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Connectivity requirements are a common component of forest planning models, with important examples

arising in wildlife habitat protection. In harvest scheduling models, one way of addressing preservation

concerns consists of requiring that large contiguous patches of mature forest are maintained. In the context of

nature reserve design, it is common practice to select connected regions of forest in such a way as to maximize

the number of species and habitats protected. While a number of integer programming formulations have

been proposed for these forest planning problems, most are impractical in that they fail to solve reasonably

sized scheduling instances. We present a new integer programming methodology and test an implementation

of it on five medium-sized forest instances publicly available in the FMOS repository. Our approach allows

us to obtain near-optimal solutions for multiple time-period instances in fewer than four hours.
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1. Introduction

During the last few decades there has been much interest in incorporating environmental and

aesthetic concerns into forest planning models. While there is no consensus on how these concerns

should be fully addressed, a number of management practices have been consistently promoted by

voluntary initiatives and certifications such as the USA 2010-2014 Sustainable Forestry Initiative
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(SFI) (2010) or the Forest Stewardship Council (FSC) (2006). Three very important management

practices with which we are concerned in this paper are as follows:

• Maximum clear-cut size constraints. Large clear-cut areas are unaesthetic, promote erosion

and may have a negative impact on the wildlife living in surrounding areas. To counter this,

maximum clear-cut size constraints dictate a maximum opening size of contiguous harvested areas.

For example, the SFI recommends a maximum average area limit of 50 hectare. This type of norm

is a legal requirement in many countries (for example, Sweden, 20 ha.) and the United States (for

example, Oregon, 48 ha., and Maine, 101 ha.).

• Conservation of Old-Growth-Forests. Wildlife protection has been mainly ensured by the exis-

tence of reserves. Nevertheless, the importance of managed forests as a complement to nature

reserves has been widely recognized as a means to protect wildlife and biodiversity (Aldrich et al.

2004). While there is a variety of biodiverse habitats in forests, many species of animals concen-

trate in old-growth forest habitats, which are in short supply due to resource exploitation. Thus,

it is common to require that large contiguous patches of mature forest (typically over 120 or 180

years old) be preserved. Rebain and McDill (2003a) review different sources on why small habitats

may not accommodate wildlife species. Some reasons include insufficient territory for mating and

breeding, lack of food, and increased predation and brood parasitism. Recent studies highlighting

the global importance of old-growth forests as a carbon sink have sparked renewed interest in their

conservation (Keith et al. 2009, Luyssaert et al. 2008). Protecting old-growth patches is also a

way of mitigating the negative effects of maximum clear-cut size constraints (Barrett et al. 1998,

Gustafson and Crow 1998).

• Natural reserve site selection. This consists of designing one or several contiguous sites for a

natural reserve (wildlife refuge, national park, etc.) in such a way as to protect a specific list of

species and/or preserve certain habitat types. Both the SFI and FSC standards are very specific

in the need to have protected areas for threatened and endangered species. However, there is much

debate on how reserves should be designed. For example, there are questions about the need for
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wildlife corridors connecting different sites (Earn et al. 2000) and whether a few large sites are

preferable to many smaller sites (Etienne and Heesterbeek 2000).

These three management practices have a very important feature in common: they all require

that stands selected for harvesting or protection comply with some form of structural connectivity

(or contiguity of stands). In this article, we study the problem of modeling structural connectivity

(henceforth, connectivity, for short) in integer programming (IP) models. Our aim is not to advocate

any particular way of addressing environmental concerns, but rather, to provide a more unified

computational methodology capable of imposing connectivity in instances with over 1,000 stands

and for different environmental constraints.

A number of authors have studied IP approaches for problems which involve the management

practices mentioned above.

The first attempts to incorporate maximum clear-cut size constraints are due to Thompson et al.

(1973). Murray (1999) formalizes this problem in terms of basic stands or management units by

introducing the Area Restriction Model (ARM). Goycoolea et al. (2005), McDill et al. (2002) and

Constantino et al. (2008) propose different integer programming formulations for the ARM. Vielma

et al. (2007) and Tóth (2005) introduce computational improvements for these formulations and

Goycoolea et al. (2009) present a survey with computational results and modeling extensions. An

important feature is that all of these models (with the exception of that found in Constantino

et al. (2008)) address connectivity by explicitly enumerating all possible combinations of contiguous

subsets satisfying certain properties. That these formulations work well in practice is due to the

fact that maximum clear-cut size constraints are typically three to four times the size of an average

stand in the instances considered. Hence, the number of potential clear-cut regions is not too large.

Caro et al. (2003) propose an extension of the ARM model that considers old-growth patches

with enough area to be a wildlife habitat. Though they introduce an IP formulation, they use Tabu

search to obtain feasible solutions for the model. Rebain and McDill (2003b) consider a similar

model and propose solving it with integer programming. They use decision variables for every

possible old-growth patch that has an area which exceeds a certain minimum requirement, and is
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minimal in the sense that if a stand is removed from the patch, then it falls below the required

area. This approach is illustrated with an instance containing 50 stands and three periods. Martins

et al. (2005) use column generation to address the large number of variables in this formulation,

solving atemporal (single-time period) instances with up to 400 stands.

The first attempts to quantitatively model the natural reserve selection problem date back

to Kirpatric (1983). See Williams et al. (2005) for a comprehensive survey of articles that have

followed. The problem of connecting dispersed reserves has also been considered. Sessions (1992)

formulates this problem as a Steiner network problem and proposes a heuristic based on shortest

paths. Williams (1998) uses an IP formulation with edge variables and flow conservation constraints

to connect fixed reserves.

A number of articles study the problem of connectivity while also considering the shape of the

natural reserve or old-growth patch. Tóth et al. (2006) use a two-objective approach to find a

harvest schedule maximizing both the profit and the area of standing old-growth forest. Their

model is based on the formulation of Rebain and McDill (2003b). This work is extended to minimize

the perimeter of standing old-growth forest in Tóth and McDill (2008). They present results for

a 50 stand data set. Öhman and Lämas (2005), and Öhman and Wikström (2008) also consider

two-objective models. In the first work, the Shape Index (deviation from a circle) is heuristically

minimized with simulated annealing, and in the latter, the perimeter is minimized as in Tóth and

McDill (2008), but without requiring connectivity of old-growth forest. Öhman (2000) considers

the creation of contiguous patches of old-growth forest with a large core area (area of a stand that is

surrounded only by old-growth forest, wetlands, impediments, or lakes). Önal and Briers present a

formulation for promoting compactness (2002) and for minimizing perimeter (2003). Contiguity is

not guaranteed in these models. However, these same authors undertake the additional requirement

of connectivity by using a characterization of trees in graphs in Önal and Briers (2006), performing

computational experiments on a data set with 391 stands. Williams and ReVelle (1998) present an

IP formulation that promotes, but does not guarantee, connectivity. Cerdeira et al. (2005) proposes

a model that is specific to set covering models with connectivity constraints and applies it to a
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Figure 1 A forest (left) modeled as an undirected graph G (right).
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reserve selection problem with 496 stands. Dilkina and Gomes (2010) compare the effectiveness of

solving compact formulations directly versus using cutting plane approaches (on edge-variables) for

large formulations. Connectivity in reserve selection is also modeled using network flow techniques

in Dilkina and Gomes (2010) and Shirabe (2005). As part of their work, Williams et al. (2005)

provide a rich discussion on different types of connectivity and approaches used to model them.

Finally, we note that connectivity constraints are important for many other spatial optimization

problems such as land acquisition (Williams 2002), political districting (Garfinkel and Nemhauser

1970) and facility location (ReVelle and Swain 1970).

Our Contribution

A forest can be represented by an undirected graph G= (V,E), where the vertices V correspond

to stands, and the edges E correspond to pairs of adjacent stands (see Figure 1).

In this article, we describe a new integer programming framework for modeling connectivity in

graphs that is well suited for the forestry applications described above because:

(a) It only uses vertex variables.

(b) It can model the requirement of one or multiple connected sub-graphs.

(c) It can model the containment of specific stands in the connected sub-graphs.

In particular, with respect to (a), we note that most existing forest planning models only use

vertex-based (stand-based) decision variables. To our knowledge, with the exception of Cerdeira

et al. (2005) and Fügenschuh and Fügenschuh (2008), existing integer programming formulations

for connectivity additionally use graph edge variables, that result in significantly larger problems.
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In addition to describing a model for imposing vertex (stand) connectivity, we describe a cutting-

plane approach for implementing the model in practice, a heuristic for speeding up the cutting-

plane algorithm, extensions for addressing different connectivity requirements, and techniques for

strengthening the resulting formulations. To illustrate our approach, we focus on the specific prob-

lem in which we would like to solve the ARM subject to additional old-growth forest conservation

constraints. However, it is easy to see that the approach extends to the other applications previ-

ously discussed. As we will see in the computational results section, our approach is able to handle

instances with more than one thousand stands and multiple time periods. This is a considerable

improvement on the results of Rebain and McDill (2003a) and Martins et al. (2005), who solve

similar problems with 50 and 400 stands, 3 and 1 time periods, respectively, as well as on those

observed in other forestry applications in which connectivity is considered. Moreover, we find that

the formulations we propose enjoy very tight linear programming relaxation gaps in practice, and

that for some types of connectivity, the corresponding models are easier to solve. This makes our

proposed approach not only useful for forest planning applications, but also, as a tool by which to

evaluate the performance of heuristics. All of our tests are performed on publicly available data

sets.

2. An Example: Harvest scheduling model and old-growth forest

To motivate the need for connectivity constraints and illustrate the applicability of our proposed

approach, we consider a harvest scheduling problem with both maximum clear-cut constraints and

old-growth conservation requirements.

The objective of this problem is to schedule the harvesting of forest stands to maximize profits,

while preventing large clear-cut areas, providing a steady timber flow, maintaining a minimum

average ending age of the forest and a connected (contiguous) region of old-growth forest (old-

growth patch). With the exception of the connectivity requirements on the old-growth forest, all

of these constraints can be modeled using IP in such a way that large instances can be solved

(Goycoolea et al. 2009). We now describe one such model that utilizes a formulation of the clear-cut

requirements that was introduced in McDill et al. (2002).
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To describe the model, we use the notation and parameters given in Table 1.

V The set of forest stands
T = {1, . . . ,N} The planning horizon of time periods in which each stand can be harvested

at most once
Yt Number of years in period t
Kt =

∑
s=1,...,t Ys Number of years from the beginning of period one up to the end of

period t
av Area of stand v
αvt Volume of timber obtained, if stand v is harvested in period t
bv Age of trees in stand v, at the beginning of period 1
pvt The net present value of the profit of harvesting stand v in period t
H Minimum average age of the forest at the end of the planning horizon
Amax Maximum clear-cut area
Λ+ Collection of contiguous groups of stands whose combined areas exceed Amax

and are minimal for this property under inclusion. That is, a set of stands C
is in Λ+ if (a) The stands in C define a contiguous region of the forest,
(b) the total area of the stands in C is strictly greater than Amax and
(c) if we remove any stand from set C, we obtain a set of stands not satisfying
property (a) or (b).

Amin Minimum area of the old-growth patch
Oage Minimum age for a stand in the old-growth patch
L Minimum fraction in which the volume of timber harvested in two consecutive

periods can change
U Maximum fraction in which the volume of timber harvested in two consecutive

periods can change
Table 1 List of all the parameters of the model.

Note the following observations regarding Table 1:

• We consider two stands to be adjacent if they have a common edge boundary (reflecting the

concept of structural connectivity or contiguity).

• We assume that the management actions (harvesting) occur at the end of a time period.

• The sets in Λ+ are also called minimal infeasible clusters (Goycoolea et al. 2009) or paths

(McDill et al. 2002).

• We assume Oage >KN and, hence, after a stand is harvested, it cannot belong to the old-growth

patch in subsequent periods.

The formulation contains two sets of binary variables:

• yvt: Harvesting variable. yvt = 1 if stand v is scheduled for harvesting on period t and yvt = 0
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otherwise.

• zvt: Patch variable. zvt = 1 if stand v belongs to the old-growth patch on period t and zvt = 0

otherwise.

and is given by

max
∑

v∈V,t∈T

pvtyvt (1a)

s.t. zvq +

q∑
t=1

yvt ≤ 1, ∀v ∈ V, q ∈ T (1b)∑
v∈V

avzvt ≥Amin ∀t∈ T (1c)

zvt = 0, ∀v such that bv +Kt <Oage, ∀t∈ T (1d)∑
v∈C

yvt ≤ |C|− 1, ∀C ∈Λ+,∀t∈ T (1e)∑
v∈V

αvtyvt ≥ (1−L)
∑
v∈V

αv,t−1yv,t−1, ∀t∈ T \ {1} (1f)∑
v∈V

αvtyvt ≤ (1 +U)
∑
v∈V

αv,t−1yv,t−1, ∀t∈ T \ {1} (1g)∑
v∈V

av

(
bv +KN −

∑
t∈T

(bv +Kt)yvt

)
≥
∑
v∈V

avH (1h)

yvt ∈ {0,1} ∀v ∈ V,∀t∈ T (1i)

zvt ∈ {0,1} ∀v ∈ V,∀t∈ T (1j)

For each t the set of stands Zt = {v : zvt = 1} is connected. (1k)

Objective (1a) maximizes the net present value of the schedule’s profit. Constraints (1b) ensure

that each stand unit is harvested at most once during the planning horizon and that a stand can

be in the old-growth patch at the end of a period only if it has not been previously harvested.

Constraints (1c) impose that the total area set aside as a part of the old-growth patch should

exceed Amin. Constraints (1d) impose that in order for a stand to be considered an old-growth

stand in time period t, its age in time t should be greater than or equal to Oage. Constraints

(1e) are the so-called minimal infeasible or path constraints that enforce the maximum clear-cut

requirements. In fact, constraints (1e) ensure that not all stands in a contiguous set C exceeding the

maximum area constraint can be selected for harvesting. Constraints (1f) and (1g) are even volume
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flow requirements, stating that the volume of timber harvested in period t cannot be a fraction U

above or a fraction L below the volumes of timber in period t− 1. Constraint (1h) requires that

the average age of the forest at the end of the harvesting horizon is at least H years. Constraints

(1i) and (1j) enforce integrality, and constraints (1k) enforce connectivity of the old-growth patch.

With the exception of (1k), all constraints of (1) are linear inequalities or integrality require-

ments. Hence, to transform model (1) to an IP formulation, we only need to replace (1k) by an

appropriate IP formulation of connectivity. We will study such a formulation in Section 3. However,

before that, we now illustrate why this connectivity constraint is needed for old-growth patches.

To achieve this, we study the solutions of IP formulation (1a)–(1j) obtained by removing the con-

nectivity requirements over the patch. We solve this formulation over three instances (El Dorado,

Shulkell, and FLG9A) obtained from the repository of forestry instances of the Forest Management

Optimization Site (FMOS) (2008). For all instances, we consider a three-period planning horizon.

A detailed description of these instances is given in Section 4. For each instance, Table 2 presents

the number of contiguous patches of old-growth forest (Patches) and the area of the largest of

them (Largest), measured as a percentage of the minimum required area Amin, in the best feasible

solution found. Figure 2 shows in black the stands selected to be part of the patch in the third

period in a solution for the FLG9A forest.

Table 2 Number of connected patches obtained in FLG9A when not imposing connectivity. The entries in

column “Largest Patch Size” are the size of the largest patch obtained, written as a percentage of the minimum

required for old-growth forest.

Number of Patches Largest Patch Size(%)
El Dorado 70 17.6
FLG9A 57 5.8
Shulkell 10 25

We observe that without explicitly enforcing connectivity, we obtain solutions that are highly

fragmented in terms of the selected old-growth forest. For example, as shown in Table 2, the old-

growth stands selected in the FLG9A forest instance are divided into 57 disconnected pieces, each

having an area of no more than 5.8% of the total requirement.
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Figure 2 Old-growth area for FLG9A in time period 3 when not imposing connectivity. Stands in black are the

ones selected for the old-growth patch. For simplicity stands that are harvested in some period are

shown in white and nonharvested stands in gray.

3. Modeling Connectivity with Integer Programming

In this section we study how to enforce connectivity constraints (1k). We begin by describing

different types of connectivity requirements that may be considered in forest planning models. We

then formally describe how these connectivity requirements can be enforced in integer programming

models.

Formally, a patch is a set of contiguous stands in the forest sharing some uniform characteristic,

(e.g., old growth stands). A set of contiguous stands, or a connected set of stands, is such that it

is possible to travel between any two stands in the set through a path also fully contained in the

set. In most forest planning models, decisions are made over time. In this context, if we are to

impose connectivity, it is important to specify whether or not the patch (or, more precisely, the

set of stands that form the patch) is allowed to change over time. If not, we say that the patch

is statically connected. Otherwise, we say that it is dynamically connected. In the latter case, we

assume that if a patch changes (e.g., stands are added, substracted or swapped) from one period

to another, both the old and new patch must be connected. In some cases, it may be desirable to

impose some limits on how much dynamically connected patches are allowed to change over time.
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For example, it may be appropriate to require that from one time period to the next, the patch

retain at least some specific number of stands. We call this a temporal connectivity requirement.

Rooted connectivity occurs when some predetermined set of stands is required to belong to a

patch. For example, we may want an old-growth patch to contain some riparian zones. To make a

distinction, we refer to unrooted connectivity if no specific stands are required to be in the patch.

It is often the case that we wish to impose some limit on the size of a patch. For example, we

may want to impose a maximum area if the patch is to be a clear-cut zone, or a minimum area if

the patch is to be an old-growth patch. We refer to these as constrained connectivity requirements.

In some applications with constrained connectivity constraints in which there is a total minimum

area requirement, we may allow the existence of either a single large contiguous patch, or instead,

several small patches, as long as each of these small patches meets some smaller minimum area

condition. We refer to this type of flexible connectivity constraint (where the model is allowed to

decide if one or several patches will be defined) as a multi-patch connectivity requirement. Examples

of this type of connectivity are found in Caro et al. (2003) and Rebain and McDill (2003a) in the

context of old-growth patch modeling. We refer to the situation in which exactly one connected

patch is required as single-patch connectivity.

3.1. Background: Connectivity, Graphs and Integer Programming

In this section, we describe how each of the different connectivity requirements described in the

previous section can be modeled with integer programming. We begin by introducing some notation.

We next review the literature on graph connectivity and integer programming. Finally, we introduce

new formulations for modeling connectivity.

Let G= (V,E) be an undirected graph. Consider U ⊆ V . We define G[U ] to be the graph on U

whose edges are precisely the edges of G having both endpoints in U . We say that G is connected if

any two of its vertices are linked by a path in G. We say U ⊆ V is connected if G[U ] is connected. A

set U ⊆ V is a connected component of G if it is maximally connected (i.e., U ∪{v} is disconnected

for all v ∈ V \U).
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There are a number of integer programming formulations for modeling connectivity in graphs.

Most formulations use variables associated with the edges and are based on the Steiner-Tree

Problem, and are concerned with static, unrooted, single-patch-connectivity. For a comprehensive

survey of polyhedral and computational aspects of Steiner-Tree problems and their formulations,

see Magnanti and Wolsey (1995). An example of such approaches applied to forest planning prob-

lems is Önal and Briers (2006). Formulations for the Node Weighted (or Prize Collecting) Steiner

Tree Problem (Segev 1987) are similar, but consider variables for each node and each edge in

the graph. Recent studies of Prize Collecting Steiner Tree Problem include Cordone and Trubian

(2006), da Cunha et al. (2009), Ljubic et al. (2006), Lucena and Resende (2004). Maculan et al.

(2003) and Shirabe (2005) propose compact formulations that use edge and vertex variables to

impose connectivity through network flow conditions. Shirabe (2005) uses this type of formulation

to solve a spatial unit allocation problem with 179 nodes. Dilkina and Gomes (2010) compare

the use of compact network-flow based formulations to Steiner-Tree Problem (edge) formulations.

Williams (2002) presents a compact formulation specialized for planar graphs, solving a 100 node

instance. The use of block variables, (e.g., the use of one variable for each possible connected

component) was considered by Martins et al. (2005) and Rebain and McDill (2003b) in the con-

text of forest planning. However, the huge number variables is a serious handicap of such models.

Using a column-generation approach, Martins et al. (2005) side-step this difficulty and manage to

solve single-period instances with 400 stands. Cerdeira et al. (2005) exploit the special structure

of connectivity-constrained set-covering problems to devise a specialized formulation for nature-

reserve problems. Martin (1991) adapts a spanning tree characterization to impose connectivity

that is equivalent to the Prize-Collecting Steiner Tree Formulation Magnanti and Wolsey (1995).

The paper of Fügenschuh and Fügenschuh (2008) is unique in proposing a connectivity formulation

with variables associated with graph nodes and constraints associated with node-cut sets. Because

the focus of this last paper is on sheet metal design, modelling connectivity is not explored in

depth. Instead, the authors focus on addressing other difficult non-linear constraints, managing to

solve instances with up to 30 nodes.
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Figure 3 A uv-node cut S. Every path in G between u and v intersects S.
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In what follows, we propose several new integer programming formulations for modeling node-

connectivity. All of the models described require defining only a single variable for each node in

the graph, and can easily be solved with a cut-generation approach. We find that defining variables

for nodes, rather than for arcs, is most convenient for forest planning problems because the most

important decision unit in such problems is the node (or stand). However, it should be noted that

the approaches described next can also be used in the more general context of Node Weighted

Steiner Tree Problems, as described above.

The integer programming techniques we describe are mainly based on the notion of node-cut

sets, which we define next. Given nodes u, v ∈ V that are non-adjacent ({uv} /∈E), a set of nodes

S ⊆ V \ {u, v} is a node-cut set separating u and v (or simply a uv-node cut) if there is no path

between u and v in G[V \S]. It is well known that given U ⊆ V and a non-adjacent pair of nodes

u, v ∈ U , then there exists a path in G(U) between u and v if and only if all uv-node cuts S are

such that S ∩U 6= ∅. Thus, connectivity of a graph can be characterized by its node-cut sets (see

Figure 3).

Before describing the formulations, we present the following notation. We refer to Figure 4 to

exemplify these definitions.

For {uv} /∈E define

Γ(u, v) = {S ⊆ V \ {u, v} : S is a minimal uv-node cut}.

In the graph in Figure 4, the set {3,4} belongs to Γ(2,5), but the set {1,3,4} does not.

Consider W > 0. For each node v ∈ V , let wv ≥ 0 be an associated weight. Define, for each v ∈ V

the set
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Figure 4 An example forest. The number in parenthesis, next to each vertex’s label, represents a weight.
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C(v,W ) = {C ⊆ V : v ∈C,
∑
u∈C

wu <W}.

That is, C(v,W ) corresponds to the set of all node-sets containing v but having total weight less

than W . In Figure 4, the set {4,5} belongs to C(5,3) (it has a total weight of 2.5), but the set

{3,4,5} does not (it has a weight of 4.5).

For each set of nodes C ⊂ V , define the neighborhood of C as follows,

∂C = {u∈ V \C : ∃v ∈C,{u, v} ∈E}.

That is, ∂C corresponds to those vertices not in C that are adjacent to vertices in C. In Figure 4, for

the set C := {4,5} we have ∂C = {2,3}. Note that if C ∈ C(v,W ), ∂C is a node-cut set separating

v and each node not in C ∪ ∂C.

Finally, for each node v ∈ V define a 0-1 variable zv indicating if we are to select node v or not.

Let Z represent the set of selected nodes. That is,

Z = {v ∈ V : zv = 1}.

In what follows, we are interested in systems of inequalities on the z variables that impose con-

nectivity of set Z. In some cases, we consider the additional inequalities that are valid when, in

addition to imposing that Z be connected, we impose the condition that Z meets a minimum

weight requirement. That is, ∑
v∈V

wvzv ≥W. (2)

• Modeling connectivity. To impose that Z be connected, the following inequalities suffice,

∑
w∈S

zw ≥ zu + zv − 1, ∀S ∈ Γ(u, v),∀u, v ∈ V,{u, v} /∈E. (3)
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Observe that if u and v are both selected (zu = zv = 1), the above constraints force a node of each

minimal uv-node cut S to be selected as well.

For the case in which the graph G is disconnected, some inequalities (3) assume the form zu+zv ≤

1 when u and v belong to different connected components of G, since the empty set is a node cut

separating u and v. If the graph G comprises several connected components, say V1, . . . , Vq, we may

consider a stronger formulation (that is, one with a tighter linear programming relaxation bound)

using the so-called clique inequalities

∑
p=1,...,q

zup ≤ 1, for every choice of u1 ∈ V1, . . . , uq ∈ Vq.

An equivalent way to strengthen the formulation is to consider additional binary variables ηp = 1

if the selected connected set is in component Vp and ηp = 0 otherwise, and the constraints

zu ≤ ηp, ∀u∈ Vp, p= 1, . . . , q (4)∑
p=1,...,q

ηp ≤ 1. (5)

The formulation can be further strengthened (in terms of the linear programming relaxation

bound) when constraints (2) are imposed in addition to the connectivity requirements. This can

be done using ring inequalities, as described next. The main idea is as follows: any set of nodes C

with weight less than W is too small to be a feasible set, so at least one of its neighbor nodes must

be selected. Formally, given W and a vertex v ∈ V , the unrooted ring inequalities are as follows:

∑
u∈∂C

zu ≥ zv, ∀C ∈ C(v,W ). (6)

These inequalities were first proposed by Martins et al. (1999) in the context of multi-patch

models (explained next).

Suppose now that a specific node r ∈ V (e.g., a root) is required to belong to the set of nodes Z

(rooted connectivity). The simplest way to model this requirement is by imposing zr = 1. However,

in this case, unrooted cut inequalities (3) can be replaced by the following set of inequalities.
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∑
u∈S

zu ≥ zv, ∀S ∈ Γ(r, v),∀v ∈ V,{r, v} /∈E. (7)

Observe that if v is selected (zv = 1), the above constraints force a node of each minimal rv-node

cut S to be selected as well. This is sufficient to impose that every pair of nodes u and v in Z are

linked to each other in Z. Indeed, if there is a path between r and u and a path between r and v,

then by joining the two paths we obtain a path between u and v. Rooted inequalities are stronger

(in terms of the linear programming bound), as commonly noted in the literature on Steiner Tree

Problems (Magnanti and Wolsey 1995).

If there is more than one root, we simply need to write constraints such as (7) for each pair

{r, v} /∈E, where r is a root and v is not a root. If r1, r2 are two non adjacent roots, we can add

the following constraint to strengthen the formulation.

∑
u∈S

zu ≥ 1, ∀S ∈ Γ(r1, r2). (8)

This constaint enforces that the two roots must be connected. As in the unrooted case, if constraints

(2) are imposed, the system can be further strengthened (in terms of the linear programming

bound) with the following rooted ring-inequalities:

∑
w∈∂C

zw ≥ 1, ∀C ∈ C(r,W ). (9)

Again, as in constraints (6), these constraints enforce that small disconnected sets are not allowed.

• Multi-Patch connectivity. In many applications, it is less relevant if Z is disconnected, as

long as each connected component of Z meets a smaller minimum size or weight requirement. We

call this weaker connectivity requirement a multi-patch connectivity requirement. Let Wpatch be the

minimum weight required by each connected component in Z. Note that this weight requirement is

different from the weight requirement imposed by (2) in that the former is for each connected set

in Z, as opposed to for all the nodes in Z. We can meet the multi-patch connectivity requirement

in Z by not imposing constraints (3) and (8) and imposing the unrooted ring inequalities

∑
u∈∂C

zu ≥ zv, ∀C ∈ C(v,Wpatch). (10)
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Suppose there are k roots r1, . . . , rk which must belong to the selected patches. In this case, we must

proceed as in the unrooted case, defining constraints (10) for each node, and imposing that zr = 1

for each root r. The presence of k roots does not guarantee the existence of k distinct patches.

Rather, it guarantees that the optimal solution will contain an old growth area of at least Amin,

that is divided into at most k distinct patches.

• Dynamic connectivity. So far we have only considered static patches. That is, we only

consider patches that do not change with time. In many forest planning models, as in the one

presented in Section 2, it may be possible, or even desired, to relax this condition. For example,

in the context of forest harvest scheduling, it is possible to let younger old-growth-stands replace

older old-growth-stands within old-growth patches as the forest ages. In order to model this, it is

necessary to consider time-dependent variables zvt for each v ∈ V and t∈ T , so that zvt = 1 if and

only if stand v is in the patch in time period t.

When using an unrooted model, use constraints

∑
w∈S

zwt ≥ zut + zvt− 1, ∀S ∈ Γ(u, v),∀u, v ∈ V,{u, v} /∈E,∀t∈ T (11)

For the case of a rooted model, use

∑
u∈S

zut ≥ zvt, ∀S ∈ Γ(r, v),∀v ∈ V,{r, v} /∈E, t∈ T (12)

Constraints (11) and (12) impose exactly the same cut condition enforced by constraints (3) and

(7), but do so in each time period.

In some situations, we may want to enforce temporal connectivity. Let us assume that, besides

connectivity in each period, a minimum area of the patch, say Atemp, must be preserved in the

patch from period t to period t+ 1. Connectivity in each period is expressed by constraints (11)

and (12). Here, we describe two ways in which to enforce temporal connectivity. The first one uses

additional binary variables, while the second one uses only variables zvt, but requires exponentially

many constraints.
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The first way is as follows. Consider variables χut = 1 if the stand u is in the selected connected

component, both in period t and t+ 1. Hence, we may consider constraints

∑
u∈V

auχut ≥Atemp, ∀t∈ T \ {N} (13a)

χut ≤ zut, χut ≤ zu,t+1, ∀u∈ V,∀t∈ T \ {N} (13b)

Equations (13a) guarantee the required common area, while (13b) forces χut to have the value

zero if any of zut or zu,t+1 is zero. Alternatively, the requirement of a common area Atemp can be

expressed without additional variables χ, with the following set of constraints.

∑
u∈S

auzut +
∑

u∈V−S

auzu,t+1 ≥Atemp, ∀S ⊆ V,∀t∈ T \ {N}. (14)

To see this, suppose there is a period t <N and a set S0 ⊆ V such that (14) does not hold. In this

case there exists z̄ such that Atemp >
∑

u∈S0 auz̄ut +
∑

u∈V−S0 auz̄u,t+1. However, since z is a binary

variable, and since a ≥ 0, we have that
∑

u∈S0 auz̄ut +
∑

u∈V−S0 auz̄u,t+1 ≥
∑

u∈S0 auz̄utz̄u,t+1 +∑
u∈V−S0 auz̄u,t+1z̄ut =

∑
u∈V auz̄utz̄u,t+1. This means that the set of nodes u which belong to both

connected components (e.g., those satisfying z̄utz̄u,t+1 = 1) have a total area of less than Atemp.

Conversely, suppose the common area in the connected sets S0 = {u : zut = 1} and S1 =

{u : zu,t+1 = 1} is less than Atemp. Let S = V − S0. Then
∑

u∈S auzut +
∑

u∈V−S auzu,t+1 =∑
u∈S0 auzu,t+1 =

∑
u∈S0∩S1 au <Atemp, so at least one of the constraints (14) is violated.

3.2. Solving the linear programming relaxations in a branch-and-cut algorithm

The formulations proposed here (either rooted or unrooted) encompass, in general, an exponential

number of cut inequalities. Unlike in the ARM, these constraints cannot be explicitly enumerated

and used directly in a formulation given to an integer programming solver. However, we can add

them through a constraint generation procedure. From basic linear programming theory, it is known

that only a few constraints are active in a Basic Solution. Hence, we need, at least in theory, to

add only a reduced number of constraints to solve the linear programming relaxations.



Carvajal et al.: Imposing Connectivity Constraints in Forest Planning Models
19

We describe next a cutting plane algorithm to solve the linear programming relaxation of an

integer programming model M that includes cut inequalities (3).

A cutting plane algorithm works as follows (Nemhauser and Wolsey 1999). Consider an initial

linear programming formulation obtained by removing cut inequalities from the LP relaxation of

M , or by keeping only a few of them. Let z∗ be the corresponding optimal LP solution. Now solve

the so-called separation problem, that is “check if all constraints (3) are satisfied by z∗, and if this is

not the case, find a violated constraint (e.g., one not currently in the LP)”. If all constraints not in

the LP are satisfied by z∗, then it is not necessary to add any of them, and z∗ is the optimal solution

of the LP relaxation of M . Otherwise add the violated constraint to the formulation and solve

the new LP problem. Repeat the procedure until all constraints are satisfied. Since the number of

constraints is finite, this procedure is finite, as long as the separation problems are solved exactly.

The good news is that the separation problem can be solved efficiently in this case, resulting

in a practical constraint generation procedure. Given a solution z∗ of the linear programming

relaxation, the separation problem can be stated as an optimization subproblem: find nodes u and

v such that {u, v} /∈E, and a set S∗ ∈ Γ(u, v) such that the sum
∑

w∈S∗ z∗w is minimum among all

sets S ∈ Γ(u, v). If
∑

w∈S∗ z∗w < z∗v + z∗u − 1, the inequality (3) induced by u, v and S∗ is violated;

otherwise, if
∑

w∈S∗ z∗w ≥ z∗v + z∗u − 1 for every pair of non adjacent nodes u and v, then the LP

solution z∗ is optimal.

In order to find a minimum node cut separating u and v, we may use a classical max-flow

min-cut theorem (see, e.g., Nemhauser and Wolsey 1999): Given a graph with node capacities,

the maximum flow between two non-adjacent nodes u and v equals the capacity of the minimum

capacity node cut separating u and v. In our case, the node capacities are the values of the linear

programming variables z∗w. In practice, we transform the graph in such a way that each node is

replaced by two opposite arcs, and use an efficient max flow algorithm to determine a minimum

cut on the arcs that is then translated into a minimum cut in the nodes.

We repeat this cutting plane procedure to solve the linear programming relaxations at every

node of the branch-and-bound procedure when solving the integer programming model M . We
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note that in practice it is not necessary to complete the cutting plane procedure in each node of the

branch-and-bound tree. That is, we may stop the procedure early, allowing some constraints (3) to

be violated. This will provide an upper bound for the LP relaxation with all cut inequalities (the

solution obtained from this early termination is optimal for a maximization problem with fewer

cut constraints). If this upper bound is accurate, it might be enough to fathom the corresponding

branch-and-bound node. If not, we branch and continue the cutting plane procedure on the child

nodes. Most practical branch-and-cut algorithms carefully monitor the upper bounds provided by

the cutting plane procedure and dynamically decide if it should be terminated. A simple version

of this monitoring that is used in our implementation is described in Section 4.1.

The algorithm for solving the linear programming relaxation that considers inequalities (7) is

analogous.

4. An Example

In this section, we describe a test of our proposed branch-and-cut algorithm on the harvest schedul-

ing model given in Section 2. Recall from the discussion in Section 3 that the connectivity require-

ment (1k) in this problem is that the old-growth area should be constituted of a single unrooted

dynamic patch. In order to compare the difficulty in solving this problem under different connec-

tivity requirements, we also consider rooted and static variants of problem (1). The formulation of

the static version of the problem is obtained by dropping the t index from the zvt variables and

replacing constraints (1b)–(1d) by

zv +
∑
t∈T

yvt ≤ 1, ∀v ∈ V (15a)∑
v∈V

avzv ≥Amin (15b)

zv = 0, ∀v such that bv <Oage (15c)

With these two modifictions we obtain the following four variants:

1. Rooted-Static: (1) with zv instead of zvt and (1k) replaced by (7).

2. Rooted-Dynamic: (1) with (1k) replaced by (12).



Carvajal et al.: Imposing Connectivity Constraints in Forest Planning Models
21

3. Unrooted-Static: (1) with zv instead of zvt and (1k) replaced by (3).

4. Unrooted-Dynamic: (1) with (1k) replaced by (11).

For the rooted instances, in each forest we consider three randomly selected roots that satisfied

the minimum age requirements.

4.1. Implementation Details

We implement our branch-and-cut algorithm in C++ using the CPLEX 11.0 callable

library (CPLEX 2007). For simplicity, we describe the details of this cutting plane algorithm only

for the unrooted static version of the problem. The details for other versions are analogous. Let

z∗ denote the vector of of values of the old-growth variables in the linear programming relaxation

solution. For every pair of variables zu, zv such that z∗u + z∗v > 1, we try running our separation

algorithm, obtaining either one or two minimum uv-node cuts. If the corresponding inequalities

were violated by z∗, they are added to the formulation. In order to solve the separation problem, we

use the implementation of the push-relabel algorithm available in EGlib (Espinoza and Goycoolea

2003). In some situations, we are able to find many different optimal cuts. In this case, we select two

cuts: the cuts selected are the ones “closest” to nodes u and v, respectively. Whenever a minimum

uv node cut is obtained, we check whether the corresponding inequality could be strengthened to

a ring inequality, as mentioned in Section 3. That is, if the cut S is such that S ∈ C(v,Amin) for

some w ∈ V , then we add the corresponding unrooted ring inequality (6) instead of constraint (3).

At each iteration, before running the exact separation algorithm described above, we run a quick

separation heuristic for unrooted ring inequalities that works as follows. First, we identify all of the

connected components of the subgraph induced by U = {i∈ V : z∗i > 0} using a simple depth-first-

search algorithm (Cormen et al. 2001). Second, we identify all connected components S of G[U ] for

which the total area is less than Amin. For each of these small components, we add the unrooted

ring inequality (6) corresponding to the S cutset in the LP. Third, for the remaining connected

components S of G[U ] (e.g., those with total area larger than or equal to Amin), we add a cut of

type (3).
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In preliminary tests, we discovered that the effectiveness of connectivity cuts (in terms of reducing

the bound) decreases over time. This is known as a tail-off effect. To counteract this, we carry

out a selective separation algorithm, only adding cuts at node zero (e.g., the root node of the

branch and bound tree) when the value of the LP relaxation changed by a prescribed amount in

the previous iteration. If the value of the LP relaxation does not change by more than 0.5% during

10 consecutive rounds of separation, we stop adding cuts. Whenever an integer solution is found

in the branch-and-bound tree, we check if it complies with the connectivity requirements, in which

case we find a feasible solution for the problem; otherwise, we add the violated constraints that

are found to the problem.

Preliminary tests also show that CPLEX has trouble finding feasible solutions for some classes

of problems. For this reason, we run the problem variants in an order such that feasible solutions

for previous runs could be used as heuristic solutions for subsequent runs. Specifically, we run the

variants in the order: 1) static-rooted 2) static-unrooted 3) dynamic-rooted 4) dynamic-unrooted.

Then, we provide the best solution found in step 1) as a heuristic solution to steps 2) and 3) and

the best solution between step 2) and 3) as a heuristic to step 4).

4.2. Description of Forests

We consider six instances in this study. The first one is the hypothetical forest considered in Rebain

and McDill (2003b) which we denote by Rebain-McDill. The others are five instances obtained from

the repository of forestry instances of the Forest Management Optimization Site (FMOS) (2008):

Gavin, Hardwicke, FLG9A, Shulkell and El Dorado. Tables 3 and 4 describe these instances and

the parameters we used to define formulation (1) and its variants. For all instances, we consider

a three time-period planning horizon, and we impose that the connectivity requirement should be

met with a single patch.
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Table 3 Characteristics of the FMOS instances used in our computational study and parameters used in the

optimization model.

Name Stands Area (ha) Amax (ha)
Rebain-McDill 50 1000 40
Gavin 352 6310 40
Hardwicke 423 6948 40
FLG9A 850 9999 48.6
Shulkell 1039 4498.7 16
El Dorado 1363 21147 48.5

Table 4 Parameters used in our computational study for solving the different forest planning problems.

Name Value
L 0.15
U 0.15
H 40 Years
Oage 60 Years
Amin 20% of total area

4.3. Computational Results

The main goal of our computational tests is to assess the ability of the proposed branch-and-cut

approach to obtain good solutions within a reasonable amount of time. The secondary goal is to

assess the quality of the LP relaxation bound obtained when using the proposed formulations. In

order to meet these goals, we run our implementation of the algorithm on each of the instances

described in Section 4.2 on a Xeon Quad-Core server with 32 GB of RAM. We let each problem

run for four hours. During each of the runs, we record the following values:

• tLP : The time it takes to solve the LP relaxation of the problem at Node 0 (the root node of

the branch-and-bound tree),

• ULP : The objective function value obtained after solving the LP relaxation of the problem in

Node 0 (the root node of the branch-and-bound tree),

• tIP : The time (in seconds) it takes to solve the problem to optimality. For cases in which the

problem is not solved in four hours we let tIP = 14400, corresponding to the time limit.

• LIP : The objective function value of the best integer feasible solution obtained during the run,

• UIP : For cases in which the problem is not solved to optimality in four hours we let UIP be the
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best upper bound obtained during the run. For cases in which the problem is solved to optimality,

we let UIP =LIP .

Note that ULP and UIP define upper bounds on the optimal objective function value and LIP defines

a lower bound. Define, IP gap = 100× (UIP −LIP )÷LIP and, LP gap = 100× (UIP −ULP )÷ULP .

We consider an integer feasible solution to be optimal if the associated IP gap is below 0.01%.

In Table 5, we present the results recorded for each data set and problem formulation. For those

instances that are solved to optimality in fewer than four hours, instead of reporting the IP gap,

we report the tIP using square brackets.

Table 5 Summary of computational results obtained from solving 48 different forest planning problems. The

entries in column “Root” can take the value “R1”, “R2”, “R3” or “Unrooted”. Value “R1” indicates that we have

used the first of three randomly chosen roots. Values “R2” and “R3” are analogous. Value “Unrooted” indicates

that we solve the unrooted model.

Static Dynamic
Instance Root IP gap LP gap tLP IP gap LP gap tLP

Rebain-McDill R1 [0.58 s] 0.42% 0.09 [2.93 s] 0.77% 0.71
R2 [1.93 s] 0.65% 0.09 [136.75 s] 1.87% 0.50
R3 [0.12 s] 0.37% 0.06 [9.94 s] 0.79% 0.70

Unrooted [11.46 s] 0.49% 0.62 [6746.89s] 2.93% 0.70
Gavin R1 0.01% 0.28% 5.03 7.29% 7.45% 17.59

R2 0.09% 0.38% 4.25 6.42% 6.79% 12.43
R3 0.02% 0.33% 7.08 5.47% 5.93% 16.57

Unrooted 0.61% 0.84% 16.85 6.68% 7.05% 39.80
Hardwicke R1 0.15% 0.23% 5.10 3.85% 4.06% 16.67

R2 0.26% 0.38% 6.43 2.75% 2.88% 30.73
R3 0.23% 0.39% 6.52 1.64% 1.75% 24.42

Unrooted 0.41% 0.51% 16.52 2.32% 2.55% 49.64
FLG9A R1 0.46% 2.20% 305.57 5.93% 6.03% 1219.25

R2 0.12% 2.14% 161.67 5.94% 6.12% 780.52
R3 0.05% 2.05% 137.51 5.91% 6.02% 1143.86

Unrooted 3.19% 3.85% 393.22 7.62% 8.36% 591.41
Shulkell R1 0.06% 0.19% 18.30 0.10% 0.23% 76.30

R2 0.06% 0.18% 24.14 0.08% 0.22% 18.12
R3 0.05% 0.17% 17.14 0.08% 0.23% 18.64

Unrooted 0.05% 0.27% 81.65 0.55% 0.63% 175.09
El Dorado R1 0.05% 0.08% 78.60 0.08% 0.08% 66.69

R2 0.07% 0.10% 169.92 0.12% 0.14% 78.40
R3 0.07% 0.11% 33.53 0.11% 0.11% 89.85

Unrooted 0.14% 0.14% 502.76 0.14% 0.14% 1174.93
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From this table, we fist observe that using our proposed formulations, we are able to obtain

near-optimal (< 1% GAP) solutions for most instances and variants in the allotted time (35 out

of 48 instances). Furthermore, even though some of the instances are relatively large (up to 1363

stands) with regard to similar problems solved in the literature, we can find good solutions for all

the instances and variants (worst IP gap 7.62%, average 1.4%). This illustrates the effectiveness

of our proposed branch-and-cut algorithm. As we mentioned before, this indicates a considerable

improvement in terms of the size of the instances solved, over previous results in the literature and

other forestry applications that involve connectivity.

A second observation is that the node zero LP relaxation values are usually very tight (the worst

LP gap obtained is 8.4%, while the average LP gap is 1.9%) and can be obtained quite fast (in the

worst case, the time to obtain the LP value is 21 minutes, while in average it takes 3 minutes).

Finally, we see that the difficulty of solving these problem greatly varies when considering different

forms of connectivity (average rooted-static IP gap 0.1%, average rooted-dynamic 0.7%, average

unrooted-static 2.5%, and average unrooted-dynamic 2.9%). It is clear from our results that the

proposed approach performs better on rooted problems than on unrooted ones. Analogously, the

proposed approach performs better on static problems than on dynamic ones. With respect to

forest data sets used, we observe that the difficulty is not always due to size as the hardest instances

(FLG9A and Gavin) are not the largest.

In Figure 5, we graphically depict the optimal solutions of FLG9A (R1) and FLG9A (R2). As can

be observed, the proposed formulation yields a solution where the old-growth patch is connected.

Thus, it can be seen that our formulation succesfully mitigates the effect observed in Figure 2,

in which the same data set is used to solve the problem without connectivity constraints. Visual

inspection reaffirm the preliminary conclusions of Rebain and McDill (2003a) obtained on 50 stand

and single period instances, namely, that promoting connectivity alone leads to old-growth patches

that may have long and narrow shapes. Indeed, there is no mechanism in our models that promotes

large interior area or low perimeter-to-area ratios.



Carvajal et al.: Imposing Connectivity Constraints in Forest Planning Models
26

Figure 5 Two solutions for FLG9A, using a three time-period horizon and a single static patch. Stands in black

are the ones selected for the old-growth patch. For simplicity stands that are harvested in some period

are shown in white and nonharvested stands in gray.

5. Final remarks

In this article, we have described a new integer programming formulation for modeling node connec-

tivity in graphs and we have shown how it can be used to model connectivity requirements arising

in forest planning models. This formulation has been tested solving a harvest scheduling model

with maximum clear-cut constraints and old-growth connectivity requirements. The tests consider

four variants of connectivity (combinations of rooted/unrooted and static/dynamic) on five real

forest instances of medium size (352 - 1363 stands). Our computations show that (a) the linear

programming relaxations of these models are both quick to solve and provide tight bounds, and (b)

that in four hours of computations, we can obtain very high quality feasible solutions. Moreover,

they show that rooted and static models are easier to solve when compared with unrooted and

dynamic models, respectively.

The evidence that we obtain very tight linear programming relaxations suggests that specialized

rounding heuristics could be an effective way of obtaining near-optimal solutions in practice. More-

over, it suggests that the use of this formulation could be practical for evaluating the performance

of different heuristics by testing them on medium-sized instances.
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Visual inspection of the solutions point out the necessity of including in the models presented

features to promote a large interior area or lower perimeter-area ratios.
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