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Stochastic kriging is a new metamodeling technique for effectively representing the mean response surface implied by a
stochastic simulation; it takes into account both stochastic simulation noise and uncertainty about the underlying response
surface of interest. We show theoretically, through some simplified models, that incorporating gradient estimators into
stochastic kriging tends to significantly improve surface prediction. To address the issue of which type of gradient estimator
to use, when there is a choice, we briefly review stochastic gradient estimation techniques; we then focus on the properties
of infinitesimal perturbation analysis and likelihood ratio/score function gradient estimators and make recommendations.
To conclude, we use simulation experiments with no simplifying assumptions to demonstrate that the use of stochastic
kriging with gradient estimators provides more reliable prediction results than stochastic kriging alone.
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1. Introduction
Simulation models, both deterministic and stochastic, can
provide high-fidelity predictions of the behavior of com-
plex or complicated systems at different settings of their
controllable factors or decision variables. However, simu-
lation runs may be (and frequently are) time consuming
to execute, potentially limiting the usefulness of simulation
in some settings, including support for real-time decision
making and system optimization. To mitigate this defi-
ciency, carefully designed simulation experiments can be
employed to fit metamodels—equation-based approxima-
tions of some aspect of system performance, such as the
mean—and the metamodels may be exercised in real time,
or searched efficiently using nonlinear optimization meth-
ods. Of course, to be useful, the metamodels need to be
accurate, and the experiment design to fit them should not
be too computationally expensive to execute.

In the stochastic simulation community there is a long
history of research on experiment design for fitting regres-
sion metamodels to simulation output. Unfortunately, stan-
dard linear regression models tend not to provide good
global representations of the response surface over the fea-
sible space of controllable factors, and we are particularly
interested in applications where a global model is valuable,
such as using the metamodel for real-time decision sup-
port. In the design and analysis of computer experiments
(DACE) community—where the simulation models are
typically deterministic and very expensive to run—the use

of semiparametric “kriging” metamodels has been remark-
ably effective for global metamodeling (see for instance,
Santner et al. 2003). More recently Ankenman et al. (2010)
introduced stochastic kriging as a tool for representing
stochastic simulation response surfaces. The benefit of krig-
ing and stochastic kriging as metamodels, however, comes
with a price: although the predicted surface may have low
error, it is difficult to enforce known properties like mono-
tonicity, or to avoid bumpiness of the predicted surface
because of mean reversion (e.g., Siem 2008). In DACE it
has been known for some time that incorporating known
gradient information in the construction of the metamodel
can mitigate such deficiencies (which is quite different from
using kriging models to estimate the gradients themselves).
We investigate whether similar benefits can be obtained in
the stochastic simulation setting.

To the best of our knowledge this idea is new and has
yet to be exploited in stochastic simulation metamodeling.
One reason that it is promising is that gradient estimation
in stochastic simulation has been studied extensively, and
there exist gradient estimators whose properties are well
understood and that are ready to use for large classes of
problems (e.g., queueing networks; see Glasserman 1991).
Further, unlike the typical deterministic gradient calculation
in DACE, the additional computational burden to obtain a
gradient estimator in stochastic simulation is often negligi-
ble compared to the effort required to obtain the response
itself. Therefore, the research question is whether including
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stochastic gradient estimators leads to better prediction,
rather than whether the improvement is worth the extra
computation. Assuming stochastic gradient estimators are
helpful, we are also interested in which of the well-known
types of gradient estimators it is better to use. As dis-
cussed more fully in §4, if the additional burden is substan-
tial, as it is for finite-difference gradient estimators, then
the effort would be better spent on additional experiment
design points.

The remainder of this paper is organized as follows.
In §2 we build the framework for stochastic kriging with
gradient estimators. In §3 we analyze the effects on predic-
tion of incorporating gradient estimators through simplified
two-design-point and k-design-point models and try to infer
desirable properties of the potential gradient estimators.
We review stochastic gradient estimators in §4, with a focus
on infinitesimal perturbation analysis (IPA) and likelihood
ratio/score function (LR/SF) approaches, and we analyze
their respective properties in stochastic kriging metamod-
els. We conclude the paper with two experiments that apply
stochastic kriging with gradient estimators in §§5 and 6.

Here is a summary of what we will show: For simple
two-design-point and k-design-point models with known
parameters, we will prove that incorporating gradient esti-
mators provides better prediction of the response surface
in terms of the mean squared error of prediction. Further,
when we have a choice of unbiased gradient estimators,
we show that one that has lower variance and stronger
correlation with the response estimate is preferred, which
(as we also show) tends to favor IPA. This theoretical anal-
ysis is backed up by simulation experiments in which all
parameters are estimated, as would be done in practice. Our
experiments include predicting the value of a call option
as a function of its underlying stock price, where we find
that incorporating either IPA and LR/SF estimators of the
Black-Scholes delta leads to substantially better predic-
tion; this is critical in option pricing applications. A sec-
ond experiment examines a realistic problem of predicting
the throughput of a closed-loop flexible assembly system.
Again we find that incorporating IPA gradient estimators
into stochastic kriging significantly improves the predic-
tion performance over stochastic kriging without gradient
estimators.

2. The Model Formulation
In this section we provide background on kriging meta-
models that incorporate gradient information, and introduce
our approach for exploiting gradient estimators in stochas-
tic kriging.

2.1. Kriging

Although originating in geostatistics, kriging has become
increasingly popular in engineering design following the
work of Sacks et al. (1989) who applied the method
to approximate the output of deterministic computer

experiments. In a deterministic computer experiment, the
response Y4x5 is observed without noise and a metamodel
is developed after observing Y4x5 at some design points xi,
with xi ∈ <d. The unknown response surface is repre-
sented by

Y4x5= f4x5>Â+ M4x51 (1)

where f4x5 and Â are, respectively, a p×1 vector of known
functions of x, and a p × 1 vector of unknown parame-
ters. This form of the model is sometimes called “universal
kriging.” In kriging it is assumed that M is a realization of
a mean zero stationary Gaussian random process (or ran-
dom field) of second order (i.e., E6�M4x5�27 < � for any
x ∈ <d), which can be thought of as being sampled from
a space of functions mapping <d → <. The functions in
this space are assumed to exhibit spatial correlation: the
values M4xh5 and M4xl5 will tend to be similar if xh and xl
are close to each other in <d. Specifically, the covariance
function between the responses at design points is usually
described by �2, the spatial variance of the random process,
and a correlation function R4 · 1 · 5; that is, at xh and xl,

Cov6Y4xh51Y4xl57= Cov6M4xh51M4xl57

= �2R4xh1xl50 (2)

We introduce a simple two-design-point model for
illustration and continue building this example through-
out §2. Suppose that d = 1 and we observe the responses
Y4x151Y4x25 with no simulation noise at design points
xi ∈ <, i = 112. Without loss of generality, let x1 = 0 and
x2 = 1. Figure 1 illustrates the idea of kriging. The curve
Y4x5 is the unknown response surface of interest. Krig-
ing uses the observed responses Y4xi5 at design points xi,
i = 112 (denoted by � on the curve) to predict the responses
at other points.

Now suppose that a simulation experiment has been run
at k design points x11 x21 0 0 0 1xk, and we want to predict

Figure 1. A two-design-point model for kriging.
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Note. Curve is the true response function Y4x5, and the �’s are the
observed values at x1 and x2.
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the response at x0. For ease of exposition, we abuse the
notation slightly by letting Y = 4Y4x151Y4x251 0 0 0 1Y4xk55>

be the vector of observed responses. Let èM be the
k × k variance–covariance matrix that contains the spa-
tial covariance between the responses at a pair of design
points, i.e., èM4xh1xl5 = �2R4xh1xl5 because of (2).
Take the k × p matrix of regression functions F as
F = 4f4x15

>1 f4x25
>1 0 0 0 1 f4xk5

>5>. Let èM4x01 ·5 be the
k × 1 vector of spatial covariances between Y4x05 and
the responses at xi1 i = 1121 0 0 0 1 k, i.e., èM4x01 ·5 =

�24R4x01x151R4x01x251 0 0 0 1R4x01xk55
>.

Sections 1.2 and 1.5 in Stein (1999) give the follow-
ing results. When the spatial parameters (hence èM and
èM4x01 ·5) and the vector Â are known, then the MSE-
optimal predictor (which is also the best linear predictor
(BLP)), which minimizes the mean squared error among
linear predictors of the response at x0, is

Ŷ4x05= f4x05
>Â+èM4x01 ·5

>è−1
M 4Y −FÂ51 (3)

with mean squared error of prediction (MSE)

MSE4Ŷ4x055=èM4x01x05−èM4x01 ·5
>è−1

M èM4x01 ·50 (4)

When èM and èM4x01 ·5 are known, but Â is unknown
and needs to be estimated, the MSE-optimal predictor
(which is also the best linear unbiased predictor (BLUP))
of the response at x0 is

Ŷ4x05= f4x05
>Â̂+èM4x01 ·5

>è−1
M 4Y −FÂ̂51 (5)

where Â̂ = 4F>è−1
M F5−1F>è−1

M Y is the generalized least
squares estimator. The MSE of Ŷ4x05 equals

MSE4Ŷ4x055=èM4x01x05−èM4x01 ·5
>è−1

M èM4x01 ·5

+�>4F>è−1
M F5−1�1 (6)

where � = f 4x05−F>è−1
M èM4x01 ·5. Equations (3) and (5)

are the kriging metamodels. We next enhance them by
incorporating gradients.

2.2. Kriging with Gradient Information

Research on metamodels with gradient information has
been conducted in the context of deterministic computer
experiments. See Morris et al. (1993), chapter 4 of Santner
et al. (2003), Näther and S̆imák (2003), S̆imák (2002),
and Stephenson (2010) for modeling and experiment design
issues; for metamodel–based optimization, see for instance,
Forrester and Keaney (2009) and Yamazaki et al. (2010).
A key research issue in deterministic computer simula-
tion is whether the (often substantial) computational effort
required to generate gradients might be better spent on
additional response estimates. This is in contrast to our
research question as to whether there is value in incorpo-
rating gradient estimates, because the computational cost
of obtaining them is often not significant.

To introduce the idea of kriging with gradient informa-
tion, we start with the derivative of a stochastic process.
Consider the stochastic process 8Y4x51x ∈ <d9 defined
by Equation (1) with mean function f4x5>Â and covari-
ance given in Equation (2). If 8M4x51x ∈ <d9 is a zero-
mean covariance-stationary Gaussian stochastic process,
then the first-order partial derivative processes Dr4x5,
r = 1121 0 0 0 1 d are defined as follows:

Dr4x5=
¡Y4x5
¡xr

=

(

¡f4x5
¡xr

)>

Â+
¡M4x5
¡xr

1 (7)

¡M4x5
¡xr

= lim
t→0

M4x+ ter5− M4x5
t

1 r = 1121 0 0 0 1 d3

where er is the d × 1 unit vector with the r th element
being one while the others are zero. Notice that the limit is
taken in the sense of convergence in mean square. Sufficient
conditions for Equation (7) to hold are given in chapter 3
of Parzen (1962): the mean function f4x5>Â is differen-
tiable and the second-order mixed derivative of R4xh1xl5
exists and is continuous. Under these conditions the opera-
tions of differentiation and expectation can be interchanged.
Therefore, the general first-order partial derivative process
Dr4x51 r = 1121 0 0 0 1 d of Y4x5 is Gaussian, with mean
function

E6Dr4x57=
(

¡f4x5
¡xr

)>

Â

and covariance of the first-order partial derivatives at a pair
of points xh1xl ∈ <d being

Cov6Dr4xh51D
s4xl57= Cov

[

¡

¡xhr
Y4xh51

¡

¡xls
Y4xl5

]

=
¡

¡xhr

¡

¡xls
Cov6Y4xh51Y4xl57

= �2 ¡

¡xhr

¡

¡xls
R4xh1xl50

Further, the covariance between Y4x5 and its first-order par-
tial derivative Dr4x5 is given by

Cov6Dr4xh51Y4xl57= Cov
[

¡

¡xhr
Y4xh51Y4xl5

]

= �2 ¡

¡xhr
R4xh1xl50

A common choice for the correlation function is the expo-
nential form

R4xh1xl5= exp
{

−

d
∑

r=1

�r �xhr − xlr �
pr

}

0 (8)

The parameter �r affects how quickly the correlation
decreases as two points become farther apart in the direc-
tion of the r th coordinate: the greater �r is, the less corre-
lation exists in that direction. The parameter pr describes
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how smooth the response surface is. When pr = 1, the
correlation function—and therefore the predicted response
surface—is continuous but not differentiable; this is clearly
not appropriate for modeling a response surface for which
gradients exist. When pr = 2, which gives what is known
as the “Gaussian correlation function,” the correlation func-
tion and surface are infinitely continuously differentiable.
Although this may be smoother than necessary, there is
a long history of successful use of the Gaussian correla-
tion function in practice, so we adopt it here. To see other
choices of correlation functions that are differentiable, refer
to Stein (1999), Näther and S̆imák (2003), S̆imák (2002),
and Stephenson (2010).

To connect with the discussion in §2.1, the observations
made at k design points now include both the response and
all the first-order partial derivatives at each design point.
We organize them into the k4d+ 15× 1 vector as follows:

Y+ = 4Y>1 4D15>1 0 0 0 1 4Dd5>5>1 (9)

where Y is the k× 1 vector of observed responses; and for
r = 1121 0 0 0 1 d

Dr
= 4Dr4x151D

r4x251 0 0 0 1D
r4xk55

>

denotes the vector of observed partial derivatives of Y with
respect to the r th design variable. Figure 2 illustrates krig-
ing with gradient information through the one-dimensional
two-design-point model. On the response surface, we
observe the response Y4xi5 and its derivative D14xi5 at xi ∈
<1 i = 112 with no simulation noise present. In this illustra-
tion, the observation vector is Y+ = 4Y4x151Y4x251D14x151
D14x255

>.
Throughout the paper, we assume that the mean func-

tion f4x5>Â is differentiable. The correlation function is
chosen as the exponential form given in Equation (8) with
pr = 2 for r = 1121 0 0 0 1 d. Notice that these are suffi-
cient conditions for the existence of the derivative pro-
cesses, and they insure that the various variance–covariance

Figure 2. A two-design-point model for kriging with
gradient information.
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Note. Arrows indicate the observed values of the gradients at x1 and x2.

matrices we require are positive definite. Now kriging with
gradient information can be constructed through augment-
ing the relevant objects of the metamodel given in §2.1.
Let èM+

be the k4d + 15 × k4d + 15 variance–covariance
matrix that includes three types of the spatial covari-
ances at a pair of design points: covariances between
the responses, covariances between the derivatives, and
covariances between the response at one design point and
the derivative at another:

èM+
=









































CM
01041115 · · · CM

010411 k5 CM
01141115 · · ·

000
000

000
000

000

CM
0104k115 · · · CM

0104k1 k5 CM
0114k115 · · ·

000
000

000
000

000

CM
d1041115 · · · CM

d10411 k5 C
M
d1141115 · · ·

000
000

000
000

000

CM
d104k115 · · · CM

d104k1 k5 C
M
d114k115 · · ·

CM
011411 k5 · · · CM

01 d41115 · · · CM
01 d411 k5

000
000

000
000

CM
0114k1 k5 · · · CM

01 d4k115 · · · CM
01 d4k1 k5

000
000

000
000

CM
d11411 k5 · · · CM

d1d41115 · · · CM
d1d411 k5

000
000

000
000

CM
d114k1 k5 · · · CM

d1d4k115 · · · CM
d1d4k1 k5







































0 (10)

In the entries above, i1 h = 1121 0 0 0 1 k represents the
indices for design points and the subscripts m1 g =

1121 0 0 0 1 d (m 6= g) indicate the coordinate with respect to
which we have taken the partial derivative. For notation
simplicity, the subscript 0 means that there is no differen-
tiation. To be specific,

CM
0104i1 h5= Cov6Y4xi51Y4xh57

= �2 exp
{

−

d
∑

r=1

�r4xir − xhr5
2

}

1

CM
01m4i1 h5= Cov6Y4xi51Dm4xh57

= 42�m54xim − xhm5C
M
0104i1 h51

CM
m104i1 h5= Cov6Dm4xi51Y4xh57= −CM

01m4i1 h51

CM
m1g4i1 h5= Cov6Dm4xi51Dg4xh57

= 4−4�m�g54xim − xhm54xig − xhg5C
M
0104i1 h51

CM
m1m4i1 h5= Cov6Dm4xi51Dm4xh57

= 42�m561 − 2�m4xim − xhm5
27CM

0104i1 h50

(11)
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Notice that CM
01m4i1 i5 = CM

m104i1 i5 = 0 for m = 1121 0 0 0 1 d
at all design points. In particular, for the two-design-point
model, Equation (10) reduces to

èM+
=�2













1 CM
01041125 0 CM

01141125

CM
01042115 1 CM

01142115 0

0 CM
11041125 2� CM

11141125

CM
11042115 0 CM

11142115 2�













0 (12)

The matrix F in §2.1 now becomes F+, which is the
k4d+ 15×p vector of functions

F+ =
(

f4x15
>1 0 0 0 1 f4xk5

>1 4¡f4x15/¡x15
>1 0 0 0 1

4¡f4xk5/¡x15
>1 0 0 0 1 4¡f4x15/¡xd5

>1 0 0 0 1

4¡f4xk5/¡xd5
>
)>
0

For instance, if f>4x5Â= �0 is used in the two-design-point
model, then F+ = 411110105>.

To do prediction at x0 ∈ <d, èM4x1 ·5 in §2.1 has to be
updated to èM+

4x1 ·5, the k4d+ 15× 1 vector that consists
of not only the spatial covariances between the response
at x0 and those at xi1 i = 1121 0 0 0 1 k, but the covariances
between the response at x0 and the partial derivatives at the
k design points as well. Specifically,

èM+
4x01 ·5=

(

CM
010401151 0 0 0 1CM

010401 k51C
M
011401151 0 0 0 1

CM
011401 k51 0 0 0 1C

M
01 d401151 0 0 0 1CM

01 d401 k5
)>
0

References such as Santner et al. (2003) and S̆imák
(2002) give the following results on kriging with deriva-
tive information. When Â is known, the MSE-optimal
predictor and its corresponding MSE can be obtained
by substituting Y+1F+1èM+

1èM+
4x01 ·5, respectively, for

Y1F1èM1èM4x01 ·5 into Equations (3) and (4). On the other
hand, if Â has to be estimated, Equations (5) and (6) are
used instead. In the next section, we develop a metamodel
with gradient estimators that is adapted to stochastic simu-
lation output, which is a central contribution of this paper.

2.3. Stochastic Kriging with Gradient Estimators

To start, we review the idea of stochastic kriging without
gradient estimators. Stochastic kriging models the simu-
lation’s output on replication j at design point xi ∈ <d,
i = 1121 0 0 0 1 k as

Yj4xi5= Y4xi5+ �j4xi5

= f4x5>Â+ M4xi5+ �j4xi50 (13)

What is new in Equation (13) is accounting for stochas-
tic simulation noise. At design point xi, ni ¾ 2 simu-
lation replications are obtained; �14xi51 �24xi51 0 0 0 1 �ni

4xi5
represent the independent and identically distributed mean-
zero sampling noise observed for each replication taken at
design point xi.

On the jth simulation replication, suppose that we
not only observe the simulation output 8Yj4xi59

k
i=1 at all

k design points, but we are also able to obtain unbiased gra-
dient estimators 8Dr

j 4xi51 r = 1121 0 0 0 1 d9ki=11 where Dr
j 4xi5

denotes the estimator of the r th gradient component in the
jth simulation replication at design point xi. We propose
to use Equation (14) to describe the gradient estimators,
which will be explored more fully in §4:

Dr
j 4xi5=

¡Y4xi5
¡xr

+ � r
j 4xi5

=

(

¡f4xi5
¡xr

)>

Â+
¡M4xi5
¡xr

+ � r
j 4xi51 (14)

where � r
1 4xi51 �

r
2 4xi51 0 0 0 1 �

r
ni
4xi5 represent the mean-zero,

independent and identically distributed (not necessarily nor-
mal) sampling noise in the estimators of the r th gradient
component in different simulation replications at design
point xi. Equations (13) and (14) jointly provide the frame-
work of stochastic kriging with gradient estimators.

Figure 3 illustrates the simulation responses and gradi-
ent estimators obtained in a particular stochastic simulation
replication j for the two-design-point model. Comparing
Figure 3 with Figure 2, we see that the observed simulation
response Yj4xi5 deviates from the true value at design point
xi on the response surface; meanwhile, the gradient estima-
tor D1

j 4xi5 does not reflect the true trend of the response
surface at xi, i = 112 either.

For the theoretical analysis in this paper, the following
assumptions are made for stochastic kriging with gradient
estimators, in addition to those for stochastic kriging with-
out gradient estimators given in Ankenman et al. (2010):

1. Common random numbers (CRN) are not used across
design points. Just as CRN causes the responses across
design points to be positively correlated, it would cause
the gradient estimators across design points to be positively
correlated as well. As shown in Chen et al. (2010, 2012),

Figure 3. A two-design-point model for stochastic
kriging with gradient estimators.
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Note. Curve is the true response function Y4x5; �’s are the observed val-
ues at x1 and x2; and arrows indicate the observed values of the gradient
estimators at x1 and x2 in a particular simulation replication.
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which studied the effect of CRN on stochastic kriging,
CRN inflates the MSE at prediction points; parallel reason-
ing makes us believe that CRN will have a similar impact
on prediction when applied with the gradient-enhanced
stochastic kriging. However, to verify this reasoning we
conduct experiments with and without CRN in §§5 and 6,
and they do confirm our conjecture. It is worth noting that
Chen et al. (2012) showed that CRN may be beneficial
when stochastic kriging itself is used to predict gradients.

2. The simulation noise � associated with the gradient
estimators is independent of the random process M and its
derivative processes.

Under these assumptions, correlation only exists for
4�j4xi51 �

1
j 4xi51 0 0 0 1 �

d
j 4xi55

> and not between components
with different replication index j or design point i.
At design point xi, let the variance of the simulation
noise in the response be Var6�j4xi57 = �2

i0 and the vari-
ance of the simulation noise in the estimator of the r th
gradient component be Var6� r

j 4xi57 = �2
ir 1 r = 1121 0 0 0 1 d.

Define the correlation between the simulation noise in the
response and in the estimator of the r th gradient compo-
nent as �

401 r5
i = Corr6�j4xi51 �

r
j 4xi571 r = 1121 0 0 0 1 d. Let

the correlation between the simulation noise in the estima-
tors of a pair of distinct gradient components be �

4r1 s5
i =

Corr6� r
j 4xi51 �

s
j 4xi57, r1 s = 1121 0 0 0 1 d 4r 6= s5. Notice that

the �
401 r5
i ’s and the �

4r1 s5
i ’s at different design points are not

necessarily equal. Let Ȳ+ be the k4d + 15× 1 vector that
contains all of the sample average simulation responses and
gradient estimators:

Ȳ+ =
(

Ȳ4x151 0 0 0 1 Ȳ4xk51 D̄
14x151 0 0 0 1 D̄

14xk51 0 0 0 1

D̄d4x151 0 0 0 1 D̄
d4xk5

)>

= Y+ + Ø̄+1 (15)

where Y+ is defined in Equation (9) and the k4d + 15× 1
vector of averaged simulation noise

Ø̄+ =
(

�̄4x151 0 0 0 1 �̄4xk51 �̄
14x151 0 0 0 1 �̄

14xk51 0 0 0 1

�̄d4x151 0 0 0 1 �̄
d4xk5

)>

has mean zero and k4d + 15 × k4d + 15 variance–
covariance matrix è�+

, with elements specified as follows:
for r1 s = 011121 0 0 0 1 d, i = 1121 0 0 0 1 k, è�+

6rk+ i1 sk+ i7

= n−1
i �

4r1 s5
i �ir�is , and è�+

6rk + l1 sk + h7 = 0 for all

l 6= h1 l1h = 1121 0 0 0 1 k. Notice that �
4r1 r5
i = 1 for r =

011121 0 0 0 1 d. For the one-dimensional two-design-point
illustration, using �i = �

40115
i for short, we have

è�+
=















�2
10/n1 0 �1�10�11/n1 0

0 �2
20/n2 0 �2�20�21/n2

�1�10�11/n1 0 �2
11/n1 0

0 �2�20�21/n2 0 �2
21/n2















0

(16)

Combining our analysis on Y+ in §2.2 and the analy-
sis on Ø̄+, we see that Ȳ+ has mean F+Â and variance–
covariance matrix è+, where è+ = èM+

+ è�+
; F+ and

èM+
are as specified in §2.2. The model for the averaged

simulation outputs follows

Ȳ4xi5= Y4xi5+ �̄4xi51

D̄r4xi5= Dr4xi5+ �̄ r4xi51 i = 1121 0 0 0 1 k3

r = 1121 0 0 0 1 d0 (17)

To do prediction at x0 ∈ <d, èM+
4x01 ·5 remains the

same as in §2.2. By following similar derivations as given
in Appendix EC.1. of Ankenman et al. (2010), we can
obtain the following results: when Â, è�+

and the spa-
tial parameters are known, the MSE-optimal predictor and
its corresponding MSE by stochastic kriging with gradi-
ent estimators are given by simply substituting Ȳ+, F+1
è+1 èM+

4x01 ·5, respectively, for Y1 F1 èM1 èM4x01 ·5, into
Equations (3) and (4). When Â has to be estimated, results
follow a similar proof as given in Appendix A.1 of Chen
et al. (2012): the MSE-optimal predictor and its correspond-
ing MSE can be obtained by substituting Ȳ+1 F+1 è+1
èM+

4x01 ·5, respectively, for Y1F1èM1èM4x01 ·5 into Equa-
tions (5) and (6).

In reality, we have to estimate è�+
. If we are willing

to further assume that on simulation replication j1 j = 11
21 0 0 0 1 ni, the simulation noise vectors 4�j4xi51 �

1
j 4xi51 0 0 0 1

�d
j 4xi55

> are i.i.d. multivariate normally distributed with
mean zero and 4d+15×4d+15 variance–covariance matrix













�2
i0 �

40115
i �i0�i1 · · · �

401 d5
i �i0�id

�
41105
i �i1�i0 �2

i1 · · · �
411 d5
i �i1�id

000
000

0 0 0
000

�
4d105
i �id�i0 �

4d115
i �id�i1 · · · �2

id













1

i = 1121 0 0 0 1 k1 (18)

then we can show, by proof entirely analogous to the
proof of Theorem 1 in Ankenman et al. (2010), that the

plug-in predictor ˆ̂Y4x05 obtained by replacing è�+
with its

sample counterpart è̂�+
is unbiased for Y4x05 (additional

details, including an expression for the MSE of this esti-
mator, are in the following section). Furthermore, with this
normality assumption we can first estimate the intrinsic
variance–covariance è�+

and then use è̂�+
in the likelihood

expression to estimate Â1 �2 and È. The likelihood expres-
sion that we numerically maximize is given in EC.1 of
the online companion (available as supplemental material
at http://dx.doi.org/10.1287/opre.1120.1143), which is how
we estimated the metamodel parameters in the experiments
described in §§5 and 6.

In the next section, we analyze the effects on predic-
tion of incorporating gradient estimators through simplified
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two-design-point and k-design-point models and try to infer
desirable properties of the potential gradient estimators.

3. Analysis of Stochastic Kriging
Metamodels with Gradient Estimators

Is it beneficial to include gradient estimators into stochas-
tic kriging metamodels when they are available cheaply?
And if it is helpful, what properties of the gradient esti-
mators lead to the most positive impact? In this section
we work with simplified two-design-point and k-design-
point models to gain some insights as to the answers to
these questions. We make these models tractable by enforc-
ing simplifying assumptions, including known metamodel
parameters in some cases. In our empirical study we make
none of these simplifications and we estimate all meta-
model parameters.

3.1. A Two-Design-Point Model

To make the analysis tractable, we start with a one-
dimensional 4d = 15 two-design-point stochastic kriging
metamodel with gradient estimators and further simplify
as follows: The two design points are x1 = 0 and x2 = 1,
and the prediction point x0 is in the design space 60117.
A constant trend model is used as is common in prac-
tice, i.e., f4x5>Â = �0; and the parameters �01 �

21 � are
known. Finally only the gradient estimators 8D1

j 4x159
n1
j=1

at x1 are included in building the stochastic kriging meta-
model. Recall that ni is the number of simulation replica-
tions used at design point xi1 i = 112.

Our goal in this section is to investigate the interplay
among the variances of the response and gradient estimator
and the correlation between them as it impacts the MSE of
prediction at x0.

Let s11 = �11/4
√
n1�5 measure the sampling noise of

the gradient estimator relative to the spatial variation
of the unknown response surface. Similarly, let si0 =

�i0/4
√
ni�51 i = 112 measure the noise of the simula-

tion responses at the two design points relative to the
spatial variation of the unknown response surface. Let
� = Corr6Ȳ4x151 D̄

14x157 be the correlation between the
stochastic simulation response and the gradient estimator
obtained at design point x1 = 0. Based on the assumptions
given in §2.3, it follows that � = Corr6�j4x151 �

1
j 4x157.

As discussed in §2.3, the observation vector Ȳ+ =

4Ȳ4x151 Ȳ4x251 D̄
14x155

> has mean 6�01�0107> and
variance–covariance matrix è2+

=èM+
+è�+

, which takes
the form

è2+
= �2











1 + s2
10 e−� �s10s11

e−� 1 + s2
20 2�e−�

�s10s11 2�e−� 2�+ s2
11











=

(

è2 C12

C21 C22

)

1 (19)

where è2 is the variance–covariance matrix of
4Ȳ4x151 Ȳ4x255

> at the two design points; C12 is a 2 × 1
vector and C21 = C>

12; C22 = �242� + s2
115 in this case is

a scalar. Correspondingly, we have the 3 × 1 vector of
spatial covariances

èM+
4x01 ·5=





Cov6Y4x051Y4x157
Cov6Y4x051Y4x257
Cov6Y4x051D14x157



= �2





e−�x2
0

e−�4x0−152

2�x0e
−�x2

0





=

(

èM4x01 ·5
C3

)

0

We see that èM4x01 ·5 is a 2×1 vector that contains the spa-
tial covariances between the true responses at x0 and those
at design points x1 and x2. In this case, the scalar C3 =

2��2x0 exp8−�x2
09 denotes the spatial covariance between

the true response at x0 and the gradient of the response
surface at x1.

We are now ready to study the MSE of the MSE-optimal
predictor Ŷ4x05 at a prediction point x0. First we give an
expression for the MSE when incorporating gradient esti-
mators into a stochastic kriging metamodel (call it MSE+):

MSE+ =èM+
4x01 x05−èM+

4x01 ·5
>è−1

2+
èM+

4x01 ·5

= �2
− 4èM4x01 ·5 C35

(

è2 C12

C21 C22

)−1

·

(

èM4x01 ·5
C3

)

0 (20)

Let q = 4C22 −C21è
−1
2 C125

−1. Then Equation (20) can be
shown to reduce to

MSE+ =
{

�2
−èM4x01 ·5

>è−1
2 èM4x01 ·5

}

− q
{

èM4x01 ·5
>è−1

2 C12 − C3

}2
0 (21)

We recognize that �2 −èM4x01 ·5
>è−1

2 èM4x01 ·5 is the MSE
of the MSE-optimal predictor Ŷ4x05 obtained by stochas-
tic kriging without using gradient estimators when �0 is
known. Hence to see whether incorporating the gradient
estimators into a stochastic kriging metamodel reduces
the MSE, it is necessary to check whether q = 4C22 −

C21è
−1
2 C125

−1 > 0 holds. This is proven in EC.2 of the
online companion; hence, we conclude that incorporating
gradient estimators into a stochastic kriging metamodel
improves prediction performance for any x0 ∈ 6x11 x27,
at least for this simplified two-design-point problem. Next
we examine the effect of gradient–estimator variability and
correlation between the gradient estimator and the response
via the parameters s11 and �, respectively; the proofs are in
Appendices EC.3 and EC.4 (in the online companion).

3.1.1. The Effect of � on MSE. The parameter � rep-
resents the correlation between the response and gradient
estimator at x1. The greater ��� is, the greater the reduction
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in MSE. However, for the same value of ���, � < 0 leads
to greater reduction than � > 0 in the MSE at those x0 that
are not very close to x1 = 0. This correlation is only under
our control through the choice of the gradient estimator. If
the gradient estimator is at x2 = 1 instead of at x1 = 0, then
the same line of reasoning results in a parallel conclusion:
positive correlation between the simulation response and
the gradient estimator helps more than negative correlation
in reducing the MSE at those x0 that are not very close
to x2 = 1.

To develop an intuitive understanding of the preferred
sign for �, we use the following simple argument. Sup-
pose Y4x05 is predicted through the first-order Taylor series
approximation

ĝ4x05= Ȳ4xi5+ D̄14xi54x0 − xi50

Because

Var6ĝ4x057= Var6Ȳ4xi57+ 4x0 − xi5
2Var6D̄14xi57

+ 24x0 − xi5Cov6Ȳ4xi51 D̄
14xi57

= Var6Ȳ4xi57+ 4x0 − xi5
2Var6D̄14xi57

+ 24x0 − xi5��i0�i11

it becomes clear that 4x0 − xi5� < 0 reduces Var6g4x057.
Hence in the two-design-point model, when the gradient
estimator is at x1, predicting at x0 > x1 = 0 means that
� < 0 is preferred at x1; and it is the other way around if
the gradient estimator is at x2.

3.1.2. The Effect of s11 on MSE. The parameter s11

represents the sampling noise of the gradient estimator rela-
tive to the variation in the response surface itself. The effect
of s11 on MSE is not as clear-cut as �’s effect because it
depends on the values of other parameters and the loca-
tion of x0. Nevertheless, in EC.4 of the online companion
we show that when the correlation between the gradient
estimator and the simulation response is very weak, i.e.,
��� ≈ 0, then smaller s11 leads to greater reduction in MSE.
This makes intuitive sense as smaller s11 means a more
precise gradient estimator.

3.2. A k-Design-Point Model

In this section we analyze a k-design-point stochastic
kriging metamodel with gradient estimators. To make the
analysis tractable, we employ the following assumptions:
(A) Together with the responses, the estimators for the mth
gradient component at all k design points are included in
the stochastic kriging metamodel; without loss of gener-
ality, we assume m = 1. (B) The trend model is f4x5>Â,
and all of the parameters Â1 �21 8�j9

d
j=1 are known. And

finally, (C) the design points are so widely spread in the
design space <d that the spatial correlations of the observa-
tions (both the simulation responses and the gradient esti-
mators) at distinct design points are approximately 0; i.e.,
exp8−

∑d
j=1 �j4xij −xhj5

29≈ 0 for i 6= h1 i1 h= 1121 0 0 0 1 k.
Notice that Assumption A is general in the sense of

having gradient estimators at all k design points, but is a

simplification in that we have gradient information only in
one coordinate direction. Assumption C is motivated by
Mitchell et al. (1994), in which progressively weaker corre-
lations are used to find asymptotically optimal experimental
designs. In our case this allows us to isolate the impact of
incorporating gradient estimators from the complex spatial
dependence in a general k-design-point experiment design.

As in §3.1, let �i = Corr6Ȳ4xi51 D̄
14xi57 denote the

correlation between the simulation response and the esti-
mator of the first gradient component at the ith design
point. Denote the variance of the simulation response at
xi1 i = 1121 0 0 0 1 k by �2

i0 and the variance of the estima-
tor of the first gradient component at xi by �2

i1. Define
si1 = �i1/4

√
ni�5 and si0 = �i0/4

√
ni�51 i = 1121 0 0 0 1 k as

in §3.1.
Under these assumptions, the observation vector Ȳ+ is

the 2k× 1 vector of the average simulation responses and
the average gradient estimators, specifically,

Ȳ+ =
(

Ȳ4x151 Ȳ4x251 0 0 0 1 Ȳ4xk51 D̄
14x151

D̄14x251 0 0 0 1 D̄
14xk5

)>
1

where D̄14xi5 = ¡Y4xi5/¡xi1 + �̄14xi5. The random vector
Ȳ+ has mean F+Â and variance–covariance matrix èk+.
Specifically, we have

F+ =
(

f4x15
>10001f4xk5

>14¡f4x15/¡x15
>100014¡f4xk5/¡x15

>
)>

and

èk+ =

(

èk è01

è10 è11

)

0 (22)

We break èk+ into four k × k matrices for ease
of exposition: èk = �2 diag81 + s2

i09
k
i=1, è01 = è10 =

�2 diag8�isi0si19
k
i=1 and è11 = �2 diag8s2

i1 + 2�19
k
i=1.

Given any prediction point x0 ∈ <d, the 2k × 1 vec-
tor of spatial covariances èM0

4x01 ·5 consists of the covari-
ances between the true response at x0 and the responses at
8xi9

k
i=1 as well as the covariances between the response at

x0 and the first gradient components at 8xi9
k
i=1. Specifically,

èM+
4x01 ·5= 4èM0

4x01 ·5
>1èM1

4x01 ·5
>5>, where

èM0
4x01 ·5= �2

(

e−
∑d

j=1 �j 4x0j−x1j 5
2
1 e−

∑d
j=1 �j 4x0j−x2j 5

2
1 0 0 0 1

e−
∑d

j=1 �j 4x0j−xkj 5
2)>

and

èM1
4x01 ·5= �242�15

(

4x01 − x115e
−
∑d

j=1 �j 4x0j−x1j 5
2
1 0 0 0 1

4x01 − xk15e
−
∑d

j=1 �j 4x0j−xkj 5
2)>

0

Having established the notation, we are ready to give
the MSE of the MSE-optimal predictor Ŷ4x05 at x0 for
this simplified k-design-point model. Let Q = 4è11 −

è10è
−1
k è015

−1. Then

MSE+ =èM+
4x01x05−èM+

4x01 ·5
>è−1

k+èM+
4x01 ·5

=
{

�2
−èM0

4x01 ·5
>è−1

k èM0
4x01 ·5

}

− �>Q�1 (23)
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where � = è10è
−1
k èM0

4x01 ·5 − èM1
4x01 ·5. We show in

EC.5 of the online companion that under the assumptions
for this simplified k-design-point model, Q is positive def-
inite. Therefore, we conclude that the MSE is reduced if
gradient estimators are incorporated into stochastic kriging
for this k-design-point model.

3.2.1. The Effects of �i, si0, and si1 on MSE at x0.
For the sake of brevity, we summarize the effect of �i on
MSE and compare its role with si1’s when sl0 � sl1 for
this k-design-point model below and refer the reader to
Appendices EC.6 and EC.7 for the effects of si0 and si1 and
the proofs.

1. When one predicts at some design point xi, we con-
clude that the sign of �i no longer matters; the greater ��i�

is, the smaller MSE becomes.
2. When one predicts at some point x0 other than the

k design points, a conclusion similar to the one given in
§3.1 regarding the effect of �i can be drawn: given that the
gradient estimators in the direction of the first coordinate
are included into stochastic kriging, if x01 > xi1 at design
point xi, we prefer the correlation �i = Corr6Ȳ4xi51 D̄

14xi57
to be negative. On the other hand, if x01 < xi1, a positive �i

is preferred. In both favorable cases, the greater ��i� is, the
smaller MSE is. An intuitive understanding of the preferred
sign of �i can be given following a similar argument given
as in §3.1.

3. When the simulation response is much noisier than
the gradient estimator at a design point, i.e., sl0 � sl1 at
design point xl, we show in EC.7 of the online companion
that the variability of the gradient estimator plays a more
important role in determining the reduction amount in MSE
at x0. Specifically, a gradient estimator with a small vari-
ance and a low correlation is more effective in reducing the
MSE than another one with a larger variance and a higher
correlation with the simulation response at a design point.
As we show below, we are more likely to encounter this
situation when we use IPA.

3.2.2. The Effects of �i, si0, and si1 on IMSE. In
§3.2.1, we studied the effect of �i on MSE at any given
prediction point x0 ∈ <d and found that the effect depends
on the location of the prediction point to some extent.
In this section we investigate the effect over a prediction
region denoted by W ⊆ <d following an approach simi-
lar to S̆imák (2002). Specifically, we use a more compre-
hensive performance measure, the integrated mean squared
error over the region W :

IMSEW =

∫

W
MSE4x5dx

=

∫

W

(

èM+
4x1x5−èM+

4x1 ·5>è−1
k+èM+

4x1 ·5
)

dx

=

∫

W

(

�2
−èM+

4x1 ·5>è−1
k+èM+

4x1 ·5
)

dx1 (24)

where dx = dx11 0 0 0 1 dxd represents a volume element
of <d. We see from Equation (24) that studying IMSE as

a function of �i, si0, and si1 only requires studying the
reduction

ãIMSE4W5=

∫

W

(

èM+
4x1 ·5>è−1

k+èM+
4x1 ·5

)

dx0 (25)

Assuming that the prediction region W is sufficiently large
with respect to the practical range of the Gaussian corre-
lation function, we can approximate Equation (25) as an
integral over <d and write ãIMSE4W5 as

ãIMSE =

∫

<d
4èM+

4x1 ·5>è−1
k+èM+

4x1 ·55dx (26)

given that the integral exists. We give an expression for
ãIMSE below and leave the derivations to EC.8 of the online
companion:

ãIMSE = �2

(

�

2

)d/2 d
∏

j=1

�
−1/2
j

·

k
∑

i=1

24s2
i1 + 2�15+ �141 + s2

i05

264s2
i1 + 2�1541 + s2

i05− 4�isi0si15
27
0 (27)

The following remarks can be made regarding the effects
of �i1 s

2
i0, and s2

i1 on IMSE of prediction over <d.
The effect of �i. It is obvious from Equation (27) that the

larger ��i� is, the larger ãIMSE is and hence the smaller the
IMSE.

The effect of s2
i0. Some algebraic manipulation gives

¡ãIMSE

¡s2
i0

= �2

(

�

2

)d/2 d
∏

j=1

�
−1/2
j

·

k
∑

i=1

2s4
i14−1 +�2

i 5+ s2
i1�14−8 + 5�2

i 5− 8�2
1

464s2
i1 + 2�1541 + s2

i05− 4�isi0si15
272

0

Because ��i�¶ 1, we have ¡ãIMSE/¡s
2
i0 < 01 i = 1121 0 0 0 1 k.

Therefore, the greater s2
i0 is, the smaller ãIMSE is and

hence the larger IMSE. In words, more variable simulation
responses at the design points result in larger IMSE.

The effect of s2
i1. The expression for ¡ãIMSE/¡s

2
i1 can be

rewritten as

¡ãIMSE

¡s2
i1

= �2

(

�

2

)d/2 d
∏

j=1

�
−1/2
j

·

k
∑

i=1

�1

s4
i04−1 +�2

i 5+ 4−1 + 4−2 + 5�2
i 5s

2
i05

464s2
i1 + 2�1541 + s2

i05− 4�isi0si15
272

0

When �2
i ¶ 2/5, i.e., −2 + 5�2

i ¶ 0, then ¡ãIMSE/¡s
2
i1 < 0.

In this case, ãIMSE decreases (or equivalently, IMSE
increases) as s2

i1 increases. However, when �2
i > 2/5,

as long as s2
i0 < 45�2

i − 25−1 so that 4−2 + 5�2
i 5s

2
i0 < 1,

then ãIMSE decreases (or equivalently, IMSE increases) as
s2
i1 increases. In particular, the upper bound 45�2

i − 25−1

on s2
i0 for this result to hold is a decreasing function

of �2
i . It follows that �2

i = 1 gives the tightest upper
bound 1/3 on s2

i0. In a stochastic simulation experiment,
s2
i0 = n−1�2

i0/�
2 < 1/3 will hold when a sufficient number

of simulation replications ni is applied at design point xi.
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We conclude that when s2
i0 is sufficiently small, ãIMSE

decreases (or equivalently, IMSE increases) as s2
i1 increases.

Hence, the noisier the gradient estimators, the larger the
IMSE. Last but not the least, it is also shown at the end
of EC.8 of the online companion that when si0 � si1, the
variability of the gradient estimator plays a more important
role in determining the reduction amount in ãIMSE than the
correlation does.

The insights gained in this section on IMSE over <d are
relatively simple to summarize. The greater correlation ��i�

between simulation response and gradient estimator and the
less variable the gradient estimators and the responses are
at all the design points, the better prediction performance
is achieved over a relatively large prediction region for this
vanishing intersite correlation k-design-point model. When
there exist competing gradient estimators to do prediction,
the ones with smaller variance are preferred.

4. IPA and LR/SF Gradient Estimators in
Stochastic Kriging Metamodels

In this section, we review some stochastic gradient estima-
tion techniques, focusing on the infinitesimal perturbation
analysis and the likelihood ratio/score function methods,
but briefly discussing three other gradient estimation meth-
ods. Rather than provide a comprehensive treatment of this
topic, we give some key features of the first two gradient
estimation techniques that benefit our discussion that fol-
lows. Refer to L’Ecuyer (1990), Fu (2006), and Rubinstein
and Shapiro (1993, Chapter 2) for details.

Suppose that a stochastic simulation model is parame-
terized by a vector of design variables x ∈ X, where X is
some open subset in <d. We are interested in estimating the
gradient of some real-valued (differentiable) function �4x5,
ï�4x5, where �4x5= E6Y4x57 with respect to some prob-
ability measure Px over some measurable space 4ì1G5.
Recall that Y4x5 is the stochastic simulation response at
point x. To emphasize its dependence on a given “sample
path” �, we note that Y4x5 = h4x1�5, where h4 · 1 · 5 is
some function of the vector x and the sample path � ∈ ì
and h4x1 ·5 is G-measurable.

Suppose that there is a probability measure G on the
same measurable space that is independent of x, and for
x ∈ X, Px is absolutely continuous with respect to G (for
any set A ∈G, G4A5= 0 ⇒ Px4A5= 0). In this case,

�4x5= E6Y4x57=
∫

ì
h4x1�5W4G1x1�5dG4�51

where W4G1x1�5= 4dPx/dG54�5 is the Radon-Nikodym
derivative of Px with respect to G.

Let

�r4x1�5=
¡6h4x1�5W4G1x1�57

¡xr

=W4G1x1�5
¡h4x1�5

¡xr

+h4x1�5
¡W4G1x1�5

¡xr
(28)

and �4x1�5 = 4�14x1�51�24x1�51 0 0 0 1�d4x1�55
>. Then

under some regularity conditions such that the interchange
of differentiation and expectation is permitted, it fol-
lows that the gradient evaluated at point x is ï�4x5 =
∫

ì
�4x1�5dG4�5, where for r = 1121 0 0 0 1 d,

¡�4x5
¡xr

=

∫

ì
�r4x1�5dG4�50

Therefore, if we sample � from G, then �r4x1�5 is an
unbiased estimator of ¡�4x5/¡xr .

When we want to estimate ¡�4x∗5/¡xr at some point x∗,
a convenient choice is to let G = Px∗ ; if it happens
that h4x1�5 is independent of x, then the estimator of
¡�4x5/¡xr reduces to

�r4x
∗1�5= h4x∗1�5Sr4x

∗1�51 (29)

where Sr4x
∗1�5= 6¡W4Px∗1v1�5/¡xr 7�v=x∗ . Equation (29)

is one choice for Dr4x5, namely, Dr
LR4x5 = h4x1�5

Sr4x1�5. Let S4x1�5= 4S14x1�51 0 0 0 1 Sd4x1�55
>; then the

gradient estimator is �4x1�5 = h4x1�5S4x1�5, which is
familiar as the pure form of the likelihood ratio (LR) gra-
dient estimator.

In stochastic simulation, it is sometimes convenient to
consider � as a sequence of independent U40115 random
variables. In this case, Px is independent of x, so that
W4G1x1�5 = 1; and under appropriate conditions, Equa-
tion (28) reduces to the infinitesimal perturbation analysis
estimator of ¡�4x5/¡xr 1 r = 1121 0 0 0 1 d, specifically

�r4x1�5=
¡h4x1�5

¡xr
1 (30)

provided that h4x1�5 exists for almost all �. Notice that
Equation (30) offers a second candidate choice for Dr4x5,
Dr

IPA4x5 = ¡h4x1�5/¡xr ; the vector of such estimators for
partial derivatives forms an IPA gradient estimator.

As long as the condition for Equation (28) to hold is
present, both IPA and LR/SF approaches give unbiased gra-
dient estimators. One advantage of the IPA gradient esti-
mator is that its variance typically does not increase with
the simulation run length as discussed in L’Ecuyer (1990),
which often makes its variance much smaller than the vari-
ance of the LR/SF gradient estimator. On the other hand,
deriving ïxh4x1�5 can sometimes be quite difficult for
IPA; by comparison, the LR/SF gradient estimator seems
to apply more widely and easily. Fortunately, the IPA gra-
dient estimator has been derived for several large classes
of problems. In both cases implementing the estimator typ-
ically involves little more than accumulating information
already being generated by the simulation and performing
some simple calculations.

Another approach is finite-difference gradient estimation
(FD). FD estimation is not computationally efficient and
the FD estimator may be quite biased (if the finite differ-
ence used is large) or variable (if the finite difference is
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small). If we have k design points, then to do FD gradient
estimation at all of them requires at least kd additional
simulation runs. Because spatial correlation metamodel-
ing leverages design points that are closest in space to
the prediction point, we would almost certainly be better
off filling the space more fully with kd additional design
points as opposed to estimating gradients at only k design
points. The same is likely true of weak-derivative gradient
estimation (also called measured-value differentiation; see
Heidergott et al. 2010); although it provides unbiased gra-
dient estimators, the computational effort grows with the
dimension of x. And simultaneous perturbation gradient
estimation (Spall 2003), like finite differences, introduces
bias. However, our general framework can accommodate
any of these alternative gradient estimators if used.

In experiments on two examples taken from L’Ecuyer
(1990), a k-out-of-N reliability system with parameter-
dependent component-lifetime densities and an M/M/1
queue with parameter-dependent service time, we made the
following observations:

• The estimated correlation between the gradient esti-
mator and the response at a given design point is typically
larger in absolute value when using IPA as compared to
LR/SF.

• The variances of the gradient estimators are typically
much smaller for IPA than LR/SF. In fact, the responses
are much noisier than the IPA gradient estimators; whereas
for LR/SF, it is the other way around.

• The prediction performance is better when IPA gradi-
ent estimation is applied with stochastic kriging.
In §§4.1 and 4.2, through analysis of IPA and LR/SF gra-
dient estimators that assume a particular form, we link the
properties of the IPA and LR/SF gradient estimators to
those studied with the simplified stochastic kriging meta-
models described in §3 and the observations mentioned
above. This analysis is useful for situations in which both
IPA and LR/SF gradient estimators are available, such as
the example given in §5. We focus on analysis of a one-
dimensional (d = 1) design space, but the results can easily
be generalized to higher dimensions.

4.1. A Closer Look at IPA Gradient Estimators

Let h be a function of random variables Zl4x5, l = 11
21 0 0 0 1 s. We use h4Z4x55 as a short form for h4Z14x51
Z24x51 0 0 0 1Zs4x55. In our context, h4Z4x55 is the sample
path performance for a discrete-event stochastic system
over a finite horizon and the Zl4x5’s are the inputs to the
system. For the “sample path” �, Y4x5 = h4Z4x55 at the
design point x. Notice that to ease notation � is omitted.
Assuming that each of the Zl4x5’s is almost surely differ-
entiable with respect to x, then under some mild conditions
h4Z4x55 is also almost surely differentiable with respect
to x. Therefore,

D1
IPA4x5=

dh4Z4x55
dx

=

s
∑

l=1

¡h

¡Zl

dZl

dx
a.s. (31)

We next give a closed-form expression for the covari-
ance between the IPA gradient estimator and the observed
response at a design point x ∈X= 6a1 b7 (leaving the proof
for EC.9 of the online companion):

Cov6Y4x51D1
IPA4x57

= E6Y4x5D1
IPA4x57− E6Y4x57E6D1

IPA4x57

= E
[

h4Z4x55 ·
dh4Z4x55

dx

]

−�4x5�′4x5

=
1
2
d

dx
4Var6Y4x5750 (32)

It follows that

Corr6Y4x51D1
IPA4x57

=
1
2

·
d

dx
ln4Var6Y4x575 ·R−1

IPA4x51 (33)

where RIPA4x5= 4Var6D1
IPA4x57/Var6Y4x5751/2 is defined as

the square root of the ratio of the variance of the gradi-
ent estimator to the variance of the stochastic simulation
response at design point x.

Given that the aforementioned conditions for the particu-
lar form of sample path gradient estimator are satisfied, and
also that the interchange of differentiation and expectation
is permissible, we see that the larger RIPA4x5 is, the closer
�Corr6Y4x51D1

IPA4x57� is to zero. And the sign of this cor-
relation depends only on the derivative of ln4Var6Y4x575
with respect to x. Typically, RIPA4x5 for an IPA gradient
estimator is relatively small, because the gradient estima-
tor is much less noisy than its corresponding simulation
response at a given design point x. Hence one should expect
a strong correlation between the gradient estimator and the
simulation response obtained at the same design point.

4.2. A Closer Look at LR/SF Gradient Estimators

Using the notation established in previous sections, suppose
that Zl4x51 l = 1121 0 0 0 1 s are independent inputs to the sys-
tem whose distributions depend on x with probability den-
sity function fl4 · 5. If Y4x5= h4Z4x51�5 is independent of
x given Z4x5, then the LR/SF estimator of d�4x5/dx takes
the simple form

D1
LR4x5=Y4x5 · S4x1�51

where S4x1�5= 4d/dx5
∑s

l=1 lnfl4Zl4x55.
Letting �′4x5 = d�4x5/dx for short, we have �4x5 =

E6Y4x57 and �′4x5 = E6D1
LR4x57. The covariance of the

gradient estimator and the response at x can be expressed as

Cov6Y4x51D1
LR4x57= E6Y4x5D1

LR4x57−�4x5�′4x5

= E64Y4x552
· S4x1�57−�4x5�′4x5

=
d

dx
Var6Y4x57+�4x5�′4x50 (34)
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The correlation of the gradient estimator and the response
at x is

Corr6Y4x51D1
LR4x57=

Cov6Y4x51D1
LR4x57

√

Var6Y4x57
√

Var6D1
LR4x57

=
d

dx
ln4Var6Y4x575·R−1

LR4x5

+
�4x5�′4x5

√

Var6Y4x57
√

Var6D1
LR4x57

1 (35)

where RLR4x5 is defined analogously to RIPA4x5.
It is interesting to compare Equations (32) and (34) for

IPA and LR/SF gradient estimators. At a given design
point x, it follows that RLR4x5 is much larger than
RIPA4x5, because Var6D1

LR4x57 is typically large compared
to Var6D1

IPA4x57. The consequence is that the correlation
between the gradient estimator and the simulation response
at a given design point is often smaller in magnitude for a
LR/SF gradient estimator.

We conclude this section with some observations that
are based on the analysis in §§3.1–3.2, which reveals
what affects the MSE of prediction for stochastic kriging
enhanced with gradient estimators—the comparison of gra-
dient estimators in §§4.1–4.2—which relates the analysis
to IPA and LR gradient estimators and the experiments we
have conducted, some of which are described below. Typ-
ically, the correlation between the gradient estimator and
the simulation response at a given design point is larger in
magnitude for an IPA gradient estimator, and the variance
of an IPA gradient estimator is often smaller compared to
its LR/SF counterpart. There do exist exceptions, however,
in which higher correlation is obtained for an LR/SF gra-
dient estimator (see the Black-Scholes call option pricing
model in §5). Nevertheless, the variance of a gradient esti-
mator plays the dominant role in prediction performance.
Therefore, if both types of gradient estimators are available,
the IPA gradient estimation approach is recommended for
stochastic kriging.

5. A Tractable Example: The
Black-Scholes Call Option
Pricing Model

Through an experiment on pricing a call option, we demon-
strate the ability of stochastic kriging with gradient estima-
tors to deliver better prediction results “on demand.” In this
experiment all parameters of the metamodel are unknown
and we estimate them from simulation output data. How-
ever, we know the true response surface and exploit it in
our evaluation.

5.1. The Model: Dynamics and Simulation

The Black-Scholes model is described by the following
stochastic differential equation (SDE): dSt = rSt dt +

�St dWt , where r is the risk-free rate and � is the volatility

of the stock price St . Usually, r is obtained from certain
benchmark interest rates such as treasury bond rates or
LIBOR and � can be calculated from historical data. This
SDE admits a closed-form solution that is

St = S0 exp
{(

r −�2

2

)

t +�Wt

}

1

where Wt ∼N401 t5.
The European call option is a right to buy a stock at

the prespecified date, called the option maturity T , at the
prespecified price called the option strike K. The value of
this option is the net present value calculated under the
model above and it is given by

C4T 1K3S01 r1�5= E6P 7= E6e−rT 4ST −K5+70 (36)

We can obtain price estimates for different 4T 1K5 pairs
by the Monte Carlo method. The sensitivities of interest
are the partial derivatives of C with respect to the param-
eters 4S01 r1�5. In this experiment we focus on the sensi-
tivity regarding the underlying stock price S0 with all other
parameters fixed. The IPA and LR gradient estimators are,
respectively,

dP

dS0

= e−rT

(

ST
S0

)

· 18ST ¾K9

dP

dS0

= e−rT 4ST −K5+d4ST 54S0�
√
T 5−1

where

d4y5=
(

�
√
t
)−1
(

ln
(

y

S0

)

−

(

r −
�2

2

)

t

)

0

Refer to Glasserman (2004, Chapter 7) for details.

5.2. Experimental Design and Results

We compare the prediction performance of stochastic krig-
ing with and without gradient estimators. The example is
a one-dimensional European call option model. We treat
C4T 1K3S01 r1�5 as an unknown response of the design
variable S0 while holding 4T 1K1 r1�5 fixed. The parameter
configuration is shown in Table 1.

The experiment design is as follows. An equally spaced
grid design of k design points S0 ∈ 68011207 is used
with k ∈ 871131259; notice that the two end points 80
and 120 are always included. To assess the impact of the
stochastic simulation noise, we use an equal number of
simulation replications n at each design point and vary n ∈

Table 1. Parameters for the Black-Scholes European
call option model.

S0 K T r �

[80, 120] 100 1 year 3% 40%
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85001210001810009. Pretending that we have little informa-
tion about the true response surface, a constant trend model
f4S05

>Â= �0 is chosen for stochastic kriging. We consider
three types of stochastic kriging metamodels, stochastic
kriging without gradient estimators (SK), stochastic krig-
ing with IPA gradient estimators (SK + IPA), and stochas-
tic kriging with LR/SF gradient estimators (SK + LR). For
each type of metamodel, we fit it using maximum likeli-
hood estimates for the model parameters �01 �

2, and �. We
then use �̂0, �̂2, and �̂ to do prediction at N = 193 equally
spaced points in 68011207. In particular, to confirm our
earlier conjecture on the detrimental effect of CRN on pre-
diction, both CRN and independent sampling are employed
to drive the simulations. As to the method of comparison,
we use the estimated root mean squared error of prediction
(ERMSE) over the grid of N = 193 prediction points,

ERMSE =

√

1
N

N
∑

i=1

4C4Si
05− Ĉ4Si

055
21 (37)

where C4Si
05 denotes the true option value at Si

0, and Ĉ4Si
05

represents the predicted value at the same point. It is known
that C4S05 as defined in Equation (36) is

C4S05=C4T 1K3S01 r1�5

= S0ê
(

−d4K5+�
√
T
)

− e−rTKê4−d4K551

where ê4 · 5 stands for the CDF of the standard normal
random variable.

Figure 4. The Black-Scholes model: Box plots of ERMSE when independent sampling (left) and CRN (right) are used
with number of design points k = 25.
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We ran the experiment for 100 macroreplications.
We first compare the ERMSEs obtained by SK, SK + IPA,
and SK + LR with k = 25 design points, given that inde-
pendent sampling and CRN are used in driving the simula-
tion. In Figure 4, the left panel is for independent sampling
and the right panel is for sampling using CRN. Inside each
panel, three groups of box plots are shown from left to
right according to an increasing number of simulation repli-
cations n = 500121000, and 81000. Inside each group of
three box plots, ERMSEs obtained by SK, SK + IPA, and
SK + LR are shown from left to right. The box is formed
by the 25th, 50th, and 75th percentiles; the whiskers extend
plus-or-minus 105× the interquartile range beyond the box;
and the diamonds are observations beyond that range. That
the use of CRN increases ERMSE is obvious.

Having seen the disadvantage of using CRN with all
three metamodels in Figure 4, Figures 5(a)–5(c) focus on
the ERMSEs obtained by SK, SK + IPA, and SK + LR
given that independent sampling is used to drive the simu-
lation. The figures are ordered in an increasing number of
design points k; in each figure, three groups of box plots
are shown according to n= 500121000, and 81000.

We summarize the findings in Figures 4 and 5(a)–5(c) as
follows.

• CRN is detrimental. In particular, SK + IPA seems to
be the most vulnerable to the adverse effect of CRN, as
the increase in its corresponding ERMSE is the most dra-
matic among the three. We recommend using independent
sampling in driving the simulation when stochastic kriging
with gradient estimators is used for prediction.
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Figure 5. The Black Scholes model: Box plots of
ERMSE of prediction over the 193 check-
points when CRN is not used.
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• Employing stochastic kriging with gradient estimators
(IPA or LR) gives lower ERMSE of prediction as com-
pared to not using the gradient estimators, as shown in Fig-
ures 5(a)–5(c) and easily significant with 95% confidence.

• In Figures 5(a)–5(c), we observe that under identi-
cal simulation conditions, SK + IPA gives the smallest

ERMSEs, followed by SK + LR and SK for k = 7113
and 25. The advantage of SK + IPA in prediction over
the other two approaches diminishes as the number of
design points k increases; in particular, the ERMSEs of
SK + IPA and SK + LR become indistinguishable. In this
experiment, we observe that the variances of the gradient
estimators are smaller for IPA; the ratio of the variance of
an LR gradient estimator to the variance of its counterpart
IPA gradient estimator ranges from 3.5 to 8. The correla-
tions between the gradient estimators and the simulation
responses are higher for LR gradient estimators than those
of IPA’s though. Specifically, the observed correlations for
LR gradient estimators are between 009 and 0097, whereas
for IPA the correlations are between 0082 and 0088. It is
worth mentioning that the simulation responses at all design
points are very noisy, with variances between 226 and 487
times of those of the corresponding LR gradient estimators.
These observations together with our analysis in §§3.2.1
and 3.2.2 explain to some extent why SK + IPA dominates
SK+LR in prediction performance despite the fact that LR
gradient estimators have higher correlations and not espe-
cially large variances in this experiment. It is also worth
mentioning that as the number of replications increases, the
ERMSEs of SK + IPA and SK + LR become increasingly
closer, which is consistent with the previous analysis in
§3.2.1. Indeed, in the other two examples mentioned at the
end of §4, we have observed more significant differences in
the variances and correlations associated with the IPA and
LR gradient estimators, and the superiority of SK + IPA is
more evident. This experiment confirms our earlier result
that the variability of a gradient estimator plays a more
important role in affecting the prediction performance than
the correlation does.

• Increasing the number of simulation replications or the
number of design points effectively reduces the ERMSE
for all cases.

6. A Realistic Example: A Closed-Loop
Flexible Assembly System

In this section we present a realistic example to illustrate
what an analyst might face, and what results they might
expect to achieve, if they enhanced a stochastic kriging
metamodel by incorporating gradient estimators. Specifi-
cally, we consider the closed-loop flexible assembly sys-
tem (CLFAS) described in Suri and Leung (1987). Flexible
assembly systems are known for features such as reduc-
ing production lead times, lowering cost, and increasing
flexibility. However, building a CLFAS involves a signifi-
cant investment of time and resources, and hence studying
approaches that can provide good and quick approxima-
tions to the system performance becomes important.

6.1. The Model: Dynamics and Simulation

The CLFAS under consideration consists of six automatic
workstations connected by a conveyor as shown in Figure 6.
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Figure 6. Schematic diagram of a closed-loop flexible
assembly system.
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The number of pallets in the system is also six. We chose
six of each simply to match Suri and Leung (1987); our
approach is no more complicated if there are more.

Unfinished parts enter and leave the CLFAS through sta-
tion 1 and make one circuit through the system on the
pallets. If the times between workstations are negligible,
and no station is ever blocked, then the total assembly
time equals the total operation time

∑6
r=1 Tr , where Tr rep-

resents the operation time at station r = 1121 0 0 0 16. The
operation time Tr consists of the deterministic machine
cycle time of xr minutes and possibly an additional ran-
dom time Rr to clear the machine if it jams. Therefore,
Tr = xr + I8jam at station r9Rr , where I8 · 9 is the indica-
tor function. The probability that a part causes station r
to jam is �r . In our simulation we took �r = 000051 r =

1121 0 0 0 16, and let the Rr ’s be i.i.d. U400111015 minutes,
as suggested in the paper. Altering the jam probabili-
ties and repair distribution will change the results but not
our method.

Because the operation times are random, queueing does
occur. If the queue in front of, say, station 3 is full then
station 2 is blocked, meaning it cannot release a finished
part. In our simulation there is space for one part to queue
in front of each station. We are interested in predicting
the expected throughput Y4x5 of the first 51000 parts com-
pleted by the CLFAS as a function of the station cycle times
x = 4x11 x21 0 0 0 1 x65

>. This helps us to identify the bottle-
neck workstation(s) so that more resources can be devoted
to improve the expected throughput.

IPA gradient estimators have been derived for many
queueing systems, including closed, tandem, single-class
networks. The algorithm given by Suri and Leung (1987)
for estimating the throughput Y4x5 and its gradient Dr4x5=

¡Y4x5/¡xr 1 r = 1121 0 0 0 16 is restated below. Notice that
this algorithm simply adds some accumulator variables that
are easily updated during the course of the simulation with-
out disrupting how it normally executes.

IPA Algorithm
1. Initialize Ai1 r ← 0 for i1 r = 1121 0 0 0 16. These are the

accumulator variables for calculating the gradient.
2. At the end of an operation at station i with total oper-

ation time Ti, let Ai1 i ← Ai1 i + dTi/dxi, where dTi/dxi
denotes the sample gradient of the random variable Ti.
Because xi is a location parameter of the distribution of Ti,
dTi/dxi = 11 i = 1121 0 0 0 16.

3. If a pallet leaving station i going to station k termi-
nates an idle period of station k, then set Ak1 r ←Ai1 r 1 r =

1121 0 0 0 16.
4. If a pallet leaving station i going to station k termi-

nates a blocked period of station i, then set Ai1 r ← Ak1 r 1
r = 1121 0 0 0 16.

5. At the end of the simulation, let P denote the total
number of parts completed and L be total length of sim-
ulation in time units. Estimate the throughput and its
gradient by

Y4x5=
P

L
1

Dr4x5= −
Y4x5
L

A6r 1 r = 1121 0 0 0 160

6.2. The Experimental Design and Results

Our goal is to compare the prediction performance of
stochastic kriging and stochastic kriging with IPA gradi-
ent estimators (SKG) through this realistic manufacturing
design problem.

The experimental design space is ìx = 600051001576.
For demonstration purposes, we use two different 25-point
experiment designs: design 1 is the union of a 17-point
maximin Latin-hypercube design and a 26−3

III fractional
factorial design; and design 2 is a 25-point maximin
Latin-hypercube design. At each design point x = 4x11 x21
0 0 0 1 x65

>, we simulate n= 100 independent replications of
the CLFAS with a run length of P = 51000 completed parts
to obtain the simulation response Yj4x5 and gradient esti-
mates Dr

j 4x5, for r = 1121 0 0 0 16, j = 1121 0 0 0 1100. These
are the only data we need to fit the metamodels and com-
pute predictions.

Assuming (correctly) that we have little information
about the true response surface, a constant trend model
f>4x5Â= �0 is selected. We fit two stochastic kriging meta-
models, one with and one without the IPA gradient esti-
mators, and used maximum likelihood estimation to obtain
the stochastic kriging parameters �̂0, �̂2, �̂r 1 r = 1121 0 0 0 16.
With these parameters we did prediction at N = 100 Latin-
hypercube sampled checkpoints throughout ìx. Because
the true throughputs at the checkpoints are unknown, we
approximated them by simulating 11000 replications of
the CLFAS at each checkpoint. The simulation model and
experiment were programmed in VBA, and the metamodel
estimation and prediction were done in Matlab using the
simulation data.
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Figure 7. The CLFAS model: Box plots of ERMSRE
over the 100 checkpoints: design 1 (left panel)
and design 2 (right panel).
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For a summary presentation of the prediction perfor-
mances of SK and SKG, we computed the estimated root
mean squared relative error of prediction (ERMSRE) over
the N = 100 checkpoints, which is defined as

ERMSRE =

√

√

√

1
N

N
∑

i=1

(

Y4xi5− Ŷ4xi5
Y4xi5

)2

0 (38)

We reran the experiment for 50 macro-replications, com-
puting the ERMSRE using the N = 100 checkpoints in
each. Figure 7 contains box plots of these 50 ERMSRE val-
ues. The left panel is for design 1 and the right panel is for
design 2. Inside each panel, the left box plot of ERMSRE
is for SK and the right is for SKG. It is evident that SKG
leads to much smaller ERMSRE than SK and hence better
global prediction performance. Notice that the two exper-
imental designs do not make a significant difference. We
had assumed that the 26−3

III fractional factorial design would
be helpful for SK by avoiding extrapolation error in ìx =

600051001576; SKG is more resistant to extrapolation error.

7. Conclusion
In this paper, we introduced the idea of incorporating
gradient estimators into stochastic kriging metamodels to
improve response surface prediction, and we evaluated
the idea via mathematical analysis and two experiments.
The experiment results demonstrated the advantages of the
enhanced metamodel over stochastic kriging in providing
better prediction performance. The results also showed that
using CRN degrades the prediction performance of stochas-
tic kriging with gradient estimators; in particular, stochastic
kriging with IPA gradient estimators seems more suscep-
tible to the adverse effect of CRN than stochastic kriging
with LR gradient estimators. In general, we recommend to
use stochastic kriging with IPA gradient estimators, when
available, and independent sampling to drive the simula-
tion. Research on experiment design for stochastic kriging
with gradient estimators is an obvious next step.
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Supplemental material to this paper is available at http://dx.doi
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