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Abstract

We consider the ‘classical’ single product dynamic pricing problem allowing the ‘scale’ of
demand intensity to be modulated by an an exogenous ‘market size’ stochastic process. This is
a natural model of dynamically changing market conditions. We show that for a broad family
of Gaussian market size processes, simple dynamic pricing rules that are essentially agnostic
to the specification of this market size process perform provably well. The pricing policies we
develop are shown to compensate for forecast imperfections (or a lack of forecast information
altogether) by frequent re-optimization and re-estimation of the ‘instantaneous’ market size.

1. Introduction
The following is one of the central (and perhaps, simplest) problems in the theory of revenue
management: A vendor is endowed with some finite inventory that he must sell over some fixed sales
horizon; no inventory replenishment is permitted. The vendor’s customers are price sensitive and
arrive randomly over time. The vendor is thus faced with the task of dynamically adjusting prices
over time so as to maximize expected revenue earned over the course of the selling season. With
a view to providing managers with implementable prescriptions, this problem has been studied
in many different guises. Central to the theoretical study of this dynamic pricing problem is a
landmark paper by Gallego and van Ryzin [1994]. That paper studied a model wherein potential
customers arrived at a rate whose magnitude as a function of time and posted prices was known
in advance. Given this knowledge, the elegant and practical insight from that work was simply
this: by posting a fixed price over the course of the selling season, the vendor was guaranteed to
earn close to the maximum revenue achievable under a dynamic pricing policy, especially in ‘high
volume’ settings1.

In reality, it is typically not the case that a vendor has access to a reliable prediction of how
customer demand will evolve over the course of the season. In particular, the very nature of
the product being sold may preclude the possibility of coming up with accurate predictions, or
any prediction whatsoever: fashion items, or novelty luxury goods are good examples of such
products. More to the point, given that valuable information is revealed over time, the simple
‘fixed price’ prescriptions alluded to above are unlikely to be sufficient in the face of uncertainty in
the evolution of customer demand. Faced with such uncertainty, a natural alternative is to consider
∗YC is with the Sloan School of Management, MIT. VF is with the Operations Research Center and Sloan School
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1Regimes where the initial inventory and scale of demand grow large simultaneously.
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building stochastic ‘forecast’ models for how consumer demand might evolve. This alternative has
its own perils: building a useful model of this type is far from trivial and the predictive power of
such models constructed in practice is frequently questionable. Moreover, the implementability (or
even, computability) of an optimal pricing scheme incorporating such a stochastic model is unlikely
to be as simple or clean as in the case where predictions made at the start of the selling season are
perfect.

What is needed at this juncture is a simple to interpret and implement prescription for the above
dynamic pricing problem. This prescription should rely only on data that a manager can easily
access or calculate which in the real world is essentially just sales information over time. Of course,
simplicity in itself is not sufficient; our prescription needs to provide compelling performance. Given
the restrictions on information about the market size process it is not clear what an appropriate
benchmark is. A ‘gold standard’ benchmark is, of course, the revenue under a ‘clairvoyant’ optimal
policy computed assuming perfect knowledge of the realization of customer demand over time. This
paper takes a first step towards constructing such a prescription. In brief, we consider a dynamic
pricing model wherein arriving customers are price sensitive. These potential customers arrive over
time at some potentially non-stationary rate. However, as opposed to being known in advance, this
rate process is stochastic, un-modeled and unobservable. This is representative of a volatile demand
environment and the reality that initial, pre-selling season demand predictions are often very crude
(or often, not even available). We make several contributions relative to the dynamic pricing model
above:
A New Prescription: Optimal dynamic pricing in our setting is challenging from a computa-
tional and implementational perspective. We propose a sub-optimal heuristic that accounts for
the stochasticity in the market-size (demand) process while preserving much of the simplicity and
implementability of the Gallego and van Ryzin [1994] policy. The policy we propose, the ‘Re-
optimized Fixed Price Policy’, or RFP-∆ policy in short, is akin to repeatedly applying the fixed
price policy at discrete epochs in time ∆ apart, with updated values for market size and inventory.
The proxy for ‘market size’ used at a given epoch is computed from sales over the preceding epoch
in time. In the event that the manager has access to side information or wishes to hedge against
some specific realization of demand, this estimate is ‘tuned’ by a certain hedging parameter. The
RFP-∆ policy is attractive from a practical perspective for two reasons:

• It is easy to interpret: Indeed, the price posted at each price revision may be interpreted
as the optimal ‘fixed price’ in response to the inventory level at that point in time and the
estimate of demand computed by the scheme at that point in time. This interpretability
is valuable not just in and of itself, but also because a number of ‘legacy’ dynamic pricing
systems already rely on fixed price logic.

• The variant of our policy that we predominantly study requires absolutely no information
pertaining to the market size process. Our policy never requires that the market size process
be directly observed. In particular, we present a family of schemes one member of which can
be run in an entirely mechanical fashion given the ability to observe sales and nothing else.

Performance Analysis: In spite of its simplicity, we show the RFP-∆ policy is competitive with a
clairvoyant pricing algorithm with access not just to a probabilistic model of demand evolution but
realizations of how demand will evolve over the course of the selling season. We establish this by
showing that the performance loss in using our prescription relative to an optimal clairvoyant pricing
strategy is uniformly bounded for a broad class of Gaussian demand or ‘market-size’ processes in the
high volume setting; in particular this bound holds for arbitrarily volatile market-size processes. In
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addition, we present a parametric performance analysis that succinctly describes the performance
of our prescription as a function of key market-size process parameters, and obtain correspondingly
tighter bounds. Key to our analysis is a certain ‘inventory balancing’ property inherent to the
RFP-∆ policy which mitigates the need for a model of the market size process. In addition, the
frequency with which we review prices must clearly impact performance; it stands to reason that
as ∆ grows large, performance will suffer. As such, we provide an analysis of the ‘price’ of such
discrete price reviews that isolates the key factors that influence performance loss. We believe that
these results are potentially of broader independent interest.
Computational Evidence: We present a computational study that delves into the implementation
of our prescription and the performance we might expect in practice. In our experiments, we model
market-size processes as OU processes (which are continuous time analogues to the moving average
processes that serve as canonical stochastic forecast models). Our numerical results suggest that
the RFP-∆ policy performs consistently well (i.e well within 90% of an optimal pricing policy) for a
wide range of market-size volatilities and inventory levels or ‘load factors’. We show that these gains
can be achieved with a relatively small number of price adjustments. Finally, these experiments
show that the use of the RFP-∆ policy yields valuable gains over price updates that account for
inventory shocks but do not update demand forecasts, using instead some initial forecast.

1.1. Literature Review
There are several streams of literature that are relevant to our work. The most relevant perhaps
is the large literature on dynamic pricing: Gallego and van Ryzin [1994] formulated an elegant
model in which a vendor starts with a finite number of identical indivisible units of inventory
and is allowed to adjust prices over time. Customers arrive according to a Poisson process, with
independent, identically distributed reservation prices and make purchases if and only if their
reservation prices exceed the posted price. The primary insight in this work was that fixed price
policies are essentially optimal if the vendor has an accurate forecast of customer demand over
time. Bitran and Mondschein [1997] study optimal pricing policies in a periodic-review model.
They derive structural properties of the optimal pricing policy and show that it is consistent with
observations in practice. Zhao and Zheng [2000] specialize the model formulated in Gallego and
van Ryzin [1994] and explicitly model the evolution of the customer reservation price distribution
over time. They derive structural properties for this interesting setting. Comprehensive literature
reviews on dynamic pricing can be found in McGill and van Ryzin [1999], Bitran and Caldentey
[2003], Elmaghraby and Keskinocak [2003], and Talluri and van Ryzin [2004]. A related stream of
literature considers learning issues that arise in the above dynamic pricing setting. The work here
typically considers (relatively simple) market size processes parameterized by some un-observable
parameter that must be learned over time. Optimal policies are developed in some contexts (see
for example, Besbes and Zeevi [2009], Xu and Hopp [2004]), and sub-optimal heuristics in others
(see for example, Aviv and Pazgal [2005b], Aviv and Pazgal [2005a], Araman and Caldentey [2009]
and Farias and Van Roy [2010]).

In an important departure from the models above, Akan and Ata [2009] considered a model for
network revenue management wherein the relevant market size processes are allowed to be arbitrary
diffusions. In a tour-de-force analysis, that work showed that optimal policies in that model (in
high volume settings) were of the well-studied ‘bid-price’ type, and moreover that these bid prices
could be computed via the solution of certain PDE’s derived from the diffusions describing the
market size process. The present work can be seen to complement that line of literature in the
sense that it asks what one may do if the diffusions describing the underlying market-size process
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are unspecified or only partially specified to the seller. In other words, what can be done when a
perfectly specified forecast model is unavailable to the seller? The present work also complements
a recent paper by Besbes and Maglaras [2009] which studies issues similar to the ones here albeit
in the context of admission control to a queue via modulating prices. Both of the above papers
study the relevant systems in a limiting regime that produces a stochastic fluid model. This appears
to be the right regime for the issues at hand wherein the time scale at which customers arrive is
substantially ‘faster’ than that at which one sees shocks in the aggregate arrival rate. Of course,
the use of deterministic fluid models in RM contexts is relatively common; see for instance, Gallego
and van Ryzin [1994], Gallego and van Ryzin [1997], Bitran and Caldentey [2003], Maglaras [2006],
and Maglaras and Meissner [2006]. Finally, it is worth noting that outside of dynamic pricing,
inter-temporal correlation in the customer arrival process is frequently modeled by assuming that
customer arrival rates are driven by some autoregressive integrated moving average (ARIMA)
process in the supply chain/ inventory management literature. See for instance the work by Lee
et al. [2000], Raghunathan [2001], Gaur et al. [2005] and Graves [1999].

The remainder of this paper is organized as follows: In Section 2, we formulate our model and
define the vendor’s optimization problem. Section 3 introduces ‘re-optimized fixed price’ (RFP)
policies which are the subject of this paper. Section 4 is devoted to a theoretical performance
analysis of an ‘idealized’ RFP policy in a closely related fluid system, which retains a stochastic
market-size process, but assumes that demand is infinitely divisible and the customer arrival process
is thus a ’fluid’ whose rate is modulated by the underlying market-size process. In Section 5,
we discuss the impact of using the RFP-∆ policy (which has discrete reviews) as opposed to
the idealized RFP policy which is allowed to update price continuously and is the subject of the
preceding section. The analysis remains in the fluid model. Finally, Section 6 shows that the
performance analysis of the preceding section is also valid in the stochastic model introduced in
Section 2 provided we operate in an appropriate ‘high volume’ regime. This section also retracts
the ability to observe the market size process directly, relying instead on empirical estimates from
past sales. The results in Section 6 thus close the loop on our analysis and provide a relatively
complete performance analysis of a practically implementable variant of our policy. Section 7
presents a numerical investigation of the RFP-∆ policy. Section 8 concludes with thoughts on
future directions.

2. Problem Formulation
We consider a vendor who begins a selling season of length T with x0 units of inventory of some given
product. The vendor posts a per-unit price pt ∈ R+ ∪ {∞} at time t and is allowed to dynamically
adjust this price to compensate for demand shocks he may experience. Potential customers arrive
according to a point process with rate Λt; this instantaneous demand rate is itself determined by a
‘market size’ stochastic process {Λt : t ≥ 0}. The market-size process is exogenous and independent
of everything else. Arriving customers are endowed with a reservation price drawn independently
from a fixed cumulative distribution F (·). For a customer arriving at time t, the customer chooses
to purchase a single unit of the product if her reservation price exceeds the price posted at that
time, pt; otherwise she is lost to the system. The vendor’s goal is to dynamically adjust prices in a
manner that maximizes expected revenue. The remainder of this section is dedicated to formalizing
this problem.

Reservation Prices: As stated above, we assume that each customer’s reservation price is an
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independent random variable with cumulative distribution F (·). Letting F (p) = 1−F (p), we have
that the probability an arriving customer will choose to make a purchase when the posted price
is p is simply F (p). We will make the following assumptions on the reservation price distribution
F (·):

Assumption 1.

1. F (·) has a continuous density f(·) with support R+. 2

2. F has a non-decreasing hazard rate on R+. That is, f(p)/F (p) is non-decreasing in p on R+.

3. pF (p) is concave and has a unique maximizer p∗.

The first assumption guarantees that F (·) is invertible. Many commonly used distribution
functions, such as the exponential, logistic and Weibull, satisfy the second assumption (see Farias
and Van Roy [2010]). The third assumption is also a standard regularity assumption in the revenue
management literature (see Talluri and van Ryzin [2004]). While each of these assumptions have an
economic interpretation (see Farias and Van Roy [2010]), we do not dwell on such interpretations
here since they are well studied in the extant literature. We note simply that the assumptions
will permit us to use first order conditions to guarantee the optimality of various quantities in the
sequel, and are thus made for convenience.

2.1. The Market-Size Process:
In order to capture shocks to aggregate demand, we assume that the instantaneous demand rate
(or market size) is itself determined by an exogenous stochastic process, {Λt : t ≥ 0}. In positing
such a process we seek to model inter-temporal correlations in demand in addition to potential
non-stationarity. Here we will restrict ourselves to a special class of market-size processes that
while being broad, are sufficiently well-behaved to admit a number of useful pricing strategies. Our
restrictions can be viewed as natural structural assumptions on the nature of the process driving
aggregate demand as we will see shortly. In particular, we will make the following assumptions on
{Λt : t ≥ 0}.

Assumption 2.

1. Λt =
(
Λt
)+

where Λt is a Gaussian process with continuous sample paths.

2. E
[
Λt
]
, λt is positive.

3. The variance of the random variable Λt, σ2
t , is increasing as a function of t and concave.

Several of the above restrictions are rather benign. Allowing continuity in the sample paths
of the underlying process permits us with a minimal degree of ‘predictability’ for the market-
size process 3. The second assumption is partially justified by the fact that it is meaningless to
anticipate negative demand. Finally requiring that σ2

t be increasing in t simply captures the fact
that as one looks further into the future the uncertainty in market size at those times increases

2We extend the domain of F to define F (∞) = 0 and∞.F (∞) = 0; these formal definitions agree with the limiting
values of F (p) and pF (p) under our assumptions.

3Indeed, a large useful class of Gaussian processes have continuous modifications, including, for instance the
generalized moving average processes we introduce.
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and its concavity will be seen as a natural outcome of assuming that the impact of a shock on
the instantaneous market size process diminishes over time in the class of processes we will discuss
next. A more precise justification of the above assumptions is provided by exhibiting a class of
stochastic processes satisfying these assumptions and are simultaneously seen to be good models
of reality as we now describe.

A natural class of processes satisfying the above assumptions are what we dub Generalized
Moving Average Processes. In particular, define:

Λt = λt +
∫ t

0
φ(t− s)dZs

where we assume that λt > 0, φ(·) ∈ C1 and dZs is an increment of Brownian motion. We think
of {λt} as a deterministic forecast that the vendor may or may not possess and

∫ t
0 φ(t − s)dZs

as a ‘shock’ term that is difficult to model; indeed depending on the precise definition of φ this
term could behave in drastically different ways. In addition we assume that the function |φ| is
non-increasing; it is simple to verify that the resulting market-size process does indeed satisfy the
stipulations of Assumption 2. Our labeling of such processes, and indeed the reason we believe
they are interesting follow from the fact that the discrete time analogue of such a process is given
by

Λi∆ = λi∆ +
i−1∑
k=0

φ((i− k)∆)εk

where the εk are i.i.d N (0,∆) random variables. This is precisely a moving average process and
forecast models employed in practice are likely to be of this type (see, for instance, Chapter 9 in Tal-
luri and van Ryzin [2004]). Moreover, this analogy makes our assumptions on φ fairly transparent:
the requirement that |φ| be non-increasing implies that demand shocks today have a diminishing
influence on aggregate demand in the future. Finally, we note that a number of well-studied con-
tinuous time stochastic processes are of this type: Basic examples include the Wiener process with
drift {µt : t ≥ 0} (which is recovered by setting λt = λ0 +

∫ t
0 µsds and φ(t) = σ for arbitrary σ > 0)

and the Ornstein-Uhlenbeck (OU) process with mean λ and Λ0 = λ (which is recovered by setting
λt = λ and φ(t) = σ exp(−βt) for arbitrary σ > 0, and β > 0).

We end this section with an attractive property describing the modulus of continuity of the
samples paths of generalized moving average processes; in addition to providing us with a concrete
sense of the role of volatility in movements of the market size process, this property will serve
as a valuable guide to understanding precisely how frequently one might want to review pricing
decisions in a setting where prices can only be changed at discrete intervals. In particular, we will
show that

|Λt+τ − Λt| = O

(
σ
√

2τ log(1/τ)
)

where the constant in the big-Oh notation is ω dependent. More precisely, we have:

Lemma 1. (Sample Path Modulus of Continuity) Assume that Λt is a generalized moving average
process with φ ∈ C2 and λt ∈ C1. Then, for τ > 0, and any t ∈ [0, T ), we have:

lim sup
τ→0

|Λt+τ − Λt|
σ
√

2τ log(1/τ)
≤ 1 a.s.
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2.2. Dynamics and the Revenue Optimization Problem for an Idealized Vendor
We begin with defining the sales/ inventory process: Let us denote a sample path of the market-size
process up to time t by Λt , {Λs : s ∈ [0, t]} and similarly denote the price history up to time t
by pt , {ps : s ∈ [0, t]}. Let Ft = σ(Λt, pt) and Gt = σ({Λs : 0 ≤ s ≤ T}, pt). We then define
the sales process, Nt, as a point process with Gt(also, Ft)-intensity ΛtF (pt); see Definition D7 in
Bremaud [1980]. Nt is simply interpreted as the cumulative sales up to time t; we denote the
corresponding inventory process by Xt = x0−Nt. We will allow for optimal pricing policies pt that
are progressively measurable with respect to the filtration σ(Λt, N t), so that Ft = σ(Λt, N t)4. In
particular, such policies cannot see the future evolution of the market size process {Λt}. In fact,
practical policies are likely to be even further restricted – in particular, we will eventually consider
policies that are FNtt -progressive, i.e. policies that can simply observe the sales process Nt and
have no knowledge of the measure over sample paths of the market size process (i.e. events in G0)
nor observe Λt.

The ‘Idealized’ Vendor’s Revenue Optimization Problem. We now discuss a revenue opti-
mization problem faced by a vendor with perfect knowledge of the specification of the market-size
process (i.e. knowledge of a probability distribution over sample paths of the Λt process), potentially
unlimited computational power and the ability to monitor market size. All of these assumptions
are objectionable and we will eventually seek an implementable prescription that requires none of
these assumptions.

We require that the idealized vendor be restricted to causal pricing policies that respect the
inventory constraint. More precisely, let Π denote the family of all R+∪{∞}-valued price processes
(‘policies’) {πt : t ≥ 0}, that are Ft-progressive and in addition satisfy∫ T

0
dNt ≤ x0 a.s.

where pt = πt. The vendors objective is to find a pricing policy that maximizes expected revenue.
In particular, define the expected revenue under a policy π according to 5

Jπ(x0, λ0, 0) = E
[∫ T

0
πtdNt

∣∣∣∣X0 = x0,Λ0 = λ0

]
.(1)

The vendor then seeks to find a policy π∗ that achieves

sup
π∈Π

Jπ(x0, λ0, 0) , J∗(x0, λ0, 0).

Let us try to understand the challenges associated with the problem above. First, we observe
that solving the dynamic optimization problem implicit in finding a revenue maximizing policy
above entails having to deal with a function valued state space (corresponding to histories of the
market-size process), and this is likely to be difficult. At this juncture, one may observe that
the size of the state-space can be reduced by restricting attention to special market-size processes
and exploiting, for example, Markov structure; as an example if the market-size process is an OU
process, one must simply track the current market size yielding a three dimensional state space.

4We will in the sequel consider regimes wherein {Λt} is replaced by the process {Λt,(n)} where Λt,(n) = nΛt.
Denoting the corresponding sales process by Nt,(n) we will define F (n)

t = σ(Λt(n), N t(n)) and similarly define G(n)
t .

5We will frequently omit the conditioning in the sequel when this is apparent from context.
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If we were willing to ignore the obvious restrictions this imposes on modeling the market-size
process, the vendor will still require knowledge of the specification of such a market-size process
in order to solve such a problem; this requirement itself is unrealistic. Finally, in the interest of
implementability, simple, easy to understand policies are highly desirable, and even if an optimal
policy were computable, its complexity may preclude an easy implementation. Thus motivated, we
will in the next section introduce a simple dynamic pricing strategy that we will: (a) Require little
or no knowledge of the specification of the market-size process and (b) Remain a ‘good’ alternative
to optimal pricing policies.

3. Re-optimized Fixed Price (RFP) Policies
To motivate the policies that we will introduce in this section, we begin with a simpler scenario
that was the subject of the landmark paper by Gallego and van Ryzin [1994]: we consider the case
where {Λt : t ≥ 0} is in fact a deterministic process, so that Λt is identically equal to λt. Gallego
and van Ryzin [1994] proposed the following static fixed price policy: At time 0, one selects a price,
pFP as follows:

pFP =
{
p∗, if

∫ T
0 F (p∗)λsds ≤ x0;

F
−1 (

x0/
∫ T
0 λsds

)
, otherwise.

This price is left unchanged over the course of the selling season. Gallego and van Ryzin [1994]
showed that in a ‘high volume’ regime where the initial inventory level and market size are scaled
simultaneously 6, this fixed price policy is near-optimal. The intuition underlying this result is that
in such a high volume regime, the dynamic pricing policy at hand is an essentially deterministic
problem and the above solution is easily recognized as being the optimal solution of this limiting
deterministic problem.

It is easy to see that if one considers an analogous regime for the case where the market-size
process is not deterministic, the limiting optimization problem is no longer a deterministic problem,
and there is no reason to believe that a fixed price policy such as the one above might work well.
The following example illustrates what might happen:

Example 1. Consider the market-size process Λt = (λ + σZt)+ where Zt is Brownian motion. Let
the initial inventory level, x0 and the length of the horizon T satisfy λT = x0. Further, assume that
customers’ reservation prices are exponentially distributed with parameter 1, i.e., F (p) = exp(−p).
We consider a sequence of ‘scaled’ problems; the nth problem has initial inventory x0,(n) = nx0,
market-size process {Λt,(n)} (where Λt,(n) = nΛt) and a fixed selling season of length T . Consider
a static pricing policy πFP that employs a constant selling price of p∗ over the sales season. When
σ = 0, we are left with a deterministic market-size process so that as n gets large, the results of
Gallego and van Ryzin [1994] imply that:

lim
n→∞

JπFP(x0
(n), λ

0
(n), 0)

J∗(x0
(n), λ

0
(n), 0)

= 1.

However, if σ > 0, we can show (see Appendix E.2) that

lim sup
n→∞

JπFP(x0
(n), λ

0
(n), 0)

J∗(x0
(n), λ

0
(n), 0)

= O((log T )−1).

6That is, we consider a sequence of problems indexed by n where in the nth problem, initial inventory is equal to
nx0 and the market-size process is {nλt : t ≥ 0}.
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The point here is that the natural fixed price policy one constructs with an incorrect specification of
the ‘shock’ term in the market-size process (in the case above, we simply ignored it) can be arbitrarily
bad. Of course, with more information about the market size process one could construct better fixed
price policies – for instance, if one knew the realization of the shocks at time 0, we are back to the
Gallego and van Ryzin [1994] setting where fixed price policies are essentially optimal. If we knew
enough about the market size process to compute an unbiased estimate of total demand realized over
[0, T ] (i.e. the quantity

∫ T
0 Λtdt) at time 0, one may again potentially obtain an improvement over

the setting above. Ideally, however, we wish to operate in a setting where the seller knows nothing
about the market size process outside of perhaps λ; even this quantity may be elusive.

The fixed price policy is attractive from a managerial perspective for its simplicity, imple-
mentability and ease of interpretation; unfortunately the negative result above points out that this
policy is, not surprisingly, unsuitable for situations where the seller is unable to model the ‘shock’
in the market size process. As it turns out, we will be able to get away with the use of a policy that
is only slightly more sophisticated than the above policy: the policy we consider will be akin to
repeated application of the policy above with updated values for market size and inventory along
with an intuitive ‘hedging’ adjustment to account for predictable variability in the market size
process.

3.1. An Idealized Re-optimized Fixed Price Policy
This section introduces a simple dynamic pricing policy motivated by the simple fixed price policy
above. The policy will require that one monitor inventory levels and the current market size process
continuously 7. In addition should deterministic forecast information be available, the policy will
require as input an additional ‘hedging’ parameter α (in subsequent sections we will discuss an
oblivious choice of α). The dynamic pricing policy we propose is defined according to:

(2) πRFP(Xt,Λt, t) = F
−1
(

min
{
F (p∗), Xth(t, α)

Λt(T − t)

})
,

where α ∈ [0, 1] is a parameter whose choice we will discuss shortly, and h(t, α) is defined according
to

h(t, α) =
α(1− t

T ) + (1− α)λt(T−t)∫ T
0 λsds

α(1− t
T ) + (1− α)

∫ T
t
λsds∫ T

0 λsds

.

for t < T ; h(T, α) = 1. This policy is idealized for the simple reason that it requires that prices be
updated continuously and moreover that the value of Λt be known to the manager at time t. We
will address these shortcomings and provide an implementable prescription shortly; in the interim
we use this idealized policy to build intuition for our eventual prescription.

The policy above is easy to interpret. To understand the general structure of the policy, let
us begin with setting α = 1 so that h(t, α) = 1. This results in a simple policy that is easy to
interpret, has minimal information requirements, and that will eventually translate into a practical
variant of the idealized policy here. Here the policy reduces to

πRFP(Xt,Λt, t) = F
−1
(

min
{
F (p∗), Xt

Λt(T − t)

})
.

7Formally, this policy will be an Ft-progressive process
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Notice that when Λt = λ the near-optimal fixed price policy of Gallego and van Ryzin [1994]
introduced earlier in this section is equivalently re-written as:

pFP = F
−1
(

min
{
F (p∗), x0

λT

})
.

Thus, the RFP policy here may simply be re-interpreted as repeated application of the above fixed
price policy where at every point in time t the policy uses an updated value for the inventory
level, and assumes that the prevailing market-size Λt will remain constant for the remainder of the
horizon. We will show that in this setting, one is guaranteed that under the RFP policy,

Xt ≥
T − t
T

x0

so that the RFP policy can be seen as ‘rationing’ inventory uniformly over time in the face of
complete uncertainty in the market-size process. We next adjust the above policy for scenarios
wherein the manager wishes to ‘hedge’ his performance losses relative to some known deterministic
forecast in addition to random realizations of the market size process.

3.1.1. Incorporating Deterministic Forecast Information: The multiplier h(t, α)

The multiplier h(t, α), and in particular, the parameter α allows us to ‘hedge’ between a determin-
istic forecast of market evolution and the possibility of demand shocks. In particular, a manager
might have available forecast information on the evolution of the market size process. In the event
that demand shocks are small, it stands to reason that there is inherent value to incorporating this
information into any pricing decision made. On the other hand in the event that one anticipates
large shocks in demand, one might want to place less of an emphasis on these forecasts.

To develop a qualitative understanding of this multiplier and the parameter α, we consider
here the two extreme cases where α = 0 and 1. In particular, setting α = 0 may be seen as an
appropriate choice when our forecasts of market evolution are perfect so that Λt = λt; i.e. there
are no demand shocks. In this case, the policy above reduces to

πRFP(Xt,Λt, t) = F
−1
(

min
{
F (p∗), Xt∫ T

t λsds

})
,

which is essentially the fixed price policy for deterministic market-size processes. Next, consider
a scenario wherein the manager has essentially no forecast information available. Here one may
consider setting α = 1. This may also be seen as an appropriate choice when our forecasts are
‘swamped’ by volatility in the market-size process. In particular, for α = 1, our policy reduces to

πRFP(Xt,Λt, t) = F
−1
(

min
{
F (p∗), Xt

Λt(T − t)

})
.

In the absence of no predictions on how the market will evolve, the policy above prices as though
the market size at time t will prevail over the remainder of the selling season. In reality, we
will operate in an intermediate regime, where the market size process will consist of a predictable
component (corresponding to initial forecasts e.g. a well established seasonality pattern) in addition
to an un-modeled stochastic process component (that one would otherwise attempt to capture via
a stochastic forecast model); intermediate choices of α allow us to hedge appropriately between the
two extreme scenarios described above. As we will show later, the interpolation between the two
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extreme policies enforces an intuitive convex combination of the inventory levels one may expect
under either of the two extreme policies at any given point in time. In particular, we will show
that under the policy above, one must have:

Xt ≥
[
α

(
1− t

T

)
+ (1− α)

∫ T
t λsds∫ T
0 λsds

]
x0

where one recognizes x0(
∫ T
t λsds)/(

∫ T
0 λsds) as the inventory on hand under the optimal policy in

the event that the shock term were 0, and x0(T − t)/T as a lower bound on the inventory on hand
in the event that one employed the RFP policy without forecast information and thereby chose to
ration inventory uniformly over time.

In the sequel, we will provide a ‘universally good’ choice of α that one may select in the absence
of any information about the market size process whatsoever. We will in addition show how one
may optimally select α given information about the drift and volatility of the market-size process.

3.2. An Implementable Prescription
We now consider an implementable variant of the policies described above. In particular, we
consider a pricing policy that recognizes the following restrictions on the vendor: First, the vendor
can only update prices at discrete, preferably infrequent, intervals. Second, the vendor is never
able to observe the market size process.

As such, our scheme will require that the vendor set a single parameter ∆, specifying how
frequently prices need to be updated. In Section 5.1, we discuss the choice to ∆ and how it
depends on volatility in the market size process. In addition, should the vendor have available
forecast information on the market size process, he will be required to select the α parameter
described above; should this need arise, Section 4.5 discusses the selection of α; we anticipate that
the most accessible choice in practice will be setting α = 1. The pricing scheme will proceed as
follows:

The RFP-∆ Policy

1. Over the interval [0,∆), post the price p∗ (the static revenue maximizing price).

2. At times i∆ (where i ∈ {1, . . . , bT/∆c}) for which Xi∆ > 0, estimate current market size
according to:

Λ̂i∆ =
Ni∆ −N(i−1)∆

F (p(i−1)∆)∆

where p(i−1)∆ is understood to be the price posted over the interval [i− 1∆, i∆).8

3. Over the period [i∆, (i+ 1)∆), post the price:

pi∆ = F
−1
(

min
{
F (p∗), Xi∆

Λ̂i∆(T − i∆)

})
.

8It is simple to establish inductively that so long as Xi∆ > 0, we must have p(i−1)∆ <∞.
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In the event that deterministic forecast information is available and one wishes to incorporate
this information into the pricing decision, post the price:

pi∆ = F
−1
(

min
{
F (p∗), Xi∆h(i∆, α)

Λ̂i∆(T − i∆)

})
.

The first choice is consistent with setting α = 1; from here on we will refer to this as an
‘oblivious’ selection of α.

4. As an exception to the above pricing rules, if at any time t, inventory hits zero (i.e Xt = 0),
we immediately set the price to ∞. 9

The RFP policy we have proposed above is attractive from a practical perspective for several
reasons:

• It can be implemented in an entirely mechanical fashion with absolutely no knowledge of the
underlying market size process; this corresponds to selecting α = 1. In the event that deter-
ministic forecast information is available to the retailer, this information is easily incorporated
into the pricing decision.

• It is easy to interpret as a discrete review policy, where price updates are made based on
unexpected shocks in the sales process. The updated prices reflect a belief that the extant
state of the world will prevail over the remainder of the selling season.

• It uses easy to understand proxies of the prevailing market size process. The only data
required at each price update is the number of sales since the previous update and the price
posted over that period.

In fact, the general policy described here is reminiscent of what sophisticated retailers employ
in practice; see Talluri and van Ryzin [2004]. What we have been careful to specify is the precise
forecasting that one may use. Moreover, as we will see in the sequel, we will show that with the
appropriate forecasting rule and choice of review frequency ∆, the above pricing prescription enjoys
attractive theoretical performance guarantees as well as excellent numerical performance.

We end this section with a succinct formalization of the above pricing policy, which we refer to
as the RFP-∆ policy. Define t(∆) = maxi{i∆ : i∆ ≤ t}. Then the RFP-∆ policy is given by:

π∆
RFP(Xt, t) =

 F
−1
(

min
{
F (p∗), Xt(∆)h(t(∆),α)

Λ̂t(∆)(T−t(∆))

})
if Xt > 0

∞ if Xt = 0

where the estimated market size Λ̂i∆ assumed over times t ∈ [i∆, i+ 1∆) where Xi∆ > 0 is defined
as

Λ̂i∆ =


X(i−1)∆−Xi∆

F (π∆
RFP(X(i−1)∆,(i−1)∆))∆ if i ∈ {1, 2, 3, · · · }

x0
F (p∗) if i = 0.

9This is a standard formalism of the notion that one cannot sell more than the initial endowment of inventory.
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In the context of generalized moving average processes, the above policy is oblivious to φ, and
in the event one set α = 1, it is oblivious to λt as well. Moreover, it can only observe sales and
make a limited number of pricing updates. The next three sections are devoted to a performance
analysis of this policy. In contrast with the performance degradation illustrated for the fixed price
policy in Example 1 (which was also oblivious to the structure of the market size process), we will
demonstrate an uniform upper bound on performance loss relative to a clairvoyant optimal policy
with advance knowledge of the realized sample path of the market-size process. We will in addition
present stronger parametric guarantees for certain special market-size processes. The analysis will
proceed in steps: we will first examine the performance of the idealized RFP policy presented in
Section 3.1 in a fluid regime. We will next move to understanding the impact of discrete pricing
updates via the RFP-∆ policy in the fluid regime. Finally, we will consider the stochastic model
we began with and present performance guarantees for the RFP-∆ policy in that setting.

4. Performance Analysis I: The Idealized RFP Policy In A Fluid Model
This Section takes the first of three steps towards understanding the performance of the RFP-∆
policy that was the outcome of our discussion in the previous Section. In particular, we will first
conduct a performance analysis for the idealized RFP policy, namely (2), which we recall can update
prices continuously in a closely related fluid system. In particular, we consider a system wherein
the inventory process follows the ‘fluid’ dynamic:

dX̃t = −ΛtF (pt)dt, X̃0 = x0.

This is in contrast to the model proposed in Section 2, wherein the inventory at time t, Xt = x0−Nt,
where Nt is a stochastic point process with intensity ΛtF (pt).

Such a dynamic arises by viewing individual customers as infinitesimally small (a notion we will
make precise in a subsequent section). The notion of a policy remains unchanged and we define
the fluid value of a policy π according to:

J̃π(x0, λ0, 0) = E
[∫ T

0
π(X̃t,Λt, t)ΛtF (π(X̃t,Λt, t))dt

∣∣∣∣X̃0 = x0,Λ0 = λ0

]
where the expectation is now only over the sample paths of the Λt process. Similarly, we define the
optimal fluid value function

J̃∗(x0, λ0, 0) = sup
π∈Π

J̃π(x0, λ0, 0).

Our goal for the remainder of this section will be to produce a lower bound on the quantity
J̃πRFP(x0, λ0, 0)/J̃∗(x0, λ0, 0). We begin with an overview and discussion of the results in this
section.

4.1. Performance Guarantees for the Idealized RFP Policy
This section will establish several performance guarantees for the idealized RFP policy in the fluid
regime. In particular, we will establish the following results:

1. For the RFP policy with α = 1 (i.e. the oblivious choice) and market-size processes satisfying
Assumption 2, and the additional requirement that λt = λ for all t, we will show that

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ 0.342.
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2. If in addition to the assumptions above, we have σT /λ ≤
√

2πλB for some constant B > 0
then we will show that

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ max
{

0.342, 1
1 +B

− B

1 +B

(
exp(−1/4πB2) + 0.853

)}
.

3. Finally, for the RFP policy with α = 0.594 and all market-size processes satisfying Assump-
tion 2, we will show that

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ 0.203.

The guarantees of the first two results apply to the setting where the vendor sets α = 1. In
particular, this is a setting wherein the manager knows absolutely nothing about the specification
of the market size process and as such, we believe this is a highly relevant setting. We see that
with frequent re-optimization, a well studied fixed price policy suffices to combat uncertainty in
market-size. In particular, while a fixed price policy with no re-optimization can be arbitrarily
bad (example 1), the RFP policy will have uniformly bounded relative performance losses. These
bounds hold for arbitrarily volatile market-size processes. Simultaneously, we see via the second
guarantee that in a regime where the volatility is low, the RFP policy proposed is near optimal.

The third guarantee applies to a setting wherein the manager is aware of {λt}, i.e. has access
to a deterministic forecast. In that setting he may wish to incorporate this information into pricing
decisions, and the performance result provides a choice of the parameter α that allows him to do so
while preserving a uniform performance guarantee. Additional knowledge of the market-size process
will allow for a problem specific selection of the α parameter. This will be evident in the proof
of Theorem 3. We will also examine this issue from a computational perspective in our numerical
experiments and show that, in fact, the theoretically ideal choice of α performs quite well, while
the oblivious choice of α performs adequately as well.

As it will turn out, all of these guarantees hold relative to a ‘clairvoyant’ optimal policy that
has full knowledge of the realized sample path at time 0. This allows us to interpret our bounds
as stating that the value of an accurate stochastic forecasting model is mitigated by frequent re-
optimization. We now turn to establishing these guarantees.

4.2. Preliminaries: The Unit Revenue Function
Define the unit revenue function g : R+ → R+ according to

g(y) =
{
p∗F (p∗)y if y ≤ 1/F (p∗);
F
−1(1/y) otherwise.

Notice that g(y) is the optimal value of the optimization problem 10

maximize
pt∈R+,t≥0

∫ 1
0 ptyF (pt)dt

subject to
∫ 1
0 yF (pt)dt ≤ 1.

From the results of Gallego and van Ryzin [1994], it follows that in the limit as n grows large, the
unit revenue function g(y) corresponds to the (normalized) optimal expected revenue in a system

10see Proposition 2 of Gallego and van Ryzin [1994].
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with initial inventory n and instantaneous market size Λt = ny/T . The following lemma, proved
in the appendix, establishes a number of properties for g that we will have opportunity to use in
the sequel.

Lemma 2.

1. g(·) is a non-negative, continuous, non-decreasing, and concave function on R+, with g(0) =
0.

2. yg(1/y) is non-decreasing and concave on R++.

3. g(y)/y is non-increasing on R+.

4. If u, v > 0, then g(u)
g(v) ≥ min(uv , 1), 1

u

∫ u
0 g(v)dv ≤ g(u/2).

4.3. An Upper Bound on the Fluid Optimal Value function
Consider the fluid system, but with the entire sample path of the market-size process, that is
{Λt : t ≥ 0}, available at time 0. The revenue optimization problem here is a deterministic one: In
particular, let us denote by J̃∗{Λs}(x0, 0), the optimal value of the revenue maximization problem:

maximize
pt∈R+,t≥0

∫ T
0 ptΛtF (pt)dt

subject to
∫ T
0 ΛtF (pt)dt ≤ x0.

Now since any policy π ∈ Π describes a feasible solution to the above problem, we immediately
have that

J̃∗(x0, λ0, 0) ≤ E
[
J̃∗{Λs}(x0, 0)

]
.

In addition, we define the certainty equivalent fluid value function J̃∗CE according to

J̃∗CE(x0, λ0, 0) ,
maximize
pt∈R+,t≥0

∫ T
0 ptE[Λt]F (pt)dt

subject to
∫ T
0 E[Λt]F (pt)dt ≤ x0.

We then have the following upper bounds on the fluid optimal value function J̃∗. The proof relies
essentially on establishing the appropriate convexity and applications of Jensen’s inequality; it may
be found in the appendix:

Lemma 3.

J̃∗(x0, λ0, 0) ≤ E
[
J̃∗{Λt}(x0, 0)

]
≤ J̃∗CE(x0, λ0, 0)

≤ x0g

(∫ T
0 (λt + σt/

√
2π)dt

x0

)

≤ x0g

(∫ T
0 λtdt

x0

)
+ x0g

(∫ T
0 σtdt

x0
√

2π

)
.
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4.4. A Lower Bound on J̃πRFP

Here we establish a lower bound on the value of the RFP policy in the fluid regime. With the upper
bound we have established on the optimal fluid value function, this will lead to a performance bound
in the fluid regime. In order to establish our bound we will first demonstrate that the RFP policy
has a useful ‘balancing’ property that yields useful uniform lower bounds on the inventory process
under any market-size sample path.

Lemma 4. (Inventory Balancing) The inventory at time t under the RFP policy in the fluid model,
X̃t, satisfies

X̃t ≥
[
α

(
1− t

T

)
+ (1− α)

∫ T
t λsds∫ T
0 λsds

]
x0.(3)

Proof. By the definition of πRFP,

F (πRFP(X̃t,Λt, t)) = min
{
F (p∗), X̃th(t, α)

Λt(T − t)

}
.

Consider an arbitrary sample path of the market-size process, {Λt}, we have

dX̃t = −ΛtF
(
πRFP(X̃t,Λt, t)

)
dt

≥ −X̃th(t, α)
T − t

dt

= X̃td log
(
α(1− t

T
) + (1− α)

∫ T
t λsds∫ T
0 λsds

)
.

Thus,

d log
(
X̃t

)
≥ d log

(
α(1− t

T
) + (1− α)

∫ T
t λsds∫ T
0 λsds

)
.

Integrating on both sides and using the initial value X̃0 = x0, yields

X̃t ≥
[
α(1− t

T
) + (1− α)

∫ T
t λsds∫ T
0 λsds

]
x0.

�

The above result reflects a natural ‘balancing’ property of the RFP policy. To see this consider
the oblivious choice of α = 1. Here, the above bound reduces to

X̃t ≥
(

1− t

T

)
x0,

so that when α = 1, the RFP policy enforces a ‘balanced’ allocation of inventories across all time
intervals irrespective of the actual realization of the market-size sample path. We next use this
balancing property in a crucial way to establish a useful intermediate lower bound on the fluid
value of the RFP policy. The proof of this bound, and all subsequent results may be found in the
appendix.
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Lemma 5.

J̃πRFP(x0, λ0, 0) ≥ αx0
T

E
[∫ T

0
g

(ΛtT
x0

)
dt

]
+ (1− α) x0∫ T

0 λsds
E
[∫ T

0
λtg

(
Λt
∫ T
0 λsds

x0λt

)
dt

]
.

We next derive lower bounds on each of the summands in the lower bound above in the interest
of deriving quantities comparable to the upper bound of Lemma 3. The proofs rely essentially on
properties of the fluid optimization problem (as reflected in properties of the unit revenue function),
and distributional properties of the marginals of the market size process. In particular, it is here
that we exploit the Gaussianity of the marginals of our process via the results of Lemma 14. The
other assumptions we made on the market-size process are also material for these bounds. In
particular, we have:

Lemma 6.
1
T

E
[∫ T

0
g

(ΛtT
x0

)
dt

]
≥ 0.342g

(∫ T
0 σtdt

x0
√

2π

)
.

and

Lemma 7.
1∫ T

0 λsds
E
[∫ T

0
λtg

(
Λt
∫ T
0 λsds

x0λt

)
dt

]
≥ 1

2
g

(∫ T
0 λtdt

x0

)
.

The lower bounds we have established will allow us to establish performance bounds for the
RFP policy in the fluid model that we provide next.

4.5. Performance Guarantees in the Fluid Model
We begin with a guarantee relevant to the setting where the seller has absolutely no information
about the market size process. He consequently sets α = 1. Remarkably, we have:

Theorem 1. Consider the RFP policy for an arbitrary α. We then have for all market-size processes
satisfying Assumption 2, and the additional requirement that λt = λ for all t,

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

≥ 0.342.

The guarantee above holds for arbitrarily volatile market size processes; stronger guarantees
are available in an environment wherein volatility is low. In particular, we have:

Theorem 2. Consider a market-size process with no drift and bounded volatility. That is assume
that λt = λ and moreover, σT /λ ≤

√
2πλB for some constant B > 0. Then,

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

≥ max
{

0.342, 1
1 +B

− B

1 +B

(
exp(−1/4πB2) + 0.853

)}
.

In order to get a stronger sense for the parameter B in the parametric guarantee above, consider
the setting where the market size process is a generalized moving average process. In this case if
φ(t) ≤ σ, we automatically have B ≤ σT 1/2/λ; a natural measure of the ‘relative’ uncertainty in the
process. Similarly, if φ(t) ≤ σe−βt (so that we face an Ornstein-Uhlenbeck market size process), we
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have B ≤ σ/λβ1/2, which again shows a natural dependence on what might consider the inherent
volatility in the process.

In an ideal world, we would like the result of Theorems 1 and 2 which apply to the RFP policy
with the oblivious choice of α = 1 (i.e. the policy which uses absolutely no information about the
market size process) to hold for arbitrary {λt}; this would unfortunately be asking for too much
– in particular, in a setting where volatility were identically zero this would be akin to asking for
guarantees relative to some arbitrary, fixed sample path of the market size process with no a-priori
knowledge of this sample path. Nonetheless, we present a guarantee relevant for the RFP policy
and any market size process satisfying Assumption 2 next. We assume for this next result that
the seller knows {λt} (recall we think of this as a deterministic forecast) but no other information
about the market size process and selects α = 0.594; as is evident from the proof of the result that
follows, this selection of α can be fine-tuned with additional information about the market size
process.

Theorem 3. Consider the RFP policy with α = 0.594. We then have for all market-size processes
satisfying Assumption 2,

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

≥ 0.203.

The guarantees above were for the idealized RFP policy in a fluid model. The remainder of our
analysis (i.e. the two sections that follow) will be devoted to showing that under appropriate con-
ditions the guarantees here extend to the implementable RFP-∆ policy applied to the (stochastic)
model we began with. We end this Section with noting that the analysis here could be extended
to other market-size process families; Appendix B.1 establishes versions of Theorem 1 for reflected
generalized moving average processes and also for Cox-Ingersoll-Ross (CIR) processes (which are
an important example of an affine process).

5. Performance Analysis II: The Impact of Discretization
The previous section demonstrated performance guarantees for the idealized RFP policy in a fluid
model. We continue to consider performance in the fluid model in this section, but now move to
understanding the impact of discrete pricing updates. In particular, this section will consider the
use of the RFP-∆ policy in the natural fluid model for our system. The goal of this section is
two-fold. First, we must establish the natural fact that as pricing updates get more frequent, the
RFP-∆ policy yields performance on par with that of the idealized RFP policy. Second, we provide
operational insights for the choice of ∆ by demonstrating the precise rate at which the performance
of the RFP-∆ policy approaches that of the RFP policy; in particular, we provide an estimate of
the ‘price’ of such discrete reviews.

We begin by introducing some notation: We denote by X̃∆
t the inventory process under the

RFP-∆ policy in the fluid regime. Recall that at the ith price update, the RFP-∆ policy uses an
estimate of the market size process based on sales in the preceding interval of time, Λ̂i∆. We denote
the analogue to this quantity in the fluid model by Λ̂FL

i∆ . We define:

Λ̂FL
i∆ = 1

∆

∫ i∆

i−1∆
Λsds.

We begin with showing that the inventory process under the RFP-∆ policy approaches that
under the idealized RFP policy. In particular:
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Lemma 8. For all t ∈ [0, T ), we have

lim
∆→0

X̃∆
t(∆) = X̃t.

Now define the revenue garnered under the RFP on a specific sample path of the market size
process according to the G0-measurable random variable

J̃πRFP(x0, λ0, 0|G0) =
∫ T

0
πRFP(X̃t,Λt, t)F

(
πRFP(X̃t,Λt, t))

)
Λtdt

and similarly define J̃π∆
RFP(x0, λ0, 0|G0). We then have that in the fluid model on almost every

sample path of the market size process, the revenue garnered under the RFP-∆ policy approach
those garnered under the RFP policy. In particular, we have:

Lemma 9.
lim
∆→0

J̃π
∆
RFP(x0, λ0, 0|G0) = J̃πRFP(x0, λ0, 0|G0).

Via an appeal to the dominated convergence theorem, this result yields as an easy corollary
(whose proof is omitted):

Corollary 1.
lim
∆→0

J̃π
∆
RFP(x0, λ0, 0) = J̃πRFP(x0, λ0, 0).

5.1. The Price of Discrete Reviews
This section explores the precise loss in revenue due to the fact that prices can only be updated
at discrete points in time. It stands to reason that this loss will depend first on the frequency of
updates (in a limiting sense this is already clear by our results thus far), and second on the volatility
of the underlying market size process. In particular, one expects that if the market size process is
not too volatile then we can get away with relatively fewer price updates and conversely for the
scenario where volatility is high. This sort of question has broad relevance to retail in general, and
this section will yield a relatively simple rule of thumb to judge re-optimization frequency.

Our study here will restrict attention to generalized moving average processes with λt = λ and
φ(0) = σ > 0; an extension to the more general case is straightforward but tedious and not terribly
insightful. To begin, we note that the modulus of continuity established for sample paths of our
market size process (Lemma 1) and the proof of Lemma 8 yield as an immediate corollary the
following estimate whose proof is omitted:

Corollary 2. Assume that Λt is a generalized moving average process with φ ∈ C2 and λt ∈ C1.
Then, for any t ∈ [0, T ), we have almost surely:

lim sup
∆→0

|Λ̂FL
t(∆) − Λt|

σ
√

∆ log(1/∆)
≤ 2

and further,

lim sup
∆→0

|X̃∆
t(∆) − X̃t|

σ
√

∆ log(1/∆)
≤ 4
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We use these results to establish a precise rate at which the revenue under the RFP-∆ policy
approach those under the RFP policy. We do so for the ‘oblivious’ policy with α = 1. Define
B , maxt∈[0,T ] Λt, and η(∆) =

√
∆ log(1/∆). We will then show that∣∣∣J̃π∆

RFP(x0, λ0, 0|G0)− J̃πRFP(x0, λ0, 0|G0)
∣∣∣ = O (ση(∆) log(1/η(∆)))

where the only random term in the constant within the big-Oh notation is B. More precisely, we
have the following theorem:

Theorem 4. (The Price of Discretization) Under the assumptions on the market size process above,
we have almost surely:

lim sup
∆→0

∣∣∣J̃π∆
RFP(x0, λ0, 0|G0)− J̃πRFP(x0, λ0, 0|G0)

∣∣∣
ση(∆) log(1/η(∆))

≤ 4p∗F (p∗)B2T 2

x2
0

An application of the reverse Fatou Lemma and Jensen’s inequality immediately yields:

lim sup
∆→0

∣∣∣J̃πRFP(x0, λ0, 0)− J̃π∆
RFP(x0, λ0, 0)

∣∣∣
η(∆) log(1/η(∆))

≤ 4p∗F (p∗)σEB2T 2

x2
0

Given that the RFP-∆ policy with α = 1 or similar variants thereof already finds use among
sophisticated retailers in pricing products with high demand volatility, this theorem provides a
great deal of valuable intuition. Precisely, it shows how the frequency with which prices are updated
should be adjusted relative to various intuitive problem parameters; the relationships are intuitive
but non-linear.

1. Volatiltiy: Ignoring logarithmic factors, if volatility σ is halved, one may shrink the frequency
with which prices are updated by a factor of

√
2 and maintain the same additive revenue loss.

As one might anticipate, low volatility consequently calls for lower price update frequencies.

2. Load Factor: The quantity
√

EB2T/x0 is a measure of load, i.e. demand relative to inventory,
or at least an upper bound thereof. It stands to reason that when inventory is scarce relative
to demand one might wish to update prices frequently; indeed that is precisely what our
result suggests – the revenue loss due to discretization scales like the square of this measure
of load. In particular, the more inventory one has relative to demand, the less important it
is to update price. Again ignoring logarithmic factors, doubling the amount of inventory will
permit cutting the price review frequency by a factor of 4.

6. Performance Analysis III: The High Volume Regime
The previous sections analyzed the performance of the RFP (and RFP-∆) policies in a stochastic
fluid model. Whereas the fluid model retained a stochastic market-size process, the customer ar-
rival process was no longer a stochastic point process; rather demand was assumed to be infinitely
divisible and the customer arrival process was thus a ‘fluid’ whose rate was modulated by the un-
derlying market-size process. This section establishes that the fluid model of the previous section
can be viewed as a limit of the stochastic model we proposed in Section 2, in an appropriate ‘high
volume’ regime characterized by large initial inventory levels and proportionately scaled market-
size processes. In particular, allowing ourselves some imprecision for the purpose of exposition, this
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will imply the following high-level result: Provided one adjusts prices sufficiently frequently, the
RFP-∆ policy (our implementable prescription) inherits, in an appropriately high volume regime,
the performance guarantees established for the idealized RFP policy in the fluid model. In par-
ticular, this section will close the loop in our analysis and provide performance guarantees for the
implementable RFP-∆ policy in our original stochastic model.

Before describing an overview of the results in detail, we first describe the high volume regime
precisely.

The ‘High Volume’ Regime: We assume we are given a dynamic pricing problem of the type
described in Section 2, with initial inventory level x0, and market-size process {Λt : t ≥ 0}. We
next consider an nth ‘scaled’ version of this problem with initial inventory level nx0 , x0,(n) and
market-size process {Λt,(n)}, where Λt,(n) = nΛt. All other problem parameters (namely, the time
horizon, T , and the reservation price distribution of an individual arriving customer, F (·)) remain
unchanged in this nth problem. By ‘high volume’ we understand the regime where n grows large.

The eventual goal of this section will be to show that the performance guarantees we demon-
strated for the RFP-∆ policy in the fluid model also hold when the RFP-∆ policy as described in
Section 3 is employed in the high volume regime. Notice that this is distinct from analyzing the
use of the fluid policy (i.e. a policy that anticipates that the inventory process behaves according
to the fluid model) in the stochastic system. The analysis will proceed in two broad steps:

• We show that the inventory process in the stochastic model under the RFP-∆ policy is close
to the inventory process in the fluid model in the high-volume regime; along the way we must
establish that the market-size forecasts used are also close to their fluid analogues.

• We use the above result to show that revenue under the RFP-∆ policy in the fluid model
are close to revenues under the RFP-∆ policy in the stochastic model (Corollary 1). We use
this result in turn to show our main result for this section, Lemma 12 which shows that the
performance guarantees we established in the fluid model remain for the idealized RFP policy
remain valid in the high volume regime under the use of the RFP-∆ policy.

6.1. The Inventory Process and Convergence to the Fluid Value
We begin with some notation relevant to this section. We denote by X∆

t,(n) the inventory at time
t under the RFP-∆ policy in the nth (stochastic) problem. Similarly, we denote by Λ̂t(∆),(n) the
inventory forecast in place over the interval [t(∆), t(∆) + ∆) in the nth problem. We then have:

Lemma 10. For any given ∆ > 0, we have that the inventory process and the forecast process in
the nth system converge to their fluid analogues. In particular:

1. For any t,
X∆
t,(n)
n
→ X̃∆

t a.s.

2. For any t such that X̃∆
t > 0,

Λ̂t(∆),(n)
n

→ Λ̂FL
t(∆) a.s.
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This result suffice for us to show that on every realization of the market size process, we have in
the high-volume regime that the revenue yielded in the stochastic model converges to the revenue
yielded in the fluid model under RFP−∆ policy for any fixed ∆. In particular, we have:

Lemma 11.
lim inf

n

1
n
Jπ

∆
RFP

(
x0

(n), λ
0
(n), 0|G0

)
≥ J̃π∆

RFP
(
x0, λ0, 0|G0

)
a.s.

As a corollary to this result we have:

Corollary 3. For ∆ sufficiently small, we have:

lim inf
n

Jπ
∆
RFP

(
x0

(n), λ
0
(n), 0

)
J̃π

∆
RFP

(
x0

(n), λ
0
(n), 0

) ≥ 1.

6.2. Closing the Loop: Performance Guarantees in the High Volume Regime
We finally present a result that yields performance guarantees for our implementable prescription,
the RFP-∆ policy. Our result will imply that the guarantees we established for the idealized RFP
policy in the fluid model, apply just as well to the RFP-∆ policy when employed in the actual
stochastic setting under appropriate conditions. In particular, we consider a setting where:

1. The re-optimization frequency is high (i.e. ∆ is small).

2. The volume of sales is high (i.e. n is large).

Our work thus far, and in particular, Corollaries 1 and 3 allows us to obtain the following natural
result:

Lemma 12. We have

lim inf
∆→0

lim inf
n→∞

Jπ
∆
RFP

(
x0

(n), λ
0
(n), 0

)
J∗
(
x0

(n), λ
0
(n), 0

) ≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, 0)

.

This Lemma serves to bridge the results we established for the idealized RFP policy in the fluid
model to results for the RFP-∆ policy in the model with point process arrivals. More specifically,
the guarantees established in Theorems 1, 2, and 3 now apply to the RFP-∆ policy in the high
volume regime. As an example, one has for instance, using Theorem 2 and Lemma 12 that for the
RFP-∆ policy using α = 1

(4) lim inf
∆→0

lim inf
n→∞

Jπ
∆
RFP

(
x0

(n), λ
0
(n), 0

)
J∗
(
x0

(n), λ
0
(n), 0

) ≥ max
{

0.342, 1
1 +B

− B

1 +B

(
exp(−1/4πB2) + 0.853

)}
.

when λt = λ and σT /λ ≤
√

2πλB. One obtains similar corollaries to Theorem 1 and 3.
In addition, the proof of Lemma 12 reveals that under the conditions of Theorem 4, we have in

fact that almost surely

lim inf
n→∞

Jπ
∆
RFP

(
x0

(n), λ
0
(n), 0

)
J∗
(
x0

(n), λ
0
(n), 0

) ≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

−O (ση(∆) log(1/η(∆)))
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In particular, applying Theorem 2 one then has:

lim inf
n→∞

Jπ
∆
RFP

(
x0

(n), λ
0
(n), 0

)
J∗
(
x0

(n), λ
0
(n), 0

) ≥ max
{

0.342, 1
1 +B

− B

1 +B

(
exp(−1/4πB2) + 0.853

)}
−O (ση(∆) log(1/η(∆))) ,

(5)

an apparent refinement to the guarantee (4). Of course, with the use of the appropriate fluid
model guarantee a number of other performance guarantees are possible; as opposed to listing
these exhaustively, we stop here and reflect on the guarantee (5). The guarantee exposes a number
of factors that influence the design of the RFP policy and influence its performance:

1. Volatility: Volatility influences performance loss in two spots – first, low volatility implies, not
surprisingly, that loss relative to the certainty equivalent policy is small (as clarified by the
first term in the bound of (5) where B shrinks linearly with σT ) and moreover that the loss
due to discrete price reviews is also small (the second term in the bound). Conversely, high
volatility has adverse effects. The component of the loss relative to the certainty equivalent
policy grows, but there is a uniform upper bound to the relative loss (namely, ∼ 34% in this
setting). There is an additional additive loss component due to discrete price reviews and in
order to combat this loss one must increase review frequency.

2. Review Frequency: The fact that the performance loss of the idealized RFP policy is uniformly
bounded in the face of arbitrary volatility can, at its root, be traced to the simple inventory
balancing property demonstrated for that policy. This property, in turn, relied crucially on
the continuous price updates inherent to the idealized policy. We see that when one moves
away from this idealized policy one incurs an additive loss that depends on volatility and the
frequency of re-optimization. This additive loss can be controlled by adjusting re-optimization
frequency appropriately in response to the volatility one anticipates.

7. Numerical Validation
This section is dedicated to a computational exploration of the RFP-∆ policy that we have studied
carefully to this point. We are particularly interested in the policy with the oblivious choice of
α = 1; this is the policy one may implement with absolutely no information about the market
size process and thereby of potentially greatest interest to practitioners. We will be interested in
exploring the following questions:

1. What are ‘difficult’ (or conversely, ‘easy’) regimes for our problem? For example, we find it
natural to conjecture that as the relative volatility grows large we anticipate a degradation
in performance. As another example, as one increases inventory available while leaving the
market size process fixed, the problem at hand becomes easier. We will carefully explore
the performance of the RFP-∆ policy across the scenarios described above in regimes that
straddle reality.

2. Tuning ∆: In our analysis of the price of discretization, we established various qualitative
dependencies of the loss in revenue due to our inability to update prices continuously as a
function or various problem parameters of interest. We are interested in seeing these insights
reflected in our computational experiments.
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3. Naive Re-Optimization: A natural scheme involving re-optimization in the presence of a
forecast believed to be ‘good’ (i.e. knowledge of λt and the belief that φ is identically 0)
involves a re-optimization scheme which in our language would translate to the RFP-∆ scheme
with α set to zero. Since there may indeed be settings where this is reasonable (indeed,
consider the setting where it is in fact the case that φ is zero and λt is correctly known), we
wish to explore whether the RFP-∆ scheme with α = 1 is viable in this setting. We also
explore our robust choice of α designed for a setting where λt is known but one wishes to be
oblivious to the nature of φ.

7.1. Problem Specifications
We examine RFP-∆ policy performance numerically for a class of market-size processes that are
O-U type processes and evolve according to

Λt = λt + σ

∫ t

0
e−β(t−s)dZs.

In the bulk of our experiments we will consider λt to be a constant; the RFP-∆ policy will neither
be aware of this constant nor know the for or specification of φ. We will also explore the case
where λt is not constant in Section 7.4. We consider exponentially distributed customer reservation
prices so that F (p) = 1 − e−p. We will compare ourselves to a super-optimal policy that knows
{Λt : t ≥ 0} at time 0. This yields the (easy to compute) upper bound:

E
[
J∗{Λt}(x0, 0)

]
= E

[
log

(
x0∑
n=0

(∫ T
0 Λtdt
e

)n
1
n!

)]
.

While computationally convenient, this bound can be quite loose in high volatility regimes, and as
such we will also consider another super-optimal bound corresponding to a policy that merely knows
the specification of Λt and can monitor the market size process; we compute the corresponding
optimal policy by numerically solving the associated HJB equation.

The specific choice of x0, λt, β and σ will vary across our experiments, while T will be normalized
to 5. Moreover, we will keep the quantity n∆ fixed and equal to 100 in all of our experiments;
this ensures an ‘apples to apples’ comparison that adjusts for forecast in-accuracies as we vary ∆.
Moving forward, we will often be interested in the following summary statistics about a particular
ensemble of problem instances:

• Coefficient of Variation: We define

CV , lim sup
t→∞

√
var

[
Λt
]

E
[
Λt
] .

In the special case where λt = λ the limit above exists and is σ/λ
√

2β. This is a natural
measure of the relative volatility in the underlying market size process. An example of a ‘high’
CV in practice is typically on the order of 1 to 2; we will go as far as 5 in our experiments.

• Load Factor: We define load factor as the quantity x0/λT . This is a measure of the abundance
of inventory relative to demand. Large values typically signal easier problems, and in reality
it is fair to anticipate load factors close to 1; we will consider load factors as low as 0.3 in our
experiments.

We next set out to investigate each of the issues outlined at the outset of this section.
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7.2. Performance Across Varying Volatility and Load Regimes
Here we seek to understand how the RFP-∆ policy performs across varying problem regimes. In
particular, we take λt = λ = e and β = 1 and vary x0 and σ so as to create various combinations of
relative volatility (the ‘CV’ measure) and load factor. Recall, that we expect problems with high
CV and low load factor (i.e scarce inventory) to be the most challenging. In the experiments below,
we take ∆ = 0.1.

Table 1: A Lower Bound on Relative Optimality (i.e. Jπ
∆
RFP/J∗) across various CV/load factor

combinations. Common parameters across problem instances: λ = e, β = 1, n = 1000, T = 5,∆ = 0.1.
Initial Inventory Load Factor Relative Optimality

x
(n)
0 /n x0/λT CV=0.5 1 2.5 5
4 0.294 0.967 0.943 0.880 0.824
8 0.589 0.995 0.989 0.938 0.879
12 0.883 1.000 0.999 0.972 0.914
16 1.177 1.000 1.000 0.989 0.937
20 1.472 1.000 1.000 0.996 0.958

The results here are very encouraging with performance generally within 95% for parameter
regimes one might encounter in practice. For extremely high CV and low load factor, the perfor-
mance is as bad as 82%; while this performance loss occurs in a regime quite far away from what
one encounters in practice, it is worth examining this issue further. As it turns out, it is not really
the case that the RFP-∆ policy degrades in this setting but rather that the upper bound we use
on the optimal value function is weak. In particular, if one computed a certain tighter but sub-
stantially more difficult to compute super-optimal policy in this setting (by considering the optimal
policy that was allowed to observe Λt causally and knew the distribution over its sample paths)
and compared performance against this policy, one again obtains performance figures essentially
within 95%; see Appendix E.3.

7.3. Selecting A Re-Optimization Frequency
Section 5.1 developed theory around the ‘price’ of discretization, i.e. the revenue loss inherent
in the fact that we permitted a limited number of price updates. To summarize that theory,
we characterized precisely how volatility impacted this revenue loss, all else being the same, and
further how greater amounts of inventory permitted more infrequent discretization, all else being
the same. Here we try to understand these tradeoffs in a more concrete setting. In particular,
we examine performance loss as a function of discretization frequency across various combinations
of load factor (which implicitly translates to varying levels of initial inventory) and CV (which
translates to varying σ). The results are summarized in the following tables:
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Table 2: A Lower Bound on Relative Optimality (i.e. Jπ
∆
RFP/J∗) as a function of review frequency

across varying values of load factor and market size volatility. Common parameters across problem
instances: λ = e, β = 1, T = 5, n∆ = 100.

x0/λT = 0.368 0.736 1.104
CV ∆=0.1 0.5 1 2.5 0.1 0.5 1 2.5 0.1 0.5 1 2.5
0.1 0.999 0.999 0.997 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 0.984 0.980 0.973 0.948 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 0.958 0.948 0.933 0.877 0.998 0.997 0.997 0.995 1.000 1.000 1.000 0.999
2 0.915 0.886 0.847 0.748 0.975 0.972 0.967 0.950 0.997 0.996 0.995 0.993

What Table 2 shows is entirely in line with our theoretical development. What this adds to the
theoretical development is the surprising fact that in absolute terms one needs relatively little re-
optimization to capture most of the gains of the RFP-∆ policy in practical regimes. In particular,
under the majority of circumstances, ten or even five price updates suffices to get within 90% (and
frequently, 95%) of our loose upper bound; in light of Appendix E.3, this is likely to be essentially
optimal given how lose the upper bound is.

7.4. The Hedging Parameter α and the Gain Over Re-optimization Without Fore-
casting

The literature abounds with example of re-optimization schemes without forecast updates; in the
language of the RFP policy this corresponds to setting α = 0. In particular, this is a setting where
the manager has a forecast {λt} which he believes to be perfect. Moreover, he believes and that φ
is identically zero. This section seeks to answer the following questions:

1. How might the RFP-∆ policy with forecast updates but oblivious to any knowledge of {λt}
perform in this setting, i.e. how does the RFP-∆ policy with α = 1 perform here?

2. Moreover, if the manager did indeed have knowledge of {λt} can he hedge between this perfect
forecast and a scenario where his forecast is corrupted by noise that is difficult to model, i.e.
how does our robust choice of α(= 0.594) for scenarios where {λt} is available fare?

We assume here that λt evolves according to11

λ̇t
λ− λt

= p+ q
λt
λ
, λ0 = 0.

We measure relative uncertainty as CV = σ/max0≤t≤T λt
√

2β. We fix problem scale (at n = 50)
and consider three sets of experiments, each corresponding to different levels of CV (0.5, 2.5 and
5). In each set of experiments we consider the performance of the RFP policy for various settings
of α; we are most interested in the setting where α = 1 and α = 0.594 which are respectively
settings appropriate to no knowledge of any specification of the market size process whatsoever,
and knowledge of {λt}. In order to tease apart the effect of discrete reviews and errors in estimating
the current market size, we consider the idealized RFP policy here. The results can be found in
Tables 3. We draw the following principle conclusions:

11This is the so-called Bass model (Bass [1969]) which is widely used to characterize how a new product or service
grows after it is introduced to the market. p and q are termed the coefficient of innovation and imitation respectively,
λ represents potential market size
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1. Except for scenarios where CV is very low, re-optimization without forecast updates can be
improved upon dramatically.

2. The oblivious choice of α = 1, wherein the manager requires absolutely no knowledge of the
market size process performs surprisingly well; notice that this is a scenario outside of the
purview of our analysis since λt is no longer constant.

3. The robust choice of α appears to provide the hedging suggested by the theory providing
intermediate performance; it is closer to the naive scheme when forecasts are exact and closer
to the oblivious scheme when they are not. That said, even at its worst, the oblivious scheme
with α = 1 incurs a marginal loss relative to the best choice of α.

Table 3: Lower Bounds on Relative Optimality (i.e. JπRFP /J∗) across varying CV for different settings
of α in the idealized RFP policy. Common parameters across problem instances: λ = e, β = 1, n =
50, T = 20, p = 0.03, q = 0.5.

Load Factor Naive Re-opt. Oblivious/ Robust Choice
CV x0/

∫ T
0 λtdt α = 0 α = 1 α = 0.594

.5

0.250 0.987 0.971 0.983
0.417 0.991 1.000 1.000
0.583 0.996 1.000 1.000
0.750 0.997 1.000 1.000

2.5

0.250 0.822 0.914 0.893
0.417 0.831 0.939 0.915
0.583 0.850 0.963 0.939
0.750 0.871 0.981 0.961

5

0.250 0.704 0.820 0.783
0.417 0.697 0.825 0.785
0.583 0.696 0.833 0.791
0.750 0.699 0.842 0.799

7.5. Summary of Experimental Conclusions
Our computational experiments provide valuable insights on the questions we set out to answer.
In particular:

1. The performance of the RFP-∆ policy with α set to 1 (so that no market size information
whatsoever is required) is robust across a broad swathe of parameter regimes that control
volatility and the scarcity of inventory. Performance well within 95% can be expected for pa-
rameter regimes of practical interest. Degradation beyond this point can be attributed largely
to the fact that the clairvoyant upper bound we compare ourselves against gets exceedingly
lose

2. The revenue loss due to discrete reviews behaves largely as predicted by the theory; in partic-
ular, high volatility and low inventory levels call for higher review frequencies. Surprisingly,
in absolute terms, this frequency was quite low; ten, and frequently just five price updates
tended to suffice.
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3. The oblivious setting of α = 1 appears to provide excellent performance even in settings where
λt is itself time varying and unknown to the manager. A robust selection of the α parameter
provides added value in settings where λt is time varying and known and volatility is low.

8. Concluding Remarks
The present paper revisited a classical model of dynamic pricing in order to address an important
reality: forecasts are rarely accurate, and retailers frequently witness demand shocks that are ma-
terial to their revenues. The natural cure for such issues is typically the incorporation of stochastic
forecast models into the relevant dynamic pricing problem; such a cure is best avoidable if possible:
such forecast models are difficult to calibrate and their predictive power in practice is question-
able. Fortunately for us, it appears that at least in the context of single product dynamic pricing
one may well be able to deal with the issue of imperfect forecasts and potentially large demand
shocks with a combination of re-optimization and ‘running-average’ type forecasts. In particular,
we presented a simple dynamic pricing policy (the RFP-∆ policy) that can in fact be shown to be
competitive with a clairvoyant policy with a-priori access to information about demand evolution
over the course of the selling season. The policy we presented is easy to implement: in the guise we
focused on primarily (namel, the setting where α = 1), the policy required no initial information
about the market size process whatsoever, nor the ability to monitor it over time. The policy was
simply allowed a finite number of price adjustments that were made on the basis of observed sales.

There are several extensions to the present work possible along the lines of extending the scope
of the market size processes the analysis applies to, and incorporating learning of the reservation
price distribution. By far, the most interesting direction to pursue perhaps is an understanding of
what can be done in the multi-dimensional setting (i.e. the setting in Gallego and van Ryzin [1997]).
Doing so would require that we first understand how one might accomplish the requisite ‘inventory
balancing’ in that setting. Finally, it is worth noting that many retailers employ a pricing strategy
closely related to the RFP policy in practice (especially towards the end of the selling season); what
is typically missing is a careful understanding of what sort of forecast to use. A real-world study
with the present policy would thus not require a big departure from current practice and would be
of great value.

Acknowledgments: Ben Van Roy gave us the idea that using re-optimization in a dynamic pricing
context might obviate the need to know the specification of what we have called the market-size
process here.
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A. Proofs for Section 2
Lemma 1. (Sample Path Modulus of Continuity) Assume that Λt is a generalized moving average
process with φ ∈ C2 and λt ∈ C1. Then, for τ > 0, and any t ∈ [0, T ), we have:

lim sup
τ→0

|Λt+τ − Λt|
σ
√

2τ log(1/τ)
≤ 1 a.s.

Proof. We have

|Λt+τ − Λt| =
∣∣∣∣(λt+τ +

∫ t+τ

0
φ(t+ τ − s)dZs

)+
−
(
λt +

∫ t

0
φ(t− s)dZs

)+∣∣∣∣
≤ |λt+τ − λt|+

∣∣∣∣ ∫ t+τ

t
φ(t+ τ − s)dZs

∣∣∣∣+ ∣∣∣∣ ∫ t

0
(φ(t− s)− φ(t+ τ − s))dZs

∣∣∣∣
= |λt+τ − λt|+

∣∣∣∣σZt+τ − φ(τ)Zt +
∫ t+τ

t
φ
′(t+ τ − s)Zsds

∣∣∣∣
+
∣∣∣∣(φ(0)− φ(τ))Zt +

∫ t

0
(φ′(t− s)− φ′(t+ τ − s))Zsds

∣∣∣∣
≤ |λt+τ − λt|+ σ|Zt+τ − Zt|+ (φ(0)− φ(τ))|Zt|+

∣∣∣∣ ∫ t+τ

t
φ
′(t+ τ − s)Zsds

∣∣∣∣
+(φ(0)− φ(τ))|Zt|+

∣∣∣∣ ∫ t

0
(φ′(t− s)− φ′(t+ τ − s))Zsds

∣∣∣∣
≤ Lλτ + σ sup

t≤s≤t+1−τ
|Zs+τ − Zs|+ Lφ1τB + Lφ1τB + Lφ1τB + Lφ2τBt

= σ sup
t≤s≤t+1−τ

|Zs+τ − Zs|+ (Lλ + 3Lφ1B + Lφ2Bt)τ

where B , sup0≤t≤T Zt. The first inequality follows property that |(A + B)+ − (C + D)+| ≤
|A−C|+ |B−D|, the second equality follows from the integration by parts formulas for stochastic
integrals, the third inequality follows from the assumed differentiability properties of λt and φ(t)
(the constants correspond to bounds on the appropriate differentials) and the definition of B.

Now, we have

lim sup
τ→0

|Λt+τ − Λt|√
2τ log(1/τ)

≤ lim sup
τ→0

σ supt≤s≤t+1−τ |Zs+τ − Zs|+ (Lλ + 3Lφ1B + Lφ2Bt)τ√
2τ log(1/τ)

= lim sup
τ→0

σ supt≤s≤t+1−τ |Zs+τ − Zs|√
2τ log(1/τ)

= σ,

where the first inequality follows from the first part of our argument, and the second inequality is
Levy’s theorem on the modulus of continuity of sample paths of Brownian motion. �
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B. Proofs for Section 4
Lemma 2.

1. g(·) is a non-negative, continuous, non-decreasing, and concave function on R+, with g(0) =
0.

2. yg(1/y) is non-decreasing and concave on R++.

3. g(y)/y is non-increasing on R+.

4. If u, v > 0, then g(u)
g(v) ≥ min(uv , 1), 1

u

∫ u
0 g(v)dv ≤ g(u/2).

Proof.

1. That g(·) is non-negative, continuous and non-decreasing with g(0) = 0 follows by definition.
We show g(·) is a concave function. In the remainder of the proof, we use the fact that
(pF (p))′ |p=p∗ = F (p∗) − p∗f(p∗) = 0. We know that on y ≤ 1/F (p∗), g′(y) = p∗F (p∗).
Now on y ≥ 1/F (p∗), g(y) is increasing in y and we have g′(y) = F

2(g(y))/f(g(y)), which
in turn must be non-increasing following the second part of Assumption 1 that F (p)/f(p) is
non-increasing. Finally,

F
2(g(1/F (p∗)))/f(g(1/F (p∗))) = F

2(p∗)/f(p∗) = p∗F (p∗).

so that g(·) is continuously differentiable on R+ with a non-increasing derivative. Thus, g(·)
is concave on R+.

2. Note that

yg(1/y) =
{
p∗F (p∗) if y ≥ F (p∗);
yF
−1(y) otherwise.

It follows that g(y)′ = 0 on y ≥ F (p∗). On the domain (0, F (p∗)], define the function p(y) =
F
−1(y); p(y) is decreasing in y. On (0, F (p∗)], we have (yg(1/y))′ = p(y)− F (p(y))/f(p(y)),

which is non-increasing in y following the second part of Assumption 1 that F (p)/f(p) is
non-increasing, and the fact that p(y) is decreasing in y. Moreover, on (0, F (p∗)],

(yg(1/y))′ ≥ (yg(1/y))′ |y=F (p∗) = p∗ − F (p∗)/f(p∗) = 0.

It follows that yg(1/y) is non-decreasing and concave on R++.

3. That g(y)/y in non-increasing on R+ follows directly from property (2) above.

4. Since g(·) is a non-decreasing and concave function on R+, this property holds due to Lemma
13.

�
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Lemma 3.

J̃∗(x0, λ0, 0) ≤ E
[
J̃∗{Λt}(x0, 0)

]
≤ J̃∗CE(x0, λ0, 0)

≤ x0g

(∫ T
0 (λt + σt/

√
2π)dt

x0

)
(6)

≤ x0g

(∫ T
0 λtdt

x0

)
+ x0g

(∫ T
0 σtdt

x0
√

2π

)
.(7)

Proof. The first inequality is evident by definition. Now, by definition of the unit revenue function
g(·) and Section 5.2 of Gallego and van Ryzin [1994], we have that

J̃∗CE(x0, λ0, 0) = x0g

(∫ T
0 E[Λt]dt
x0

)

By the concavity of g(·) established in Lemma 2 and Jensen’s inequality, we immediately have:

E
[
J̃∗{Λt}(x0, 0)

]
= E

[
x0g

(∫ T
0 Λtdt
x0

)]
≤ x0g

(∫ T
0 E[Λt]dt
x0

)
= J̃∗CE(x0, λ0, 0)

which is the second inequality. The fact that J̃∗{Λt}(x0, 0) = x0g

(∫ T
0 Λtdt
x0

)
follows from the defini-

tion of g(·) and Section 5.2 in Gallego and van Ryzin [1994].
Now for a Normal random variable X with mean µ and variance σ2, we know that E[X+] ≤

µ + σ/
√

2π. Thus, E[Λt] = E
[
Λ+
t

]
≤ λt + σt/

√
2π. Since, by Lemma 2, g(·) is non-decreasing, it

then follows that

J̃∗CE(x0, λ0, 0) = x0g

(∫ T
0 E[Λt]dt
x0

)
≤ x0g

(∫ T
0 (λt + σt/

√
2π)dt

x0

)
.

The sub-additivity of g(·) from the fourth part of Lemma 2 then yields the final inequality. �

Lemma 5.

J̃πRFP(x0, λ0, 0) ≥ αx0
T

E
[∫ T

0
g

(ΛtT
x0

)
dt

]
+ (1− α) x0∫ T

0 λsds
E
[∫ T

0
λtg

(
Λt
∫ T
0 λsds

x0λt

)
dt

]
.

Proof. We have:

J̃πRFP(x0, λ0, 0) = E
[∫ T

0
πRFP(X̃t,Λt, t)F (πRFP(X̃t,Λt, t))Λtdt

]

= E
[∫ T

0

X̃th(t, α)
Λt(T − t)

g

(
Λt(T − t)
X̃th(t, α)

)
Λtdt

]

≥ x0E
[∫ T

0

(
α

T
+ (1− α) λt∫ T

0 λsds

)
g

(
Λt
/
x0

(
α

T
+ (1− α) λt∫ T

0 λsds

))
dt

]

≥ α
x0
T

E
[∫ T

0
g

(ΛtT
x0

)
dt

]
+ (1− α) x0∫ T

0 λsds
E
[∫ T

0
λtg

(
Λt
∫ T
0 λsds

x0λt

)
dt

]
.
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where the second equality holds by the definition of g(·), the first inequality follows from the
lower bound on X̃t established in Lemma 4 on the inventory balancing property and the property
that zg(1/z) is an increasing function. The final inequality holds because zg(1/z) is a concave
function. �

Lemma 6.
1
T

E
[∫ T

0
g

(ΛtT
x0

)
dt

]
≥ 0.342g

(∫ T
0 σtdt

x0
√

2π

)
.

Proof. We have:

E
[∫ T

0 g
(

ΛtT
x0

)
dt
]

Tg

(∫ T
0 σtdt

x0
√

2π

) =

∫ T
0
∫∞
−∞ g

(
T (λt+y)+

x0

) exp(−y2/2σ2
t )√

2πσ2
t

dydt

Tg

(∫ T
0 σtdt

x0
√

2π

)

≥

∫ T
0
∫∞
−∞ g

(
Ty+

x0

) exp(−y2/2σ2
t )√

2πσ2
t

dydt

Tg

(∫ T
0 σtdt

x0
√

2π

)

≥ 1
T

∫ T

0

∫ ∞
−∞

min
{

1, y+∫ T
0 σtdt/T

√
2π

}
exp

(
−y2/2σ2

t

)√
2πσ2

t

dydt

= 1
T

∫ T

0

[
1− Φ

(
σT,1

σt
√

2π

)
+
∫ σT,1/

√
2π

0

y

σT,1σt
exp

(
−y2/2σ2

t

)
dy

]
dt

≥ 0.342.

The first inequality holds due to Property 1 in Lemma 2, and the positivity of λt. The second
inequality holds due to Property 4 in Lemma 2. The final inequality was derived as a property of
the class of market-size processes we consider in Property 3 in Lemma 14. �

Lemma 7.
1∫ T

0 λsds
E
[∫ T

0
λtg

(
Λt
∫ T
0 λsds

x0λt

)
dt

]
≥ 1

2
g

(∫ T
0 λtdt

x0

)
.
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Proof. We have:

1∫ T
0 λsds

E
[∫ T

0
λtg

(
Λt
∫ T
0 λsds

x0λt

)
dt

]

= 1∫ T
0 λsds

∫ T

0
λt

∫ ∞
−∞

g

(
(λt + y)+

∫ T
0 λsds

x0λt

)
exp(−y2/2σ2

t )√
2πσ2

t

dydt

≥ 1∫ T
0 λsds

∫ T

0
λt

∫ ∞
0

g

(
(λt + y)

∫ T
0 λsds

x0λt

)
exp(−y2/2σ2

t )√
2πσ2

t

dydt

≥ 1∫ T
0 λsds

∫ T

0
λt

∫ ∞
0

g

(
λt
∫ T
0 λsds

x0λt

)
exp(−y2/2σ2

t )√
2πσ2

t

dydt

= 1∫ T
0 λsds

∫ T

0
λtg

(∫ T
0 λsds

x0

)∫ ∞
0

exp(−y2/2σ2
t )√

2πσ2
t

dt

= 1
2
g

(∫ T
0 λtdt

x0

)
.

The first and second inequalities follow respectively from the fact that g(·) is non-negative and
increasing. �

Theorem 1. Consider the RFP policy for an arbitrary α. We then have for all market-size processes
satisfying Assumption 2, and the additional requirement that λt = λ for all t,

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

≥ 0.342.

Proof. By Lemma 3 we have that J̃∗(x0, λ0, 0) ≤ J̃∗CE(x0, λ0, 0). Consequently,

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

.
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Now, we have:

J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

≥
E
[∫ T

0
X̃t

Λt(T−t)g
(

Λt(T−t)
X̃t

)
Λtdt

]
x0g

(
λT+

∫ T
0 σtdt/

√
2π

x0

)

≥
E
[∫ T

0 g
(

ΛtT
x0

)
dt
]

Tg

(
λT+

∫ T
0 σtdt/

√
2π

x0

)

=

∫ T
0
∫∞
−∞ g

(
T (λ+y)+

x0

)
exp(−y2/2σ2

t )√
2πσ2

t

dydt

Tg

(
λT+

∫ T
0 σtdt/

√
2π

x0

)

≥ 1
T

∫ T

0

∫ ∞
−∞

min
{

1, (λ+ y)+

λ+
∫ T
0 σtdt/T

√
2π

}
exp(−y2/2σ2

t )√
2πσ2

t

dydt

= 1
T

∫ T

0

1− Φ
(

σT,1

σt
√

2π

)
+
∫ σT,1/

√
2π

−λ

λ+ y

λ+ σT,1/
√

2π
exp(−y2/2σ2

t )√
2πσ2

t

dy

 dt
≥ 1
T

∫ T

0

1− Φ
(

σT,1

σt
√

2π

)
+
∫ σT,1/

√
2π

0

y

σT,1/
√

2π
exp(−y2/2σ2

t )√
2πσ2

t

dy

 dt
≥ 0.342.

The first equality holds by definition of g(·) and Lemma 3. The second inequality follows by
applying the inventory balancing Lemma (Lemma 4) to obtain a lower bound on X̃t along with
the property that zg(1/z) is an increasing function, which is established in Lemma 2. The third
inequality follows by Property 4 in Lemma 2. The final inequality follows by Property 3 in Lemma
14. �

Theorem 2. Consider a market-size process with no drift and bounded volatility. That is assume
that λt = λ and moreover, σT /λ ≤

√
2πλB for some constant B > 0. Then,

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

≥ max
{

0.342, 1
1 +B

− B

1 +B

(
exp(−1/4πB2) + 0.853

)}
.

35



Proof. We have:

J̃πRFP (x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ 1
T

∫ T

0

1− Φ
(

σT,1

σt
√

2π

)
+
∫ σT,1/

√
2π

−λ

λ+ y

λ+ σT,1/
√

2π
exp(−y2/2σ2

t )√
2πσ2

t

dy

 dt
= 1

T

∫ T

0

[
1− Φ

(
σT,1

σt
√

2π

)
+ λ

λ+ σT,1/
√

2π

(
Φ
(

σT,1

σt
√

2π

)
− Φ

(
− λ
σt

))

+ σt√
2πλ+ σT,1

(
exp(−λ2/2σ2

t )− exp(−σ2
T,1/4πσ2

t )
)]
dt

≥ 1
T

∫ T

0

[
1− Φ

(
σT,1

σt
√

2π

)
+ 1

1 +B

(
Φ
(

σT,1

σt
√

2π

)
− Φ

(
− 1√

2πB

))
− σt√

2πλ+ σT,1
exp(−σ2

T,1/4πσ2
t )
]
dt

= 1
T

∫ T

0

[
1− Φ

(
σT,1

σt
√

2π

)
+ 1

1 +B

(
Φ
(

σT,1

σt
√

2π

)
− Φ

(
− 1√

2πB

))
− σT,1√

2πλ+ σT,1

σt
σT,1

exp(−σ2
T,1/4πσ2

t )
]
dt

≥ 1
T

∫ T

0

[
1− Φ

(
σT,1

σt
√

2π

)
+ 1

1 +B

(
Φ
(

σT,1

σt
√

2π

)
− Φ

(
− 1√

2πB

))
− B

1 +B

σt
σT,1

exp(−σ2
T,1/4πσ2

t )
]
dt

= 1
T

∫ T

0

[
1

1 +B
Φ
( 1√

2πB

)
+ B

1 +B

(
1− Φ

(
σT,1

σt
√

2π

)
− σt
σT,1

exp(−σ2
T,1/4πσ2

t )
)]

dt

≥ 1
1 +B

Φ
( 1√

2πB

)

+ B

1 +B

1
T

∫ T

0

1− Φ


√√√√max

{
T
2t , 1

}
2π

− 1
1− t/3T

exp(−(1− t/3T )2/4π)

 dt
= 1

1 +B
Φ
( 1√

2πB

)

+ B

1 +B

∫ 1

0

1− Φ


√√√√max

{
1
2v , 1

}
2π

− 1
1− v/3

exp(−(1− v/3)2/4π)

 dv
= 1

1 +B
Φ
( 1√

2πB

)
− 0.853 B

1 +B

≥ 1
1 +B

− B

1 +B

(
exp(−1/4πB2) + 0.853

)
.

Here Φ is the C.D.F of a standard normal random variable. The first inequality follows from
the third inequality in the proof of Theorem 1, the second and third inequalities hold because
σt ∨ σT,1 ≤ σT ≤

√
2πλB, the fourth inequality follows Property 2 in Lemma 14, and the last

inequality is derived from the fact that 1− Φ(x) ≤ exp(−x2/2)/x
√

2π for x > 0.
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Combined with the lower bound derived in Theorem 1, we have

J̃πRFP (x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ max
{

0.342, 1
1 +B

− B

1 +B

(
exp(−1/4πB2) + 0.853

)}
.

�

Theorem 3. Consider the RFP policy with α = 0.594. We then have for all market-size processes
satisfying Assumption 2,

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

≥ 0.203.

Proof. By Lemma 3 we have that J̃∗(x0, λ0, 0) ≤ J̃∗CE(x0, λ0, 0). Consequently,

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

≥
αx0
T E

[∫ T
0 g

(
ΛtT
x0

)
dt
]
+ (1− α) x0∫ T

0 λsds
E
[∫ T

0 λtg

(
Λt
∫ T
0 λsds

x0λt

)
dt

]

x0g

(∫ T
0 σtdt

x0
√

2π

)
+ x0g

(∫ T
0 λtdt

x0

)

≥
0.342αx0g

(∫ T
0 σtdt

x0
√

2π

)
+ 1−α

2 x0g

(∫ T
0 λtdt

x0

)

x0g

(∫ T
0 σtdt

x0
√

2π

)
+ x0g

(∫ T
0 λtdt

x0

)

≥ min
{

0.342α, 1− α
2

}
.

The second inequality above is via Lemmas 3 and 5. The third inequality follows from the lower
bounds in Lemmas 6 and 7. Setting α = 0.594 maximizes the lower bound established above,
yielding the first claim in the theorem. �

B.1. Performance Guarantees for Alternate Market Size Processes
While we focused on providing performance guarantees for market size processes satisfying As-
sumption 2, our analysis is easily extended to a number of distinct classes of market size processes.
The analysis schema is essentially identical to what we have seen thus far, except for the final steps
of the analysis where one must specialize to properties of the marginals of the market size process
in question. To illustrate this, we present analogues to Theorem 1 for two market size processes
outside of those specified by Assumption 2. The first class of processes we consider are ‘reflected’
generalized moving average processes, where as opposed to considering Λt = (Λt)+ we consider
Λt = |Λt| where Λt is constructed as before. Here we have:

Theorem 5. Consider the RFP policy with α = 0. Let Λt satisfy the requirements of Assumption
2. Moreover, assume that λt = λ for all t. Then, if Λt = |Λt|, we must have:

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ 0.243.
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Proof. Now, we have:

J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

≥
E
[∫ T

0
X̃t

Λt(T−t)g
(

Λt(T−t)
X̃t

)
Λtdt

]
x0g

(
λT+

∫ T
0

√
2σtdt/

√
π

x0

)

≥
E
[∫ T

0 g
(

ΛtT
x0

)
dt
]

Tg

(
λT+

∫ T
0

√
2σtdt/

√
π

x0

)

=

∫ T
0
∫∞
−∞ g

(
T |λ+y|
x0

)
exp(−y2/2σ2

t )√
2πσ2

t

dydt

Tg

(
λT+

∫ T
0

√
2σtdt/

√
π

x0

)

≥

∫ T
0
∫∞
−∞ g

(
T (λ+y)+

x0

)
exp(−y2/2σ2

t )√
2πσ2

t

dydt

Tg

(
λT+

∫ T
0

√
2σtdt/

√
π

x0

)

≥ 1
T

∫ T

0

∫ ∞
−∞

min
{

1, (λ+ y)+

λ+
∫ T
0
√

2σtdt/T
√
π

}
exp(−y2/2σ2

t )√
2πσ2

t

dydt

= 1
T

∫ T

0

1− Φ
(
σT,1
√

2
σt
√
π

)
+
∫ σT,1

√
2/π

−λ

λ+ y

λ+ σT,1
√

2/π
exp(−y2/2σ2

t )√
2πσ2

t

dy

 dt
≥ 1
T

∫ T

0

1− Φ
(
σT,1
√

2
σt
√
π

)
+
∫ σT,1

√
2/π

0

y

σT,1
√

2/π
exp(−y2/2σ2

t )√
2πσ2

t

dy

 dt
≥ 0.243.

The first equality holds by definition of g(·) and Lemma 3. In addition, we use the fact that for
a Normal random variable X with mean µ and variance σ2, we know that E[|X|] ≤ µ +

√
2σ/
√
π

ao that E[Λt] = E[|Λt|] ≤ λ +
√

2σt/
√
π. The second inequality follows by applying the inventory

balancing Lemma (Lemma 4) to obtain a lower bound on X̃t along with the property that zg(1/z) is
an increasing function, which is established in Lemma 2. The fourth inequality follows by Property
4 in Lemma 2. Finally, by Lemma 3 we have that J̃∗(x0, λ0, 0) ≤ J̃∗CE(x0, λ0, 0) so that

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

,

and the guarantee follows. �

As a second example of an alternate market size process, we consider a market-size process
specified by the Cox-Ingersoll-Ross (CIR) process

dΛt = θ(λ− Λt)dt+ σ
√

ΛtdZt,

where θ, λ, σ > 0. As is customary for the use of this process in applications we consider the regime
where 2θλ > σ2 wherein the process above becomes an example of a strictly positive and ergodic
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affine process. In this model, θ controls the speed of market-size adjustment, λ and σ corresponds
to mean and volatility of the process respectively. The stationary distribution for this process is
Gamma distributed with shape parameter 2θλ/σ2 and scale parameter σ2/2θ. We assume Λ0 is
distributed according to this stationary distribution and define λ = Λ0.

Theorem 6. Consider the RFP policy with α = 0. Then if Λt is driven by the CIR process above,
we have:

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ 0.632.

Proof. Now, we have:

J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

≥
E
[∫ T

0
X̃t

Λt(T−t)g
(

Λt(T−t)
X̃t

)
Λtdt

]
x0g

(
λT
x0

)

≥
E
[∫ T

0 g
(

ΛtT
x0

)
dt
]

Tg

(
λT
x0

)
≥ 1
T

∫ T

0
E[min{Λt

λ
, 1}]dt

= E
[
min{Λ0

λ
, 1}
]

= 1− Γ(a+ 1, a)
Γ(a+ 1)

+ Γ(a, a)
Γ(a)

≥ 0.632.

The second inequality follows by applying the inventory balancing Lemma (Lemma 4) to obtain
a lower bound on X̃t along with the property that zg(1/z) is an increasing function, which is
established in Lemma 2. The third inequality follows by Property 4 in Lemma 2. Γ(·, ·) is an
incomplete Gamma function and is given by Γ(x, y) =

∫∞
y sx−1e−sds, and a , 2θλ/σ2 ≥ 1. By

Lemma 3 we have that J̃∗(x0, λ0, 0) ≤ J̃∗CE(x0, λ0, 0) so that

J̃πRFP(x0, λ0, 0)
J̃∗(x0, λ0, 0)

≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, λ0, 0)

.

and the guarantee follows. �

C. Proofs for Section 5
Lemma 8. For all t ∈ [0, T ), we have

lim
∆→0

X̃∆
t(∆) = X̃t.

Proof. Now for i > 0, we have in the fluid model, that

X̃∆
(i+1)∆ =

(
X̃∆
i∆ − F (π∆

RFP(X̃∆,i∆, i∆))
∫ (i+1)∆

i∆
Λsds

)+

.

39



From the definition of h(s, α), we have that for ε > 0, there exist numbers C(ε), D(ε) < ∞, such
that h(s, α)/(T − s) ≤ C(ε) and | dds(h(s, α)/(T − s))| ≤ D(ε) for all s < T − ε. Now, for any
∆ ≤ s < T − ε, we have:∣∣∣∣∣∣min

{
F (p∗), X̃sh(s, α)

Λs(T − s)

}
Λs −min

F (p∗),
X̃s(∆)h(s(∆), α)
Λ̂FL
s(∆)(T − s(∆))

Λs

∣∣∣∣∣∣
≤
∣∣∣∣∣min

{
F (p∗)Λs,

X̃sh(s, α)
T − s

}
−min

{
F (p∗)Λ̂FL

s(∆),
X̃s(∆)h(s(∆), α)

T − s(∆)

}∣∣∣∣∣
+ min

F (p∗),
X̃s(∆)h(s(∆), α)
Λ̂FL
s(∆)(T − s(∆))

∣∣∣Λs − Λ̂FL
s(∆)

∣∣∣
≤ F (p∗)

∣∣∣Λs − Λ̂FL
s(∆)

∣∣∣+ ∣∣∣∣∣X̃sh(s, α)
T − s

−
X̃s(∆)h(s(∆), α)

T − s(∆)

∣∣∣∣∣+ F (p∗)
∣∣∣Λs − Λ̂FL

s(∆)

∣∣∣
≤ 2(Λmax

s(∆) − Λmin
s(∆)) +

∣∣∣∣∣X̃sh(s, α)
T − s

−
X̃s(∆)h(s, α)

T − s

∣∣∣∣∣+
∣∣∣∣∣X̃s(∆)h(s, α)

T − s
−
X̃s(∆)h(s(∆), α)

T − s(∆)

∣∣∣∣∣
≤ 2(Λmax

s(∆) − Λmin
s(∆)) + (C(ε)B + x0D(ε))∆,

(8)

where B , supt∈[0,T ] Λt. Moreover, we have defined Λmax
s(∆) , maxτ∈[s(∆)−∆,s(∆)+∆] Λτ and similarly

for Λmin
s(∆). The second inequality follows from the fact that |min{A,B} −min{C,D}| ≤ |A−C|+

|B −D|. Now, we have, for i ≥ 1 with (i+ 1)∆ < T − ε,

|X̃∆
(i+1)∆ − X̃(i+1)∆| =

∣∣∣∣∣
(
X̃∆
i∆ −

∫ (i+1)∆

i∆
min

{
F (p∗),

X̃∆
i∆h(i∆, α)

Λ̂FL
i∆ (T − i∆)

}
Λsds

)+

−
(
X̃i∆ −

∫ (i+1)∆

i∆
min

{
F (p∗), X̃sh(s, α)

Λs(T − s)

}
Λsds

)+ ∣∣∣∣∣
≤
∣∣∣∣∣
(
X̃∆
i∆ −

∫ (i+1)∆

i∆
min

{
F (p∗),

X̃∆
i∆h(i∆, α)

Λ̂FL
i∆ (T − i∆)

}
Λsds

)+

−
(
X̃i∆ −

∫ (i+1)∆

i∆
min

{
F (p∗), X̃i∆h(i∆, α)

Λ̂FL
i∆ (T − i∆)

}
Λsds

)+ ∣∣∣∣∣
+
∣∣∣∣∣
∫ (i+1)∆

i∆
min

{
F (p∗), X̃sh(s, α)

Λs(T − s)

}
Λsds

−
∫ (i+1)∆

i∆
min

{
F (p∗), X̃i∆h(i∆, α)

Λ̂FL
i∆ (T − i∆)

}
Λsds

∣∣∣∣∣
≤ |X̃∆

i∆ − X̃i∆|

+
∫ (i+1)∆

i∆

∣∣∣∣∣∣min
{
F (p∗), X̃sh(s, α)

Λs(T − s)

}
−min

F (p∗),
X̃s(∆)h(s(∆), α)
Λ̂FL
s(∆)(T − s(∆))


∣∣∣∣∣∣Λsds

≤ |X̃∆
i∆ − X̃i∆|+ 2(Λmax

s(∆) − Λmin
s(∆))∆ + (C(ε)B + x0D(ε))∆2,

where the first inequality follows from the property that |A+ − (B + C)+| ≤ |A+ −B+|+ |C|, the
second inequality follows from the property that |(X−min{a, bX})+−(Y −min{a, bY })+| ≤ |X−Y |
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for b ≥ 0, and the last inequality follows from (8). Moreover, since trivially |X̃∆
∆−X̃∆| ≤

∫∆
0 Λsds ≤

B∆, we must have for any positive integer i with i∆ < T − ε,

|X̃∆
i∆ − X̃i∆| ≤ 2∆

i−1∑
m=1

(Λmax
m∆ − Λmin

m∆) + (C(ε)B + x0D(ε))∆2(i− 1) +B∆

≤ 2∆
bT/∆c∑
m=1

(Λmax
m∆ − Λmin

m∆) + (C(ε)BT + x0D(ε)T +B)∆.

Hence, for an t < T − ε,

|X̃∆
t(∆) − X̃t| ≤ |X̃∆

t(∆) − X̃t(∆)|+ |X̃t(∆) − X̃t|

≤ 2∆
bT/∆c∑
m=1

(Λmax
m∆ − Λmin

m∆) + (C(ε)BT + x0D(ε)T +B)∆ +B∆

But, since Λt is a continuous function of t and therefore Riemann integrable, the inequality above
immediately yields.

lim
∆→0

X̃t(∆)(∆) = X̃t.

for all t < T − ε. Since our choice of ε > 0 was arbitrary, the result follows. �

Lemma 9.
lim
∆→0

J̃π
∆
RFP(x0, λ0, 0|G0) = J̃πRFP(x0, λ0, 0|G0).

Proof. Consider some 0 < t < T − ε. From Lemmas 4 and 8 it follows that for ∆ sufficiently small
(smaller than ∆(ε), say),X̃∆

t > 0. It consequently follows from the definition of the RFP-∆ policy
that:

π∆
RFP(X̃∆,t, t) = F

−1

min

F (p∗),
X̃∆
t(∆)h(t(∆), α)

Λ̂FL
t(∆)(T − t(∆))




→ F
−1
(

min
{
F (p∗), X̃th(t, α)

Λt(T − t)

})
= πRFP(X̃t, t)

where the limit follows from Lemma 8 and the fact that by construction, Λ̂FL
t(∆) → Λt for t > 0.

We then have:

lim
∆→0

∣∣∣∣∣
∫ T−ε

0
π∆

RFP(X̃∆,t, t)F
(
π∆

RFP(X̃∆,t, t)
)

Λtdt−
∫ T−ε

0
πRFP(X̃t, t)F

(
πRFP(X̃t, t))

)
Λtdt

∣∣∣∣∣
≤ lim

∆→0

∫ T−ε

0

∣∣∣∣∣π∆
RFP(X̃∆,t, t)F

(
π∆

RFP(X̃∆,t, t)
)
−
∫ T−ε

0
πRFP(X̃t, t)F

(
πRFP(X̃t, t))

)∣∣∣∣∣Λtdt
=
∫ T−ε

0
lim
∆→0

∣∣∣∣∣π∆
RFP(X̃∆,t, t)F

(
π∆

RFP(X̃∆,t, t)
)
−
∫ T−ε

0
πRFP(X̃t, t)F

(
πRFP(X̃t, t))

)∣∣∣∣∣Λtdt
= 0
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where the first equality follows from the bounded convergence theorem and the second from the
limit established in the first part of the argument. Now, the above argument suffices to show that

lim inf
∆→0

J̃π
∆
RFP(x0, λ0, 0|G0) ≥ J̃πRFP(x0, λ0, 0|G0)− 2Bp∗F (p∗)ε

and
lim sup

∆→0
J̃π

∆
RFP(x0, λ0, 0|G0) ≤ J̃πRFP(x0, λ0, 0|G0) + 2Bp∗F (p∗)ε

where B , max[0,T ] Λt. Since our choice of ε > 0 was arbitrary, the result follows. �

Theorem 4. (The Price of Discretization) Under the assumptions on the market size process above,
we have almost surely:

lim sup
∆→0

∣∣∣J̃π∆
RFP(x0, λ0, 0|G0)− J̃πRFP(x0, λ0, 0|G0)

∣∣∣
ση(∆) log(1/η(∆))

≤ 4p∗F (p∗)B2T 2

x2
0

Proof. Recall that by the inventory balancing property we have that:

X̃t

T − t
≥ x0

T
.

Using this fact with Corollary 2 allows us to conclude after some algebraic manipulation that for
any t < T that

lim sup
∆→0

1
ση(∆)

∣∣∣∣∣∣
Λ̂FL
t(∆)(T − t(∆))

X̃∆
t(∆)

− Λt(T − t)
X̃t

∣∣∣∣∣∣ ≤ 2T
x0

+ 4BT 2

x2
0(T − t)

Let κ(∆) , 8Tση(∆)/x0. Observe that on t < T − κ(∆), we must have by the balancing Lemma
that X̃t ≥ 8ση(∆), so that for ∆ sufficiently small, Corollary 2 guarantees that X̃∆

t > 0 as well.
Consequently, we have that for ∆ sufficiently small:

|J̃π∆
RFP(x0, λ0, 0)− J̃πRFP(x0, λ0, 0)|

=
∣∣∣∣∣
∫ T

0
π∆

RFP(X̃∆,t, t)F
(
π∆

RFP(X̃∆,t, t)
)

Λtdt−
∫ T

0
πRFP(X̃t, t)F

(
πRFP(X̃t, t)

)
Λtdt

∣∣∣∣∣
=
∣∣∣∣∣
∫ T−κ(∆)

0
π∆

RFP(X̃∆
t(∆), t)F

(
π∆

RFP(X̃∆
t(∆), t)

)
Λtdt−

∫ T−κ(∆)

0
πRFP(X̃t, t)F

(
πRFP(X̃t, t)

)
Λtdt

∣∣∣∣∣
+Bκ(∆)p∗F (p∗)

≤ Bp∗F (p∗)
∫ T−κ(∆)

0

∣∣∣∣∣∣
Λ̂FL
t(∆)(T − t(∆))

X̃∆
t(∆)

− Λt(T − t)
X̃t

∣∣∣∣∣∣ dt+Bκ(∆)p∗F (p∗)

≤ Bp∗F (p∗)
(
ση(∆)

∫ T−κ(∆)

0

(
2T
x0

+ 4BT 2

x2
0(T − t)

)
dt+ κ(∆)

)

≤ Bp∗F (p∗)
(
ση(∆)

(
2T 2

x0
+ 4BT 2 (log T + log(1/κ(∆)))

x2
0

)
+ κ(∆)

)
where the second equality follows from our choice of κ(∆) and the first inequality follows from the
fact that the function g(y)/y has its first derivative bounded by p∗F (p∗) on y ≥ 1/F (p∗). The
result follows upon dividing through by ση(∆) log(1/η(∆)) and taking the limit supremum. �
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D. Proofs for Section 6
Lemma 10. For any given ∆ > 0, we have that the inventory process and the forecast process in
the nth system converge to their fluid analogues. In particular:

1. For any t,
X∆
t,(n)
n
→ X̃∆

t a.s.

2. For any t such that X̃∆
t > 0,

Λ̂t(∆),(n)
n

→ Λ̂FL
t(∆) a.s.

Proof. We denote I , b T∆c. We begin with establishing both claims for times i∆ for i = 0, 1, . . . , I.
We proceed by induction. The claims are trivially true for i = 0 by definition of Λ̂FL

0 . Assume the
claims true for some i < I and consider time (i+ 1)∆. Now, if X̃∆

i∆ = 0, or else if Λ̂(i+1)∆ = 0, we
are done, so let us assume that X̃∆

i∆ > 0 and further that Λ̂(i+1)∆ > 0. It must then be that

λ̂i+1 , min
{
F (p∗),

X̃∆
i∆h(i∆, α)

Λ̂FL
i∆ (T − i∆)

}∫ (i+1)∆

i∆
Λsds > 0.

Moreover, we define for convenience,

λ̂i+1,(n) , min

F (p∗),
X∆
i∆,(n)h(i∆, α)

Λ̂i∆,(n)(T − i∆)


∫ (i+1)∆

i∆
Λsds.

Now, we have that

X∆
(i+1)∆,(n)
n

=

X∆
i∆,(n)
n

− 1
n

n∑
m=1

Y i
m,(n)

+

where Y i
m,(n) are i.i.d. Poisson random variables with parameter λ̂i+1,(n). Now, define the events

Cn = {ω : |λ̂i+1 − λ̂i+1,(n)| ≥ λ̂i+1/2},

and

Bn =
{
ω :

∣∣∣∣∣ 1n
n∑

m=1
Y i
m,(n) − λ̂i+1,(n)

∣∣∣∣∣ ≥ 1
n1/4

}
.

Now, define Ĝi∆ = σ
(
∪n∈NG

(n)
i∆

)
and notice that

P
(
Bn i.o |Ĝi∆

)
≤ 1− I{

∑
n

P(Bn|Ĝı∆)<∞}
≤ 1− I{

∑
n

2 exp(−
√
nλ̂i+1,(n)/2e)<∞}

≤ I{Cn i.o.}
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where the first inequality follows from the first Borel-Cantelli lemma and the second from a Chernoff
bound for the sum of independent poisson random variables. Taking expectations, and using the
fact that by the induction hypothesis, P(Cn i.o) = 0, we have that

P(Bn i.o.) = 0.

In other words, we have shown that almost surely,

lim
n

∣∣∣∣∣ 1n
n∑

m=1
Y i
m,(n) − λ̂i+1,(n)

∣∣∣∣∣ = 0,

so that with the triangle inequality and the induction hypothesis, we must have that

(9) lim
n

∣∣∣∣∣ 1n
n∑

m=1
Y i
m,(n) − λ̂i+1

∣∣∣∣∣ = 0

almost surely. The induction hypothesis then must imply that

1
n
X∆

(i+1)∆,(n) → X̃∆
(i+1)∆.

Now, assuming that X̃∆
(i+1)∆ > 0, we must have by the argument above, and in particular, (9) that

Λ̂(i+1)∆,(n)
n

→
min

{
F (p∗), X̃

∆
i∆h(i∆,α)

Λ̂i∆(T−i∆)

}∫ (i+1)∆
i∆ Λsds

min
{
F (p∗), X̃

∆
i∆h(i∆,α)

Λ̂i∆(T−i∆)

} = Λ̂FL
(i+1)∆.

This establishes the second claim and the first claim for times i∆, i = 0, . . . , I. To establish the
first claim for general t, we appeal to the claim just established for the time t(∆), and repeat the
argument in the induction step above. �

Lemma 11.
lim inf

n

1
n
Jπ

∆
RFP

(
x0

(n), λ
0
(n), 0|G0

)
≥ J̃π∆

RFP
(
x0, λ0, 0|G0

)
a.s.

Proof. Define t̂∆ = inf{t : X̃∆
t > 0}. Then,

lim
n

1
n

E
[∫ t̂∆

0
π∆

RFP

(
X∆,t

(n) , t
)
dN

(n)
t

]

= lim
n

1
n

E
[∫ t̂∆

0
π∆

RFP

(
X∆,t

(n) , t
)
F
(
π∆

RFP

(
X∆,t

(n) , t
))

Λ(n)
t dt

]

= lim
n

1
n

∫ t̂∆

0
E
[
π∆

RFP

(
X∆,t

(n) , t
)
F
(
π∆

RFP

(
X∆,t

(n) , t
))]

Λ(n)
t dt

= 1
n

∫ t̂∆

0
lim
n

E
[
π∆

RFP

(
X∆,t

(n) , t
)
F
(
π∆

RFP

(
X∆,t

(n) , t
))]

Λ(n)
t dt

=
∫ t̂∆

0
π∆

RFP

(
X̃∆,t, t

)
F
(
π∆

RFP

(
X̃∆,t, t

))
Λtdt

= J̃π
∆
RFP

(
x0, λ0, 0|G0

)
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The first equality here follows from the definition of N (n)
t and Theorem II.T8 in Bremaud [1980],

the second equality follows from Fubini’s theorem, the third equality is via the bounded conver-
gence theorem, and the penultimate equality follows from Lemma 10 and the bounded convergence
theorem. �

Corollary 3. For ∆ sufficiently small, we have:

lim inf
n

Jπ
∆
RFP

(
x0

(n), λ
0
(n), 0

)
J̃π

∆
RFP

(
x0

(n), λ
0
(n), 0

) ≥ 1.

Proof. Lemmas 5, 7 and Theorem 1 together establish that for any α we must have under our
assumptions on {Λt} that J̃πRFP(x0, λ0, 0) > 0. Consequently, by Corollary 1, for ∆ sufficiently
small, we must have J̃π∆

RFP(x0, λ0, 0) > 0. But Fatou’s lemma applied to the result of Lemma 11
immediately yields

lim inf
n

1
n
Jπ

∆
RFP

(
x0

(n), λ
0
(n), 0

)
≥ J̃π∆

RFP
(
x0, λ0, 0

)
,

so that dividing by J̃π
∆
RFP

(
x0, λ0, 0

)
on both sides and using the fact that nJ̃π∆

RFP
(
x0, λ0, 0

)
=

J̃π
∆
RFP

(
x0

(n), λ
0
(n), 0

)
yields the result. �

Lemma 12. We have

lim inf
∆→0

lim inf
n→∞

Jπ
∆
RFP

(
x0

(n), λ
0
(n), 0

)
J∗
(
x0

(n), λ
0
(n), 0

) ≥ J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, 0)

.

Proof. We first establish a few preliminary inequalities. For an arbitrary deterministic process
{λt : t ≥ 0}, let us denote by J∗{λt,(n)}

(x0
(n), 0) the value of an optimal policy in a system where

Λt = λt for all t. Now since an optimal policy derived for an arbitrary market-size process, and
restricted to be Ft-progressive, is certainly feasible for this problem, we have J∗{Λt,(n)}(x

0
(n), 0) ≥
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J∗(x0
(n), 0|G0). We then have:

lim inf
∆

lim inf
n

Jπ
∆
RFP(x0

(n), λ
0
(n), 0)

J∗(x0
(n), λ

0
(n), 0)

≥ lim inf
∆

lim inf
n

Jπ
∆
RFP(x0

(n), λ
0
(n), 0)

J̃π
∆
RFP(x0

(n), λ
0
(n), 0)

lim inf
n

J̃π
∆
RFP(x0

(n), λ
0
(n), 0)

J∗(x0
(n), λ

0
(n), 0)


≥ lim inf

∆
lim inf

n

J̃π
∆
RFP(x0

(n), λ
0
(n), 0)

J∗(x0
(n), λ

0
(n), 0)

≥ lim inf
∆

lim inf
n

J̃π
∆
RFP(x0

(n), λ
0
(n), 0)

E
[
J∗{Λt,(n)}(x

0
(n), 0)

]

≥ lim inf
∆

lim inf
n

J̃π
∆
RFP(x0

(n), λ
0
(n), 0)

E
[
J̃∗{Λt,(n)}(x

0
(n), 0)

]
= lim inf

∆

J̃π
∆
RFP(x0, λ0, 0)
J̃∗CE(x0, 0)

= J̃πRFP(x0, λ0, 0)
J̃∗CE(x0, 0)

.

(10)

The first inequality follows from the fact that for non-negative sequences {an}, {bn}, lim infn anbn ≥
lim infn an lim infn bn. The second inequality follows from Corollary 3. The third inequality follows
from our observation that J∗{Λt,(n)}(x

0
(n), 0) ≥ J∗(x0

(n), 0|G0). The fourth inequality follows from the
fact that J∗{Λt,(n)}(x

0
(n), 0) ≤ J̃∗{Λt.(n)}(x

0
(n), 0) which is Theorem 2 in Gallego and van Ryzin [1994].

The final equality is Corollary 1. �

E. Miscellaneous Results and Computations
E.1. Properties of the Market-Size Process
Lemma 13. Let f : R+ → R+ be a non-decreasing, concave function with f(0) = 0. Then for all
0 < y ≤ x,

1 ≤ f(x)
f(y)

≤ x

y
,

and

1
x

∫ x

0
f(t)dt ≤ f

(
x

2

)
.(11)

Proof. By definition, f(x)/f(y) ≥ 1. Moreover, the concavity of f yields f(x) = f(0+ x
y y) ≤

x
y f(y).

Thus, f(x)/x ≤ f(y)/y. Inequality (11) follows by Jensen’s inequality. �

Now, we use Lemma 13 to characterize properties of the volatility of the market-size process,
σ2
t . Defining

σT,1 ,
∫ T

0
σtdt/T and
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σT,2 ,
∫ T

0
σ2
t dt/T.

we have:
Lemma 14.

1. σt is increasing and concave in t.

2. 1− t/3T ≤ σT,1/σt ≤
√
σT,2/σ2

t ≤
√

max {T/2t, 1}.

3. 1
T

∫ T
0

[
1− Φ

(
σT,1
σt
√

2π

)
+
∫ σT,1/√2π
0

y
σT,1σt

exp(−y2/2σ2
t )dy

]
dt ≥ 0.342.

Proof.
1. σ2

t is increasing in t directly implies that σt is increasing in t. Now,

(σ2
t )′′ = 2(σ′t)2 + 2σtσ′′t

so that since σ2
t is concave, σ′′t ≤ 0 and the concavity of σt follows.

2. To establish the first inequality, we see that:

σT,1
σt

=
∫ T
0 σsds

Tσt
= 1
T

∫ T

0

√
σ2
s

σ2
t

ds

≥ 1
T

∫ T

0

√
min

{
s

t
, 1
}
ds(12)

= 1− t

3T
,

where inequality (12) follows by Lemma 13 and the concavity of σ2
t .

That σT,1/σt ≤
√
σT,2/σ2

t is a direct consequence of Jensen’s inequality.

The second part of Lemma 13 yields σT,2 ≤ σ2
T/2, so that the first part of Lemma 13 then

yields:

σT,2
σ2
t

≤
σ2
T/2

σ2
t

≤ max
{
T

2t
, 1
}
.

3. We have:
1
T

∫ T

0

[
1− Φ

(
σT,1

σt
√

2π

)
+
∫ σT,1/

√
2π

0

y

σT,1σt
exp(− y2

2σ2
t

)dy
]
dt

= 1
T

∫ T

0

[
1− Φ

(
σT,1

σt
√

2π

)
+ σt
σT,1

(
1− exp(−(σT,1)2/4πσ2

t )
)]
dt

≥ 1
T

∫ T

0

1− Φ


√√√√max

{
T
2t , 1

}
2π

+ 1√
max

{
T
2t , 1

} (1− exp(−(1− t/3T )2/4π)
) dt

=
∫ 1

0

1− Φ


√√√√max

{
1
2v , 1

}
2π

+ 1√
max

{
1
2v , 1

} (1− exp(−(1− v/3)2/4π)
) dv

= 0.342,
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where the first inequality follows from the previous property (i.e. Lemma 14, Property 2);
the penultimate equality follows by employing the change of variables v = t/T , and the final
equality follows from numerical evaluation of the definite integral in the penultimate line.

�

E.2. Analysis for Example 1 in Section 3
Recall, that our goal is to show that if σ > 0, then

lim sup
n→∞

JπFP(x0
(n), λ

0
(n), 0)

J∗(x0
(n), λ

0
(n), 0)

≤ O((log T )−1),

for the dynamic pricing problem described in Example 1. To show this, we will find it convenient
to use properties of the RFP policy established in Sections 4 and 6, as we will use performance
under this policy as a lower bound to performance under an optimal policy. Now, we have

lim sup
n→∞

JπFP(x0
(n), λ

0
(n), 0)

J∗(x0
(n), λ

0
(n), 0)

≤ lim
n→∞

p∗x0,(n)

JπRFP(x0
(n), λ

0
(n), 0)

≤ lim
n→∞

x0,(n)

J̃πRFP(x0
(n), λ

0
(n), 0)

≤
[
0.342g

(
1 + 2T 3/2σ

3
√

2πx0
− λ2√T
σ
√

2πx0

)]−1

=
[
0.342 log

(
1 + 2T 3/2σ

3
√

2πx0
− λ2√T
σ
√

2πx0

)]−1

= O((log T )−1).

The first inequality follows by the definition of J∗ and also the fact that performance under the fixed
price policy is trivially upper bounded by p∗x0,(n); in the case of our example, recall that p∗ = 1.
The second inequality then follows from Corollary 3 that showed that as n grows, performance in
the stochastic model is at least as good as the performance in the fluid model. We now focus on
the third inequality: Theorem 1 showed that

J̃πRFP(x0
(n), λ

0
(n), 0) ≥ 0.342J̃∗CE(x0

(n), λ
0
(n), 0),

while by the definition of the unit revenue function, g(·), in Section 4.2, we know that

J̃∗CE(x0
(n), λ

0
(n), 0) = x0,(n)g

(∫ T
0 E[Λt]dt
x0

)
.

Since here,
∫ T
0 E[Λt]dt ≥ λT + 2T 3/2σ

3
√

2π −
λ2√T
σ
√

2π and g is non-decreasing from Lemma 2, it follows that

J̃πRFP(x0
(n), λ

0
(n), 0) ≥ 0.342x0,(n)g

(
1 + 2T 3/2σ

3
√

2πx0
− λ2√T
σ
√

2πx0

)
.
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E.3. Computational Experiments Relative to a Tighter Super-Optimal Policy
In our computational experiments, we compared performance of the RFP-∆ policy against a clair-
voyant upper bound that was permitted to observe the entire realization of a sample path of the
market size process at time 0. While this bound was cheap to compute, we observed that in certain
cases performance relative to this upper bound was worse than 10%. We conjectured that this did
not reflect our pricing policies performance per se but rather simply the fact that our upper bound
was loose in settings with high volatility. As such, we compute a tighter upper bound here, namely
the expected revenue under an optimal policy with knowledge of the specification of the market size
process (i.e. a probability distribution over its sample paths) and the ability to monitor the process
and update prices in continuous time. This is obviously still an upper bound on the optimal value
function, but nonetheless tighter than the clairvoyant bound. The results are summarize (for an
OU process) in Tables 4 and 5.

Table 4: Performance Relative to a Tighter Upper Bound. Common parameters across problem
instances: λ = e, β = 1, n = 1000, T = 5, CV = 2.5,∆ = 0.1.

Initial Inventory Load Factor Relative Optimality
x

(n)
0 /n x0/λT JπRFP/J∗ Jπ

∆
RFP/J∗ Jπ

∆
RFP/JUB

4 0.294 0.973 0.962 0.880
8 0.589 0.986 0.978 0.938
12 0.883 0.993 0.989 0.972
16 1.177 0.997 0.996 0.989
20 1.472 1.000 0.999 0.996

Table 5: Performance Relative to a Tighter Upper Bound. Common parameters across problem in-
stances: λ = e, β = 1, n = 1000, T = 5, CV = 5,∆ = 0.1.

Initial Inventory Load Factor Relative Optimality
x

(n)
0 /n x0/λT JπRFP/J∗ Jπ

∆
RFP/J∗ Jπ

∆
RFP/JUB

4 0.294 0.945 0.911 0.824
8 0.589 0.953 0.934 0.879
12 0.883 0.962 0.952 0.914
16 1.177 0.973 0.964 0.937
20 1.472 0.988 0.980 0.958

In the experiments above Jπ∆
RFP/JUB is the quantity reported for the bulk of our experiments

– performance relevant to a clairvoyant upper bound. The quantity Jπ∆
RFP/J∗ reports performance

relative to the tighter upper bounds. Since even this tighter upper bound is potentially loose
(since it re-optimizes continuously, and is allowed to observe the monitor the market size process),
the quantity JπRFP/J∗ report performance of the idealized RFP policy (that is also allowed to
re-optimize continuously and monitor the market size process directly) against the tighter upper
bound. We see that the results bear substantial support to the fact that a large fraction of the
performance losses reported in our computational study are potentially due to the fact that we
compare ourselves against an upper bound that can be fairly loose. This is not surprising given
the amount of information used by the policy implicit in the clairvoyant upper bound.
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