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Supplemental Material to: Combinatorial Benders’ Cuts for
the Strip Packing Problem

This electronic companion is structured as follows. In Section EC.1, we give the proof of Theorem
1. In Section EC.2 we graphically depict two optimal solutions whose structure was commented in

the paper. In Section EC.3 we provide additional computational results.

EC.1. Proof of Theorem 1

In order to prove that y—check is strongly N'P—complete, we give a polynomial transformation

from the following problem.

DEFINITION EC.1. 3-PARTITION: Given 7 = 3m items, each having weight s; € Zt (j =
1,2,...,m), and a value B € Z* such that 2?21 s; =mB, find a partition of the items into m

disjoint subsets S, Ss,..., S, such that > s;= B holds for 1 =1,2,...,m, if any.

JES;

In the proof of Lemma 1 we used nine items to obtain two 1 x B buckets. Here we want to obtain
m 1 x B buckets, using an iterative method that adds nine more items at a time. We start by
considering two 5 x (2B + 3) rectangles, each obtained by packing nine items as those of Figure 2
(see the 18 hatched items in Figure 3), and we embed them into nine new items following the same
scheme used in Lemma 1. In this scheme, however, the new items produce two buckets of width
five. In Figure 3 we depict this frame, by drawing in white the new items.

In details, let us call 1,2/,...,9" and 1”,2”,...,9” the hatched items in the two buckets. Items
1" and 1” cannot be packed in the same 5 x (2B + 3) bucket, because they are too high. As a
consequence also items 3’ and 3” must be packed in different buckets. The same reasoning applies
to items 2’ and 2", and consequently to items 5" and 5”. Continuing this reasoning one can show
that also the remaining items must be packed as in Figure 2. We have thus created two copies of
the packing of Figure 2 and four 1 x B empty buckets. We now consider the resulting solution as a
single 9 x (4B +9) rectangle and we embed two of them in a frame of other nine items. We continue
this process for, say, k times, until we create 2¥ 1 x B empty buckets with 2¥ >m (the technical
details on the widths, heights and x—coordinates of the items are given at the end of this proof).

Let o denote the number of items used to create the 2% 1 x B buckets. We complete the instance
by adding 7 items with w; =1, h; =5; o (j=a+1,a+2,...,a+7) and pj corresponding to
the z—coordinate of the empty buckets, and other 2¥ — m items with w; =1, h; = B and the
same p; of the previous ones. Each of the last 2F —m items completely fills 2¥ — m buckets, so
leaving exactly m empty buckets. These can be feasibly filled by the remaining items if and only
if 3-PARTITION has a feasible solution. Since 3-PARTITION is strongly N P—complete, the same
holds for y—check.
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Figure EC.1 Basic frame for the reduction of 3-PARTITION to y—check.

Details on sizes and coordinates of the items.

We constructed the instance by adding for

k times nine items as those depicted in Figure 2. Let (4, j) denote the item of “type” i (i1 =1,2,...,9)

used at iteration j (j=1,2,...,k). The items of type 1, 2, 6, 7, and 8 have width one, but height

depending on the iteration, the items of type 3, 4, and 5 have height one, but width depending on

the iteration. In particular:

wiy =1, hujy= 22B+3(27 -1

wii ) =1, hij) = ha,)/2

wei =1, hij =hey —1
3
hip =1, wuy = { 3+4(j—1)

The x—coordinate of an item (4,j) is:
2(k—j)
1+2(k — )
2+2(k — 5)
28 —2(k — j)
28 —1—-2(k—j)

This information concludes the proof. [

)1

forj=1
for j>1
1=1,3
1=4,6,9
1=05
1=2
1=17,8.

i=1,2
i=6,7
i=8,9
i=3,4,5.
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EC.2. Graphical representation of two optimal solutions

In Figure EC.2 we depict an optimal solution of instance cgcut03 by Christofides and Whitlock
(1977), and in Figure EC.3 an optimal solution of instance gcut04 by Beasley (1985). Both figures

are scaled, so that a unit on the height is one half of a unit on the width.

10 (39 x 29)
42 (23 x 33)
57 (12 x 21) |24 (35 x 25)
41 (23 x 33)
40 (24 x 15) 9 (39 x 29)
39 (24 x 15)
38 (24 x 15) 6 (41 x 30)
22 (35 x 25) 23 (35 x 25)
61 (11 x 19
(11 x 19) 47 (21 x 31) 14 (38 x 28)
60 (11 x 19)
13 (38 x 28)
59 (11 x 19) |46 (21 x 31)
56 (12 x 21) |17 (37 x 27)
45 (21 x 31) 5T (17 x 9)
31 (32 x 22)
12 (38 x 28
(38 x 28) 30 (32 x 22)
21 (36 x 26) 28 (34 x 24)
20 (36 x 26) 27 (34 x 24)
19 (36 x 26) 26 (34 x 24)
18 (36 x 26) 25 (34 x 24)
8 (39 x 29) 44 (23 x 33)
16 (37 x 27) 29 (32 x 22)
55 (14 x 23
15 (37 x 27) 48 (18 x 29) (14 x 23)
54 (14 x 23)
11 (38 x 28) 49 (18 x 29)
62 (11 x 19)
7 (39 x 29) 50 (18 x 29) 58 (12 x 21)
52 (14 x 23) 53 (14 x 23)
5 (41 x 30)
4 (43 x 31) 43 (23 x 33)
37 (25 x 16)
3 (43 x 31) 36 (25 x 16)
35 (25 x 16)
2 (43 x 31) 34 (25 x 16)
33 (27 x 17)
1 (43 x 31) 32 (27 x 17)

Figure EC.2 Optimal solution of instance cgcut03 (W=70, z = 656).
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As described in the paper, these two solutions are characterized by complex non-guillotine struc-
tures, that create large holes and make difficult the computation of both the lower and the upper
bound. The solutions that we obtained on all other instances, either proven optimal or heuristic,

are available for download on our web site www.or.unimore.it\resources\SPP.html.

11 (150 x 68)
35 (97 x 106) o 02)
33 (98 x 156) 8 (152 x 121)
32 (99 x 166) 22 (122 x 183)

31 (103 x 92)

18 (134 x 123)

30 (103 x 139) 12 (147 x 92)

29 (105 x 141) 13 (145 x 141)

14 (141 x 144)

27 (108 x 177)

17 (136 x 147)

25 (111 x 160)

21 (124 x 138)

19 (132 x 67)

24 (117 x 173)

23 (118 x 111)

20 (131 x 127)

28 (107 x 110)

16 (139 x 174)

26 (109 x 128)

15 (140 x 70)
36 (97 x 85)
10 (150 x 164) 54 (07 x 125)
50 (63 x 171) 2 (178 x 158)
49 (64 x 101)
48 (69 x 66) L (179 x 175)
e 7 (155 x 127)
39 (92 x 86)
6 (158 x 184)

41 (86 x 165)

5 (159 x 122)
40 (87 x 178)
42 (84 x 73) 4 (162 x 163)

43 (84 x 68) 15 (82 x 62)
46 (77 x 121) 37 (97 x 69) I (ra x 58)
3 (164 x 84) 44 (83 x 71)

Figure EC.3 Optimal solution of instance gcut04 (W=250, z = 2995).
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EC.3. Additional Computational Results

In Table EC.1 we give the results of our algorithm on the “easy” benchmark sets ngcut, ht and

“*” if the instance is solved to proven

beng. As done in the paper, in column “opt” we report a
optimality, in column “sec” we give the computational time, and in column z we report the solution
value found by BLUE. We recall that we compare with: MMV03 = Martello et al. (2003), BKC07
= the most performing algorithm (DA) by Bekrar et al. (2007), APT09 = Alvarez-Valdes et al.
(2009), KINYNO09 = the most performing algorithm (G-STAIRCASE) by Kenmochi et al. (2009),
BM10 = Boschetti and Montaletti (2010), CO11 = the most performing algorithm (DS) by Castro

and Oliveira (2011), and AIT12 = Arahori et al. (2012).

Table EC.1 Results and comparison on nguct, ht, and beng instances.

MMVO03 BKCO07 APTO09 KINYNO09 BM10 CO11 AIT12 BLUE
0.8GHz 1.7GHz 2GHz 3GHz 1.6GHz 2.5GHz 3.3GHz 2.33GHz
t.1.=3600s t.1.=3600s t.1.=1200s t.1.=3600s t.1.=1200s t.1.=3600s t.1.=3600s t.1.=1200s
name n W opt sec opt sec opt sec opt sec opt sec opt sec opt sec z opt sec
ngcut0l 10 10 * 0.05 * 23.20 *2.20 * 0.39 * 0.08 * 81.60 *0.00 23 *0.19
ngcut02 17 10 * 11.31 *1052.72 * 3.10 t.lim. * 0.47 t.lim. *0.07 30 *0.08
ngcut03 21 10 * 27.01 *  519.70 *0.00 * 0.10 * 1.62 * 12.60 *0.00 28 *0.03
ngcut04 7 10 * 0.00 * 0.02 *0.00 * 0.14 * 0.14 * 1.22 *0.00 20 *0.04
ngcut05 14 10 * 0.00 *119.58 *0.00 * 0.07 * 0.34 * 3.18 *0.00 36 *0.02
ngcut06 15 10 *727.20 *1079.26 * 4.60 *147.31 * 0.84 t.lim. * 016 31 * 041
ngcut07 8 20 * 0.00 * 0.00 *0.00 * 0.10 * 0.38 * 0.98 *0.00 20 *0.01
ngcut08 13 20 * 53.09 *178.06 * 3.50 * 0.50 * 15.39 * 29.50 *0.06 33 *0.36
ngcut09 18 20 t.lim. *1269.83 * 58.10 * 1971.64 * 286.55 t.lim. * 348 50 *0.67
ngcutl0 13 30 * 0.18 * 1152.83 * 260 * 113.98 * 6.58 t.lim. * 0.01 80 *0.06
ngcutll 15 30 *483.01 *733.18 * 13.80 * 7.71 *107.47 t.lim. *0.04 52 * 044
ngcutl2 22 30 * 0.00 *  866.32 * 0.00 t.lim. * 1.41 t.lim. * 0.00 87 *0.03
tot opt/avg sec 11 11835 12 58289 12 7.33 10 224.19 12 35.11 6 21.51 12 0.32 12 0.20
ht01 16 20 * 10.84 * 0.00 *0.00 * 0.07 * 3.84 * 2.08 *0.00 20 *0.02
ht02 17 20 * 3043.25 *378.81 * 040 * 0.07 *149.98 * 5.28 *0.00 20 *0.25
ht03 16 20 *500.75 *197.53 *0.10 * 0.10 * 1.22 * 2.51 *0.00 20 *0.03
ht04 25 40 * 8.26 *  874.05 * 0.10 * 0.11 * 611.70 * 91.80 *0.00 15 *0.06
ht05 25 40 * 20.29 *  B71.65 *0.10 * 0.06 *300.95 * 20.40 *0.00 15 *0.06
ht06 25 40 * 16.94 * 0.00 * 140 * 0.06 * 25.79 * 18.30 * 0.00 15 *0.05
ht07 28 60 t.lim. n.a. * 1.80 * 0.10 * 654.56 * 3771.00 *0.01 30 *0.06
ht08 29 60 t.lim. n.q. t.lim. * 76.97 * 732.05 t.lim. *23.77 30 * 57.66
ht09 28 60 * 0.00 * 0.00 * 870 * 0.13 *669.90 t.lim. *0.00 30 *0.07
tot opt/avg sec 7 514.33 7 288.86 8 1.58 9 8.63 9 350.00 7 558.77 9 2.64 9 6.47
beng01 20 25 * 0 911.37 *608.41 *  5.50 * 0.93 *26.95 *0.25 30 *0.67
beng02 40 25 t.lim. t.lim. * 040 * 22.89 * 7255 * 5.43 57 *0.57
beng03 60 25 t.lim. t.lim. * 0.50 * 0.32 * 0 69.42 * 002 84 *0.21
beng04 80 25 t.lim. t.lim. * 3.30 t.lim. * 198.22 * 0.01 107 *1.46
beng05 100 25 * 500.62 t.lim. * 0.10 * 0.31 *73.42 *0.03 134 * 046
beng06 40 40 t.lim. t.lim. * 0.10 * 0.29 * 8241 *0.00 36 *0.18
beng07 80 40 * 0.56 t.lim. *0.10 * 0.18 * 607.33 *0.04 67 * 247
beng08 120 40 * 500.54 t.lim. * 0.10 * 2.67 * 93.73 * 0.01 101 *0.72
beng09 160 40 * 0.03 * 0.00 *0.10 * 2.38 *76.03 * 3.65 126 ¥ 1.04
bengl0 200 40 * 0.03 n.a. * 0.10 * 6.52 *  82.85 *0.25 156 *1.60
tot opt/avg sec 6 318.86 2 30421 10 1.03 9 4.05 10 138.29 10 0.97 10 0.94
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