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This paper provides a relaxation of the sufficient conditions, and also an extension of the structural results for Partially

Observed Markov Decision Processes (POMDPs) given in Lovejoy (1987). Sufficient conditions are provided so that the

optimal policy can be upper and lower bounded by judiciouslychosen myopic policies. These myopic policy bounds are

constructed to maximize the volume of belief states where they coincide with the optimal policy. Numerical examples

illustrate these myopic bounds for both continuous and discrete observation sets.
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1. Introduction

POMDPs have received much attention due to their applications in diverse areas such as scheduling in sensor

networks and wireless communications (see Krishnamurthy (2011), Krishnamurthy and Djonin (2007) and

references therein) and artificial intelligence (Kaelbling et al., 1998). Even though, for finite observation

alphabet sets, and finite horizon, the optimal policy of a POMDP can be computed via stochastic dynamic

programming, such problems are P-SPACE hard (Papadimitriou and Tsitsiklis, 1987).

The seminal papers Lovejoy (1987); Rieder (1991); Rieder and Zagst (1994) give sufficient conditions

such that the optimal policy of a POMDP can be lower bounded bya myopic policy. Unfortunately, despite

the enormous usefulness of such a result, the sufficient conditions given in Lovejoy (1987) and Rieder

(1991) for this result to hold are not useful - it is impossible to generate non-trivial examples that satisfy

the conditions (c), (e), (f) of (Lovejoy, 1987, Proposition2) and condition (i) of (Rieder, 1991, Theorem

5.6). In this paper, we provide a fix to these sufficient conditions so that the results of Lovejoy (1987);

Rieder (1991) hold for constructing a myopic policy that lower bounds the optimal policy. Then, for infinite

horizon discounted cost POMDPs, we show how this idea of constructing a lower bound myopic policy

can be extended to constructing anupperbound myopic policy. More specifically, for belief stateπ, we

present sufficient conditions under which the optimal policy, denoted byµ∗(π), of a given POMDP can be

upper and lower bounded by myopic policies denoted byµ(π) andµ(π), respectively, i.e.µ(π)≤ µ∗(π)≤

µ(π) for all π ∈ Π. HereΠ denotes the set of belief states of a POMDP. Interestingly, these judiciously

chosen myopic policies are independent of the actual valuesof the observation probabilities (providing they
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satisfy a sufficient condition) which makes the structural results applicable to both discrete and continuous

observations. Finally, we construct the myopic policies,µ(π) andµ(π), to maximize the volume of the

belief space where they coincide with the optimal policyµ∗(π).

Numerical examples are presented to illustrate the performance of these myopic policies. To quantify

how well the myopic policies perform we use two parameters: the volume of the belief space where the

myopic policies coincide with the optimal policy, and an upper bound to the average percentage loss in

optimality due to following this optimized myopic policy.

2. The Partially Observed Markov Decision Process

Consider a discrete time, infinite horizon discounted cost POMDP. A discrete time Markov chain evolves

on the state spaceX= {1,2, . . . ,X}. Denote the action space asA= {1,2, . . . ,A} and observation space as

Y. For discrete-valued observationsY= {1,2, . . . , Y } and for continuous observationsY⊂R.

LetΠ=
{

π : π(i) ∈ [0,1],
∑X

i=1 π(i) = 1
}

denote the belief space ofX-dimensional probability vectors.

For stationary policyµ : Π→A, initial beliefπ0 ∈Π, discount factorρ∈ [0,1), define the discounted cost:

Jµ(π0) =E

{

∞
∑

k=1

ρk−1c′µ(πk)
πk

}

. (1)

Hereca = [c(1, a), . . . ,c(X, a)]′, a ∈ A is the cost vector for each action, and the belief state evolves as

πk = T(πk−1,yk, ak) where

T(π,y, a) =
Ba

y P
′
aπ

σ (π,y, a)
, σ (π,y, a) = 1

′
XB

a
y P

′
aπ, Ba

y = diag{ba1,y, · · · , b
a
X,y}. (2)

Here1X represents aX-dimensional vector of ones,Pa =
[

paij
]

X×X
paij = P(xk+1 = j|xk = i, ak = a) denote

the transition probabilities,baxy = P(yk+1 = y|xk+1 = x,ak = a) whenY is finite, orbaxy is the conditional

probability density function whenY⊂R.

The aim is to compute the optimal stationary policyµ∗ : Π→ A such thatJµ∗(π0) ≤ Jµ(π0) for all

π0 ∈Π. Obtaining the optimal policyµ∗ is equivalent to solving Bellman’s dynamic programming equation:

µ∗(π) = argmin
a∈A

Q(π,a), Jµ∗(π0) = V (π0), where

V (π) =min
a∈A

Q(π,a), Q(π,a) = c′aπ+ ρ
∑

y∈Y

V (T(π,y, a))σ (π,y, a) . (3)

SinceΠ is continuum, Bellman’s equation (3) does not translate into practical solution methodologies as

V (π) needs to be evaluated at eachπ ∈ Π. This motivates the construction of judicious upper and lower

bounds, denoted byµ(π) andµ(π) respectively, to the optimal policyµ∗(π). For belief statesπ where

µ(π) = µ(π), the optimal policyµ∗(π) is completely determined.



Krishnamurthy: Myopic Bounds for POMDPs
Article submitted toOperations Research; manuscript no. published in Vol.63, Jan. 2015 3

3. Myopic Bounds to the Optimal Policy

3.1. Assumptions

(A1) There exists ag∈RX such thatCa ≡ ca +(I− ρPa)g is strictly increasing inx∈X,∀a∈A.

(A2) There exists af∈RX such thatCa ≡ ca +(I− ρPa) f is strictly decreasing inx∈X,∀a∈A.

(A3) Pa andBa, a∈A are totally positive of order 2 (TP2), that is, all second-order minors are nonnegative.

(A4) γj,a,y
mn + γj,a,y

nm ≥ 0 ∀m,n, j, a,y whereγj,a,y
mn = baj,yb

a+1
j+1,yp

a
m,jp

a+1
n,j+1− baj+1,yb

a+1
j,y pam,j+1p

a+1
n,j .

(A5)
∑

y≤ȳ

∑

j∈X

[

pai,jb
a
j,y− pa+1

i,j ba+1
j,y

]

≤ 0 ∀i∈X,∀ȳ∈Y

Discussion If the elements ofca are strictly increasing then(A1) holds trivially. Similarly, if the ele-

ments ofca are decreasing then(A2) holds and coincides with Assumption (b) in (Lovejoy, 1987, Proposi-

tion 2).

(A1) and(A2) are easily verified by checking the feasibility of the following linear programs:

LP1 :min
g∈Sg

1
′
Xg, LP2 : min

f∈Sf

1
′
Xf. (4)

Sg =
{

g :C
′

aei ≤C
′

aei+1 ∀a∈A, i∈X
}

(5)

Sf =
{

f :C′
aei ≥C′

aei+1 ∀a∈A, i∈X
}

(6)

whereei is the unitX-dimensional vector with 1 at theith position.

(A3) is equivalent to saying that the rows ofPa andBa are monotone likelihood ratio (MLR) increasing.

(MLR dominance is defined in the appendix). Numerous examples of TP2 matrices satisfying(A3) can be

found in Karlin and Rinott (1980). Examples of TP2 observation kernels include Gaussian, Exponential,

Binomial and Poisson distributions. Examples of discrete observation distributions include binary erasure

channels and binary symmetric channels with error probability less than 0.5.

(A4) implies that the belief due to actiona+ 1 MLR dominates the belief due to actiona, i.e., in the

terminology of Milgrom (1981),a+1 yields a more ”favorable outcome” thana. For POMDPs withBa =

B ∀a ∈ A, (A4) trivially holds for TP2 transition matricesPa andPa′ , a > a′ if all rows of Pa MLR

dominate the last row ofPa′ .

(A4) and(A5) are a relaxed version of Assumptions (c), (e), (f) of (Lovejoy, 1987, Proposition 2) and

Assumption (i) of (Rieder, 1991, Theorem 5.6). In particular, the assumptions (c), (e), (f) of Lovejoy

(1987) require thatPa+1 ≥tp Pa and Ba+1 ≥tp Ba, where≥tp (TP2 stochastic ordering) is defined in

Muller and Stoyan (2002), which is impossible for stochastic matrices, unlessPa = Pa+1, Ba = Ba+1 or

the matricesPa,Ba are rank 1 for alla meaning that the observations are non-informative.

Assumptions (c) and (f) of (Lovejoy, 1987, Proposition 2) are required to ensure that the posterior

T(π,y, a) (2) is MLR increasing ina. A necessary and sufficient condition to ensure the monotonicity of

T(π,y, a) is that the matricesΓj,a,y, defined below, are copositive Bundfuss and Dür (2009) onΠ. That is,

π′Γj,a,yπ≥ 0,∀π ∈Π,∀j, a,y where

Γj,a,y =
1

2

[

γj,a,y
mn + γj,a,y

nm

]

X×X
, γj,a,y

mn = baj,yb
a+1
j+1,yp

a
m,jp

a+1
n,j+1− baj+1,yb

a+1
j,y pam,j+1p

a+1
n,j .

(7)
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In general, the problem of verifying the copositivity of a matrix is NP-complete. Assumption(A4) is a

simpler but more restrictive sufficient condition to ensurethatΓj,a,y (7) is copositive.

3.2. Construction of Myopic Upper and Lower Bounds

We are interested in myopic policies of the formargmin
a∈A

C ′
aπ where cost vectorsCa are constructed so that

when applied to Bellman’s equation (3), they leave the optimal policyµ∗(π) unchanged. This is for several

reasons: First, similar to Lovejoy (1987), Rieder (1991) itallows us to construct useful myopic policies

that provide provable upper and lower bounds to the optimal policy. Second, these myopic policies can be

straightforwardly extended to 2-stage or multi-stage myopic costs. Third, such a choice precludes choosing

useless myopic bounds such asµ(π) =A for all π ∈Π.

Accordingly, for any two vectorsg andf∈RX, define the myopic policies associated with the transformed

costsCa andCa as follows:

µ(π)≡ argmin
a∈A

C
′

aπ, where Ca = ca +(I− ρPa)g (8)

µ(π)≡ argmin
a∈A

C′
aπ, where Ca = ca +(I− ρPa) f. (9)

It is easily seen that Bellman’s equation (3) applied to optimize the objective (1) with transformed costs

Ca andCa yields the same optimal strategyµ∗(π) as the Bellman’s equation with original costsca. The

corresponding value functions areV (π)≡ V (π)+ g′π andV (π)≡ V (π) + f′π. The following main result

is proved in the Appendix.

Theorem 1 Consider a POMDP(X,A,Y, Pa,Ba,c, ρ) and assume(A1)-(A5) holds. Then the myopic poli-

cies,µ(π) andµ(π), defined in(8), (9) satisfy:µ(π)≤ µ∗(π)≤ µ(π) for all π ∈Π.

4. Optimizing the Myopic Policy Bounds to Match the Optimal Policy

The aim of this section is to determine vectorsg and f, in (5) and (6), that maximize the volume of the

simplex where the myopic upper and lower policy bounds, specified by (8) and (9), coincide with the optimal

policy. That is, we wish to maximize the volume of the ‘overlapping region’

vol (ΠO) , whereΠO ≡ {π : µ(π) = µ(π) = µ∗(π)}. (10)

Notice that the myopic policiesµ andµ defined in (8), (9) do not depend on the observation probabilities

Ba and so neither does vol(ΠO). Soµ andµ can be chosen to maximize vol(ΠO) independent ofBa and

therefore work for discrete and continuous observation spaces. Of course, the proof of Theorem 1 requires

conditions onBa.
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4.1. Optimized Myopic Policy for Two Actions

For a two action POMDP, obviously for a beliefπ, if µ(π) = 1 thenµ∗(π) = 1. Similarly, if µ(π) = 2, then

µ∗(π) = 2. Denote the set of beliefs (convex polytopes) whereµ(π) = µ∗(π) = 1 andµ(π) = µ∗(π) = 2 as

Πg
1 =

{

π :C
′

1π≤C
′

2π
}

= {π : (c1− c2− ρ(P1−P2)g)
′π≤ 0} ,

Πf
2 = {π :C′

2π≤C′
1π}= {π : (c1− c2− ρ(P1−P2)f)

′π≥ 0} .
(11)

ClearlyΠO =Πg
1 ∪Π

f
2. Our goal is to findg∗ ∈ Sg andf∗ ∈ Sf such that vol(ΠO) is maximized.

Theorem 2 Assume that there exists two fixed X-dimensional vectors g∗ and f∗ such that

(P2−P1)g
∗ � (P2−P1)g, ∀g∈ Sg

(P1−P2)f
∗ � (P1−P2)f, ∀f∈ Sf

(12)

where for X-dimensional vectorsa andb, a� b⇒ [a1 ≤ b1, · · · , aX≤ bX], andSg, Sf are defined in (5), (6),

respectively. If the myopic policiesµ andµ are constructed using g∗ and f∗, then vol(ΠO) is maximized.

Theorem 2 asserts that myopic policiesµ andµ characterized by two fixed vectorsg∗ andf∗ maximize

vol(ΠO) over the entire belief spaceΠ. The existence and computation of these policies characterized by

g∗ ∈ Sg and f∗ ∈ Sf are determined by Algorithm 1. Algorithm 1 solvesX number of LPs to obtaing∗.

If no g∗ ∈ Sg satisfying (12) exists, then Algorithm 1 will terminate with no solution. The procedure for

computingf∗ is similar.

Algorithm 1 Computeg∗

1: for all i∈X do

2: αi←min
g∈Sg

e′i(P2−P1)g

3: end for

4: g∗ ∈ Sg∗ , Sg∗ ≡{g∗ : g∗ ∈ Sg,e′i(P2−P 1)g∗ =αi, i=1, · · · ,X}

5: µ(π) = argmin
a∈{1,2}

π′C
∗

a ∀π ∈Π, whereC
∗

a = ca +(I− ρPa)g∗

6: µ(π) = µ∗(π) = 1,∀π ∈Πg∗

1 .

4.2. Optimizing Myopic Policies for more than 2 actions

Unlike Theorem 2, for the caseA> 2, we are unable to show that a single fixed choice ofµ andµ maximizes

vol(ΠO). Instead at each timek, µ andµ are optimized depending on the belief stateπk. Suppose at time

k, given observationyk, the belief state,πk, is computed by using (2). For this belief stateπk, the aim is to

computeg∗ ∈ Sg (5) andf∗ ∈ Sf (6) such that the difference between myopic policy bounds,µ(πk)−µ(πk),

is minimized. That is,

(g∗, f∗) = argmin
g∈Sg, f∈Sf

µ(πk)−µ(πk). (13)
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(13) can be decomposed into following two optimization problems,

g∗ =argmin
g∈Sg

µ(πk), f∗ =argmax
f∈Sf

µ(πk). (14)

If assumptions(A1) and(A2) hold, then the optimizations in (14) are feasible. Thenµ(πk) in (8) andg∗, in

(14) can be computed as follows: Starting withµ(πk) = 1, successively solve a maximum ofA feasibility

LPs, where theith LP searches for a feasibleg∈ Sg in (5) so that the myopic upper bound yields actioni,

i.e.µ(πk) = i. Theith feasibility LP can be written as

min
g∈Sg

1
′
Xg

s.t., C
′

iπk ≤C
′

aπk ∀a∈A, a 6= i
(15)

The smallesti, for which (15) is feasible, yields the solution(g∗, µ(πk) = i) of the optimization in (14). The

above procedure is straightforwardly modified to obtainf∗ and the lower boundµ(πk) (9).

5. Numerical Examples

Recall that on the setΠO (10), the upper and lower myopic bounds coincide with the optimal policyµ∗(π).

What is the performance loss outside the setΠO? To quantify this, define the policy

µ̃(π) =

{

µ∗(π) ∀π ∈ΠO

arbitrary action (e.g. 1) ∀π 6∈ΠO

Let Jµ̃(π0) denote the discounted cost associated withµ̃(π0). Also denote

J̃µ∗(π0) =E

{

∞
∑

k=1

ρk−1c̃′µ∗(πk)
πk

}

, where, c̃µ∗(π) =







cµ∗(π) π ∈ΠO
[

min
a∈A

c(1, a), · · · ,min
a∈A

c(X, a)
]′

π 6∈ΠO

Clearly an upper bound for the percentage loss in optimalitydue to using policỹµ instead of optimal policy

µ∗ is

ǫ=
Jµ̃(π0)− J̃µ∗(π0)

J̃µ∗(π0)
. (16)

In the numerical examples below, to evaluateǫ, 1000 Monte-Carlo simulations were run to estimate the

discounted costsJµ̃(π0) andJ̃µ∗(π0) over a horizon of 100 time units. The parametersǫ and vol(ΠO) are

used to evaluate the performance of the optimized myopic policy bounds constructed according to Sec. 4.

Note thatǫ depends on the choice of observation distributionB, unlike vol(ΠO), see discussion below (10)

and also Example 2 below.

Example 1. Sampling and Measurement Control with Two Actions: In this problem (Krishnamurthy,

2013), at every decision epoch, the decision maker has the option of either recording a noisy observation

(of a Markov chain) instantly (actiona= 2) or waiting for one time unit and then recording an observation
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using a better sensor (actiona= 1). Should one record observations more frequently and less accurately or

more accurately but less frequently?

We choseX= 3, A = 2 andY = 3. Both transition and observation probabilities are actiondependent

(parameters specified in the Appendix). The percentage lossin optimality is evaluated by simulation for

different values of the discount factorρ. Table 1(a) displays vol(ΠO), ǫ1 andǫ2. For eachρ, ǫ1 is obtained

by assumingπ0 = e3 (myopic bounds overlap ate3) andǫ2 is obtained by uniformly samplingπ0 /∈ ΠO.

Observe that vol(ΠO) is large andǫ1, ǫ2 are small, which indicates the usefulness of the proposed myopic

policies.

Table 1 Performance of optimized myopic policies versus discount factorρ for four numerical examples. The performance

metrics vol(ΠO) andǫ are defined in (10) and (16).

(a) Example 1

ρ vol(ΠO) ǫ1 ǫ2
0.4 95.3% 0.30% 16.6%
0.5 94.2% 0.61% 13.9%
0.6 92.4% 1.56% 11.8%
0.7 90.2% 1.63% 9.1%
0.8 87.4% 1.44% 6.3%
0.9 84.1% 1.00% 3.2%

(b) Example 2

vol(ΠO) ǫd1 ǫd2 ǫc1 ǫc2
64.27% 7.73% 12.88% 6.92% 454.31%
55.27% 8.58% 12.36% 8.99% 298.51%
46.97% 8.97% 11.91% 12.4% 205.50%
39.87% 8.93% 11.26% 14.4% 136.31%
34.51% 10.9% 12.49% 17.7% 88.19%
29.62% 11.2% 12.24% 20.5% 52.16%

(c) Example 3

vol(ΠO) ǫ1 ǫ2
61.4% 2.5% 10.1%
56.2% 2.3% 6.9%
47.8% 1.7% 4.9%
40.7% 1.4% 3.5%
34.7% 1.1% 2.3%
31.8% 0.7% 1.4%

(d) Example 4

vol (ΠO) vol (ΠO) ǫ1 ǫ1 ǫ2 ǫ2
98.9% 84.5% 0.10% 6.17% 1.45% 1.71%
98.6% 80.0% 0.18% 7.75% 1.22% 1.50%
98.4% 75.0% 0.23% 11.62% 1.00% 1.31%
98.1% 68.9% 0.26% 14.82% 0.75% 1.10%
97.8% 61.5% 0.27% 19.74% 0.51% 0.89%
97.6% 52.8% 0.25% 24.08% 0.26% 0.61%

Example 2. 10-state POMDP: Consider a POMDP withX= 10, A= 2. Consider two sub-examples: the

first with discrete observationsY =10 (parameters in Appendix), the second with continuous observations

obtained using the additive Gaussian noise model, i.e.yk = xk + nk wherenk ∼N (0,1). The percentage

loss in optimality is evaluated by simulation for these two sub examples and denoted byǫd1, ǫ
d
2 (discrete

observations) andǫc1, ǫ
c
2 (Gaussian observations) in Table 1(b).

ǫd1 andǫc1 are obtained by assumingπ0 = e5 (myopic bounds overlap ate5). ǫd2 andǫc2 are obtained by

samplingπ0 /∈ΠO. Observe from Table 1(b) that vol(ΠO) decreases withρ. However, the values ofǫd1 and

ǫc1 are small for all values ofρ indicating the usefulness of the myopic bounds when the prior π0 ∈ΠO.

Example 3. 8-state and 8-action POMDP: Consider a POMDP withX=8, A= 8 andY = 8 (parameters

in Appendix). Table 1(c) displays vol(ΠO), ǫ1 and ǫ2. For eachρ, ǫ1 is obtained by assumingπ0 = e1

(myopic bounds overlap ate1) andǫ2 is obtained by uniformly samplingπ0 /∈ΠO. The results indicate that

the myopic policy bounds are still useful for some values ofρ.
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Example 4. Myopic Bounds versus Transition Matrix: The aim here is to illustrate the performance of the

optimized myopic bounds over a range of transition probabilities. Consider a POMDP withX= 3, A= 2,

additive Gaussian noise model of Example 2, and transition matrices

P2 =





1 0 0
1− 2θ1 θ1 θ1
1− 2θ2 θ2 θ2



 , P1 = P 2
2 .

It is straightforward to show that for all probabilitiesθ1, θ2 such thatθ1 + θ2 ≤ 1, θ2 ≥ θ1, the assumptions

of Theorem 1 hold. (More generally choosingP1 = P n
2 for any positive integern satisfies the assumptions).

We chose the cost vectors asc1 = [1,1.1,1.2]
′ andc2 = [1.2,1.1,1.1]

′. Table 1(d) displays the worst case

and best case values for performance metrics(vol (ΠO) , ǫ1, ǫ2) versus discount factorρ by sweeping over

the entire range of(θ1, θ2). The worst case performance is denoted by vol(ΠO), ǫ1, ǫ2 and the best case by

vol (ΠO), ǫ1, ǫ2.

Discussion In numerical examples, we found that the percentage loss in optimality ǫ defined in (16)

depends on the following: whether or not the initial beliefπ0 is in ΠO, vol(ΠO), the trajectories of belief

transitions and discount factorρ. For π0 /∈ ΠO, one expectsǫ to increase asρ decreases, and this is an

observable trend in the above examples. This is because asρ decreases, most of the value and loss in

optimality is incurred in the near term. Symmetrically, ifπ0 ∈ΠO one expectsǫ to decrease asρ decreases,

because the first few decisions determine most of the incurred cost and this relevant time period is more

likely to feature beliefs withinΠO. This is often the case but is not consistently so. The non-monotonicity of

ǫ in these examples derives from belief trajectories that canmigrate out of and back intoΠO as information

accrues.

The electronic companion to this paper shows how the resultsbe extended to problems with quadratic

costs in the belief state. Such problems arise in controlledsensing applications involving radars and sensor

scheduling. Also further discussion on examples that satisfy the assumptions of this paper is given.

Appendix

Let π1, π2 ∈ Π, be any two belief states. Then,π1 dominatesπ2 with respect to MLR ordering, i.e.π1 ≥r

π2, if π1(i)π2(j)≤ π1(j)π2(i), i < j, i, j ∈ X. Also, π1 dominatesπ2 with respect to first order stochastic

dominance, i.e.π1 ≥sπ2, if
∑X

i=q
π1(i)≥

∑X
i=q

π2(i), q ∈X.

The following lemma replaces Lemma 1.2(3) and Lemma 2.3(c) in Lovejoy (1987). The proof is straight-

forward and omitted.

Lemma 3 Assume (A5) holds. Then, for all π ∈ Π, σ(π,a + 1) ≥s σ(π,a) where σ (π,a) ≡

[σ (π,1, a) , · · · , σ (π,Y, a)].

Assume(A4) holds. Then, for allπ ∈Π,T(π,y, a+1)≥r T(π,y, a).
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Proof of Theorem 1: We show that under(A1), (A3), (A4) and(A5) , µ∗(π)≤ µ(π) ∀π ∈Π. Let V and

Q denote the variables in Bellman’s equation (3) when using costsCa defined in (8). Then from (Lovejoy,

1987, Lemma 1.2.1) and (Lovejoy, 1987, Proposition 1),V (T(π,y, a)) is increasing iny. From Lemma 3,

σ(π,a+1)≥sσ(π,a). Therefore,
∑

y∈Y

V (T(π,y, a))σ(π,y, a) ≤
(a)

∑

y∈Y

V (T(π,y, a))σ(π,y, a+1) ≤
(b)

∑

y∈Y

V (T(π,y, a+1))σ(π,y, a+1)

(17)

Inequality (b) holds since from Lemma 3 and (Lovejoy, 1987, Proposition 1),V (T(π,y, a + 1)) ≥

V (T(π,y, a))∀y∈ Y. The implication of (17) is that
∑

y∈Y
V (T(π,y, a))σ(π,y, a) is increasing w.r.ta or

equivalently,

Q(π,a)−C
′

aπ≤Q(π,a+1)−C
′

a+1π

⇒ µ∗(π) = argmin
a∈A

Q(π,a)≤ argmin
a∈A

C
′

aπ= µ(π)
(18)

where the implication in (18) follows from (Lovejoy, 1987, Lemma 2.2). The proof thatµ∗(π) ≥ µ(π) is

similar and omitted.

Proof of Theorem 2: The sufficient conditions in (12) ensure thatΠg∗

1 ⊇Πg
1 ∀g∈ Sg andΠf∗

2 ⊇Πf
2 ∀f∈ Sf.

Indeed, to establish that vol
(

Πg∗

1

)

≥ vol
(

Πg
1

)

∀g∈ Sg:

(P1−P2)g∗� (P1−P2)g ∀g∈ Sg

⇒ c1− c2− ρ (P1−P2)g∗ � c1− c2− ρ (P1−P2)g ∀g∈ Sg

⇒ Πg∗

1 ⊇Πg
1 ∀g∈ Sg⇒ vol

(

Πg∗

1

)

≥ vol
(

Πg
1

)

∀g∈ Sg

(19)

So vol
(

Πg∗

1

)

≥ vol
(

Πg
1

)

∀g∈ Sg and vol
(

Πf∗

2

)

≥ vol
(

Πf
2

)

∀g∈ Sg. SinceΠO = Πg∗

1 ∪Πf∗

2 , the proof is

complete.
Parameters of Example 1: For the first example the parameters are defined as,

c=

(

1.0000 1.5045 1.8341
1.5002 1.0000 1.0000

)

′

, P2 =





1.0000 0.0000 0.0000
0.4677 0.4149 0.1174
0.3302 0.5220 0.1478



 , P1 = P
2

2

B1 =





0.6373 0.3405 0.0222
0.3118 0.6399 0.0483
0.0422 0.8844 0.0734



 , B2 =





0.5927 0.3829 0.0244
0.4986 0.4625 0.0389
0.1395 0.79 0.0705



 .

Parameters of Example 2: For discrete observationsBa =B ∀a∈A,

B =

































0.0297 0.1334 0.1731 0.0482 0.1329 0.1095 0.0926 0.0348 0.1067 0.1391
0.0030 0.0271 0.0558 0.0228 0.0845 0.0923 0.1029 0.0511 0.2001 0.3604
0.0003 0.0054 0.0169 0.0094 0.0444 0.0599 0.0812 0.0487 0.2263 0.5075

0 0.0011 0.0051 0.0038 0.0225 0.0368 0.0593 0.0418 0.2250 0.6046
0 0.0002 0.0015 0.0015 0.0113 0.0223 0.0423 0.0345 0.2133 0.6731
0 0 0.0005 0.0006 0.0056 0.0134 0.0298 0.0281 0.1977 0.7243
0 0 0.0001 0.0002 0.0028 0.0081 0.0210 0.0227 0.1813 0.7638
0 0 0 0.0001 0.0014 0.0048 0.0147 0.0183 0.1651 0.7956
0 0 0 0 0.0007 0.0029 0.0103 0.0147 0.1497 0.8217
0 0 0 0 0.0004 0.0017 0.0072 0.0118 0.1355 0.8434
































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P1 =

































0.9496 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056
0.9023 0.0081 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112
0.8574 0.0097 0.0166 0.0166 0.0166 0.0166 0.0166 0.0166 0.0166 0.0167
0.8145 0.0109 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0220
0.7737 0.0119 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268
0.7351 0.0126 0.0315 0.0315 0.0315 0.0315 0.0315 0.0315 0.0315 0.0318
0.6981 0.0131 0.0361 0.0361 0.0361 0.0361 0.0361 0.0361 0.0361 0.0361
0.6632 0.0136 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404
0.6301 0.0139 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445
0.5987 0.0141 0.0484 0.0484 0.0484 0.0484 0.0484 0.0484 0.0484 0.0484

































P2 =

































0.5688 0.0143 0.0521 0.0521 0.0521 0.0521 0.0521 0.0521 0.0521 0.0522
0.5400 0.0144 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557
0.5133 0.0145 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0592
0.4877 0.0145 0.0622 0.0622 0.0622 0.0622 0.0622 0.0622 0.0622 0.0624
0.4631 0.0145 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653
0.4400 0.0144 0.0682 0.0682 0.0682 0.0682 0.0682 0.0682 0.0682 0.0682
0.4181 0.0144 0.0709 0.0709 0.0709 0.0709 0.0709 0.0709 0.0709 0.0712
0.3969 0.0143 0.0736 0.0736 0.0736 0.0736 0.0736 0.0736 0.0736 0.0736
0.3771 0.0141 0.0761 0.0761 0.0761 0.0761 0.0761 0.0761 0.0761 0.0761
0.3585 0.0140 0.0784 0.0784 0.0784 0.0784 0.0784 0.0784 0.0784 0.0787

































c=

(

0.5986 0.5810 0.6116 0.6762 0.5664 0.6188 0.7107 0.4520 0.5986 0.7714
0.6986 0.6727 0.7017 0.7649 0.6536 0.6005 0.6924 0.4324 0.5790 0.6714

)

′

Parameters of Example 3: Ba =Υ0.7 ∀a∈A, whereΥε is a tridiagonal matrix defined as

Υε = [εij ]X×X , εij =



























ε i= j

1− ε (i, j) = (1,2), (X− 1,X)
1− ε

2
(i, j) = (i, i+1), (i, i− 1), i 6= 1,X

0 otherwise

P1 =

























0.1851 0.1692 0.1630 0.1546 0.1324 0.0889 0.0546 0.0522
0.1538 0.1531 0.1601 0.1580 0.1395 0.0994 0.0667 0.0694
0.1307 0.1378 0.1489 0.1595 0.1472 0.1143 0.0769 0.0847
0.1157 0.1307 0.1437 0.1591 0.1496 0.1199 0.0840 0.0973
0.1053 0.1196 0.1388 0.1579 0.1520 0.1248 0.0888 0.1128
0.0850 0.1056 0.1326 0.1618 0.1585 0.1348 0.0977 0.1240
0.0707 0.0906 0.1217 0.1578 0.1629 0.1447 0.1078 0.1438
0.0549 0.0757 0.1095 0.1502 0.1666 0.1576 0.1189 0.1666

























P2 =

























0.0488 0.0696 0.1016 0.1413 0.1599 0.1614 0.1270 0.1904
0.0413 0.0604 0.0882 0.1292 0.1503 0.1661 0.1425 0.2220
0.0329 0.0482 0.0752 0.1195 0.1525 0.1694 0.1519 0.2504
0.0248 0.0388 0.0649 0.1097 0.1503 0.1732 0.1643 0.2740
0.0196 0.0309 0.0566 0.0985 0.1429 0.1805 0.1745 0.2965
0.0158 0.0258 0.0517 0.0934 0.1392 0.1785 0.1794 0.3162
0.0134 0.0221 0.0463 0.0844 0.1335 0.1714 0.1822 0.3467
0.0110 0.0186 0.0406 0.0783 0.1246 0.1679 0.1899 0.3691

























P3 =

























0.0077 0.0140 0.0337 0.0704 0.1178 0.1632 0.1983 0.3949
0.0058 0.0117 0.0297 0.0659 0.1122 0.1568 0.1954 0.4225
0.0041 0.0090 0.0244 0.0581 0.1011 0.1494 0.2013 0.4526
0.0032 0.0076 0.0210 0.0515 0.0941 0.1400 0.2023 0.4803
0.0022 0.0055 0.0165 0.0439 0.0865 0.1328 0.2006 0.5120
0.0017 0.0044 0.0132 0.0362 0.0751 0.1264 0.2046 0.5384
0.0012 0.0033 0.0106 0.0317 0.0702 0.1211 0.1977 0.5642
0.0009 0.0025 0.0091 0.0273 0.0638 0.1134 0.2004 0.5826
























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P4 =

























0.0007 0.0020 0.0075 0.0244 0.0609 0.1104 0.2013 0.5928
0.0005 0.0016 0.0063 0.0208 0.0527 0.1001 0.1991 0.6189
0.0004 0.0013 0.0049 0.0177 0.0468 0.0923 0.1981 0.6385
0.0003 0.0009 0.0038 0.0149 0.0407 0.0854 0.2010 0.6530
0.0002 0.0007 0.0031 0.0123 0.0346 0.0781 0.2022 0.6688
0.0001 0.0005 0.0023 0.0100 0.0303 0.0713 0.1980 0.6875
0.0001 0.0004 0.0019 0.0083 0.0266 0.0683 0.1935 0.7009
0.0001 0.0003 0.0014 0.0069 0.0240 0.0651 0.1878 0.7144

























P5 =

























0.0000 0.0002 0.0010 0.0054 0.0204 0.0590 0.1772 0.7368
0.0000 0.0001 0.0008 0.0041 0.0168 0.0515 0.1663 0.7604
0.0000 0.0001 0.0006 0.0038 0.0156 0.0480 0.1596 0.7723
0.0000 0.0001 0.0005 0.0032 0.0139 0.0450 0.1603 0.777
0.0000 0.0001 0.0004 0.0028 0.0124 0.0418 0.1590 0.7835
0.0000 0.0001 0.0003 0.0023 0.0106 0.0389 0.1547 0.7931
0.0000 0.0000 0.0003 0.0018 0.0090 0.0351 0.1450 0.8088
0.0000 0.0000 0.0002 0.0015 0.0080 0.0325 0.1386 0.8192

























P6 =

























0.0000 0.0000 0.0001 0.0012 0.0067 0.0296 0.1331 0.8293
0.0000 0.0000 0.0001 0.0010 0.0059 0.0275 0.1238 0.8417
0.0000 0.0000 0.0001 0.0009 0.0056 0.0272 0.1238 0.8424
0.0000 0.0000 0.0001 0.0009 0.0053 0.0269 0.1234 0.8434
0.0000 0.0000 0.0001 0.0006 0.0043 0.0237 0.1189 0.8524
0.0000 0.0000 0.0001 0.0005 0.0038 0.0215 0.1129 0.8612
0.0000 0.0000 0.0000 0.0004 0.0032 0.0191 0.1094 0.8679
0.0000 0.0000 0.0000 0.0003 0.0025 0.0161 0.1011 0.8800

























P7 =

























0.0000 0.0000 0.0000 0.0003 0.0022 0.0143 0.0938 0.8894
0.0000 0.0000 0.0000 0.0002 0.0019 0.0136 0.0901 0.8942
0.0000 0.0000 0.0000 0.0002 0.0017 0.0126 0.0849 0.9006
0.0000 0.0000 0.0000 0.0002 0.0015 0.0118 0.0819 0.9046
0.0000 0.0000 0.0000 0.0001 0.0013 0.0108 0.0754 0.9124
0.0000 0.0000 0.0000 0.0001 0.0011 0.0098 0.0714 0.9176
0.0000 0.0000 0.0000 0.0001 0.0010 0.0090 0.0713 0.9186
0.0000 0.0000 0.0000 0.0001 0.0009 0.0084 0.0675 0.9231

























P8 =

























0.0000 0.0000 0.0000 0.0001 0.0008 0.0078 0.0665 0.9248
0.0000 0.0000 0.0000 0.0000 0.0007 0.0068 0.0626 0.9299
0.0000 0.0000 0.0000 0.0000 0.0006 0.0061 0.0581 0.9352
0.0000 0.0000 0.0000 0.0000 0.0005 0.0057 0.0561 0.9377
0.0000 0.0000 0.0000 0.0000 0.0005 0.0053 0.0558 0.9384
0.0000 0.0000 0.0000 0.0000 0.0004 0.0051 0.0558 0.9387
0.0000 0.0000 0.0000 0.0000 0.0004 0.0045 0.0522 0.9429
0.0000 0.0000 0.0000 0.0000 0.0003 0.0040 0.0505 0.9452

























c=

























1.0000 2.2486 4.1862 6.9509 11.2709 15.9589 21.4617 27.6965
31.3230 8.8185 9.6669 11.4094 14.2352 17.8532 22.3155 27.5353
50.0039 26.3162 14.6326 15.3534 17.1427 19.7455 23.1064 27.3025
65.0359 40.2025 27.5380 19.5840 20.3017 21.8682 24.2022 27.4108
79.1544 53.1922 39.5408 30.5670 23.3697 23.9185 25.1941 27.4021
90.7494 63.6983 48.6593 38.6848 30.4868 25.7601 26.0012 27.1867
99.1985 71.1173 55.0183 44.0069 34.7860 29.0205 26.9721 27.1546
106.3851 77.2019 60.0885 47.8917 37.6330 30.8279 27.7274 26.4338
























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