wn(s)− yn(s)).

On the other hand, for t /∈ Sn−1, wn−1(t) = yn−1(t). Now for k = 1, 2, . . . , n − 2, we recursively
define Sk ⊆ S as the set of states t in period k such that Ik(t, ak(t)) , Jk(t, ak(t)) ∩ Sk+1 6= ∅.
Thus, for t ∈ Sk, we have that

wk(t) = αk−1ck(t, ak(t)) +
∑

s′∈Ik(t,ak(t))

pk(s
′|t, ak(t))wk+1(s′) +

∑
s′ /∈Ik(t,ak(t))

pk(s
′|t, ak(t))yk+1(s′).

Again, by complementary slackness, we have

yk(t) = αk−1ck(t, ak(t)) +
∑

s′∈Ik(t,ak(t))

pk(s
′|t, ak(t))yk+1(s′) +

∑
s′ /∈Ik(t,ak(t))

pk(s
′|t, ak(t))yk+1(s′).

Thus, for t ∈ Sk, we get

wk(t)− yk(t) =
∑

s′∈Ik(t,ak(t))

pk(s
′|t, ak(t))(wk+1(s′)− yk+1(s′))

7The result in [37] is for stationary, infinite-horizon, countable state, finite action MDPs but it is valid here, since
as noted earlier, our MDP can be viewed that way.
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=
∑

s′∈Ik(t,ak(t))

pk(s
′|t, ak(t))θk+1(s, s′)(wn(s)− yn(s))

= (wn(s)− yn(s))
∑

s′∈Ik(t,ak(t))

pk(s
′|t, ak(t))θk+1(s, s′)

, θk(s, t)(wn(s)− yn(s)).

On the other hand, for t /∈ Sk, wk(t) = yk(t). Then the difference between objective values of w
and y is given by

g(w)− g(y) =
∑
k∈N

∑
t∈S

(wk(t)− yk(t)) =

n∑
k=1

∑
t∈S

(wk(t)− yk(t))

= (wn(s)− yn(s)) +
n−1∑
k=1

∑
t∈Sk

(wk(t)− yk(t))

= (wn(s)− yn(s)) +
n−1∑
k=1

∑
t∈Sk

θk(s, t)(wn(s)− yn(s))

, (1 + θ)(wn(s)− yn(s)),

where θ ,
n−1∑
k=1

∑
t∈Sk

θk(s, t). Then Equation (39) implies that g(w)− g(y) = (1 + θ)γn(s, a).
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