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This paper provides a relaxation of the sufficient condgjcand also an extension of the structural results for Hgrtia
Observed Markov Decision Processes (POMDPS) give 0y ‘M' Sufficient conditions are provided so that the
optimal policy can be upper and lower bounded by judiciogslgsen myopic policies. These myopic policy bounds are
constructed to maximize the volume of belief states wheeg tioincide with the optimal policy. Numerical examples

illustrate these myopic bounds for both continuous andrelismbservation sets.
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1. Introduction

POMDPs have received much attention due to their applicatiodiverse areas such as scheduling in sensor

networks and wireless communications _SE_e_KLishnﬁ[EJLJﬂﬁﬂl!(),l_KLiﬁhnamunhmnd_DjQAilzL(ZQO7) and
references therein) and artificial intelligen]:_e_(Ka.elglm_aj.,IJQ_QIB). Even though, for finite observation

alphabet sets, and finite horizon, the optimal policy of a FiBMan be computed via stochastic dynamic
programming, such problems are P-SPACE ha.Ld_LBa.Qa.du]lmlmdlillﬂlshJSl_lQ_Aﬂ

The seminal pape&mMBbﬂéMQlﬂlﬂ&dﬂ@gﬁl [L19_£J4) give sufficient conditions

such that the optimal policy of a POMDP can be lower boundea imyopic policy. Unfortunately, despite

the enormous usefulness of such a result, the sufficientitimmsl given in_Lov y[(;Q_é?) anLI@ﬁeJi

_Q) for this result to hold are not useful - it is impossibb generate non-trivial examples that satisfy
the conditions (c), (e), (f) o EIB? Propositighand condition (i) of.e

n this paper, we provide a fix to these sufficient coadg so that the results f Lov 87);
1) hold for constructing a myopic policy that émkounds the optimal policy. Then, for infinite

91, Theorem

horizon discounted cost POMDPs, we show how this idea oftaecting a lower bound myopic policy
can be extended to constructing apperbound myopic policy. More specifically, for belief state we
present sufficient conditions under which the optimal politenoted by.*(7), of a given POMDP can be
upper and lower bounded by myopic policies denotegifoy) andu(r), respectively, i.eu(r) < p*(7) <
m(m) for all € II. HereII denotes the set of belief states of a POMDP. Interestingdse judiciously

chosen myopic policies are independent of the actual valiiie observation probabilities (providing they
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satisfy a sufficient condition) which makes the structuealults applicable to both discrete and continuous
observations. Finally, we construct the myopic policigér) and u(r), to maximize the volume of the
belief space where they coincide with the optimal pojicyr).

Numerical examples are presented to illustrate the pedonom of these myopic policies. To quantify
how well the myopic policies perform we use two parametdrs:volume of the belief space where the
myopic policies coincide with the optimal policy, and an appound to the average percentage loss in

optimality due to following this optimized myopic policy.

2. The Partially Observed Markov Decision Process

Consider a discrete time, infinite horizon discounted c&¥PP. A discrete time Markov chain evolves
on the state spacé= {1,2,...,X}. Denote the action spaceds={1,2,..., A} and observation space as
Y. For discrete-valued observatiotis= {1,2,...,Y} and for continuous observatiok'sC R.

LetIl = {w (i) €10,1], Z; (i) = 1} denote the belief space Bfdimensional probability vectors.

For stationary policy: : IT — A, initial belief , € TI, discount factop € [0, 1), define the discounted cost:

Ju(mo) =E {Zpkl%(ﬁk)ﬂk} . 1)
k=1

Herec, = [c(1,a),...,c(X,a)], a € A is the cost vector for each action, and the belief state egohs
m, = T(my-1, Vg, ax) Where
By P

T(ﬂ->y7a):ma

g (7T>y7 (I) = 1;(B;P;7T, B;/l = diag{biy» e >b;l(,y}' (2)

Herely represents X-dimensional vector of one#, = [pgj] P(zy41 = jlzr =1, a;, = a) denote

wxx Pij =
the transition probabilities;;, = P(y, ,, = Y|zr11 = 7, a;, = a) whenY is finite, orb;, is the conditional
probability density function wheli C R.

The aim is to compute the optimal stationary poljey: II — A such thatJ,-(m) < J,(m,) for all
mo € I1. Obtaining the optimal policy* is equivalent to solving Bellman’s dynamic programming&tipn:

p*(m) =argmin Q(m,a), J,«(my) = V(m), where
acA

Vi) =min Q(m,a), Q(r,0)= cm+pd V(T(ry,)o(rya). ®)

yey

Sincell is continuum, Bellman’s equatiohn](3) does not translate pmactical solution methodologies as
V(7) needs to be evaluated at eacle II. This motivates the construction of judicious upper anddow
bounds, denoted by(7) and u(7) respectively, to the optimal policy* (). For belief statesr where

fi(m) = p(m), the optimal policy.* () is completely determined.
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3. Myopic Bounds to the Optimal Policy
3.1. Assumptions

(A1) There exists @ € R* such thaC, =c, + (I — pP,) g s strictly increasing inc € X, Va € A.
(A2) There exists &< R* such thaC, =c, + (1 — pP,) fis strictly decreasing in € X, Va € A.
(A3) P,andB,, a € Aare totally positive of order 2 (TP2), that is, all secondeyminors are nonnegative.
(Ad) 9t + Y = 0 ¥m,n, j, a,y wherenyJty = b5 bity pf, o7 5y — b5 b5y P Py
(A5) 3 ycy > jex [PEs05, — I DY) <0 VieX VyeY

Discussion If the elements o, are strictly increasing the@NI) holds trivially. Similarly, if the ele-
ments ofc, are decreasing thg@2) holds and coincides with Assumption (b) mjﬁ%rbﬁbsi—
tion 2).

(AlD) and(A2) are easily verified by checking the feasibility of the foliog linear programs:

LP1 :gensr; 19, LP2: min 15f. 4)
Sg= {g:é;ei Sé;em VaeA,ieX} (5)
si={f:Cle>Cle Vac A iex] (6)

whereg; is the unitX-dimensional vector with 1 at thigh position.
(AQ) is equivalent to saying that the rows Bf and B, are monotone likelihood ratio (MLR) increasing.
(MLR dominance is defined in the appendix). Numerous exasngfid P2 matrices satisfying\3) can be

found in/Karlin and Ring]tt 1980). Examples of TP2 obsewatkernels include Gaussian, Exponential,
Binomial and Poisson distributions. Examples of discrddseovation distributions include binary erasure
channels and binary symmetric channels with error prolhaléiss than 0.5.

(Ad) implies that the belief due to action+ 1 MLR dominates the belief due to actien i.e., in the
terminology o 1)a + 1 yields a more "favorable outcome” thanFor POMDPs withB, =
B Va € A, (Ad) trivially holds for TP2 transition matrice®, and P,;, a > o' if all rows of P, MLR
dominate the last row aP,..

(A4) and(AB) are a relaxed version of Assumptions (c), (e), (f)@e@, Proposition 2) and
Assumption (i) of [(Ri er,_19;491, Theorem 5.6). In particuthe assumptions (c), (e), (f) of Lovejoy
1987) require thatP,., >y P, and B, >y, B,, where >y, (TP2 stochastic ordering) is defined in

n )2), which is impossible for stochastatrices, unles®, = P, ,, B, = B, Or
the matrices?,, B, are rank 1 for al meaning that the observations are non-informative.

Assumptions (c) and (f) of_(Lovejoy, 1987, Proposition 2§ aequired to ensure that the posterior
T(7,y,a) @) is MLR increasing im:. A necessary and sufficient condition to ensure the moncityrof

T(7,y,a) is that the matrice’»*Y, defined below, are copositive Bundf nd Dar (2009[omhat is,
7'T9Yr >0,Vr € 11,V4, a,y where

, 1, . : , @)
gy — Z [A0Y J,a,y Jay — pa patl a atl _ pa a+l,a a+1
I - 2 [rymn + Vrnm ]XXX y Ymn = bj,ybj-l-l,ypm,jpn,j—i—l bj-i—l,ybj,y pm7j+1pn,j .
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In general, the problem of verifying the copositivity of a tmrais NP-complete. Assumptio(Ald) is a

simpler but more restrictive sufficient condition to enstinat 7Y () is copositive.

3.2. Construction of Myopic Upper and Lower Bounds

We are interested in myopic policies of the foamg min C! = where cost vector§, are constructed so that

acA
when applied to Bellman’s equatidd (3), they leave the oatipolicy 1* (7) unchanged. This is for several
reasons: First, similar ' L(l.éB ' dIQL(;IJ991z)IIDWS us to construct useful myopic policies

that provide provable upper and lower bounds to the optirali¢y Second, these myopic policies can be
straightforwardly extended to 2-stage or multi-stage niyopsts. Third, such a choice precludes choosing
useless myopic bounds suchzgsr) = A for all 7 € I1.

Accordingly, for any two vectorg andf € R, define the myopic policies associated with the transformed

costsC, andC, as follows:

7i(m) = arg min C;ﬂ', where C, =c,+ (1 —pP,)d (8)
acA

p(r)=argmin C,w, whereC,=c,+(1—pP,)f. 9)

- acA

It is easily seen that Bellman’s equatidn (3) applied toroj#e the objectivel (1) with transformed costs
C, andC, yields the same optimal strategy () as the Bellman’s equation with original costs The
corresponding value functions avg~) = V(7)) + g andV (7)) = V(r) + f'z. The following main result

is proved in the Appendix.

Theorem 1 ConsideraPOMDRX, A,Y, P,, B,, ¢, p) and assum@\I)-(A5) holds. Then the myopic poli-
cies,zi(m) and u(w), defined in@), (@) satisfy:p(7) < p*(7) < i) for all 7 € II.

4. Optimizing the Myopic Policy Bounds to Match the Optimal Policy

The aim of this section is to determine vectgrandf, in (8) and [6), that maximize the volume of the
simplex where the myopic upper and lower policy bounds, ifipeldy (8) and((®), coincide with the optimal

policy. That is, we wish to maximize the volume of the ‘ovepéng region’
vol(Ilp), wherellp = {m : fi(7) = p(m) = ™ () }. (10)

Notice that the myopic policieg andx defined in[(8),[() do not depend on the observation proliesili
B, and so neither does v@ll,). Sopz andy can be chosen to maximize V@l ) independent of3, and
therefore work for discrete and continuous observatiocep.eOf course, the proof of Theoréin 1 requires

conditions onB,.
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4.1. Optimized Myopic Policy for Two Actions
For a two action POMDP, obviously for a belief if 7i(7) = 1 thenp* () = 1. Similarly, if u(7) = 2, then
p*(m) = 2. Denote the set of beliefs (convex polytopes) whefe) = 1*(7) = 1 andu () = p*(7) =2 as

Y = {77 Cm< C;ﬂ'} ={m:(ci—c—p(P,— P,)g)m <0},

(11)
I = {m:Cymr < Cym} = {m: (¢1 — & — p(P1 — Po)f)'m > 0}.
ClearlyIl, =119 U H;. Our goal is to findy* € Sy andf* € S; such that vo(II,) is maximized.
Theorem 2 Assume that there exists two fixed X-dimensional vectaasd f' such that
(P, = P1)g" = (P> — P1)g, Vg€ Sq
(12)
(P, — P)f" X (P, — P)f, VfeS;
where for X-dimensional vectoesandb, a < b= [a; < by, -- ,ax < bx], and Sy, Sy are defined in[(5),[{6),

respectively. If the myopic policigsand . are constructed using'gand f, then vo(Il,) is maximized.

Theoreni R asserts that myopic policjesind . characterized by two fixed vectogs andf* maximize
vol(II,) over the entire belief spadé. The existence and computation of these policies charaeteby
g € Sy andf” € S; are determined by Algorithial 1. Algorithid 1 solv&snumber of LPs to obtaig*.

If no g* € S, satisfying [12) exists, then Algorithid 1 will terminate viho solution. The procedure for
computingf* is similar.

Algorithm 1 Computeg*
1: for all i € Xdo

2. ;< min€(P,— P;)g
g€ Sg
end for

9*659*759* E{g*Q*ESg,eg(PQ—Pl)g*:azJ:l, ’X}

7i(7) = argmin 7'C, ¥ € II, whereC, = ¢, + (I — pP,) g*
a€{1,2}

6: fi(m) = p () =1,¥r e IIY .

a » w

4.2. Optimizing Myopic Policies for more than 2 actions

Unlike Theoren R, for the casé> 2, we are unable to show that a single fixed choicg ahdy maximizes
vol(Ily). Instead at each time, 7z and .. are optimized depending on the belief state Suppose at time
k, given observatiow, , the belief stater,,, is computed by using{2). For this belief state the aim is to
computeg® € Sy (B) andf” € S; (6) such that the difference between myopic policy boupds;) — p(7),

is minimized. That is,

(9.f) = argmin (i) — p(). (13)
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(13) can be decomposed into following two optimization peofs,

g" = argmin fi(7;), " = argmax p(my). (14)
g€eSg fe Sk

If assumptiongAd) and(A2) hold, then the optimizations il (IL4) are feasible. Tin, ) in () andg*, in
(I4) can be computed as follows: Starting withr, ) = 1, successively solve a maximum dffeasibility
LPs, where theéth LP searches for a feasibdes Sy in (B) so that the myopic upper bound yields actipn
i.e.nu(m,) = i. Theith feasibility LP can be written as

min 19

9c5 (15)
s.t., dwk < C;wk Vac Aa#1

The smallest, for which (15) is feasible, yields the soluti¢g*, 7z(7, ) = i) of the optimization in[(I¥). The
above procedure is straightforwardly modified to obfaiand the lower boung () ().
5. Numerical Examples

Recall that on the séi, (10), the upper and lower myopic bounds coincide with thénegitpolicy (7).
What is the performance loss outside thel$g® To quantify this, define the policy

i) = w*(m) v ellp
FAT)= arbitrary action (e.g. 1) v ¢TI,

Let J; (7o) denote the discounted cost associated yuith,). Also denote

Jue(m) =B S 00 herec K rello

«(mo) = T ¢ WhEreCeim =3 1. ' /

© 0 kilp w* () k(o € () ml}} C(l,a), e 7m1-£1 C(X’ a) T gHO
- ac ac

Clearly an upper bound for the percentage loss in optimdlityto using policy: instead of optimal policy
uris
€= J[" (7T0~) - jﬂ* (7T0) (16)
Sy (7o)

In the numerical examples below, to evaluatd 000 Monte-Carlo simulations were run to estimate the

discounted costsj, () and.J,- (m,) over a horizon of 100 time units. The parameteand vol(Il,,) are
used to evaluate the performance of the optimized myopicybbunds constructed according to Jéc. 4.
Note thate depends on the choice of observation distributiyrunlike vol(I1, ), see discussion belof ([10)
and also Example 2 below.

Example 1. Sampling and Measurement Control with Two Astibnthis problem y,
), at every decision epoch, the decision maker has ttienopf either recording a noisy observation

(of a Markov chain) instantly (actiom= 2) or waiting for one time unit and then recording an obseorati



Krishnamurthy: Myopic Bounds for POMDPs
Article submitted tdOperations Resear¢cmanuscript no. published in Vol.63, Jan. 2015 7

using a better sensor (actian= 1). Should one record observations more frequently and esgately or
more accurately but less frequently?

We choseX =3, A =2 andY = 3. Both transition and observation probabilities are actiependent
(parameters specified in the Appendix). The percentageinosptimality is evaluated by simulation for
different values of the discount factpr Table[1(d) displays vdll,), €; ande,. For eaclp, ¢, is obtained
by assumingr, = e; (myopic bounds overlap &) ande, is obtained by uniformly sampling, ¢ I15.
Observe that vdllly) is large and, e, are small, which indicates the usefulness of the proposespiny

policies.

Table 1 Performance of optimized myopic policies versus discoaatdrp for four numerical examples. The performance
metrics vol(TIo) ande are defined in[(10) and{1L6).
(a) Example 1 (b) Example 2
p |vol(Ilp) € €2 vol(Tlp) € €4 €5 €5
0.4] 95.3% 0.30% 16.6% 64.27% 7.73% 12.88% 6.92% 454.31%
0.5| 94.2% 0.61% 13.9%  55.27% 8.58% 12.36% 8.99% 298.51%
0.6 92.4% 1.56% 11.8%  46.97% 8.97% 11.91% 12.4% 205.50%
0.7] 90.2% 1.63% 9.1% 39.87% 8.93% 11.26% 14.4% 136.31%
0.8| 87.4% 1.44% 6.3% 34.51% 10.9% 12.49% 17.7% 88.19%
0.9| 84.1% 1.00% 3.2% 29.62% 11.2% 12.24% 20.5% 52.16%
(c) Example 3 (d) Example 4
VOI(Ho) €1 €9 W(HO) V_OI(Ho) €1 € €5 [
61.4% 2.5% 10.1% 98.9% 84.5% 0.10% 6.17% 1.45% 1.71%
56.2% 2.3% 6.9% 98.6% 80.0% 0.18% 7.75% 1.22% 1.50%
478% 1.7% 4.9% 98.4% 75.0% 0.23% 11.62% 1.00% 1.31%
40.7% 1.4% 3.5% 98.1% 68.9% 0.26% 14.82% 0.75% 1.10%
34.7% 1.1% 2.3% 97.8% 61.5% 0.27% 19.74% 0.51% 0.89%
31.8% 0.7% 1.4% 97.6% 52.8% 0.25% 24.08% 0.26% 0.61%

Example 2. 10-state POMDREonsider a POMDP witlX = 10, A = 2. Consider two sub-examples: the
first with discrete observationts = 10 (parameters in Appendix), the second with continuous oasiens
obtained using the additive Gaussian noise modelyj.e- =, + n;, wheren; ~ N(0,1). The percentage
loss in optimality is evaluated by simulation for these twib £xamples and denoted b, ¢Z (discrete
observations) and;, €5 (Gaussian observations) in Taple 1(b).

¢! ande¢ are obtained by assuming = e; (myopic bounds overlap a&). €} andeS are obtained by
samplingm, ¢ I1,. Observe from Table I(p) that vdll,) decreases with. However, the values af and
¢; are small for all values gf indicating the usefulness of the myopic bounds when the pge I1,.

Example 3. 8-state and 8-action POMD®onsider a POMDP witX =8, A =8 andY = 8 (parameters
in Appendix). Tabld I{¢) displays v@ll,), €; ande,. For eachp, €, is obtained by assuming, = e,
(myopic bounds overlap &) ande, is obtained by uniformly sampling, ¢ I1,. The results indicate that

the myopic policy bounds are still useful for some valueg.of
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Example 4. Myopic Bounds versus Transition Matfike aim here is to illustrate the performance of the
optimized myopic bounds over a range of transition prolit#édsl Consider a POMDP with = 3, A = 2,

additive Gaussian noise model of Example 2, and transitiatrioges

1 00
P,=(1-26,0,6,|, P =P;.
1—20, 6, 0,

It is straightforward to show that for all probabilitiés, 8, such tha®, + 6, < 1,6, > 6, the assumptions
of Theorent ]l hold. (More generally choosiffg= P, for any positive integen satisfies the assumptions).
We chose the cost vectors @s= [1,1.1,1.2]" andc, = [1.2,1.1,1.1]". Table[I(d) displays the worst case
and best case values for performance mefe(I1,), €, €2) versus discount factgr by sweeping over
the entire range off,, 62). The worst case performance is denoted by(1Q}), ¢,, ¢, and the best case by

vol (Ilp), &, &.

Discussion In numerical examples, we found that the percentage losptimality ¢ defined in [(I6)
depends on the following: whether or not the initial beligfis in I, vol (I1,), the trajectories of belief
transitions and discount facter For 7, ¢ I, one expectsg to increase ag decreases, and this is an
observable trend in the above examples. This is becaugedasreases, most of the value and loss in
optimality is incurred in the near term. Symmetricallyrif € I, one expects to decrease gsdecreases,
because the first few decisions determine most of the indwost and this relevant time period is more
likely to feature beliefs withiil,. This is often the case but is not consistently so. The nonatumicity of
e in these examples derives from belief trajectories thateigmnate out of and back intd, as information
accrues.

The electronic companion to this paper shows how the rebaelesxtended to problems with quadratic
costs in the belief state. Such problems arise in contreigtsing applications involving radars and sensor

scheduling. Also further discussion on examples thatfgatie assumptions of this paper is given.

Appendix

Let my, 7, € 11, be any two belief states. Them, dominatesr, with respect to MLR ordering, i.et; >,
o, if w1 (i)m2(7) < m(j)ma(i),i < j,1,j € X. Also, m; dominatesr, with respect to first order stochastic
dominance, i.ex; >omy, if 320 mi(3) > S0 ma(i),q €X.

The following lemma replaces Lemma 1.2(3) and Lemma 2.3 ). The proof is straight-

forward and omitted.

Lemma3 Assume (AD) holds. Then, for allm € Il,o(m,a + 1) >5 o(w,a) where o(m,a) =
[o(m,1,a), - ,0(m,Y,a).
AssumdAl) holds. Then, for alir € I, T(7,y,a + 1) >, T(7,y, a).
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Proof of TheorerhliWe show that undefA), (AB), (Ad) and(AB) , u*(7) < fi(w) Vr € I1. Let V and

i denote the variables in Bellman’s equatibh (3) when usirsgs&d, defined in[(8). Then froy,
, Lemma 1.2.1) an@ 87, PropositionV1)T (7, y,a)) is increasing iry. From LemmaB,

o(m,a+1) >so(m,a). Therefore,

> V(T(m,y.a))o(m,y,a) (%)ZV(T(W,y, a))o(m,y,a+1) (gb) > V(T(my.a+1))o(my,a+1)
yey yey yey

(17)

Inequality (b) holds since from Lemnid 3 ar@jm%mmsition 1), V(T(m,y,a + 1)) >

V(T(n,y,a))¥y € Y. The implication of [(IF) is thaEyGYV(T(w,y, a))o(m,y,a) is increasing w.r.t. or
equivalently,

—=/

@(ﬂ-a (I) - C;TF é @(ﬂ-a a+ 1) - Ca+17r

— — 18
= p*(m) =argmin Q(m,a) < argmin C, 7 =Ti(m) (18)
acA . acA

where the implication in{18) follows fron@o&ﬁelnma 2.2). The proof that*(r) > u(r) is
similar and omitted.

Proof of TheorerllZThe sufficient conditions ifi{12) ensure thit D 119 Vg € Sy andIl; D 115 vf € 5.
Indeed, to establish that véﬂ?) > vol (H?) Vg e Sy

(PL—P)g = (P —P)g Vge Sy
= c—c—pPi—P)g 2ci—c,—p(PL—P,)g Vge Sy (19)
= ¢ 211 Vg € S, = vol (Hg*) 2vo|(H?)Vgesg

So voI<H$*> > voI(H‘f)Vg e S, and voI(Hf;> > voI(HL)Vg € S,. Sincell, = 119 UTIY, the proof is

complete.
Parameters of Example For the first example the parameters are defined as,

’ 1.0000 0.0000 0.0000
o— <1.0000 1.5045 1.8341) P= ( ) P =p?

0.4677 0.4149 0.1174
1.5002 1.0000 1.0000 0.3302 0.5220 0.1478

0.6373 0.3405 0.0222 0.5927 0.3829 0.0244
Bi1=10.3118 0.6399 0.0483 | , B2 = | 0.4986 0.4625 0.0389 | .
0.0422 0.8844 0.0734 0.1395 0.79 0.0705
Parameters of Example Zor discrete observation3, = B Va € A,

0.0297 0.1334 0.1731 0.0482 0.1329 0.1095 0.0926 0.0348 0.1067 0.1391
0.0030 0.0271 0.0558 0.0228 0.0845 0.0923 0.1029 0.0511 0.2001 0.3604
0.0003 0.0054 0.0169 0.0094 0.0444 0.0599 0.0812 0.0487 0.2263 0.5075

0 0.0011 0.0051 0.0038 0.0225 0.0368 0.0593 0.0418 0.2250 0.6046

B— 0 0.0002 0.0015 0.0015 0.0113 0.0223 0.0423 0.0345 0.2133 0.6731
0 0 0.0005 0.0006 0.0056 0.0134 0.0298 0.0281 0.1977 0.7243
0 0 0.0001 0.0002 0.0028 0.0081 0.0210 0.0227 0.1813 0.7638
0 0 0 0.0001 0.0014 0.0048 0.0147 0.0183 0.1651 0.7956
0 0 0 0 0.0007 0.0029 0.0103 0.0147 0.1497 0.8217
0 0 0 0 0.0004 0.0017 0.0072 0.0118 0.1355 0.8434
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0.9496 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056
0.9023 0.0081 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112
0.8574 0.0097 0.0166 0.0166 0.0166 0.0166 0.0166 0.0166 0.0166 0.0167
0.8145 0.0109 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0220
0.7737 0.0119 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268
0.7351 0.0126 0.0315 0.0315 0.0315 0.0315 0.0315 0.0315 0.0315 0.0318
0.6981 0.0131 0.0361 0.0361 0.0361 0.0361 0.0361 0.0361 0.0361 0.0361
0.6632 0.0136 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404 0.0404
0.6301 0.0139 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445
0.5987 0.0141 0.0484 0.0484 0.0484 0.0484 0.0484 0.0484 0.0484 0.0484

P

0.5688 0.0143 0.0521 0.0521 0.0521 0.0521 0.0521 0.0521 0.0521 0.0522
0.5400 0.0144 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557
0.5133 0.0145 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0592
0.4877 0.0145 0.0622 0.0622 0.0622 0.0622 0.0622 0.0622 0.0622 0.0624
0.4631 0.0145 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653
0.4400 0.0144 0.0682 0.0682 0.0682 0.0682 0.0682 0.0682 0.0682 0.0682
0.4181 0.0144 0.0709 0.0709 0.0709 0.0709 0.0709 0.0709 0.0709 0.0712
0.3969 0.0143 0.0736 0.0736 0.0736 0.0736 0.0736 0.0736 0.0736 0.0736
0.3771 0.0141 0.0761 0.0761 0.0761 0.0761 0.0761 0.0761 0.0761 0.0761
0.3585 0.0140 0.0784 0.0784 0.0784 0.0784 0.0784 0.0784 0.0784 0.0787

>
[

_{0.5986 0.5810 0.6116 0.6762 0.5664 0.6188 0.7107 0.4520 0.5986 0.7714 '
~\0.6986 0.6727 0.7017 0.7649 0.6536 0.6005 0.6924 0.4324 0.5790 0.6714

Parameters of Example B, = Yo.7 Va € A, whereY. is a tridiagonal matrix defined as

€ t=7J
1—c (i,5)=(1,2),(X=1,X)
T. = [ei;] € =4 1—¢
Jlxxx > €1 5= (10)=(ii+1),(ii—1),i #1,X
0 otherwise

0.1851 0.1692 0.1630 0.1546 0.1324 0.0889 0.0546 0.0522
0.1538 0.1531 0.1601 0.1580 0.1395 0.0994 0.0667 0.0694
0.1307 0.1378 0.1489 0.1595 0.1472 0.1143 0.0769 0.0847
0.1157 0.1307 0.1437 0.1591 0.1496 0.1199 0.0840 0.0973
0.1053 0.1196 0.1388 0.1579 0.1520 0.1248 0.0888 0.1128
0.0850 0.1056 0.1326 0.1618 0.1585 0.1348 0.0977 0.1240
0.0707 0.0906 0.1217 0.1578 0.1629 0.1447 0.1078 0.1438
0.0549 0.0757 0.1095 0.1502 0.1666 0.1576 0.1189 0.1666

Py

0.0488 0.0696 0.1016 0.1413 0.1599 0.1614 0.1270 0.1904
0.0413 0.0604 0.0882 0.1292 0.1503 0.1661 0.1425 0.2220
0.0329 0.0482 0.0752 0.1195 0.1525 0.1694 0.1519 0.2504
0.0248 0.0388 0.0649 0.1097 0.1503 0.1732 0.1643 0.2740
0.0196 0.0309 0.0566 0.0985 0.1429 0.1805 0.1745 0.2965
0.0158 0.0258 0.0517 0.0934 0.1392 0.1785 0.1794 0.3162
0.0134 0.0221 0.0463 0.0844 0.1335 0.1714 0.1822 0.3467
0.0110 0.0186 0.0406 0.0783 0.1246 0.1679 0.1899 0.3691

P

0.0077 0.0140 0.0337 0.0704 0.1178 0.1632 0.1983 0.3949
0.0058 0.0117 0.0297 0.0659 0.1122 0.1568 0.1954 0.4225
0.0041 0.0090 0.0244 0.0581 0.1011 0.1494 0.2013 0.4526
0.0032 0.0076 0.0210 0.0515 0.0941 0.1400 0.2023 0.4803
0.0022 0.0055 0.0165 0.0439 0.0865 0.1328 0.2006 0.5120
0.0017 0.0044 0.0132 0.0362 0.0751 0.1264 0.2046 0.5384
0.0012 0.0033 0.0106 0.0317 0.0702 0.1211 0.1977 0.5642
0.0009 0.0025 0.0091 0.0273 0.0638 0.1134 0.2004 0.5826
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0.0007 0.0020 0.0075 0.0244 0.0609 0.1104 0.2013 0.5928
0.0005 0.0016 0.0063 0.0208 0.0527 0.1001 0.1991 0.6189
0.0004 0.0013 0.0049 0.0177 0.0468 0.0923 0.1981 0.6385
0.0003 0.0009 0.0038 0.0149 0.0407 0.0854 0.2010 0.6530
0.0002 0.0007 0.0031 0.0123 0.0346 0.0781 0.2022 0.6688
0.0001 0.0005 0.0023 0.0100 0.0303 0.0713 0.1980 0.6875
0.0001 0.0004 0.0019 0.0083 0.0266 0.0683 0.1935 0.7009
0.0001 0.0003 0.0014 0.0069 0.0240 0.0651 0.1878 0.7144

0.0000 0.0002 0.0010 0.0054 0.0204 0.0590 0.1772 0.7368
0.0000 0.0001 0.0008 0.0041 0.0168 0.0515 0.1663 0.7604
0.0000 0.0001 0.0006 0.0038 0.0156 0.0480 0.1596 0.7723
0.0000 0.0001 0.0005 0.0032 0.0139 0.0450 0.1603 0.777
0.0000 0.0001 0.0004 0.0028 0.0124 0.0418 0.1590 0.7835
0.0000 0.0001 0.0003 0.0023 0.0106 0.0389 0.1547 0.7931
0.0000 0.0000 0.0003 0.0018 0.0090 0.0351 0.1450 0.8088
0.0000 0.0000 0.0002 0.0015 0.0080 0.0325 0.1386 0.8192

0.0000 0.0000 0.0001 0.0012 0.0067 0.0296 0.1331 0.8293
0.0000 0.0000 0.0001 0.0010 0.0059 0.0275 0.1238 0.8417
0.0000 0.0000 0.0001 0.0009 0.0056 0.0272 0.1238 0.8424
0.0000 0.0000 0.0001 0.0009 0.0053 0.0269 0.1234 0.8434
0.0000 0.0000 0.0001 0.0006 0.0043 0.0237 0.1189 0.8524
0.0000 0.0000 0.0001 0.0005 0.0038 0.0215 0.1129 0.8612
0.0000 0.0000 0.0000 0.0004 0.0032 0.0191 0.1094 0.8679
0.0000 0.0000 0.0000 0.0003 0.0025 0.0161 0.1011 0.8800

Ps=

0.0000 0.0000 0.0000 0.0003 0.0022 0.0143 0.0938 0.8894
0.0000 0.0000 0.0000 0.0002 0.0019 0.0136 0.0901 0.8942
0.0000 0.0000 0.0000 0.0002 0.0017 0.0126 0.0849 0.9006
0.0000 0.0000 0.0000 0.0002 0.0015 0.0118 0.0819 0.9046
0.0000 0.0000 0.0000 0.0001 0.0013 0.0108 0.0754 0.9124
0.0000 0.0000 0.0000 0.0001 0.0011 0.0098 0.0714 0.9176
0.0000 0.0000 0.0000 0.0001 0.0010 0.0090 0.0713 0.9186
0.0000 0.0000 0.0000 0.0001 0.0009 0.0084 0.0675 0.9231

Py

0.0000 0.0000 0.0000 0.0001 0.0008 0.0078 0.0665 0.9248
0.0000 0.0000 0.0000 0.0000 0.0007 0.0068 0.0626 0.9299
0.0000 0.0000 0.0000 0.0000 0.0006 0.0061 0.0581 0.9352
0.0000 0.0000 0.0000 0.0000 0.0005 0.0057 0.0561 0.9377
0.0000 0.0000 0.0000 0.0000 0.0005 0.0053 0.0558 0.9384
0.0000 0.0000 0.0000 0.0000 0.0004 0.0051 0.0558 0.9387
0.0000 0.0000 0.0000 0.0000 0.0004 0.0045 0.0522 0.9429
0.0000 0.0000 0.0000 0.0000 0.0003 0.0040 0.0505 0.9452

P

1.0000 2.2486 4.1862 6.9509 11.2709 15.9589 21.4617 27.6965
31.3230 8.8185 9.6669 11.4094 14.2352 17.8532 22.3155 27.5353
50.0039 26.3162 14.6326 15.3534 17.1427 19.7455 23.1064 27.3025
65.0359 40.2025 27.5380 19.5840 20.3017 21.8682 24.2022 27.4108
79.1544 53.1922 39.5408 30.5670 23.3697 23.9185 25.1941 27.4021
90.7494 63.6983 48.6593 38.6848 30.4868 25.7601 26.0012 27.1867
99.1985 71.1173 55.0183 44.0069 34.7860 29.0205 26.9721 27.1546
106.3851 77.2019 60.0885 47.8917 37.6330 30.8279 27.7274 26.4338
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